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THE CONVERGENCE OF AN EXACT DESINGULARIZATION FOR
VORTEX METHODS*

T. Y. HOU?, J. LOWENGRUB, AND M. J. SHELLEY

Abstract. Expanding upon an observation of Hou [Math. Comp., submitted], exact desingularizations
are presented of the Euler equations in two and three dimensions for which the singularity within the
Biot-Savart integrand is reduced by one order. The reformulated equations are then solved numerically
using either the point vortex method or the vortex blob method. The increased smoothness of the Biot-Savart
integrand allows us to prove convergence of these methods in the maximum norm. Our numerical experiments
show that discretization of the reformulated equations display increased stability relative to discretizations
of the original equations. The improvement in stability is manifested as a more slowly growing error in time.
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1. Introduction. Expanding upon an observation of Hou [16], we present exact
reformulations of the Euler equations in two and three dimensions for which the
singularity within the Biot-Savart integrand is reduced by one order. The reformulated
equations are then solved numerically using either the point vortex method or the
vortex blob method. The increased smoothness of the Biot-Savart integrand allows us
to prove convergence of these methods in the maximum norm. Our numerical experi-
ments show that discretization of the reformulated equations display increased stability
relative to discretizations of the original equations. The improvement in stability is
manifested as a more slowly growing error in time.

In two dimensions, our reformulation of the Euler equations is based on the
following simple observation: the velocity at the center of a radially symmetric distribu-
tion of vorticity is exactly zero. At each point in the fluid we modify the Biot-Savart
integral. We subtract a specified vorticity distribution which is radially symmetric about
the fluid point. This vorticity distribution is smooth, compactly supported, and its
value at the center is equal to the fluid vorticity at that point. We then discretize the
resulting equations using a point or blob vortex method. The discretized integrand will
be one order less singular than the original point vortex discretization [25], provided
that the vorticity is at least Lipschitz continuous. We refer to such a reformulation as
an exact desingularization of the Biot-Savart integral. We also make similar observa-
tions and operations in three dimensions.

It is crucial to our results that the subtracted vorticity distribution be smooth and
of compact support. In [16], Hou advocated subtracting and adding at each point in
the fluid a constant vorticity distribution, with value equal to the fluid vorticity at that
point. This constant vorticity was supported on a set that contains the fluid vorticity.
A trapezoidal rule was then applied to a modified Biot-Savart integral, with the added
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vorticity handled through other means [7]. Again, the order of the singularity in the
integrand was reduced. However, because the subtracted vorticity in Hou’s original
method does not vanish smoothly at the boundary of the computational support, the
trapezoidal rule for a bounded domain gives, at best, second-order accuracy. This is
in contrast to the higher-order accuracy that would be obtained if the vorticity vanished
smoothly [11]. Actually, it is more appropriate to divide the computational domain
into boxes and use a composite midpoint rule. Careless use of a trapezoidal rule may
result in only first-order accuracy. In the method presented here, this disadvantage is
circumvented because the subtracted vorticity is smooth and of compact support. Thus,
the standard trapezoidal rule will provide second-order approximation for the point
vortex method and high-order approximation for the vortex blob method.

The fact that our method is stable in maximum norm allows us to prove the
convergence of a particular local regridding scheme. The local regridding method is
given in [18] and we do not present it here. We simply remark that the existence of
its proof of convergence now gives a theoretical basis for other similar regridding
algorithms.

Although it may be tempting to make the subtracted vortex local, we show that
the error constants grow as the support of the vortex diminishes. This is not surprising,
because the method becomes the original point vortex method as the support of the
subtracted vortex vanishes. This is also reflected in our numerical experiments: the
larger the support of the subtracted vortex, the more slowly growing the error is in
time. Thus, the size of the subtracted vortex should not be coupled to the mesh size.
By our choice of reformulation, the discretized sums remain of convolution type, and
the existence of fast summation algorithms for such sums is known [5]. Our numerical
calculations were performed using direct summation on a Stardent GS2000 computer
where the code was both vectorized and run in parallel on four processors.

Our computational domain must now include some marker particles that lie outside
the support of the vorticity. This is due to the fact that we must accurately represent
the subtracted vortices centered on the boundary of the support of the vorticity.

In addition, as our subtracted vortices are smooth, we are able to obtain an
asymptotic error expansion for the point vortex approximation. In principle, the
existence of such an expansion allows us to extrapolate to get higher-order accurate
methods, and the increased stability of the basic new scheme enables these higher-order
accurate methods to be more stable as well.

2. The equations of motion and vortex methods. The Euler equations of two-
dimensional, incompressible fluid flow in the vorticity-stream formulation are given by

(1)

and

wt+u" Vw=O

(2) u(x, t) Ja2 K(x y)w(y, t) dy,

where u(x, t)= (Ul(X, t), u2(x, t)), x (xl, x2) is the fluid velocity, w(x, t) is the scalar
vorticity, and

1
(3) K(x)-2r’x’21 (-x2, xl)

is the Biot-Savart kernel. Equation (1) demonstrates that the vorticity in two dimensions
is conserved along particle paths, while (2) (the Biot-Savart integral) gives the relation
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between the velocity and the vorticity due to the incompressibility constraint, and the
definition of the vorticity.

We introduce the vortex or particle method by rewriting (1) and (2) in Lagrangian
coordinates. X(a, t) is defined so that X(a, t) gives the position at time of a particle
that started at position a. That is,

(4)
dX(a, t)
=u(X(a,t),t), X(a, 0) a.

dt

Now by (1) we have

(5) to(X(ct, t), t): to(a, 0)= tOo(a),
since vorticity is conserved along particle paths. This yields the Lagrangian formulation"

dX(a, t) Jl K(X(a, t) X(a’, t))tOo(a’) da’,
(6)

dt __2

X(, 0) a.

The vortex method is concerned with the solution of this infinite-dimensional set of
ordinary differential equations. Note that K(x) is singular at the origin with the
integrable singularity 1/Ixl.

The simplest and oldest vortex method consists of approximating the integral in
(6) by the trapezoidal rule, omitting the singular self-interaction term, and solving the
differential equations

(7) dX,(t)_ E K(L-)tOjh2, ’(0) c, (ilh, i2h),
dt ji

where toj tOo(aj). This is the point vortex method (PVM) [25]. It has the following
difficulty: as two point vortices approach one another, the velocity each induces on
the other becomes unbounded. That is, there can be strong grid-scale interactions that
lead to a rapid loss of accuracy in numerical calculations.

Nonetheless, this method has been proved convergent by Goodman, Hou, and
Lowengrub [13]. A necessary condition for the stability of this scheme is that the
method be accurate enough over a given time interval. The accuracy, however, depends
on the grid size, the gradients of the solution, and the properties of the kernel K. In
typical calculations though, this required accuracy can be lost in time rather quickly
due to the development of large velocity gradients (which result in large Lagrangian
grid distortions) and the singular nature of the kernel K (see [3], [13], and [23], for
example).

To alleviate these difficulties, Chorin [8] introduced the idea of using a mollified
kernel, Ks, or equivalently, vortex blobs with a fixed shape, instead of point vortices
to approximate the flow

(8)
d2 t_____) , K 2 ff[ tOh2, ff2 O a

dt

where K=K ,f, f(x)=(1/2)f(x/8) where f is an ruth order cutoff function
satisfying

(i) Iaf(x) dx- 1,

(ii) fa2 xf(x) dx 0 for all multi-indices such that _-< Ifl]_-< rn 1.

This gives a computationally more stable method than the point vortex method if the
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smoothing size 6 is larger than the grid size h. Convergence of the vortex blob method
(VBM) has been well established. See [1]-[4], [9], [12], [15], and [24] as well as the
review articles [6], [19], and [20] for a bibliography.

The grid distortion exhibited in the PVM is still present for the VBM, although
its effects are not as catastrophic due to the mollification of K by Ks. Consequently,
both the VBM and the PVM produce relatively large errors for large time calculations
[3], [13], [23]. The purpose of this paper is to introduce a new desingularization to
maintain the overall accuracy for longer times with the same initial grid sizes.

3. Our method. We now present our method. It is based on the desingularization
idea of Hou [16] and our observation that the velocity at the center of a radially
symmetric vortex is zero.

Let g(x) be a smooth function of compact support satisfying

1, [x[--< R1,
(9) g(x) g(lx[)=

0, Ix[--> R2.

We see that

(10)

K(Xi-X(,))OOo(O) d

Ii K(X-X(oz))(tOo(a)-o2ig(Xi-X(a))) da,

since

(11) K(Xi-X(oz))g(Xi-X(a)) dol =(.0 K(x)g(x) dx=O,
112

as X(a) is an area-preserving transformation and K(x)g(x) is an odd function in x.
Again, this is just the statement that the velocity at the center of a radially symmetric
vorticity distribution is zero. We refer to (10) as an exact desingularization of the
Biot-Savart integral. The point vortex and vortex blob quadratures of (10) will be
referred to as the desingularized point vortex and desingularized vortex blob methods
(DPVM and DVBM).

In [16], Hou used g(x)-1, where the integrals in (10) and (11) are taken over
the support of the vorticity (or some set containing it), assumed to be finite, and
denoted by 12. He considered the reformulated equations

dXi- f K(Xi-X(a))(t(a)-tg) da + ti I K(Xi-X(a))

The second integral is the velocity induced at Xi by a patch of constant vorticity of
strength toi and filling 12. This integral is no longer zero, but can be computed explicitly
over triangulations of the underlying mesh, or as a boundary integral [7]. However,
note that the subtracted vorticity distribution does not vanish smoothly at 012. Therefore,
discretizations of the first integral must be based upon quadrature rules that take
careful account of the boundary; misrepresentation of the boundary can lead to O(h)
errors. This problem is completely circumvented by using a subtracted vorticity distribu-
tion that is smooth and decaying (compact support). In addition, our method is simpler,
as there is no correction term to calculate (the second integral above).
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Here, we consider the point vortex and blob discretizations of (10), or

dt ji

(12) h

To ensure the consistency of our scheme, our discretization must cover a set , which
contains , with the propey that

(13) min dist (0, Off) R2.

This condition is necessary to ensure that the discretization of (11) is zero to O(h2)
for those points X(a, t) such that dist (X(a, t),)R2. That is, we carry marker
panicles in the region -fl. These panicles carry no voicity but will effect the
velocity calculation at points X fl such that dist (X, Off) R2.

We now present our convergence theorems.
THEOREM 1 convergence of the DPVM). Assume that o, g C(R2) and that g

satisfies (9) and fl satisfies (13). en, for 0 T, there exists ho(o, T, g) such that

max [X C(T)h and max ]u- c(r)h2,

for all 0<h <=ho, where Xi---X(oli, t) and Ui--u(Xi, t) are the exact solutions of the
Euler equations and Xi and i are the solutions of (12) with is O.

THEOREM 2 (convergence of DBVM). Assume that f(x) is an mth order cutoff
2function, g,f, Oo Co(R ), g satisfies (9), and satisfies (13). We assume that is= h q

with q such that mq and (1- q)r + 2q are both => 1 + 2ao for some ao > O. This is so that
the method is more thanfirst-order accurate. Then, there exists ho(rOo, f, g, T) for 0 <= <= T
such that

and

max IXi -1-<- C(T) ism -I-" is2

max lu, al <= C( T iS"+ is2

for all h <= ho, where ff[ and are the solutions of (12).
Remark 1. (i) Thanks to a smooth g, we can obtain an asymptotic error expansion

in the case is 0, in even integer powers of h.
(ii) We will prove only Theorem 1. Theorem 2 is proved using the bounds of

Theorem 1 and follows directly from the standard analyses of vortex methods (see
[1]-[4], [9], [12], [15], and [24], for example).

Proofof Theorem 1. As usual, we divide the proof into two parts: consistency and
stability. We begin with consistency.

CONSISTENCY LEMMA. Suppose that g, tOo6 C(R2), and satisfies (13) with Ah
as its Lagrangian discretization. Then there exists ho( T, g, too) such thatfor all 0 < h <-_ ho

(14)

Pi fR K(Xi-X())t() dee- , K(X-Xj)(toj-to,g(Xi-Xj))h
jhA
ji

C2(Xi, t, g)h2+ C4(Xi, t, g)h4+ .+ O(h N)
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for any N. The constants C2, (Xi, t, g) (n >- 1) are smooth functions ofXi. Furthermore,
ifg, tOo C(R
C(T)h2.

Proof of consistency. We rewrite pi as follows:

p,= f K(X,-X(oz))tOo(a) da- E K(X,-X)(toj-to,g(X,-X))h
jhEA
ji

(x-x((OOo(-og(x-x(

2 K(X,-XI(o-o,g(X,-X,
jh
ji

since the velocity at the center of a radially symmetric vortex patch is zero.
Using assumption (13) and the fact that g is smooth with compact support, we

can apply the consistency argument of Goodman, Hou, and Lowengrub 13]. We need
only to replace their Lemma 2 by the following lemma.

LEMMa 2’. For any N, we have

K(X(0)- X(a))(tOo(a)- tOo(0)g(X(0)- X(a)))

lo(a)+ ll(a)+
where l, is homogeneous of degree n in a. Then, using 1 instead of m in the proof of
Lemma 1 in [13], we get the result

p C2h + C4h4 d d- O(h N)
for any N. Furthermore, the coefficients are rapidly decaying, as before 13], and thus
we obtain the desired result.

The proof of Lemma 2’ is accomplished by expanding X(a), K(X(O)-X(c)),
and g(X(O)-X(a)) in power series in a and then multiplying them appropriately.
The presence of the term too(O)g(X(O)-X(c)) eliminates the most singular term that
appears in Lemma 2 of [13]. This completes the proof of the Consistency Lemma.

We now turn to the Stability Lemma.
STABILITY LEMMA. If

IIx( t)- ’(t) II/ -<_ h l+s

for <-- T* and any s > O, then there exists E (T) such that

max K(X-Xj)(toj-to,g(X-Xj))h2- . K(f(-j)(toj-tog(i-j))h2

jhA jhA

(15)
<-E(T)IIX-II,.

Proof of stability. Define

(16) Fo(y) K(y)(toj-to,g(y))
and e =.X Xi. Furthermore, we define

(17) o-,= F(X-X)h2- Fi(i-f()h.
jhAh jhA
ji ji

By the mean value theorem, we have

(18) o’i E VFj(Xi-Xj+Xjk) (e,-ej)h,
jhEAh
ji
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where Xijk --Ok(ei--ej) for some [Ok[ 1 and k 1,2 denotes the component of VF.
The mean value theorem is applicable here because Fo is nonsingular in the region
considered"

(19)
e IXi-Xl-2h l+S

_-> C(T)la,- cgl- 2h l+s

for t<_-T* and h small enough, where we have used IX(ai)-X(aj)] C(T)l,-cjl
due to the smoothness of the inverse flowmap X-1.

Now we examine VFj. Differentiating both sides of (16), we get

(20) VFo(y)=VK(y)(wj-toig(y))-K(y)wiVg.
Since g(y) is smooth, we have by the mean value theorem g(y)=g(O)+Vg()y for
some []-< ]y]. Recall that g(0)- 1. Thus we obtain

(21) VFo(y VK (y)(w) w,) (to,Vg())yVK (y) K (y)to,Vg.

As a consequence, we obtain

D(T)
(22)

where we have used (19) and the boundedness of Vg. Then it follows from (18) and
(22) that

h 2

(23) ]o’,l D(T)IIeII, E <- E(T)llellro,
j#i

which proves the Stability Lemma.
We are now ready to complete the proof of Theorem 1. Define

ei(t)=X(t)-Xi(t)

and

T*=inf{tl0_-< t<= T, Ile(t)[ll<-_h l+s}
for some 0 < s < 1. We have

dei
dt

t) o’i( t) + pi( t).

It follows from the Consistency and Stability Lemmas that for t-< T*,

d
(24) d-- e I1’--< E(T) IIe I1, / C( T)h2.

Gronwall’s inequality then implies that

(25) Ilell,o<-_H(T)h 2 for t_-< T*.

But H(T) is independent of T*. Thus, for h small enough, we have Ilelll(R)<--hl+S/2.
Hence we conclude that T*= T, which completes the proof of Theorem 1.



8 T.Y. HOU, J. LOWENGRUB, AND M. J. SHELLEY

Remark 2. (i) Our parameters R1, R2 allow for the fine tuning of the error. Clearly,
as the difference R2-R1 increases, our stability constants will decrease. Increasing R1
and fixing the distance R:- R1 will also result in a decrease of the stability constants.

(ii) Decreasing R2 or R2-R will increase the stability constant because Vg
becomes larger; see (21).

(iii) As a result of our asymptotic error expansion, we can extrapolate, using
different grid sizes, to obtain higher-order accurate methods. In this way, we do not
need to use explicit values of the vorticity gradients, we simply need to know that they
are smooth.

4. Numerical results. In this section, we present some results of numerical experi-
ments in which both the DPVM and the DVBM are implemented to simulate the
two-dimensional Euler equations. These results are only intended to be illustrative of
the advantages ofthe increased stability for vortex methods based on exact desingulariz-
ation. It is clear that there are many ways in which the method could be further
improved and fine tuned.

On a simple test problem, the convergence rates predicted by the convergence
theorems are demonstrated. It is shown that increased stability accompanies wider
support of the cutoff function g(Ixl), as indicated in Remark 2(i). Furthermore, these
methods are compared with both the classical point vortex and vortex blob methods.
The results indicate that the DPVM and the DVBM show increased stability relative
to these methods, and consequently remain more accurate over longer times.

As our test case, we consider the motion of a smooth, radially symmetric distribu-
tion of vorticity. Such distributions are steady solutions to the Euler equations, in
which fluid particles move with constant speed on circles about the origin. In particular,
we use

(I-Ix[2)7 if Ix[<_-l,
co(x)=

0 if Ix[> 1.

The velocity field is then given by

u(x) -f(lxl)
(--X2, Xl

Ixl
with speed

f(r)={(1-(1-r2)8)/(16r) if r--< 1,
1/(16r) if r> 1.

The vorticity itself lies in C6(R2). This particular test case has been used by many
others; see [23], for example. It is a nontrivial test case for a Lagrangian method, as
there is a good deal of grid distortion and stretching. As an illustration, consider the
motion of a material curve that at 0 is the line segment connecting (0, 0) and (1, 0).
By 20 this material curve has increased its length eightfold. This particular material
curve is also a coordinate line in our calculations.

For our methods, many choices must be made. First, a cutoff function g(r) must
be chosen, which may itself involve further parameters (say R and R in (9)).
Furthermore, a discretization of the exactly desingularized Biot-Savart integral (10)
must be specified. We have discussed the point vortex and vortex blob approximations,
though perhaps there are others worth entertaining. For definiteness, we consider here
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the cutoff function

ifr=<Rl’
g(r)= 1-s(r)8)7 ifRl<r<

if r>-R2,

where s(r)2= (r- R)/(R- R). Note that g also lies in C6(R), and generally should
be chosen to be at least in the same continuity class as the vorticity. Figure 1 shows
gwith Rl=1/2and Re=l.

Using the DPVM, with the above choices of R] and Re, Fig. 2 shows the maximum
error in velocity, Ile<t>ll , for h =0.2 (medium dash), 0.1 (short dash), and 0.05 (solid),
on 0 _-< _-< 20. The time integration method is a fourth-order, Adams-Moulton predictor-
corrector [11]. The timestep was chosen small enough to remove time discretization
errors from Fig. 2. Initially, the computational points were placed on a square grid
over the vorticity. Here the set covering the vorticity was taken large enough to satisfy
condition (13). That the error is of second-order is evident in Fig. 3, which displays
log2(lle(2h, t)ll/lle(h, t)ll) for h =0.05. This function should be approximately two
for a second-order method.

Now we consider the effect of varying both R] and Re upon the DPVM. Let
R a/2 and R2 a. Then as a$0, we recover the classical point vortex approximation.
For h =0.1, Fig. 4 shows the error as a is varied as a 1 (solid), 1/2 (short dash), 1/4
(medium dash), and 0 (long dash, the classical point vortex approximation). We note
that the initial error in velocity (the discretization error) for all four cases is approxi-
mately 2.0. 10-3. As indicated by our convergence theorems, a is chosen for stability

1.2

0.8

0.2

0.2 0.4 0.6

FIG. 1. Graph of the patch function g with the parameters R 1/2 and R 1.

0.1

0.08

0.06

0.04

0.02

FIG. 2. Maximum error in velocity for the DVPM with h =.05 (solid line), h =.1 (short dash), h=.2
(medium dash), and g of Fig. 1.
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0 5 10 15
time

20

FIG. 3. Order of convergence in maximum norm for velocity errorfor the DVPM with h .1, h .05, and
the g of Fig. 1.

0.12

0.1

0.08

"- 0.06

0.04

0.02

10 15 20

time

FIG. 4. Comparison of the velocity errorfor the DVPM as the patch function g changes. We let R a/2
and R2= a. Then the curves are the errorfor a (solid line), a =1/2 (short dash), a =1/4 (medium dash), a =0
(long dash), and h =.1.

considerations, rather than for accuracy. Note from Fig. 4 that as a becomes larger
and the support of the cutoff function grows, the growth of error decreases in time.

It is informative to decompose this error into that part associated with consistency
and that with stability. As is usual, the error associated with consistency is given by

g(Xi-X(a))tOo(a) ’, g(xi-xj)(toj-toig(Xi-Xj))h 2,da-
jhA
ji

and that for stability by

E K(X,-X)(to-to,g(X,-X))h:- E K(f(,-f)(to-toig(f,-f)) h’,
jhA jhAh
ji ji

where Xi(t) and Xi are the exact and approximate solutions, respectively. Figure 5
shows these two errors (in maximum norm) for the classical PVM (dash) and for the
desingularized PVM (solid). It is clear that the dominant error in both methods is that
associated with stability, and that the stability control associated with the use of exact
desingularization leads to much decreased error growth in time. An additional benefit
from using exact desingularization here is a slower growth of the consistency error as
the mesh becomes distorted and stretched.

We reach similar conclusions when comparing the DVBM with the classical VBM.
Figure 6 shows the maximum error in velocity, with h =0.1, for the DVBM (solid)
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0.12

0.1

0.08

0.06

0.04

0.02

0 5 10
time

Stability Error

15 20

0.12

0.1

0.08

0.06

0.04

0.02

0
0

Consistency Error

"’

i ’I I"
5 10 15 20

time

Fio. 5. (a) Stability error for the DVPM (solid line) with g of Fig. vs. PVM (dashed line) for h--.1.
(b) Consistency error for the DVPM with g of Fig. (solid line) vs. PVM (dashed line) for h-.1.

0.04

0.02

--il
10 15 20

time

FIG. 6. Comparison of the maximum error in velocity for the DVBM with g of Fig. (solid line) vs. VBM
with h- .1, 6-- h "9s, and a fourth-order cutofffunction (Beale and Majda [3]).

and the classical VBM (dashed). Here we have used a fourth-order kernel (Beale and
Majda [3]), with small blob size 3 h’95. Note that the vertical scale in Fig. 6 is
one-half that in Figs. 4 and 5. For this choice of 3, Theorem 2 gives an order of accuracy
of O(h22), which is only slightly higher than that of the PVM. However, we expect to
have a further improvement in the stability of the scheme. This expectation is justified
by Fig. 6. Also note that while the VBM was initially more accurate than the DPVM
(Fig. 4) by 20 this situation has reversed, and the DPVM has become more accurate.
Figure 7 shows the associated stability and consistency errors. Again, the method based
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0.06

0.04

0.02

Stability Error

5 10
time

15 20

0.06

0.04

0.02

Consistency Error

’1"
5 10 15 20

time

FIG. 7. (a) Stability error for DVBM with g of Fig. (solid line) vs. VBM (dashed line) with h =.1.
(b) Consistency error for DVBM with g of Fig. (solid line) vs. VBM (dashed line).

upon exact desingularization shows both decreased stability and consistency error
relative to the standard methods.

Finally, we present some preliminary calculations of the interaction of two like-
signed vortices. Again, these calculations illustrate the computational advantages of
exact desingularization, but they also demonstrate that our methods offer no panacea
to a fundamental source of error in Lagrangian methods, which is grid distortion and
stretching. We consider the initial vorticity distribution

oo(x, y)= (max (0, (.25-(Ixl-.5)2- y2)))7/.257.

Contours of this vorticity distribution are shown in Fig. 8. Evolution from this initial
condition was calculated by Nordmark [22], who showed that the accuracy of vortex
methods could be much improved through periodic rezoning of the particle positions.
We do not present a comparison with his work here, but only seek a more interesting
example with which to study our methods.

The initial particle positions are on a square grid covering the vorticity distribution.
To visualize the motion of the vortices, we have placed marker particles on the four
contours of the vorticity shown in Fig. 8. Initial point positions are shown on the left
set of contours. The inner two contours each have 50 points, while the outer two have
200 points. The outermost contours coincide with the boundary of the support of the
vorticity. The velocity of a marker particle with position Y(t) is calculated by

dY(t) _, Ka(Y-2)(wj-w(Y(O))g(Y-2))h2.
dt jhA
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t----’0,

FIG. 8. Initial position of marker particles for the two-patch problem.

Figures 9(a) and 9(b) show the evolution of these marker particles at 10. and 20.,
using the DVBM with h .05, 6 h "95, and a 1 for g, as given above. The lack of
smoothness of the inner contours at t-20. is nonphysical, as Nordmark’s careful
calculations show. From these figures it is clear that vortex methods based upon exact
desingularization would also benefit from a rezoning strategy. In Figs. 10(a) and 10(b)
we show the same calculation, now using the classical VBM. The conclusions are
self-evident.

We close this section with several remarks.
(i) The existence of fast summation techniques for a particle method is an

important consideration. The first part of the sum (12),

h . K(-
ji

can be evaluated by methods already developed for Biot-Savart sums (see Greengard
and Rokhlin [14]). Because of the nature of our cutoff function, the second part of
the sum,

h2wi K(,-2)g(,/ .),
ji

remains of convolution type. That is, / Kg is convolved with 1. General fast
summation techniques have also been developed for such sums (see Brandt [5]).

(ii) We do not present results for three-dimensional calculations using the exact
desingularization for the three-dimensional Euler equations to be discussed in 5. We
are currently implementing this method.
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t=10.O

h=0.05, Exact Desingularization

-1 0
X

(a)

t=20.0

h=O.05, Exact Desingularization

-1 0

()
FIG. 9. (a) Position ofmarkerparticles at 10 using the DVBM with h =.05 and g ofFig. 1. (b) Position

of marker particles at 20 using the DVBM with h .05 and g of Fig. 1.
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0

t=10.O

h=O.05, Vortex Blobs

-1

(a)

t=O.O

h=0.05, Vortex Blobs

-I 0

()

FIG. 10. (a) Position of marker particles at t-10 using the VBM with h =.05. (b) Position of marker
particles at t--20 using the VBM with h .05.
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(iii) Merriman [21] has pointed out that further subtractions, which account for
yet higher-order information of the vorticity, may not only increase stability, but also
improve accuracy.

(iv) Evolving the marker particles in the region -12 is costly. While the use of
fast summation techniques will considerably ameliorate this cost, much can be done
in optimizing the cutoff function g to reflect the vorticity distribution.

We now turn to the three-dimensional extension of our desingularization.

5. Generalization to the three-dimensional grid-free vortex method. The three-
dimensional incompressible Euler equations in vorticity-stream function formulation
are

(26) w,+(u" V)w (w" V)u,
where

(27)

and

u(x, t)= fa3 g(x--Xt)W(X’, t) dx’

dw
--(x(,t))=(w.V)u
dt

(29) f
w(X(ce, t), t)" | 7K(X(ce, t)-X(a’, t))" w(X(ce’, t), t)

The reformulation idea presented in 3 applies to the three-dimensional method as well.
As in 3, we define a radial scalar function g, satisfying g(Ix[)= 0 for Ix] >-R2,

g(Ixl) 1 for Ixl-<-R, and smoothly varying in between. Then, it is clear that

K(X(a, t)-X(a’, t))w(X(ce, t), t)g(X(ce, t)-X(a’, t)) ace’=0,(30)

since K is odd. Therefore,

K(X()-X(’)lw(X(’)) d’

(31)

fa K(X(oe)-X(a’))(w(X(ce’))- w(X(ce))g(X(ce)-X(ce’))) da’,

which reduces the singularity of K by one order.
The particle equations (28), (29) can be desingularized as follows. Consider the

integral

VK(X(a)-X(ce’))w(X(ce))g(X(a)-X(a’)) ace’
R

(32)
3VK(x-x’)w(x)g(x-x’) dx’.

and

The particle formation is, using incompressibility,

(28) -(a, t)=u(X(c, t), t)= K(X(a, t)-X(a’, t))w(X(a t, t), t) da

4.lxl
--X 0 X

X2 --X 0

K(x)-
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Without loss of generality, we consider the case x 0. Then (32) reduces to

(33) Ii3 VK(-x’)w(O)g(-x’) dx’.

The integrand is a matrix whose elements have the following form"

+3xlx ,)
ykg(--X’) ’ xl2 xfykg(--X + [3X, --( + +X2)](34)

ix,i ix,i
where + 1 if j, , 0, and w(0) (y, y, 3’3). Thus, since g is a radial function,
the integral of the first term in (34) vanishes due to oddness in each coordinate axis.
The integral of the second term vanishes due to exact cancellation of integrals.

Therefore, the reformulation of (28), (29) can be stated as:

(35) -d--(a, t)= K(X(o)-X(o’))(w(X(a’))-w(X(o))g(X(a)-X(o’))) ace’,

(36) --d--f (or, t)= VK(X(o)-X(o’))(w(X(a’))-w(X(o))g(X(a)-X(o’))) da’,

with X(a, O)= a and w(a, 0)= Wo(a). The numerical method is then given by:

(37) dX,_ ., K(..-..)(- ,g(.,-))h3,
dt jhA

ji

(38) dye,_ 2 VK(L-..)(rb2- v,g(L-L))h3,
dt ,,

with X(O)= c and ff(0)= Wo(a), and where ,5 =>0.
We remark that this method is less physical than the corresponding two-

dimensional method. The reason for this is that our requirement of compact support
for g is tantamount to assuming that vortex lines end. However, we hope that the
reduction of the singularity of the summands in (37) and particularly (38) makes
three-dimensional computations more feasible.

The convergence of the desingularized method (37), (38) can be obtained by either
following Beale’s proof for the VBM [2] or by following the proof of Cottet, Goodman,
and Hou [10] for the PVM. In either case, the stability is easier, and in the case of
the PVM, the factor log (1/h) [10] can be eliminated.

Acknowledgments. It is a pleasure to thank G. Baker, R. Caflisch, J. Keller, and
especially B. Merriman for their interest and valuable discussions concerning this work.
The authors also wish to thank C. Anderson (Reviewing Editor, SISC) and a reviewer
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Abstract. Various aspects of the problem of computing inertial manifolds for dissipative partial differen-
tial equations are investigated. In particular, methods are proposed which generalize previous ones and
improve upon some of their limitations. The basic ideas and techniques are exemplified mainly for the
Kuramoto-Sivashinsky equation. This equation is chosen because it is fairly simple but the dynamics are
sufficiently complicated, and it is a classical case for which a considerable amount of computational
experience has been well documented.
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1. Introduction. Recently there has been considerable interest, especially in the
dynamical systems community, in the computation of inertial manifolds for dissipative
partial differential equations (PDEs). This process is carried out by first splitting the
solution space H into two subspaces PH and QH, where P is an orthogonal projection
on H with finite-dimensional range and Q I-P. The projection components in PH
and QH are denoted, respectively, by p and q, and these components are governed
by a system of ordinary differential equations (ODEs). The q-variables are expressed
in terms of the p-variables by some relation q b(p), and the dynamics of this reduced
system of ODEs for the p-variables are then used to mimic the dynamics of the
underlying PDE.

We consider an evolution equation of the form

(1) u,+Au+F(u)=O,

where A is a selfadjoint positive operator with compact resolvent (the dissipative part)
defined on a Hilbert space H, and F(u) is the nonlinear part defined on the domain
of A. The dissipative nature ofthe PDE imparts it with a number of important properties
(e.g., see [CFNT]), one of which is that the solution map Uo u(t)= S(t)Uo satisfies
the following: There exists a compact, convex set Y c H such that, for any bounded
set F c H there exists to to(F) with S(t)Uo Y for all _-> to, Uo F. We are interested
in studying the long-term dynamics of the PDE. Although these dynamics can be
extremely complicated, we can show under suitable general conditions that the PDE
has an inertial manifold f, which is a manifold in Y with the following properties [LS]:

(i) f is invariant, i.e., S(t)12 c 12 for all -> 0;
(ii) 12 attracts all solutions of (1) exponentially; and
(iii) 12 is a finite-dimensional C manifold.
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The C smoothness is a regularity result following from the definition.
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It follows that all of the long-term dynamics take place on this inertial manifold.
In particular, the global attractor [CFNT] is a subset of this manifold. While the rate
of attraction to the global attractor may be slow, all solutions are attracted to the
inertial manifold exponentially fast.

For most PDEs of the form (1) which have been considered to date, the linear
operator A is sufficiently simple (the negative Laplacian -A or bi-Laplacian A2 operator)
that a spectral method can be straightforwardly used to approximate u(t). In particular,
suppose that wl, w2,.., are the orthogonal eigenfunctions of A with corresponding
eigenvalues 0 < A -<_ A2 -<" ", so that

(2) Aw:=Ajw, j=l,2,....

Define P and Q := I-P to be the usual spectral projections with P projecting onto
the subspace spanned by the first n eigenfunctions, i.e.,

(3) Pu p := a wj
u, wj w,

j=l j=l (142j, Wj)

where (,) is the scalar product on H. Under suitable conditions, such as that the
eigenvalues grow sufficiently fast to satisfy a gap condition [LS], it is possible to
determine an (upper bound on) n such that f is the graph of a function 4 satisfying
QS(t)uo=ck(PS(t)Uo) for all t->0 whenever Quo=ch(Puo). In this case, f is an
n-dimensional manifold in H. Since P and Q commute with A, it follows that not
only is the PDE (1) equivalent to the ODE system

(4a) 16+ APp + PF(p + q)=0,

(4b) 4+AQq+QF(p+q)=O,

but its long-term dynamics (solution stability, hyperbolicity, bifurcations) are com-
pletely determined by the finite-dimensional ODE system

t0 + APp + PF(p + dp(p)) 0

with no error. This last system is called an inertial form for (1).
In practice, Q is approximated by truncating its corresponding spectral projection,

which under suitable conditions can be theoretically justified. To facilitate the presenta-
tion, we assume (unless stated otherwise) that this has been done for m sufficiently
large and simply denote

(6) Qu=q:= 2 a(t)w:= 2
(u, wj)

=.+1 =.+, (w;, w) w

for Q and q in (4b). As a consequence of this truncation process and the subsequent
numerical solution, 4(P) is replaced by an approximation, say 4a(P), and the corres-
ponding graph fa defines an approximate inertial manifold (AIM). Henceforth in this
paper we shall assume that the truncation (6) has been effected: we shall drop the
subscript a on 4 and f and assume that f denotes an AIM.

Determination of the long-term solution behaviour for the dissipative PDE (1)
now reduces to computing solutions to (5), and this requires that an approximate 4
be computed. The trivial approximation 4(p)-=0 yields the traditional Galerkin
approximation; in the context here, it is called the fiat Galerkin method since f is
approximated as being "flat." For a nonlinear Galerkin method [MT], a nontrivial
approximation for 4 is used, providing a nonlinear manifold instead of a subspace.
Approximations to 4 can be obtained in a variety of ways. Basically, the methods



SOME NUMERICAL ASPECTS OF COMPUTING INERTIAL MANIFOLDS 21

involve either (i) solving a PDE for b(p), which is derived from (4a), (4b), or (ii)
using (4b) to find an approximate th(p), which is then used in (5). See [LS] for a list
of references and for a review of different methods, along with some of their theoretical
and practical properties.

Methods from class (ii) wherein q b(p) is approximated using (4b) appear to
be more straightforward to use in practice than those from class (i), and we restrict
our attention to class (ii). In the next few sections, we discuss previously used methods
and propose several new variants.

2. Solving the ODE (4b). The most straightforward method of approximating
q=b(p) is to discretize (4b). Simple low-order methods are normally used. The
groundbreaking papers [FJKST] and [FST], which introduce the problem of computing
AIMs, use the backward Euler method with one iteration, taking q 0 as the initial
approximation. If " is the stepsize, we simply have

(7) q (p) --(I + -AQ)- QF(p).

A nontrivial decision is how to choose n and ’. While a small value of " gives,,better
accuracy (smaller local truncation error), it only guarantees that the graph of b(p) is
close to f if q--0 is a sufficiently accurate initial approximation. If this is not the
case, (4a) and (4b) must be integrated in enough steps that (p, q) is sufficiently close
to the manifold. Making use of the exponential rate of attraction to and assuming
n is chosen such that An+l is sufficiently large, the strategy (7) with ’ 1/An+l can be
given some theoretical justification. However, as an illustration of practical difficulties
that can arise, we give the following example.

Example 1. Consider the reaction diffusion equation

(8) u,-VUxx+U3-u=O, u(O,t)=u(Tr, t)=O

with v=(1/2.5)2=0.16. We have Au:=-VUxx, so if m=3, then u(x,t)=
]=1 aj(t) sin (jx). In the case n 2, the relationship (7) is found explicitly in [FJKST]
as a3 (a-3aa22) (-/4(9’v + 1)). Using the techniques developed in the next section,
we can show that a general backward Euler inner iteration (to converge from q 0 to
the approximation for the first Euler step)

(9) q<’+’) --(I + ’AQ)-’ OF(p + q(’))
is a fixed-point iteration (also called Picard iteration) on

1+6a22+3ce32-a]a3}.(10) c3 4(9r+ 1)
{-c3+3c1c+[6c2

The exact Euler-Galerkin solution is the fixed point of (10) (it is easy to see that a
fixed point exists for all values of al and a2); however, ordinary iteration only converges
for certain values of c and c2, depending on z and r. This is illustrated in Fig. 1,
which shows a cross section of c3 a3(ce, a2) for c1=0.9. The derivative of the
iteration function in (10) at a fixed point a3 is

-4}-" {6ce12+ 6ce22+9a3(11)
4(9z,r+ 1)

(this derivative must have a modulus less than 1 for convergence), and a simple
necessary condition for convergence of the Picard iteration is

16a2+6a22_41 < 4(9,r + 1)
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Exact solution (Aitken-Steffensen) and Picard iterates
0.4

0.2’"’., ,/
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@ -0.2
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FIG. 1. Nonconvergence of Picard iteration.

Figure 2 brings these convergence results under one hat; it shows the region given by
the essential convergence condition provided by (11) for v 0.16 and r 1, and the
prediction is confirmed by numerical experiments. This region grows with v, i.e., added
dissipation, but shrinks with increasing r. Note that in this simple case, the exact
solution of (10) can be obtained via an Aitken-Steffensen iteration (see Fig. 1) or by
employing a Newton method (see also below). The Euler-Galerkin AIM, as described
in [JKT1 and [FST], would actually involve only one iteration of (9) with m -> 6 when
n 2. The lower bound for m is the maximum number ofmodes which can be stimulated
in one iteration of (9) from an initial state q =0. This lower bound depends in an
obvious way on the nature of the nonlinearity in F(u). In the case of a polynomial
nonlinearity of degree r, for example, the minimum value of rn is rn. If k iterations
are performed on (9) starting from q =0, the minimum value of rn will be rkn. It is
shown in [FST] that for n sufficiently large convergence of (9) is guaranteed in an
absorbing ball about the solution when there is no truncation of the series (6). On the
other hand, our approach throughout is to fix n and rn a priori and to solve the
truncated problem accurately. We shall return to this point later.

Figure 1 in [FJKST] shows a plot of the approximate inertial manifold produced
by one Picard iteration of the Euler-Galerkin scheme and the location of five steady-
state solutions, with the same parameter values as used here (v--0.16, r 1). The

Domain I-2,21 i-2,21

FIG. 2. Convergence region.
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steady states with a =0 have O --’0, and are therefore perfectly reproduced by any
iteration scheme starting with initial guess zero. There is a steady state close to the
point a 1.1143, Cz=0, a3=0.1491 (which we have computed using a three-mode
fiat Galerkin approximation). The first Picard iterate for (10) (with a 1.1143, a2=0)
starting from a3=0 produces the value 0.1418, whereas the exact Euler-Galerkin
solution is O "-0.1045. Thus, while the first iterate overshoots the fairly poor "desired"
Euler-Galerkin approximation by around 40 percent, it fortuitously does come close
to the true steady-state solution. As " grows without bound, the exact solution of (10)
approaches the value c3=0.1474, which is indeed close to the desired steady-state
value 0.1491, whereas the first Picard iterate overshoots the correct value again, this
time giving the poor approximation 0.2402. These results show not only the potential
difficulty of choosing a suitable value of r, but also of using a fixed, small number of
Picard iterations.

We shall see that as " increases, backward Euler and the methods discussed next
give virtually identical results, and that for the Kuramoto-Sivashinsky (KS) equation,
this in fact happens for most realistic choices of ’.

3. The differential-algebraic equation approach with Picard iteration. An important
approach for approximating b(p), which is due to Titi IT], involves setting 4 =0 in
(4b) and solving

(12) G(q) := Aq + QF(p + q) O.

This defines the so-called steady approximate inertial manifold l)s with graph q s(P).
Although not previously interpreted in the literature this way, finding the solution of
the (approximate) inertial form (5) with bs(p) is equivalent to solving the semi-explicit
differential-algebraic equations (DAEs) (5) and (12). By assumption, the relation
q chs(p) can be determined from (12), so the DAE is of index one and its numerical
solution avoids many of the difficulties arising for higher-index problems lAP]. While
such an approximation may appear somewhat crude, theoretical arguments can be
made for why 4 may be ignored, and the method can give very useful results in practice
[JKT1], [JKT2]. One reason for this is because the AIM obtained from solving the
algebraic part of this DAE contains all exact steady-state solutions involving only the
first m modes (or all those for the flat Galerkin method with m modes), so computations
based on the steady AIM give a faithful representation of the steady states for the
inertial manifold if one exists for these m modes. In this sense the AIM and the inertial
manifold are "threaded together."

The method that has been suggested for solving (12) is the Picard iteration

(13) q(/+l) _A-1QF(p+ q(l)
with only one or two iterations and q(O= 0 [JKT1]. Under suitable conditions, jus-
tification can be given for this two-iteration case, which gives the so-called pseudosteady
solution and the corresponding pseudosteady AIM f, the graph of q the(p). This
is done in [JKT1] and [JKT2] for the KS equation. The pseudosteady approach does
not involve truncation of the series (6), but since KS involves the quadratic nonlinearity
UUx, truncation of (6) at m _-> 4n has no effect on the outcome. As with q(O= 0 and k
iterations of (13), all components a of q(k) (see (6)) withj > 2kn will be zero. Therefore,
(6) may be truncated at m >-2kn. Since k may be large it is convenient to refer to this
as the "m unlimited" case.

Recall that our approach is, instead, to fix m and then iterate (13). This approach
has several features to recommend it. Since the discrete problem is fixed and indepen-
dent of the method used to solve it, we need not use Picard iteration and can consider
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alternatives, such as Newton’s method to solve (12). A nontrivial initial approximation
for q has no adverse influence; this is particularly beneficial in continuation, where
good approximations for q are available. With rn fixed, our implementation is not
strongly affected by the particular type of nonlinearity. With "m unlimited," on the
other hand, rn grows rapidly for many types of nonlinearities (e.g., m 3kn for the
Cahn-Hilliard equation, where F(u) involves a u term) and becomes unbounded for
others (like sin u). Nevertheless, there is a need to understand the effect of fixing rn
a priori on the theory of AIMs based upon estimates ofthe truncation error [JKT1 ], [T].

Following [JKT1], we take the KS equation in the form

(14a) u,+4Uxx,x+O[ux+UUx]=O, O-<x<=2zr,

where 0-_> 0 and with boundary conditions

(14b) u(x, t)= u(x + 27r, t), u(x, t)=-u(27r-x, t),

corresponding to the odd case.2 Note that A 4A2= 4D(4) is the linear dissipation term
and the nonlinearity consists of a Burgers nonlinearity uu,, and an antidissipative term
A. Thus, the eigenvalues and eigenfunctions in (2) are hj =4j 4 and wj sinjx, j 1,
2,.... Note that the linear antidissipative term is not incorporated into the linear
operator A.

Introducing the operator notation B(u, v) uv,, u, v H, where H is the space
of odd 27r-periodic functions in the Sobolev space H’(0, 27r), the Picard iteration (13)
takes the form

(15) 4D(4) -(t+’)
(x w=-OD(2)

j=n+l j=n+l

where

(l) OQB( + + q()aj wj p q(/),p ),

p+ q() aw+
j=l j=n+l

ol ol Og Wj

(l)Writing, for convenience, aj cr j n + 1,..., m, and taking the projection Q of
the convolution sums, it follows that

(/+1)(16) 2 a w=
j=n+l

y 0 0

j=n+l 8j 4

where

m--j j--1

E iai)a,+j E ioli)0li-j +- E
i=1 i=j+l i=1

are the Fourier coefficients of 2uux. The first two sums combine to give -J(Yi= aa+ +
m--jY.=,+ aai+:). Now we split the third sum into three sums, from 1 to j-n- 1, from

j- n to n, and from n+ 1 to j- 1 ifj- n- 1-< n and from 1 to n, from n+l to j- n- 1,
and from j-n to j-1 if j-n- 1 > n, and then combine the first and third of these.

The inertial manifold (IM) has been known to exist for this odd case for some time [FST]; it was
recently shown that the KS equation is generally dissipative [I], so existence of the IM follows from the
general theory for such systems [FST]. The techniques presented here apply to the more general case, but
we restrict attention to the odd case since our purpose is to contrast the numerical results to those obtained
previously.
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The split-up separates summations into parts that are homogeneous of degrees zero,
one, or two in the q-coefficients. Collecting terms, we have

(17) flj= -j a,a,+.i+ OliOli+j--"3 --’4,
i=1 i=n+l

where

and - OliOS--i, E4 ol. Ol7 if j- n =< n
i= i=j--n

j--n--1

’3 aia-i, E4= iaia_i ifj-n-l>n.
i----1 i----n+l

The updated iterate values follow directly from (16).
Thus any number of Picard iterations for the KS equation (14) can be computed

from (16). The algorithm determines an approximation to q= Chs(p), i.e., for fixed n
and m, given any value of p we can compute the q components % oj(Ol, o2, an)
for j= n+l, n+2,..., m, to any accuracy if (16) converges. In 5 we perform
computational experiments to investigate how many Picard iterations can be necessary
in practice.

4. The DAE approach with a Newton method. Here we consider Newton and
quasi-Newton methods to solve the nonlinear algebraic equations (12). Since

OG
AQ+ Q

oF
Oq -q (P+ q)’

Newton iteration gives an update qnew to an approximation qold via the relationship

(18) [A + J]q,ew -QF(p+ qo,d)+ Jqo,o,

where J Q(OF/Oq)(p+ qold). The matrix on the left-hand side of (18) is the trailing
principal submatrix of dimension rn- n for the Jacobian of the full nonlinear system
corresponding to (4) with p =0, t =0. We denote this full Jacobian by A+(OF/Oa)
where a (a,..., am) r. A calculation along the same lines as used in deriving (17)
yields/ 4S4, where S diag (1, 2,..., m) and

(19)
OF

0 ( S( T- H) S2)Oa

Here T is the skew-symmetric Toeplitz matrix with first row (0, -a, -a,..., -am-l),
and H is the Hankel matrix with first row (82, 83,..., a,,, 0) and all zeros in the last
row.

From (19) we see that the Jacobian has a very simple structure and is easy and
cheap to calculate. If m-<_ 2n + 1, the Jacobian A + J is a constant matrix, i.e., (12) is
a linear system of equations in q. This particular property of the Jacobian holds
whenever the nonlinearity is a product of powers of only two derivatives of u (see
[RST], which examines the form of the Jacobian for the spectral method for general
nonlinear PDEs).

It is interesting to interpret the Picard iteration (13) in the context of iterative
methods for solving systems of linear equations. When J is constant it amounts to a
"partial" Jacobi iteration, where (15) is written with the diagonal term 4j 4 multiplying
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aJ/+1) instead of the full diagonal term 4j 4- Oj 2. A useful study could be to compare
this with Jacobi or Gauss-Seidel iteration, although that is not our purpose here.

We end this section with some remarks about how the Picard iteration for (12)
compares with the iteration (9) for the backward Euler approximation to (4b) to arrive
at an approximation to q b(p). The iteration matrix for (9) is simply

diag 4(n+l)4,r+l’4(n+2)4,r+l"’"4m4,r+l *J’

where A+J is the constant Jacobian in (18). For (13) the iteration matrix is

1 1 1 )diag
4(n+ 1)4, 4(n+2)4’’" ’4’4 *

It is interesting to note the mathematical similarity between these iterative methods;
for the Euler-Galerkin approach the term ,j in the Picard iteration is replaced by
(I/r)+ A, which corresponds to a regularization. However, for practical choices of
rmsufficiently large that the theory predicts that we will move close to f--4r(n + 1)4
is generally much larger than 1, and the two iteration processes should produce virtually
identical results for the KS equation. This has been our experience in practice, so the
Euler-Galerkin results for the KS equation are not given here. Finally, we note that
approximating q--b(p) by solving the ODE (4b) is related to the basic strategy of
applying the Hadamard graph transform [LS], and it is interesting that this approach
with an Euler approximation, albeit a simple one, is nearly equivalent computationally
to the qualitatively different strategy of solving the DAE for a steady-state
approximation.

5. Numerical results. In this section we employ inertial manifold techniques in
numerical computations with the KS equation (14). Our interest in the various iterative
methods for approximating q b(p) lies more in investigating how well and efficiently
they describe the qualitative behaviour of the KS equation as demonstrated in its
bifurcation diagram than in presenting detailed computation of the AIMs themselves.
Most of our computations use AUTO, a FORTRAN code developed by Doedel [D1]
to compute bifurcation diagrams for ODEs (see also [KNS] and [JKT1]). Except
where otherwise noted, default parameters are as given in [D2, p. 143]. In particular,
solution tolerances are 10-4, although results are frequently verified with smaller error
tolerances. All runs are made on a SUN SPARCstation in double precision (roughly
16 decimal digits).

The bifurcation diagrams show plots of the bifurcation parameter 0 versus the
L2-norm of the solution. Solid lines correspond to stable steady-state solutions, and
broken lines correspond to unstable ones. White squares denote steady-state bifurcation
points, and black squares denote Hopf bifurcation points. In the plots for periodic
solutions, the time-averaged L2-norm ofthe solution is plotted. White circles correspond
to unstable periodic solutions, black circles correspond to stable periodic solutions.
Period-doubling points are marked with two triangles.

Frequently, the bifurcation diagrams show overlapping branches corresponding
to different solutions (with the same L2-norm). These superimposed branches can have
different bifurcation properties. As a result, bifurcation points can be missed if all
branches are not searched carefully, and stability assignments for branches can be
obscured by their overlap.

To distinguish between the concepts of steady-state solution branches, and
"steady" approximate inertial manifolds, we will consistently refer to the former as
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"steady states," and to the latter as simply "steady." "Pseudosteady" refers to the
"steady" AIM approximated by two Picard iterations with "m unlimited."

We will first look at steady-state computations. In interpreting the bifurcation
diagrams for the various methods, we must realize that the nonlinear equations arising
for the n modes p and m-n modes q nonlinear Galerkin case are the same as those
for the flat Galerkin method involving m modes, namely

APp + PF(p + q) O, AQq+QF(p+q)=O.

In the nonlinear Galerkin method we solve the equations in a way that is rather akin
to a nonlinear block Gauss-Seidel method. Starting with an initial guess for p, we
determine q by satisfying the second equation and use this value in the first equation
to update p.

When we compare the diagrams for an m-mode fiat Galerkin method to the ones
for an n + (m n)-mode nonlinear Galerkin, then the latter will only show the L2-norm
of the first n Fourier coefficients, whereas the fiat Galerkin method will show the
L2-norm of the first m Fourier coefficients. Thus, even if the methods gave identical
results, the bifurcation diagrams could differ. But while the bifurcation branches for
nonlinear Galerkin tend to lie below those for fiat Galerkin, the difference is normally
small, as almost all the energy is concentrated in the low modes. Note also that the
nonlinear Galerkin method cannot detect bifurcations occurring only in its q-modes.

5.1. Steady-state solutions (m =2n). We consider the problem of computing
steady-state solutions for the KS equation. Thus, after approximately solving (12) for
q b(p), we compute a bifurcation diagram of steady-state solutions of the ODE (4a)
using AUTO. Previously, computations have been done by using either one or two
Picard iterations on (12), with the initial guess q=O. We also use the two Picard

iteration method (which gave qualitatively the same results as the pseudosteady method
in all our examples where those results were accurate) and compare it to approximations
to the steady-state solution obtained with Picard iteration (and more than two iterations)
or with Newton iteration.

First, we consider the cases m=2n--8 and 10. For comparison, the "exact"
bifurcation diagram is first computed with the fiat Galerkin method with 12 modes,
and the result is given in Fig. 3. The two Picard iteration results for m 8 and 10 are

given in Figs. 4 and 5, respectively. The corresponding steady results, obtained with
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FIG. 3. Flat Galerkin, 12 modes.
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one Newton iteration, are in Figs. 6 and 7. Here and elsewhere, no significant difference
in the number of continuation steps used by AUTO was observed for the different fiat
and nonlinear Galerkin methods. Pseudosteady computations were also done (using
truncation at rn =4n), and the results were not qualitatively different from those in
Figs. 4 and 5.

The diagrams in Figs. 3-7 show clearly how the steady solution gives qualitatively
better information than the solution computed with only two Picard iterations. It is
interesting that useful qualitative information about the steady-state solutions can even
be obtained beyond values of 0 where an inertial manifold with graph q b(p) exists.
The p-variables can no longer be used as coordinates for the manifold, because the
assumption that the DAE is index 1 is invalid and hence this relationship does not
even hold for all steady-state solutions. Specifically, the term 4(n+ 1)4--0(n+ 1)2

eventually becomes zero, and for p--0 (along the horizontal axis) the diagonal matrix
expressing q in terms of p from (12) passes through a singularity (one of the diagonal
elements becomes zero). Figures 3, 4, and 6 demonstrate this for m--8, where the
singularity occurs for 0 100. This raises the point that we may be able to approximate
dynamics locally with a very low-dimensional manifold--lower than the dimension of
any inertial manifold that exists in terms of the basic p-variablesmalthough a safe
reliability check of the computations could be difficult to find.

5.2. Steady-state solutions (m=>2n). We complete our steady-state computations
by considering more numerical results in the case where m > 2n. We present some
results which show that the rate of convergence for Picard iteration can be very slow,
in which case the results are bad for large 0. Even for small 0 the approximation using
two Picard iterations might have only 1 to 2 digits accuracy. It is far from clear when
such accuracy is sufficient to correctly capture the qualitative solution information.

Consider data set 1, consisting of n =4, p:= {4.2182, -3.9175, 0.8192, -0.1037},
and 0 10. The solution to (12) is computed for m 8, 10, 12, and 16 with Picard and
Newton iteration, using q(O)= 0 and terminating the iteration when

(20) IIq<’+- q(i)l[_-< TOL*[lq<i+l)ll
where Ilqll denotes the Fourier coefficient of q of largest magnitude. For rn 16, to
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FIG. 7. 5 + 5 Nonlinear Galerkin, steady.

AUTO continuation parameter values are adjusted to DSMIN .001 and DSMAX when necessary
for obtaining the finer resolution required in the diagrams.
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four significant digits, q is {.4021(-1),-.5637(-2), .1019(-2),- 1641(-3), .2381(-4),
-.3806(-5), .5521(-6), -.8140(-7), .1180(-7), -.1669(-8), .2365(-9), -.3298(-10)}.
Corresponding q-values for the other values of m differ at most in the last digit shown.
The relative residual values IIq’)-qlloo/llqlloo for the Picard iterates qi) are .93(-1),
.72(-2), .43(-3), .27(-4), .16(-5), .19(-6). In the constant Jacobian case m -2n, this
compares well with the rate of convergence that analysis would predict, namely, linear
convergence with convergence factor p(A-1.J .084 (A-IJ has eigenvalues A .074 +

.04i, -.066, and -.045). For the Newton iteration, the relative residual values are

.26(-4), .17(-15),... when m 16; for the other values of m, the relative residual is
also at roundott error level after two iterations, with basically the same values. As an
estimate of the relative efficiency of Picard versus Newton iteration, we calculate
CPUp := CPU time for Picard iteration, CPUv := CPU time for Newton iteration, and
E- CPUp/CPUv, and values of E are given for various tolerances (TOL) in Fig.
8(a). Note that even though Newton’s mehod converges much faster on an iterate by
iterate basis, it is sufficiently expensive for large m that the Picard iteration is more
efficient. However, Picard iteration is sufficiently slow that the two-iteration solution
has only one digit of accuracy; for example, for m 8, q2) {.3992(-1), -.5473(-2),
.9118(-3), -.1308(-3)}, and for m- 16, q2) has the same first four components and
remaining components {.1469(-4),- 1769(-5), .1873(-6),-.1582(-7), .1028(-8),
-.4750(- 10), .1505(- 11 ), -.2629(- 13)}.

Data set 2 consists of n- 8, p := {9.91, 8.87, -7.79, 6.65, 5.53, -4.47, 3.31, 2.29},
and 0- 10, and we solve for m- 16, 18, and 32. The Picard iteration converges fairly
rapidly, e.g., for m--32 the relative residuals (in the maximum norm) are .25(-1),
.62(-3), .19(-4), .96(-6), .25(-7), .92(-9),.... As a result, even though only two
Newton iterations are required for m 18 and 32 to almost reach roundoff error level,
Picard iteration is generally more efficient (cf. Fig. 8(c)). Indeed, the two-Picard iteration
solution is quite accurate in this case, e.g., for m- 16 all except the last coefficient
have two to three significant digits.

For large 0, Newton’s method becomes more appealing. Taking data set 3 to be
the same as data set 1 except that 0 100, the q values decrease at a much slower
rate. For m 16 they are {.9566, -.4830, .3683, 1548, .6022(-1), -.2661(-1),
.1111(-1),-.5850(-2), .2767(-2),-.1271(-2), .5530(-3),-.2294(-3)}, and q values
obtained using lower values of m differ substantially from corresponding components
in this vector. For example, with m 8, the q components are {.9615, -.4762, .3823,
-.1711}. Picard iteration converges much more slowly than before--the eigenvalues
of A-.J are 10 times the values for 0 10--and the two-Picard iteration solution is
inaccurate" for m--16 it is q2)={.7100, -1610, .6332(-1), -.1190(-1), .1469(-2),
-.9249(-3),. 1510(-3), -. 1493(-4),. 1028(-5), -.4750(-7),. 1505(-8), -.2629(- 10) }.
Still, Newton’s method converges to roundoff error levels after four iterations, and its
general superiority to Picard iteration in this case, especially for small m, is seen from
Fig. 8(b).

While we have run experiments to compare Picard and Newton iteration on a
number of data sets, the above are representative of our findings. For m 2n =< 20, one
Newton iteration is cheaper than six Picard iterations. Newton’s method has proven
very reliable and gives rapid convergence, but it is not always superior to the Picard
iteration method. For small 0 and large m the rate at which the coefficients of q decay
can vary substantially depending upon the value of p, giving fairly slow linear conver-
gence for Picard iteration. However, even then, Picard iteration can be quite competitive
with Newton iteration; this is not totally surprising, since the dimensions ofthe Jacobian
matrix (19) become large.
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FIG. 8. Relative efficiency.

5.3. Steady-state solutions (m > 2n), Quasi-Newton methods. The Picard iteration
method can be interpreted as a quasi-Newton method obtained by setting j =0 in (18).
We have tried other simple quasi-Newton methods when rn > 2n, which involve choos-
ing only part of J and then performing a frozen Jacobian (fixed-point) iteration. If
we use only the components of J which involve p, then the Jacobian approximation
consists of the sum of a diagonal and a Toeplitz matrix. This fixed-point iteration turns
out to be generally unsatisfactory, since it is not as fast as Picard iteration when the
latter works well, and can fail to converge in cases where Picard iteration does not
work well. Another strategy is to choose rh 2n + 1, to solve for the corresponding
values c,+1, c,+2,..., cem, which involves only solving a linear system since the
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Jacobian for this problem is constant, and then to approximate the Jacobian (for the
m-n coefficients of q) by only using the components of J which involve the first
rh 2n+ 1 coefficients. This method, although again not providing any significant
advantage over Picard iteration when the latter converges rapidly, is an efficient
fixed-point iteration in other cases. For instance, when m 16, n 4, and 0 10, the
first iterate for q is .4021(-1), -.5637(-2), .1019(-2),..., and the relative residual
reaches roundoff error level after one iteration for the complete q. For 0 100, six
iterations are needed.

5.4. Giant branch computations. We now compare some of the iterative methods
for computing steady-state solutions along the so-called giant branch or coherent
structure branch, which is labeled in Fig. 3. For discussion of the importance of the
giant branch solutions, we refer to [JKT2]. What is of interest here is to approximate
this giant branch with moderately small values of n and to have the computed solution
preserve the dissipation in the PDE. In the bifurcation diagram, preservation of
dissipation is related to the computed giant branch solution growing in magnitude but
not switching back toward the vertical axis. For 0 _-< 0o(n) the fiat Galerkin solutions
preserve dissipation, as do the steady solutions for the nonlinear Galerkin method,
but the pseudosteady solutions do not have this property [JKT2].

In order to compute nonlinear Galerkin solutions that do preserve dissipation,
Jolly, Kevrekidis, and Titi [JKT2] use several approaches. One involves a "pseudo-
Euler-Galerkin" approximation formed by dropping one term from the discretized
equations. Another involves attempting to "prepare" the PDE by dropping terms. The
latter proves less than ideal because the qualitative properties of the prepared PDE
can differ significantly from those of the original PDE, but this seems difficult to predict
from the analysis. In general, it appears difficult to analytically predict when and/or
if the computed giant branch solutions accurately describe the actual ones for these
modified methods.

Our approach here is to verify that the steady solution (with m fixed) preserves
dissipation, and thereby to emphasize the importance of solving the discretized equation
for this solution accurately. (This solution is equivalent to the m-mode fiat Galerkin
solution, which is known to preserve dissipation [JKT2].) Solving (12) exactly is easy
since the Jacobian is constant when m 2n, and only one Newton iteration is required.
The results are compared with those obtained with fiat Galerkin directly.

The fiat Galerkin solutions for m =6, 12, and 24 are shown in Figs. 9(a), 9(b),
and 9(c), respectively. The fiat Galerkin results for m =40 are virtually identical to
those for m 24 except for a slight shift in the location of the second Hopf bifurcation
point. The nonlinear Galerkin solutions for m 2n 6 are depicted in Figs. 10(a)-10(c)
for the cases of 2 and 25 Picard iterations and for Newton’s method.4 These solutions
show what typically happens for a fixed number of Picard iterations. The solutions
start rising rapidly at some point, and there are spurious Hopf bifurcations near the
region of breakdown. These indicate the appearance of complex eigenvalues, which
probably arise from onset of ill-conditioning of the nonlinear systems (however, this
point deserves further study). Working with a fixed number (even 25) of Picard iterations
eventually becomes unreliable as 0 increases, although in this particlular case the giant

4The results from two Picard iterations in Fig. 10(a) are unchanged when solution tolerances are
reduced to 10-7. Interestingly, the corresponding pseudosteady solution branch originates from the origin
in the same way but then does not make the turn back to the right, continuing instead to grow without
bound as it approaches the vertical axis [JKT2]. Thus, two iterations seem to be insufficient regardless of rn.
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branch computations do eventually diverge like the ones for the steady solution and
the flat Galerkin solution with rn 6.

The steady solutions for rn 2n 12 are shown in Fig. l l(a). Again, the results
demonstrate clearly that the steady solutions have the nice dissipation properties of
the flat Galerkin solution and that the solution breakdown is characterized by the
appearance of a large number of spurious Hopf bifurcations.

Finally, we choose n small and investigate how much qualitative information can
be extracted from the steady solution as compared to the corresponding flat Galerkin
solution with 2n modes. Figure l(c) shows the results from computing the steady
solution with Newton’s method for rn 3n 18. While the first Hopf bifurcation point
is shifted somewhat and in the absence of higher modes the second one is not detected,
the qualitative information about the giant branch is otherwise accurate. Even though
an inertial manifold cannot exist globally past 4(n + 1)2-- 196, the local qualitative
information around the giant branch is accurate over the parameter range [0,600]. This
is to be contrasted with previous cases when n 6.

If the initial approximation q 0 is used, then Newton’s method does not converge
for values around 0 =450. To obtain the results in Fig. l l(b) we use the solution q
from the previous parameter value 0 as an initial approximation q for a new value of
0. This is a natural choice for the continuation process, and allows for a speedier
computation. Even if this is done and three Newton iterations are used in each
continuation step, then trouble arises around 0 450, where spurious Hopfbifurcations
enter the picture.

5.5. Periodic solutions. We finish this section with computations of nonsteady-state
solutions, viz., periodic solutions branching from Hopf bifurcation points. We limit
consideration to two Hopf bifurcation points, located near (34.25, 2.3) and (30.3, 6.2)
on the (0, u II) plane. Results are limited to a rough computational comparison of flat
Galerkin with m 10 and nonlinear Galerkin with m 2n 10. Default parameter
values are again used in AUTO unless otherwise specified. The nonlinear Galerkin
solution branches emanating from the two Hopf bifurcation points are shown in
Fig. 12.

Finer detail of the periodic solutions generated from the lower Hopf bifurcation
point with the nonlinear Galerkin method is seen in Fig. 13. One period doubling is
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FIG. 12. 5 + 5 Nonlinear Galerkin, six Picard iterations.
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FIG. 13. 5 + 5 Nonlinear Galerkin, six Picard iterations.
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found, and the corresponding periodic solution branch also computed. Both branches
consist entirely of unstable periodic solutions. These two periodic branches indicate
Silnikov-type homoclinic trajectories approaching steady-state solution branches. In
general, we have observed that the fiat Galerkin computations require more computer
time than those for nonlinear Galerkin (with the same rn and rn =2n), and this
difference is particularly significant for the periodic solutions. We have also computed
pseudosteady solutions with rn 4n 20 in order to compare with the other nonlinear
Galerkin results. As in the steady-state solution case, no improvement has been observed
over the corresponding method with rn fixed (m 2n 10, and two Picard iterations).

A blowup of part of the periodic solution branch generated from the top Hopf
bifurcation point with the nonlinear Galerkin method is shown in Fig. 14. The fiat
Galerkin method runs into considerably more difficulty following this branch, although
further study would be required before we could predict whether or not this is to be
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FIG. 14. 5 + 5 Nonlinear Galerkin, Newton.

See [GS] for a description of a richer underlying structure of periodic solutions, much of which can
be recovered using more careful continuation with AUTO.
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expected. Finer detail of the nonlinear Galerkin results are shown in Figs. 15(a)-15(c).
The periodic solutions emerging from the top Hopf bifurcation point as 0 increases
begin stable, but lose stability at a bifurcation point around (32.82, 4.9). The results
displayed in Fig. 15 suggest that at this point, stable and unstable periodic solutions
are generated. The stable periodic solution loses stability at a period-doubling point
around (32.92, 4.85). The stable period-doubled branch becomes unstable at a second
period-doubling point around (32.93, 4.84). At this latter point both emerging periodic
branches appear to be unstable, and no further close-by period doublings are observed
(with the default parameter values for AUTO). The corresponding flat Galerkin method
finds another bifurcation point on the periodic solution branch nearby the top Hopf
bifurcation point but misses the second period-doubling point. The location of this
second period-doubling point was verified with a nonlinear Galerkin method using
p =q 7. It is only one of a wealth of period-doubling and bifurcation points in this
region [SW]. It is of interest to note that bifurcations from the top Hopf bifurcation
point have been calculated and discussed in [JKT1]. Their calculations reveal, inter
alia, a sequence of period doublings, with stability inherited by the period-doubled
branch at each bifurcation. They also make the point that details of the periodic
solutions may be captured using a variety of three-mode AIMs.

Indeed, it is important to emphasize that results can quickly become sensitive and
bifurcation points may be missed (see Doedel’s ample description in [D1]), and more
careful study requires changing parameter values in AUTO (e.g., setting smaller
tolerances or increasing the number of subintervals for spline collocation). This in
turn can greatly increase computation time, particularly for periodic solution branches.
Nevertheless, the fine detail given by the nonlinear Galerkin approximation is
impressive.

As an independent test of the reliability of these results, we have taken output
from AUTO as initial data for a numerical integration of (14) with respect to time.
The Fourier coefficients corresponding to particular points shown in the bifurcation
diagram in Fig. 15 are obtained using a nonlinear Galerkin method based on a Newton
iteration. These coefficients are used as initial conditions for the nonlinear dynamical
system arising from the spectral discretization of (14), and this system is then integrated
in time using a standard routine (ode23 of MATLAB). In particular, we investigate
the time evolution of the periodic solutions corresponding to labels 36, 44, and 53 in
Fig. 15. The corresponding 0 values are 32.93678, 32.95609, and 32.97492. The stability
of the solution corresponding to label 36 is evident from Fig. 16(a), which displays
the results of integrating over six periods (results over 60 integration periods are not
qualitatively different). Nevertheless, the solution’s stability region is small, as perturba-
tion of the initial data by 1 percent causes the integration to converge to a stable
steady-state solution on the branch above this one (in the (0, Ilull)-plane); see Figs.
16(a), 7, and 12 for the location of the branches in the bifucation diagram. The initial
data for the solution corresponding to label 44 appears to be virtually identical to that
for label 36, varying in only the fourth decimal place (and thus of the same order as
the 10-4 tolerances used in AUTO to compute these solutions). Nevertheless, the
period-doubled solution in is evident in Fig. 16(b) (the label 36 and label 44 solutions
are superimposed). AUTO estimates only one Floquet multiplier greater than unity in
magnitude, and it only barely so. This is consistent with the numerical integration
which shows that the solution is moderately unstable at worst. The solution correspond-
ing to label 53, with a Floquet multiplier approximately 12 in magnitude, indeed
displays instability in numerical integration (results not shown). Fig. 16(c) shows the
initial solution profile for label 36 (the graph for the label 44 solution is indistinguishable
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FIG. 16(a). Time integration over six periods (5+ 5 Newton-Galerkin).
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FIG. 16(b). Period doubling (5+5 Newton-Galerkin).

from the one for label 36), and Fig. 16(d) gives the time evolution of u(x, t) over three
periods.

6. Conclusions. During the last few years the study of inertial manifolds for
dissipative PDEs has been a very active area of research. One of the principal approxi-
mations of these manifolds is the steady AIM. To date, numerical techniques for their
computation have been limited to the use of at most two cycles of a Picard iteration.
Here we have shown that solving the governing nonlinear equations by this rather
limited technique could lead to erroneous results. Numerical experiments using AUTO
[D1] have shown, inter alia, that steady-state bifurcation diagrams are computed more
accurately if a general Picard iteration (more than two iterations) is used.

We have also demonstrated that Newton’s method is a viable and valuable tool
for the computation of a steady AIM. For the KS equation, for example, where the
nonlinearity is quadratic, the Jacobian has been shown to be constant, with a particularly
simple structure, if the number of high modes does not exceed the number of low
modes by more than one. A two-level quasi-Newton method has also been introduced,
and evidence indicates that this approach is of value in certain circumstances. This
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FIG. 16(C). Snapshot u(x, O) for periodic solution at 0 32.95609.

FIG. 16(d). Time evolution u(x, t) over three periods.

two-level method is readily extended to give a multilevel scheme: the use of such a
scheme will be examined in situations where the dissipative effects are less pronounced
than they are in the KS equation.

The usefulness of the AIM for the KS equation has been established. When this
AIM is computed accurately with a Newton or Picard iteration, the dissipative proper-
ties of low-dimensional AIMs are preserved without recourse to techniques such as
modifying the PDE itself. Good qualitative approximations to the giant branch are
found at relatively little cost. Furthermore, fine-scale qualitative approximations to
nonsteady-state solutions are also accurately computed using a low number of modes.

An important departure from previous approaches for computing AIMs has been
the replacement of the projection Q of infinite rank by one of finite rank. Fixing the
number of q-modes permits the use of arbitrary initial approximations, an often
essential and in any event efficient process when doing continuation to construct
bifurcation diagrams. Also, the implementation is then not as strongly affected by the
type of nonlinearity appearing in the PDE.

This approach of fixing the discretization parameters n and rn has additional
advantages. It allows us to check the accuracy of the two-Picard iteration method,
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which as the theory nicely predicts, is satisfactory for moderate values of 0 but is
insufficient as 0 grows. Yet even though there is no AIM (global manifold capturing
he dynamics of the inertial form) of dimension n for a range of values of 0, we have
seen that we can still compute reasonable local approximations (or local manifolds).
We need to develop a theory to better understand the nonlinear Galerkin approach
with m fixed in this way and to guide the selection of both n and m.

Investigations of inertial manifolds have thus far dealt with cases where the exact
eigenfunctions of the linear dissipative operator A of the PDE are known. In situations
involving more than one space dimension and irregular domains, this is unlikely to
be the case, and we will have to resort to space discretization. We have performed
numerical experiments in one space dimension with finite differences and the pseudo-
spectral method. The results are accurate to the "expected" order of such approxima-
tions, but predictably, this approach is computationally less efficient than the use of
exact projection techniques. An area open for investigation is the study of the viability
of inertial manifolds for problems in dissipative dynamics for which exact eigenfunc-
tions are not available. One of the ultimate goals is the long-time solution of the
Navier-Stokes equations in such a situation using a finite number (hopefully small)
of nonlinear ODEs. Preliminary steps have been made by Jauberteau, Rosier, and
Temam [JRT] in the search for this elixir.
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FAST SOLUTION OF NONLINEAR POISSON-TYPE EQUATIONS*

BRETT M. AVERICKt AND JAMES M. ORTEGA$

Abstract. For certain nonlinear Poisson-type equations, it is possible to make a change of variable so
that the solution is obtained by solving a Poisson equation followed by solving one-dimensional nonlinear
equations. For those problems for which a Fast Poisson Solver may be used, this method is considerably
faster than methods that solve a discretization of the original equation by Newton-type methods. Moreover,
there is excellent parallelism in the solution of the one-dimensional equations. Numerical results are given
for some model problems on a CRAY-2 and comparisons are made with other methods.

Key words. Poisson equation, nonlinear equations, parallel

AMS(MOS) subject classifications. 65F10, 65N20

1. Introduction. In [3], we considered methods for the numerical solution of
nonlinear Poisson-type equations of the form

(1.1) V.[K(u)Vu]--f,

where K is a positive differentiable function. If (1.1) is discretized by finite difference
methods, we obtain a discrete system of the form

(1.2) F(u) A(u)u b(u),

where the matrix A(u) is symmetric positive definite for all u. Newton’s method applied
to (1.2) is

(1.3) Ft(uk) k+l’-- -F(ui), k--0, 1,...,

where the Jacobian matrix is of the form

(1.4) F’(u) a(u) + B(u).

The Jacobian matrix has the usual sparsity of Poisson problems, and we would like
to solve the Newton systems (1.3) by a conjugate gradient method. The matrix B(u)
in (1.4) is not symmetric, however, which would require using methods such as GMRES
[8] for nonsymmetric systems.

An alternative approach considered in [3] is based on the fact that II(u)ll is small
compared with IIA(u)ll in many cases. This motivated the use of the approximate
Newton method

(1.5) A(u’)ak+’= --F(uk), k=0, 1,...,

in which the systems of (1.5) are solved by the Incomplete Cholesky Conjugate Gradient
(ICCG) method.

In the present paper, we consider an entirely different approach based on the
formulation [4] of (1.1) as

(1.6) V2) (/,/) --f
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If b is a function such that

(1.7) 6’(u)=K(u),
then

(1.8) V26(U)-- V" (bt(u)Vu)-- V. (K(u)V/,/),
and (1.6) is equivalent to (1.1). Thus, we can obtain the solution of (1.1), in principle,
by a two-stage process" I. Solve the Poisson equation

(1.9) VZw =f
II. Solve the one-dimensional nonlinear equations

(1.10) 6(u,) w,,

where we denotes the solution of (1.9) at a point P in the domain.
In the actual algorithm we consider, the domain is first discretized so that (1.9)

becomes a discrete Poisson equation, and we is the solution of this discrete problem
at grid point P. Under the assumption that K(u) is positive, solutions of (1.10) will
be unique. If we assume further that K (u) is bounded away from zero, then a solution
of (1.10) will exist for any we.

Even on conventional machines this approach may have considerable merit since
it allows the use of fast Poisson solvers whenever the domain is suitable. Results given
in the next section show that for a small two-dimensional problem run on a Sun 3/60,
this new method is considerably faster than the best method considered in [3]. On
parallel and vector computers, the advantage is even greater since the solution of the
nonlinear equations (1.10) has excellent parallelism (or vectorization) across the grid
points. In the next section, we will give numerical results for a fairly large (250,000+
unknowns) three-dimensional problem considered in [3]. Comparison to the results
in [3] on a CRAY 2 shows considerable superiority of the new method. The method
does have limitations, however. These are given in 3, along with further discussion
of parallelism and other properties.

2. Numerical results. We first consider results on a serial computer (a Sun 3/60)
for a two-dimensional problem of the form (1.1) on the unit square and with K(u)=
.33 + .91u; this problem was considered in [3]. We use the Dirichlet boundary conditions
u(x, y) x2 31- y)- and choose the forcing function f of (1.1) so that X2-- y2 is the exact
solution of (1.1). The boundary conditions for the Poisson equation (1.9) are given by

(2.1) Wr b(ur),
where Wr and ur are values of w and u on the boundary F, respectively.

We discretize the Poisson equation (1.9) by the usual five-point finite differences
on an N N mesh of interior grid points. The discrete Poisson problem is then solved
by a fast Poisson solver (FPS). Since K is linear, b is quadratic and the solutions of
(1.10) are easily evaluated. However, for consistency with more general equations, we
used a Newton iteration for these one-dimensional equations. Timing results using
double-precision arithmetic are given in Table 1 for N 31 and N 63. The second

TABLE
Times (seconds) for two-dimensional problem on a Sun 3/60.

N FPS NL Total TANICCG Speedup

31 4.2 1.7 5.9 79.8 13.6
63 23.5 7.2 30.7 669.3 21.8
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column gives times for the FPS. NL is the time for solving the nonlinear equations
(1.10). For comparison, Table 1 also lists times for the same problem using the
TANICCG method from [3]. This method solves the approximate Newton systems
(1.5) by ICCG(0), using truncation in the sense of [5] to determine the number of
inner iterations; further details may be found in [3]. The last column of Table 1 gives
the ratios of the TANICCG times to those of the new method.

We next consider a three-dimensional problem treated in [3] in which

(100+27u)
(2.2) K(u)

300+ 27u

so that

(2.3) b(u) 209.6 tan-’(.135u + .5) + (3u + 11.1)(2u 37).

The domain is the unit cube, and the forcing function f of (1.1) was chosen so that
X
2 _+_ y2 q.. 22 is the exact solution of the differential equation. Thus, the boundary values

are also given by x2+y2+ z2, and then the boundary values for the Poisson equation
(1.9) are obtained from (2.1).

Table 2 gives timings for single-precision arithmetic on a single processor of a
CRAY 2 for N 31 (29,791 equations) and N =63 (250,047 equations). As in Table
1, the second column is the time for the FPS, and NL is the time for solving the
nonlinear equations (1.10). These one-dimensional nonlinear equations were solved
by Newton’s method, vectorized across all the grid points.

In [3], we used for (1.5) the initial approximation

(2.4) o 2
lg i,j,k Xi ’[- y .of. Z 2k

which is a linear interpolation of the boundary values in the x-direction. For the
oNewton iterations for (1.10), we used (2.4) and we also chose u,j,g as the solution of

the discrete Poisson problem at the i, j, k grid point. Of these two ways to choose
u,,, (2.4) was the best and only these times are reported in Table 2. The next-to-last
column gives times for the best version of the TANICCG method in [3], and the last
column again shows the ratios of the TANICCG times to those of the new method.
(The times for TANICCG given in [3] were obtained on a CRAY2 at the NASA
Langley Resarch Center and do not agree with those of Table 2, which were obtained
on a CRAY2 at the University of Minnesota Army High Performance Computing
Research Center.) In [3] we used the convergence test

(2.5) IIv()ll= <- IIF(a)ll=,
where F is the function (1.2), uk is the iterate of (1.5), and fi is the exact solution of
the differential equation evaluated at the grid points. This test, although impractical
in practice, ensures that the convergence error is commensurate with the discretization
error. A similar test was used for the Newton iterates U(pk) for (1.10)"

(2.6) 4 (U(pk)) Wp[ 1/)(p) Wp].

TABLE 2
Times (seconds) for three-dimensional problem on a CRAY 2.

N FPS NL Total TANICCG Speedup

31 .06 .05 .11 1.1 10
63 .31 .35 .66 17.4 25
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Here, Wp is the solution of the discrete Poisson problem, and Up is the exact solution
of the differential equation. The test (2.6) was implemented as a vector compare across
all the grid points so that the vector lengths remain the same for all tests. This may
cause some additional work for equations that have already converged, and other tests
may be more efficient on some problems. (In our case, no more than three Newton
iterations were required for each equation.) Although (2.5) and (2.6) are different tests,
each suited to their particular methods, we also used (2.5) for the vector of one-
dimensional Newton iterates of the new method and found that the same number of
iterations were required as using (2.6). The actual errors in the final iterates produced
by the two methods differ by about 15 percent.

The times in Table 2 for the TANICCG method are significantly worse than those
of the new method, but some caveats are in order. The ICCG method in [3] was
implemented by using the red/black ordering to obtain long vector lengths for the
CRAY 2. It is known (see, e.g., [6] and, for a recent review, [7]) that this ordering
may seriously degrade the rate of convergence of ICCG, and it is quite likely that
better results would be obtained by using the diagonal ordering, as, for example, in
1 ]. Also, more sophisticated versions of ICCG or the use of other methods might give

better results. However, on the basis of the times in Table 2, it is reasonable to conjecture
that no iterative method for solving the Newton systems (1.3), or some approximation
of them such as (1.5), will be competitive with the new method. Moreover, our fast
Poisson solver was a triple Fourier analysis method that used the vectorized one-
dimensional fast sine transformations of VFFTPACK obtained from netlib. It is known
that other fast Poisson solvers that use, for example, cyclic reduction, are faster so
that this would give further advantage to the new method.

3. Further discussion of the method. Although the results in the preceding section
indicate significant potential for the new method, we must point out several limitations.
First, it is necessary to integrate K (u) to obtain b(u). Even for the relatively simple
function (2.2), the corresponding b of (2.3) is rather complicated and was found only
by using MACSYMA. For other K it may be impossible or impractical to obtain the
integral explicitly. Recall that b is needed in (2.1) to obtain the boundary values of
the Poisson equation and to solve the nonlinear equations (1.10). In both cases, 4
could be approximated by numerical integration, but this would introduce additional
error as well as computing time. Moreover, it seems impossible to apply this approach
if K is also an explicit function of the spatial variables, K K(u, x, y, z), or if K is
a vector, as in the equation (K1 (u) u,)x + (K2(u) Uy)y f

One reason the times presented in the preceding section were so good is that a
FPS could be used. If the domain is such that this is not possible, a multigrid iteration
might be a good choice for solving the Poisson equation. If a conjugate gradient method
is used, however, then the solution of the Poisson equation may be considerably more
expensive. This is illustrated in Table 3, where the discrete Poisson equation of the
three-dimensional problem of the preceding section is solved by ICCG. The time for
this is given in the column labeled ICCG; NL is, as before, the time to solve the

TABLE 3
Solution of Poisson equation by ICCG on a CRAY 2.

N ICCG NL Total Previous total

31 .527 .046 .57 .11
63 9.87 .38 10.25 .70
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nonlinear equations (1.10). The last column in Table 3 reproduces the times from Table
2 using the FPS. Note that even without the FPS, the new method is still almost twice
as fast as the TANICCG method.

Clearly, the new method is potentially very good for parallel computation since
the solutions of the one-dimensional equations are completely independent. However,
the load balancing could be degraded by an unequal number of Newton iterations on
different equations. For example, if the initial approximation at grid point P1 is much
better than that at grid point P2, the Newton iteration at P2 could take longer to
converge. On the other hand, on distributed memory machines, no communication is
needed in the Newton iterations except for the convergence test. Most important, if
the domain is such that a fast Poisson solver can be used, then a good FPS routine
must be available for the particular parallel machine.

Finally, another possible benefit of the new method is discretization error. The
best results we have been able to obtain mathematically [2] for the discretization (1.2)
of (1.1) is that the local discretization error is O(h), although experimental results
indicate it is probably O(h2). For the new method, however, the only discretization
error occurs in the Poisson equation and is O(h2).

Acknowledgments. We are indebted to Professor Irena Lasiecka of the University
of Virginia for reference [4], to Barry F. Smith of Argonne National Laboratory for
his assistance in using the VFFTPACK package, and to an anonymous referee for
suggestions that improved the presentation.
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A DOMAIN DECOMPOSITION METHOD
FOR INCOMPRESSIBLE VISCOUS FLOW*

JOHN C. STRIKWERDAt AND CARL D. SCARBNICK$

Abstract. A method for using domain decomposition to solve the equations of incompressible
viscous flow is presented. The method is described in detail, and test results are given for two test
problems. A notable feature of the method is that the incompressibility constraint is never explicitly
imposed. The domain decomposition uses finite difference and spectral methods on overlapping do-
mains, with second-order accurate interpolation of the velocity relating the solutions on the different
domains. The method is shown to be globally second-order accurate by the test results.

Key words, domain decomposition, incompressible viscous flow, overlapping grids
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1. Introduction. In applying finite difference methods to a specific problem,
one of the most important considerations is the design of the finite difference grid.
The choice of a finite difference grid is easily made for problems with simple geometry,
such as rectangular or circular domains, however, for problems on domains which are
more complex the designing of a grid can be a significant problem. The choice of
grid also affects many aspects of the finite difference method. The efficiency of the
numerical solution algorithm and the accuracy of the computed solution are strongly
dependent on the finite difference grid. The type of grid can also restrict the choice
of the numerical algorithm.

In this paper we present a method of using overlapping grid systems for solving
incompressible fluid dynamics problems. By using several grids that overlap, one has
more flexibility in the placement of grid points than by using one global grid system.
The crucial aspect of using overlapping grids is the interpolation of values between
grids. This paper discusses the grids and interpolation methods used on particular test
problems, and presents insights into the use of overlapping grids for other problems.
It is shown that overlapping grid systems can be used to obtain accurate solutions to
the equations for incompressible viscous flow. The solutions are obtained efficiently
using iterative methods.

Our method is a special case of the general method of domain decomposition,
which has been applied to single second-order elliptic equations by many researchers
(see the collection of papers in [5]), and to incompressible viscous flow in [1], [3], and [4]
using the finite element method. Much of the work on domain decomposition revolves
around methods of accelerating the iterative solution procedure and implementation
of domain decomposition on parallel computers. The emphasis of this paper is on the
features of the domain decomposition that are independent of the particular solution
algorithm used on each domain. The iterative method used on the subdomains in this
work is not to be regarded as very fast. In a subsequent publication we will describe
an iterative method that, based on simple test cases, promises to significantly improve
the convergence rate [12].
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A notable feature of the method presented here is the handling of the conservation
of mass. By properly reformulating the equations, the troublesome integrability con-
straint on the boundary data is removed. The divergence-free nature of the solution
is obtained as a result of the consistency of the scheme to the differential equation.

In this paper we regard the overlapping grids as several overlapping domains,
each with its own grid which is independent of other grids. Thus we refer to our
method as the method of overlapping domains. This way of referring to the method
calls attention to the central problem of relating the values of the solution on the
several domains and deemphasizes the construction of the particular grids. As shown
in 5, some of the primary difficulties are not specific to the choice of grid or the finite
difference scheme.

We also restrict our attention to the steady Stokes equations because they are
useful to illustrate the basic ideas of the method of overlapping domains as applied
to incompressible flow. Overlapping domains can be used with the incompressible
Navier-Stokes equations, both steady and time-dependent. The extra features intro-
duced by the more general equations can be incorporated into the method without
significant difficulties. The method is applicable to three-dimensional problems.

Also, related to the work presented here is the work of Thompson and Ferziger
[17] and Vanka [18], in which the multigrid iteration scheme was applied to the incom-
pressible Navier-Stokes equations. Each of these works used staggered grids which
limit their methods to rectilinear domains. As we demonstrate by our computational
results, our method maintains second-order accuracy even when the grids are not both
rectilinear (see also [10]). A use of the multigrid iteration method to accelerate the
rate of convergence of the iterative method will appear soon [12].

A typical example of the use of overlapping grids is in the computation of the
flow past several bodies with nonsimple shapes. Boundary-fitted coordinate systems
should be used near the bodies to insure good accuracy. However, away from the
bodies it is simplest and most convenient to use a standard global cartesian grid or
other such simple grid. One may indeed blend the boundary-fitted grids with the grid
system used away from the bodies, but it is not done easily, nor can it be done by any
simple general procedure. The approach advocated here is that of constructing the
boundary-fitted and the global grids independently, but large enough to overlap. The
values of the solution on the boundary of each grid are determined by interpolation
of values from the other grids.

The chief advantages of the use of overlapping grids are the flexibility and gener-
ality of the method. It can be used with any geometric configuration and, in principle,
the grid can be altered as needed. Local refinement grids and adaptive grid meth-
ods can also be used to improve the resolution of the solution. The flexibility of the
method can be seen in comparison with global grid generation techniques and grid
patching techniques. The need for higher resolution in one area of the domain usu-
ally forces both higher resolution in areas that do not need the resolution and lower
resolution in other areas.

The use of overlapping grids can be used with the grid generation method to
produce grids which enable solutions to be computed efficiently. The elliptic grid
generation method of Thompson [16], and methods of Kreiss [7] and Chesshire [2],
can be used to construct boundary-fitted grids around bodies. Farther from the bodies
a cartesian grid or similar simple grid can be used. Boundary-fitted grids are essential
for obtaining accurate solutions near bodies, while the use of simple cartesian grids is
important for obtaining efficiency in computations.
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2. The Stokes equations on overlapping domains. We first consider ques-
tions of uniqueness and existence of solutions to the steady Stokes system of equations
on overlapping domains. These questions are not difficult to resolve, but they are
interesting and important because of the insight they give to the numerical approxi-
mations.

We begin by considering two domains 1 and f2 which overlap, i.e., fl 3 2 is
nonempty (see Fig. 1). We also assume that neither domain is included in the other.
We consider the Stokes system of equations, given by

(2.1) V2ff- p- 0,

on each separate domain. Boundary data for each domain is specified only on that
part of the boundary which is not interior to the other domain. For purposes of
discussion, we assume that the velocity ff is specified by data b on the boundary of
gl t2 f2. For that part of 0fl (the boundary of fl) that lies within -2 we require
that the velocity be equal to the velocity obtained from the solution of the Stokes
system on f2, and similarly for that portion of 02 within fl.

f
FIG. 1

We also assume that the integrability condition holds on the whole domain, i.e.,

(2.3) b. if, O.

In our finite difference method some of the boundary data for a subdomain will be
obtained by interpolation from other domains, and it would be difficult to explicitly
impose the integrability constraint on the data for each subdomain. Thus we will
consider a slightly more general case in which the divergence of the velocity field is
required to be constant. That is, (2.2) is replaced with

(2.4)

The constant di is determined by the integrability condition for the domain, i.e.,

(2.5)
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As will be seen, this formulation avoids the difficulties inherent in methods that require
that the boundary data satisfy the integrability constraint on each subdomain; see
[1]o

The mathematical statement of the problem is then described as follows. In

and in t2,

(2.7) V292 p2 0, V. g2 d2

with boundary conditions

where b is the velocity data on the boundary of D1 t2 ’2.
We make the assumption that the Stokes system of equations (2.6), (2.7) has a

unique solution for each domain here when the velocity is specified on the boundary.
By a unique solution we mean that the velocity function is determined uniquely and
that the pressure function is determined to within an additive constant. The unique-
ness of the solution to (2.6), (2.7) with the velocity specified on the boundary follows
from the uniqueness of the Stokes system (2.1), (2.2). This assumption is certainly
justified for all problems of physical significance. See Temam [15] for a discussion of
existence and uniqueness of the stationary Stokes equations.

Notice that we do not assume a priori that ff and if2 are the same on tlASt2. Also,
notice that the pressure on one domain does not directly interact with the pressure
on the other domain. In particular, we cannot specify the pressure as a boundary
condition along with the velocity, as this would result in overdetermined boundary
value problems on the subdomains.

It is useful to consider the following iterative procedure, essentially the Schwarz
alternating procedure (see [8]), to solve the overlapping domain problem. We begin
with any velocity field defined on D1. This need not be divergence-free. Using as
the boundary condition on (0gt2)Ntl, solve the system (2.7) for (u-2 p). Then using

as boundary data on (0tl) N 2, solve (2.6) for (g, p). Continue in this way, so

that (1, P) is determined from g- and (2, P) is determined from u’’. The values
of d and d are determined at each step by the integrability conditions. Supposing
that the iterative method converges, we may indeed ask if the final values of constants
dl and 42 are the same, and if (ff, p) and (if2, p2) together may be regarded as a
solution on the total domain gtl t2gt2. The convergence of this procedure can be shown
using the methods of [8].

First, a solution to this problem exists. This is seen by considering the one

problem defined on gtl t2 t2, the union of the two domains. The data vector function
b is defined on the boundary of t2 t2, and thus by our assumption, a solution exists.

Next we show that the solution is unique. Assuming that solutions (gl, p) and
(g2, p2) exist on t and t2, respectively, the first question to be addressed is whether
they agree on the intersection 1 A 2. Since gl and if2 are equal on the boundary of
gtl 2, it follows by our uniqueness assumption that there is a unique solution and
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that dl and d2 must be equal by the integrability condition on 1 N -2. Moreover,
the pressure functions Pl and P2 differ at most by an additive constant. It then
follows that the two solutions (if1, P) and (2, p2) can be regarded as a solution to
the global boundary value problem on fl U f12. Hence d and d2 are zero because of
the integrability condition (2.3) on tA f2.

An observation that is important in the numerical approximation is that the two
pressure fields, pl and p2, differ by a constant whose value is not determined by the
solution. Thus there are two undetermined parameters in the solution: the average
value of Pl on fll and the average value of P2 on f12. In general, there is an undeter-
mined additive constant for the pressure on each subdomain in the decomposition.

It is important to note that it is by comparing the two different problems on the
intersection of the domains that we see that they define a global solution on the union
of the domains. This suggests that the conditioning of the problem is dependent on the
size of the intersection. This conditioning is evident in the numerical investigations.
A smaller overlap domain requires more iterations for convergence and gives less
accuracy in the answers, although the same order of accuracy.

The increase in error with the smaller overlap is most likely due to the greater
interaction between the interpolation done on the two boundaries. The error induced
by interpolation to a boundary point on domain 1 affects the solution in the interior of
domain 1. The use of interpolation from domain 1 back to the boundary of domain 2
carries that error to domain 2. Thus the errors introduced by interpolation are coupled
together. However, because the system is elliptic, the effect of boundary errors on
the solution at a point is smaller the farther the point is from the boundary; see [14].
Thus a larger overlap region could be expected to reduce the coupling between the
interpolations at the two boundaries.

3. Interpolation between domains. An important feature of the approach
taken here is that the overall method is composed of relatively independent compo-
nents. For example, the finite difference methods used on the different subdomains
need not be the same. Also, the exact form of the iterative methods on the subdomains
do not depend on each other.

The topic of this section, namely, the interpolation between domains, is also
relatively independent of the other aspects of the overall problem. In particular, the
interpolation is not dependent on the finite difference methods nor on the iterative
method. As shown in this section, the choice of interpolation method is primarily
based on convenience and the need for accuracy in the solution.

For each of the test cases for which the numerical experiments were made there
were two grids. In the first set of cases the two grids are both cartesian grids, but
rotated with respect to each other (see Fig. 2), while for the second set of test cases,
one grid is a standard cartesian grid with uniform spacing and the other grid is a
polar coordinate grid, also with uniform spacing in each coordinate direction (see Fig.
3). Rather than discuss the interpolation in general, we will confine ourselves to these
two situations.

The basic interpolation problem is a local problem, that is, given a discrete func-
tion defined on a cartesian grid, how should a value be assigned to a point that is not
on the grid? To mathematically formulate the problem in two space dimensions we
consider a uniform cartesian grid with points (xi, yj) given by xi ih and yj jh,
where the grid spacing h is a positive number. Given a general point (, ) there is
a grid point (x, y) which is closest to (, ). A second parameter of significance is

the quadrant relative to (x, y) in which (, ) lies. Without loss of generality we
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FIG. 2

can assume that (x*, y) is (0, 0). The general case can be reduced to this special
case by a simple translation. We can also assume, to simplify the discussion, that
(2, ) is in the first quadrant, that is, both and are positive.

The first interpolation method that we consider is bilinear interpolation. In this
case the value of a function at (5, 3) is given by

(3.1)
f f0,o q- 2 (fl,0 fo,0)/h -t- 1 (fo,1 fo,o)/h

-]-ffT (f1,1 fl,0 f0,1 - f0,0)/h2,

where fo,o f(x*,Y*), fl,0 f(x*+h,y*), f0,1 f(x*,y*+h), and f,
f (x* + h, y* + h). Bilinear interpolation is only accurate of order one. The order of
accuracy is equal to the highest degree of polynomial for which the interpolation must
be exact. Thus (3.1) is exact for any polynomial of first degree, but is not exact for
all second-degree polynomials. The use of bilinear interpolation gave only first-order
accuracy in the solution.

The second interpolation method that we consider is quadratic interpolation (see
Fig. 3). The particular formula we used is

f fo,o + (f,o f-,o)/2h + :2 (f,o 2fo,o + f-x,o)/2h2

(3.2) -ff (f0,1 f0,--1)/2h + 32 (f0,1 2f0,0 + f0,-1)/2h2

+’l (f, f,o fo, + fo,o) /h2.

In the test cases it was found that quadratic interpolation gave overall second-
order accuracy, which is the same order as the finite difference schemes, so no methods
of higher order were investigated.

Henshaw and Chesshire [6] reduced the amount of overlap as the grid spacing was
reduced, and reported that a third-order interpolation was necessary to maintain the
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overall second-order accuracy of the solution. Since we consider the domain fixed,
independent of the grid spacing, we are able to use interpolation of the same order as
the scheme.

(-1, 0)

(0, 1) (1,1)

(0,0) (1,0)

For the interpolation from the polar grid to the cartesian grid in the second test
problem, a method based on Fourier interpolation was used. This method was very
natural to use because the numerical method on the polar grid used finite Fourier
series to approximate the derivatives with respect to the angular variable. The finite
Fourier series are discussed in 6.

The polar grid used in the numerical experiments consisted of grid points (ri, 0j)
where ri rmin q-i" /kr for 0 <_ i <_ N and Oj j. AO for 0 <_ j <_ J with
AO r/J and Ar (rmax- rmin)/Y. The even spacing of the grid is not crucial
to the method; it was used for simplicity. Indeed, because the grid spacing in the
two grids was independent of each other, good resolution with the polar grid could
easily be obtained using a uniform grid without significantly increasing the overall
computational effort.

The actual interpolation procedure was as follows. Given a point (, ) on the
boundary of the cartesian grid for which data had to be supplied from the polar grid
for a function f, its polar coordinates (4, ) were first computed. The three values
of r nearest to were determined, and then using Fourier interpolation, values of
f(r, ) were obtained. Finally, one-dimensional quadratic interpolation in r was used
to obtain f(, 0).

Both the bilinear interpolation (3.1) and quadratic interpolation (3.2) were tested
in place of this method to interpolate values from the polar grid to the cartesian grid.
Both of these methods were far less accurate than was the use of the finite Fourier
series. The inaccuracy of the quadratic interpolation for this case is due to the large
grid spacing in the angular direction.

To interpolate the velocity from one grid to another, the different representation
of the velocity on each grid must be accounted for. We found it best to interpo-
late the velocity components independently, and then transform them to the proper
representation. For example, in interpolating from a cartesian representation to a
polar representation, the cartesian velocity components are interpolated, and then
transformed to the polar representation of the velocity.
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The basic data for interpolation to a given point from a grid consists of the
coordinates of the nearest grid point and the quadrant in which the given point lies
relative to the nearest grid point. In many applications it would be best to determine
this data prior to the main calculation. In the applications employed here the basic
data was computed as needed. Because of the simplicity of the two grids used, i.e.,
cartesian and polar, the necessary computations were relatively easy and straight-
forward. For calculations being done on vector processors it would presumably be
more efficient to store the interpolation data, rather than recompute it. This would
also be true when using any grid for which it is difficult to determine the nearest grid
point to a given point.

4. The iterative solution procedure. Before discussing the finite difference
approximation we give a brief description of the iterative solution procedure. This
is done before the discussion of the finite difference methods themselves to highlight
those aspects which relate to the considerations discussed in the section on the over-
lapping domains for the Stokes system.

The (inner) iterative method used on the cartesian domain is based on point
successive overrelaxation and is described in detail in [11]. The iterative method
used on the polar domain is based on line successive overrelaxation and is well suited
for methods using finite Fourier series methods. This method was also used in [13],
where it is described in detail. Multigrid methods are also suitable; see [12]. One
outer iteration consists of a single inner iteration on each subdomain with boundary
data obtained from the other domain.

The basic inner iteration step to update the solution on a domain consists of two
parts. The first part consists of updating the velocity using one step of a method,
such as successive overrelaxation. This step uses only the first vector equation in

(2.6) or (2.7). In the second part, the pressure is updated based on the local velocity
divergence, which is the second equation in (2.6) or (2.7).

For the cartesian grid, assuming equal grid spacing of h and assuming the standard
second-order accurate five-point Laplacian, these formulas are:

Uij -- Uij --5d (Ui_bl,j -- Ui--l,j - Ui,jq-1 -- Ui,j--1) --Ui,j --fhx,rPi,j
(a.1)

vii -- vii q- a) (Vi+l,j q- Vi-l,j -k vi,j+l q- vi,j-1) vi,j --fhy,rPi,j

where 5x,r and 5y,r represent regularized central difference approximations to the
derivatives with respect to x and y, respectively. Formulas for 5, and 5y, are given
in 6. The algorithm uses immediate replacement, so that only one copy of the solution
needs to be kept. The iteration parameter w was chosen as for standard successive
overrelaxation (see 7).

After the velocity has been updated, the pressure is updated by

(4.2) pij -- Pij /(hx,rUij q- 5y,rvij)

for all interior points. Here, as before, 5,r and 5y,r represent regularized central
difference approximations, but have a different shift than they did for the gradient
terms in (4.1). The iteration parameter " was chosen proportional to the grid spacing;
see 7 for more on the choice of /. After all the interior points were updated, the
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boundary values of the pressure are set by quadratic extrapolation using formulas
such as

P0j 3(plj P2j) + P3j

along the boundary given by 0. Similar formulas are used along the other bound-
aries. This extrapolation is of high enough order not to affect the overall second-order
accuracy of the solution (see [14]). The stopping criteria for the iterative method are
discussed in 7. The formula to update the pressure, given by (4.2) is part of the
classical Vzawa algorithm and related methods (see [15, p. 139]).

When solving a problem on overlapping domains the procedure we have adopted
is as follows. The solution on one domain, say 1, is updated as in one step of the
iterative method for a single domain. The values of the velocity on the boundary
of 2 are determined by interpolation from the latest values on , and then the
solution is updated on 2 as in one step of the iterative method for a single domain.
The boundary values of are then updated by interpolation of the velocity on 2.
This describes one step of the outer iterative method. The iteration proceeds until
the solution on each domain has converged to within the specified tolerance.

Note that since only one sweep of the inner iteration is done on each domain, this
method is not the Schwarz method. The Schwarz method requires that the solution
be obtained on each subdomain before moving to the next domain.

Convergence is determined by examining the norm of the changes in velocity and
the deviation of the changes of the pressure from a constant (see 7). Thus, the
solution is determined as converged when on each subdomain the changes in velocity
are small and the changes in the pressure are essentially constant.

Because the pressure and changes in pressure are determined only to within an
additive constant, they are measured in the norm of L2 modulo constants. By (4.2)
the convergence requirement on pressure is equivalent to requiring that the discrete
divergence of the velocity field is also constant, i.e., it is di on subdomain i. The
relationship between the change in pressure and the value of di is that the change in
the pressure on i is -di. Since the constants di are set by the boundary data and
the interpolation between domains, this shows that one cannot use formula (4.2) and
expect that the pressure changes can converge to zero. Note that the values of di are
not needed explicitly because of the choice of norms. West’s algorithm [19] is used to
compute the norms of the pressure and the pressure changes. The mean values of the
pressure and pressure changes are computed during the computation of the norms,
but are not needed elsewhere in the calculation.

It is important to notice that at no time is it required that the velocity field
be divergence-free or satisfy a similar numerical condition. Also, the pressure is not
constrained so as to determine the unimportant additive constant. This avoids entirely
problems such as those arising in the use of divergence-free finite elements (see [1]).

In particular, (4.2) does not enforce the condition that the discrete divergence
must be zero at convergence, it only enforces the condition that the discrete divergence
is constant on each subdomain. This is similar to the algorithm discussed in 2, and
as in the proof of the uniqueness of the solution in 2, the divergence-free property is
a result of the properties of the system and the boundary data.

Notice that the pressure fields on the two domains do not directly affect each other.
In particular, their difference in the overlap is not restricted to being a constant. In
fact, it is not clear how best to compare the pressure values, since they are defined
on different grids.
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These observations can be used to give a posteriori error checks. The deviation
of the velocity fields from being divergence-free and the deviation from a constant of
the difference of the two pressure fields on the overlap can be used to indicate the
accuracy of the final solution.

We have made no attempt to prove that this iterative method will converge. It
appears that such a proof is beyond our current methods of analysis. In practice, the
method has performed very well. The solutions have been obtained in a reasonable
number of steps.

For the second test problem, the size of the overlap region had a noticeable effect
on the results. The method converged faster and gave more accurate results, when
the overlap region was larger. One result of a smaller overlap region is that the errors
resulting from interpolation from one domain to another have a greater interact with
each other. Elliptic systems of finite difference schemes have the property that non-
smooth boundary data give rise to smooth solutions in the interior of domains [14].
The effect of irregularities in boundary data obtained from interpolation from another
domain will be smoothed out in the interior of the domains, but if the data used for
interpolation is taken from near the boundary, some effect of the boundary irregularity
can be propagated back to the other domain. The size of the overlap region affected
only the magnitude of the errors, not the actual order of accuracy.

5. The reentrant corner difficulty. One difficulty which was discovered and
finally surmounted is of sufficient interest to warrant special attention. This difficulty
occurred with the second test problem and has to do with the corners of the cartesian
grid resulting from the exclusion of portions of that grid from the computational
domain. These corners, such as the points R1 and R2 in Fig. 4, are distinguished by
being reentrant corners.

/

/

FIG. 4
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For the Navier-Stokes or Stokes equations in a region with reentrant corners the
solution will in general have a pressure singularity at such a corner. Usually this is
studied only for flows over steps, in which the velocity is zero along the sides of the
step (see [9]), however, the pressure singularity exists at reentrant corners for general
data.

For the overlapping domains of the second problem the true solution has no
singularity at the reentrant corners since the reentrant corners are interior to the other
domain. However in the numerical approximation, the data given by the interpolation
introduces errors which cause a pressure singularity to appear in the error. In the test
problem the graphical display of the error showed that these pressure singularities
were the dominant feature of the error. The singularity in the pressure error caused
a vortical flow in the velocity error. The discovery of the pressure error singularity
was made possible by graphically displaying the errors.

Two approaches were used to improve the solution by decreasing the strength of
these pressure error singularities. The first of these we call "rounding off the corner."
It is based on the observation that the grid points at the reentrant corners can be
treated as interior points of the cartesian grid. Both the pressure and velocity at these
corner points were updated as interior points. This is possible because all the nearest
neighbors are also part of the grid. Interpolation is done then only at points which
are missing at least one neighbor in the grid. This simple procedure gave a dramatic
improvement in the accuracy of the solution.

The second method was to "chop off" the corner so that the one 270 angle is
replaced by two 225 angles. This method introduced more programming difficulties
and did not give a significant improvement over the method of rounding off the corner,
and so will not be discussed further.

It is important to remember that the reentrant corner pressure error singularity is
inherent in the use of overlapping domains. This can be seen by considering the over-
lapping domain problem for the differential equations as discussed in 2. If we assume
that the specification of boundary values on the overlap portions of the boundary, i.e.,
(0fl) N f2 and (0f2)3 fl, is not exact but contains some error, then in general there
will be a pressure singularity at each reentrant corner. The strength of the singularity
will be directly related to the amount of error in the boundary specification.

6. The finite difference method for the Stokes equations. The finite dif-
ference methods used in the numerical experiments with the overlapping domain
method are variations of the regularized difference schemes introduced by the first
author [10]. This class of schemes is the only one for which published results are given
to demonstrate the second-order accuracy of the solution in nonsimple domains.

In cartesian coordinates the Stokes equations are

(6.1)
02u 02u Op

O,
Ox2 + Oy2 0--

Ov Ov Op
(6.2) Ox2 Oy2 Oy-0,

Ou Ov
(6.3) + 0,
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and in polar coordinates they are

10
r Or

1 02u u 20v Op
r2 092 r r O0 Or

(6.5)
10 (Ov) 102v v 2 0u 10P=0,
rot

r-r +
r 00 r r O- r O0

(6.6) 10(ru) 10v
r Or

=0.
r

In (6.1), (6.2), and (6.3) the variables (u, v) denote the velocity components in the
cartesian representation, while in (6.4), (6.5), and (6.6) they denote the components in
the polar representation. No confusion should result from not distinguishing between
the choice of representation since the two coordinate systems are treated separately.

The first test problem is on the domain consisting of the rectangle -1 _< x _< 1,
0 _< y _< 1, with a right triangle with legs of length 0.8 and 0.6 attached to the
rectangle along the hypotenuse at -0.5 _< x _< 0.5 (see Fig. 2). The two grids used to
compute the solution were both cartesian grids. On each domain the equations have
the form (6.1)-(6.3), but the velocity components on one grid must be rotated by the
angle of the tilt between the grids to obtain the velocity components on the other
grid.

The region for which the second set of numerical experiments were run is the
rectangle -1 _< x <_ 1, 0 _< y _< 1 with the exclusion of a circle of radius rmin centered
at the origin. This region is displayed in Fig. 4. The grid system consisted of an
evenly spaced cartesian grid with equal spacing in each direction and a polar grid
with uniform spacing in each of the radial and angular directions.

The domain covered by the cartesian grid was the large rectangle with the exclu-
sion of a smaller rectangle around the excluded circle as displayed in Fig. 4. The grid
spacings on this, the cartesian domain, were given by

(6.7) Ax Ay 1/M

for some positive integer M. The omitted grid points were those in the rectangle

(6.8) -ioAx < x < ioAx, 0

_
y < ioAy.

The domain covered by the polar grid was the region displayed in the lower right
portion of Fig. 4, given by

(6.9) rmin _< r <_ rmax, 0 _<

Various values of rmin and rmax were used in the studies. Typical values were 0.2 for
rmin and 0.9 for rmax. The grid spacings for this domain, the polar domain, were given
by

(6.10) Ar (rmax rmin)/N and

for some positive integers N and J.
In all the tests an analytical solution of the Stokes equations was used to assess

the accuracy of the method. The first problem used Dirichlet boundary conditions,
in which the velocity was specified along the boundary.
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For the second problem the solutions which were used were symmetric about the
x axis. The boundary conditions imposed were that the velocity was specified along
the boundaries given by x -1, x 1, y 1, and also r rmin. Along the boundary
y 0 symmetry conditions were used. These were

and v 0.

For the cartesian grid the finite difference method was based on second-order
accurate central differences for all derivatives. However, the use of the standard
central difference for the divergence equation and for the pressure gradient results in
nonsmooth solutions. The loss of smoothness can be avoided by using regularized
central differences, as introduced in [10] (see also [11]). These approximations are

Op p+l,j p-, pi+2,j 3p+,j + 3p,j p_,j(6.11) 0 - 5x,rp 2Ax 6Ax

(6.12)
Op Pi,+ P,j Pi,i+2 3pi,i+ + 3pi,i p,j

0- - 5y,rp-- 2Ay 6Ay

(6.13) OUo__ - 6x,ru ui+ ,J2Ax- ui_ , ui+, 3ui,j
6Ax
+ 3ui_ , ui_2,

Ov vi,j+ vi,j- vi,j+ 3vi,j 3v,j_ v,j-2(6.14) -- 5y,VOy 2Ay 6Ay

Notice that the additional regularizing terms are third-order divided differences which
are shifted forward for the pressure and shifted backward for the velocity derivatives.
At grid points near the boundaries, where the approximations (6.11)-(6.14) cannot
be applied, the third-order difference is shifted the other way.

For the polar grid of the second problem, a method was employed which uses both
finite differences and Fourier methods. The solutions were assumed to be symmetric
about the line y 0, and thus the components of the velocity in polar representation
and the pressure can be expressed as

(6.15)
J-1

1 1
uj u(r,Oy) -ao(r) + ak(r)cos kO + (-1 aj(r),

k--1

(6.16)
J-1

vij v(ri,) E bk (ri) sin kOi,
k--1

(6.17)
J-1

pj p(r,Oy) -co(r) + Eck(r)cos kOj + -(-1)Ycj(r).
k--1

In these formulas r rmin + i. Ar and Oj jar?. The formulas (6.15), (6.16), and
(6.17) express the function in terms of their finite Fourier series for a fixed value of
ri. The determination of the coefficients ak, bk, and Ck are easily determined from the
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function values. Because of the assumed symmetry in the solution, u and p are even
functions in 0 and v is an odd function.

Approximations to the derivatives with respect to 0 are obtained by regarding the
variable 0 as a continuously varying variable on the right-hand side of (6.15), (6.16),
and (6.17). For example,

J-1

(6.8)
Ov
o- (’ ) - b() cos .

k----1

The finite Fourier representation is used only to obtain the approximations to the
derivatives with respect to/9. The derivatives are used to evaluate the left-hand side
of equations (6.4), (6.5), and (6.6) as part of the iterative solution technique.

The importance of using regularized differences also applies to the Fourier ap-
proximation. In this case, the coefficients aj(r) and cj(r) must be constrained (see
also [13]). These coefficients are related through (6.4), but some relation other than
given by (6.4), (6.5), and (6.6) is needed to determine these values. To control the
magnitude of the coefficients cg(r) in (6.17), the approximation of some derivative
must be altered. Note that the derivative of p with respect to occurs only in (6.5),
which relates the coefficients of p, i.e., the ck(r), with those of v, i.e., the bk(r), but
there is no mode for k equal to J in the representation for v. It would be possible to al-
low for a coefficient bj(r) in the representation for v. This coefficient bj(r) would be
proportional to cj(r) and could be constrained through (6.6). Note that since sin JOj
is identically zero, this coefficient would have no direct effect on v. Equivalently, bj(ri)
was not explicitly used; instead a term equal to__

a (-1) cj (ri)

was added to the approximation of the divergence equation (6.6). The form of the
iterative method then forced the coefficient cj(ri) to decrease. The rate of decrease
is 1 --/2, where " is the iterative parameter in (4.2). Some such constraint on the
coefficients cg(ri) is necessary; without it, the dominant pressure errors are in the
coefficient cg(ri). Since this coefficient relates to the highest frequency supported by
the grid there is no concern with consistency in treating this term.

7. The numerical experiments. The first set of numerical experiments were
run using the domain shown in Fig. 2. On each domain the grid is a cartesian grid. For
the cases shown in Table 1, the grid spacing was 1/M in both directions for the larger
grid and was .8/M for Ax and .6/M for Ay on the smaller tilted grid. On each domain
the Stokes equations have the form (6.1)-(6.3), but the components of the velocity
vectors are related by the rotation of the coordinate system. After interpolating the
velocity vector components from one grid to the other, the components in the new
coordinate system have to be computed using the appropriate rotation.

The solution for which most of the tests of the first problem were made is

u 1/2 (( + 0.) ( + 0.)) / (( + 0.) + ( + 0.))-- log ((x W 0.5)2 + (y + 0.5)2)2

v ( + 0.)( + 0.)/(( + 0.) + ( + 0.)),
p ( + 0.)/(( + 0.) + ( + 0.)) + p0,
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TABLE 1

M
10

16

24

30

Main grid errors
u v p

5.43(--4) 4.29(-4) 1.64(-2)
1.88(--4) 1.58(-4) 4.97(-3)
6.03(--5) 5.26(--5) 1.69(--3)
3Aa(-) 3.29(-5) 9As(-a)

d

t.7(-a)
.7(-a)
6.(-)
a.0(-)

10

16

24

30

Tilted grid errors

5.83(--4) 2.17(--4) 1.28(--2) 3.6(--5)
1.72(--4) 9.20(--5) 5.09(--3) --1.3(--6)
5.06(--5) 2.74(--5) 2.00(--3) --4.2(--7)
2.96(--5) 1.71(--5) 1.19(--3)--1.6(--7)

M1/M2
10/16
16/24
24/30

TABLE 2

Main grid errors Tilted grid errors

u v p u v p

2.26 2.13 2.54 2.60 1.83 1.96

2.80 2.71 2.66 3.02 2.99 2.30

2.52 2.10 2.59 2.40 2.11 2.33

in the cartesian coordinates of the larger domain. The origin is taken as the midpoint
of the lower boundary of the larger domain. In Table 1 the L2 norms of the errors
for several cases are shown. For these cases, the iteration parameters w and were
chosen as w 2/(1 +4Ax) and 4Ax, where Ax is the x grid spacing on the larger
grid. Table 1 also shows the values of di, the average divergence, for each domain; see
(2.4). The values of di are on the order of the error for the computed solution, and
thus are acceptable.

The values of w and - that were used were found to give about the best conver-
gence rates. Moreover, their dependence on the grid spacing resulted in the number
of iterations being roughly proportional to M. The stopping criterion for the iterative
methods was to stop when the norms of the changes in the velocities and the norm of
the deviation between the divergence of the velocity field and di were all sufficiently
small. The number of iterations for the cases shown in Table 1 were 179, 327, 527,
and 677, respectively, when the L2 norms of the updates were less than 10-5.

Table 2 gives the convergence rates of the accuracy of successive runs. The con-
vergence rate for runs with values of M equal to M1 and M2, with M1 less than M2,
is

log (error (M)/error (M) / log (Mg./M).

These experimentally determined convergence rates are consistent with the overall
method being second-order accurate.

The second set of numerical experiments were run using the domain shown in
Fig. 4. The grid was generated by constructing a cartesian grid on the domain shown
in the lower left portion of Fig. 4, and a polar grid on the domain shown in the lower
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M
10

20

30

4O

M
10

20

30

4O

TABLE 3

Cartesian errors
u v p d

.(--) a.(-) .2S(-1) -.1(-a)
1.21(--3) 9.47(--4) 2.19(--2) --2.5(--5)
5.47(-4) 4.31(-4) 7.81(-3) -8.9(-6)
3.12(-4) 2.45(-4) 4.6o(-3) -2.4(-6)

Polar errors

u v p

2.50(-3) 1.12(-2) 2.17(-1)
8.19(-4) 2.79(-3) 4.83(-2)
3.99(-4) 1.22(-3) 2.11(-2)
2.25(--4) 6.99(-4) 1.22(--2)

d

.s(-a)
a.a(-)
1.3(-5)
.o(-)

right portion of Fig. 4. In the top domain shown in Fig. 4, the dotted lines show the
overlap between the two domains. In almost all the cases tested Ax and Ay were
equal and i0 and j0 were also equal.

Several exact solutions were used to test the numerical method. A very useful
solution was, in the cartesian representation,

(7.1) u x, v -y, p 0,

or, in polar representation,

(7.2) u r cos 20, v -r sin 20, p O.

This solution has the property that it exactly satisfies the difference approximations
to the Stokes equations on both grids of the second problem. Thus the only errors
introduced by the method were due to the interpolation. With the use of the finite
Fourier expansion for the interpolation from the polar to the cartesian domain, this
simple exact solution had essentially no error. The only errors measured were on the
order of the arithmetic accuracy of the computer.

The solution for which most of the tests of the second problem were made is

log (x2 + y2)1/2 (x-)/(x +)

v x/ ( + ),

x/(x + )+o,

in cartesian representation. In Table 3 the L2 norms of the errors are shown for a
representative series of runs. For these runs M and N, as defined by (6.7) and (6.10),
were equal. The values of rmin and rmax were 0.2 and 0.9, respectively. The value J
was 14 for all runs. For these cases, the iteration parameters w and were chosen as
w 2/(1 + 9Ax) and - 9Ax, where Ax is the x grid spacing on the cartesian grid.
As for the first case, these values for w and gave good rates of convergence for the
iterative method.
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TABLE 4

M1/M2
10/20
20/30
20/40
30/40

Cartesian errors Polar errors

u v p u v p

2.13 2.32 3.38 1.61 2.01 2.17

1.96 1.94 2.54 1.77 2.04 2.05

1.96 1.94 2.25 1.86 1.97 1.99

1.95 1.96 1.84 1.99 1.94 1.90

FIG. 5

Table 4 displays the convergence rates for the accuracy of successive runs. The
convergence rates were computed as for Table 2. As with the first case, these experi-
mentally determined convergence rates are consistent with the overall method being
second-order accurate.

The pressure error norms are computed in a way similar to the computation of
a statistical variance, that is, the pressure error norm measures the deviation of the
pressure from its mean value. The algorithm that was used is due to West [19]. In
this way, the effect of an additive constant is canceled. The norm of the difference
between the divergence and di was also computed using this algorithm. As used here,
di corresponds to the statistical average, and the norm of the difference is obtained
as the standard deviation.

The velocity field for the run given in Table 3 with M equal to 20 is shown in Fig.
5, and in Fig. 6 the pressure contours are shown. As shown by Fig. 5, the solution
provides a good test problem by being nontrivial. Figure 6 was obtained by overlaying
the contour plots from each of the domains.

As mentioned in 2 the size of the overlap between the domains affected the error
of the solution. For example, if the value of rmax Was decreased from 0.9 to 0.6 the
errors increased by about 50 percent. The efficiency was also affected by decreasing
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/

/

FIG. 6

/’max. The number of iterations required to achieve a given convergence criterion was
more than four times as great for/’max of 0.6 as for/’max of 0.9. This increase in
error when the overlap is decreased is most likely due to the interaction of the errors
induced by the interpolation on the boundaries.

8. Conclusions. The domain decomposition method presented here has been
demonstrated to compute accurate solutions to the equations describing incompress-
ible viscous flow. The method described here can be extended to computing flows of
engineering significance involving the Navier-Stokes equations. It is anticipated that
there will be few difficulties encountered in extending this method from the Stokes
equations to the Navier-Stokes equations for low Reynolds number flows.

Research is being done to extend this work to cases with more than two subdo-
mains. There are also plans to study the algorithm on parallel architectures to see
what speedup can be achieved.

We appreciate the suggestions and corrections made by the referees.
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SOME PRACTICAL ASPECTS OF EXPLORATORY PROJECTION
PURSUIT*

JIAYANG SUNt

Abstract. This paper shows how to choose the number of terms in a projection pursuit index
and how to select a projection pursuit algorithm. It also demonstrates that Friedman’s index [J.
Amer. Statist. Assoc., 82 (1987), pp. 249-266] works better than Hall’s [Ann. Statist. 17 (1989),
pp. 589-605] in detecting separations or clusters.
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1. Introduction. Projection pursuit explores interesting "nonlinear structures"
(such as clusters and separations) of a high-dimensional data set by projecting the data
onto some low-dimensional space. In this paper we denote the high p-dimensional inde-
pendent and identically distributed (i.i.d.)data set from a population " by Y1,..., YN
and pursue the case of projecting to one-dimensional space. (Extension to the case of
two dimensions is possible.)

The two key elements in projection pursuit are the related index and algorithm. A
projection pursuit index I(c) is an estimate of a measure of distance between the dis-
tribution of the projection of the data in the direction a (c1,..., p) and some "un-
interesting distribution." Of course, we only need to consider vector with cffc 1.
A projection pursuit algorithm is an optimization algorithm that maximizes I(c).
Since classical statistics can be used to handle the data from a normal distribution
well (cf. [1]), a natural uninteresting distribution is a normal distribution. The two
recent projection pursuit indices proposed by Friedman [4] and Hall [6] are to find the
"least normal" structures.

Let (I)(x), (x) be the distribution and density function of an Af(0, 1) random
variable (r.v.), respectively. Denote the density function of X cffY by p(x).
Assume for the moment that E(Y) 0 and cov(Y) I, the identity matrix. The
m-term Hall’s index Igm is an estimate of the sum of the first m terms of Hermite

polynomial expansion of 1:2 distance between p and :

(1)

where the Hermite polynomials Hj are defined as follows:

Ho(r) 1, H1 (r) 2r, H;(r) 2jHj_l(r),

*Received by the editors September 10, 1990; accepted for publication December 8, 1991.
tDepartment of Statistics, University of Michigan, 1444 Mason Hall, Ann Arbor, Michigan 48109-

1027.
1The term "nonlinear structures" refers to those structures that cannot be detected easily by

using solely sample mean and covariance matrix of the data, in contrast to classical multivariate
statistics.
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J! 2j-1H(r) 2(r)dr for j 2, 3,

Under the transformation X ---, R 2(I)(X)- 1, the densityp(x) is transformed
to the density function as(r) of R 2(I)(cY) 1, and a standard normal r.v. will
be transformed to a uniform r.v. on (-1, 1). The m-term Friedman’s index IFm is
an estimate of the sum of the first m terms of Legendre polynomial expansion of 2

1.distance between qa and 5

imF()= 2j/l
g

2
Lj (2(I)(crY/) 1}

j--1 i--1

where the recursive definition of Legendre polynomials Li is given as follows:

Lo(r)- l, L(r)--r, L2(r)--
1

nj(r) ((2j 1)rnj_(r) (j 1)ni_2(r)} for j 3,

In practice, E(Y) and cov(Y) are unknown and arbitrary. People usually sphere
the data before implementing the projection pursuit procedure based on the first set
of summary statistics: sample mean Y 1IN Yi and sample covariance matrix

(1IN) (Y Y)(Y F)r. A typical version of the sphered data is

(3) Zi D-1/2 (Y Y), 1,..., N,

where D/) is an eigenvalue-eigenvector decomposition of . In other words,
Y in (1) or (2) is often replaced by its sphered version, say Zi, in practice.

In 2, the rules of thumb for choosing the appropriate number m of terms in the
Friedman and Hall indices are given. It turns out that Friedman’s index performs
better than Hall’s in detecting separations or clusters. In 3, projection pursuit al-
gorithms are discussed for three typical situations: highly structured data, data from
Gaussian noise, and none of the above.

2. How to choose the number of terms. The choice of the number m of
terms included in a projection pursuit index depends on the data dimension p and
sample size N. We give some general guidelines here.

Case 1. Friedman’s index. Friedman [4] suggested that we choose

(a) 2 _< m <_ 6 in most cases.

In the following we show that m should be at least 3.
Let

(4) (c) 23 1
Lj(2(I)(cZi)_ 1),

i--1

for j 1,... ,m. Friedman’s index can be rewritten as IFm(a) (2N)- E((a))2.
According to the large sample theory, in the unsphered data case (Zi Y), these
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(), j 1,2,..., J, are i.i.d, univariate standard normal random variables. Note
that the sphered version Z1,..., ZN of data YI,..., YN satisfies

N N

i=1 i=1

and concentrates on a small neighborhood of 0 with a high probability, in which
function (I)(x) can be approximated by a straight line ax 4-1/2. Thus Ri- 2(I)(cZi)-
1 . 2arZi. Hence the first term of Friedman’s index ImF(a) is

The variance of the second term is also very small relative to the variances of other
terms due to the second constraint in (5). We have done simulations to confirm this
phenomenon. For example, in Table 1 the data are four-dimensional pseudo-normal
random vectors from Af(0,Ia), the sample size is N, and the simulation size M is
1000. We first compute Y(c) based on the sphered data for j 1, 2, 3, 4 for each
simulation and then calculate the sample mean and variance of Y ((). The sample
mean and variance of the 1000 pseudounivariate standard normal random numbers
(labeled st. normal) are also provided in Table 1.

TABLE 1
in sphered case.

?()
?()
74()
st. normal

c- (0, 3-1/2, 3-1/2,3-1/2) c-- (1, 0,0,0)
N--100 N--1000 N--1000

var mean

0.0414 0.0147
0.22 -0.004
0.92 -0.080
0.853 0.0490
0.98503 0.061

var

0.04
0.22
0.91
0.811
0.98503

mean var mean

0.003 0.045 0.003
0.06 0.23 0.08
-0.03 0.98 -0.033
-0.04 0.89 -0.0856
0.061 0.98503 0.061

In Table 1, the means of Y(a)’s are reasonably close to zero; the variances of
3(O) and ]4(a) are close to one, but the variance of ]l(a) is only about 0.04, and the
variance of Y2(a) is about 0.22, which is closer to 0 rather than 1. Intuitively speaking,
sphering reduces dimensionality of the projection pursuit index by 2. A theoretical
justification can be found in the appendix. Therefore, we suggest modifying (a) as

(a’) 3 _< m _< 6 in most cases.

Recall that Friedman’s index, for example, estimates the sum of the first m terms
of Legendre polynomial expansion of 2 distance between q and 1/2 by substituting
E(L.i{2((oY)- 1}) with the corresponding sample mean 1IN Lj{20(Y)- 1}
(cf. Friedman [4]). The/j{2(I)(arY)- 1} all have similar variance; indeed, under
normality, all have variance close to 1 for j >_ 3. However, if the :2 distance between
distributions is finite, the means must converge to 0 as j increases. This implies that
the Lj for large j will be poor at detecting nonnormality, especially when N is small.
In practice, one. may always assume a large finite support. Then the corresponding
L2 distance is finite. This assumption does not change the interesting structures of
the data. Thus,
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(b) if N is small, m should also be small.

The N data points in a higher-dimensional space suffer more from "the curse of the
dimensionality" than the N data points do in a lower-dimensional space. In other
words, this case can be treated as if the sample size is small. Consequently,

(c) the larger p is, the smaller m should be.

In summary, (a’), (b), and (c) form a rule of thumb for choosing the number of terms
for Friedman’s projection pursuit index. Less experienced users may find the examples
in Friedman [4] useful.

Case 2. Hall’s index. We discuss a motivating example first.
The bimodal model is an interesting model in applications. Suppose that the data

Y1,..., YN are i.i.d, from a four-dimensional population , which specifies that if

Yd Y,.’3,Y) dG, then
the first component Y1 is a r.v. with the density function g:

() .() () + (x ,), x e (-, );

the remaining components Y, Y,Y are i.i.d, from if(0, 1);
and Y, Y, Y,Y are independent. The truly interesting direction for this probability
model is a* (1, 0, 0, 0).

We shall compare the four-term iedman index (m 4) with the four-term Hall
index under the above simple probability model in the ce of sample size N 100.
In Hall’s index, there are five terms if we count the zero term. The comparison will
be given in terms of histograms explained below:

F project F

(7) YZ / a a Z histogramf
H pt Hv
m m Z histogramg

Here in (7) for each data Y from a bimodal model, we sphere Y to get the sphered
version Z of Y, then obtain two different histograms in two different ways. Based
on the data Z, one way is to run a projection pursuit algorithm with Friedman’s
index as the objective function to obtain a solution am,F then take the histogram of

F r F r
the univariate data am Z as an estimate of the density function of am Z. Another
way is to run the same algorithm based on the same data Z with Hall’s index as
the objective function to reach a solution amH, then graph the histogram of the data
H-am Z to estimate its density function. We interpret the projection pursuit index as

performing well if the corresponding histograms are close to the density function of
the original bimodal model, and/or its solution (aRm or amH) is close to a* (1, 0, 0, 0).

When # in (6) is small, we may not be able to see a separation of two peaks
from the raw data even if they are projected onto a*. Therefore, we construct Y
(YI,..., Y)’s independently as follows. Let W1, W2, W3, Wa be four i.i.d. Af(0, 1)
pseudo r.v.’s which are independent of a uniform r.v. U on (0, 1). Define

Y; Wl + #I{v>1/2 }, Y;= W2, Y2 W4.

For each set of W1,..., W4, we consider an increasing sequence of it’s. Here it
0.4, 0.8,..., 7.6, 8.

Figure 1 presents the results of our first experiment where the histograms are of
F and H in the sphered space for it 0.4, 0.8,. 8.0the sphered data projected on a, am

The only difference between these histograms and the histograms of the unsphered
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data projected to the projection pursuit solution in the original space is the scale.
The separation is preserved in the sphered space. We see that with Friedman’s index,
the separation starts from # 4.4, while with Hall’s index no separation appears
in any of these cases with # chosen from 0..4, 0.8,..., 8.0. In fact, if we check the

F F ’Sdirections a,(#) found by using Friedman’s index, we notice that am(#) are close
to the line represented by the direction a* (1, 0, 0, 0) for # 4.0, 4.4,..., 8.0, while

H (#) are not. Note that (-1, 0, 0, 0) and (1, 0, 0, 0) give thefor # 0.4, 0.8,..., 8.0, (Rm

same straight line.
Figure 2 shows the second experiment, which is independent of the first one. We

see separations starting from # 3.6 up to 8.0 by applying Friedman’s index, and
separations at # 4.8 and 6.0 up to 8.0 by using Hall’s index.

Table 2 reveals that the lines represented by directions found by using Friedman’s
index are close to 1 when a* (1, 0, 0, 0) for # 3.2 up to 8.0. Those found by using
Hall’s index are close to a* (1, 0, 0, 0) for # 4.8 and 6.0 up to 8.0.

TABLE 2
The directions found by the Friedman and Hall indices.

0.4 (0.71285, 0.36443,
0.8 (-0.25511, -0.006226,
1.2 (-0.47785, -0.037650,
1.6 (-0.51711, 0.0045139,
2.0 (-0.59760, 0.035192,
2.4 (0.23240, -0.74695,
2.8 (-0.30959, -0.74266,
3.2 (0.98420, -0.016513,
3.6 (0.98719, 0.0074661,

-0.45505, -0.38984)
0.69983, -0.66717)
-0.61193, 0.62912)
0.64914, 0.55785)
0.60462, 0.52543)
0.27143, -0.56070)
-0.21769, -0.55247)
0.053772, -0.16786)
0.062255, -0.14674)

(0.084005, -0.20921,
(0.19501, -0.24838,
(0.43953, 0.091376,
(0.52236, 0.096520,
(0.53695, 0.17745,
(0.12243, -0.21050,
(0.18994, 0.22677,
(0.24278, -0.24563,
(-0.85279, -0.37562,

-0.56222, -0.79567)
-0.64503, 0.69585)
0.66845, -0.59299)
-0.67104, -0.51724)
-0.67581, -0.47273)
-0.14695, -0.95870)
-0.14095, 0.94479)
-0.13253, -0.92907)
0.35878, 0.054219)

4.0 (-0.99076, 0.034163, -0.042933, 0.12402)
4.4 (0.99263, -0.034992, 0.042527, -0.10798)
4.8 (-0.99407, 0.034186, -0.041981, 0.094286)
5.2 (0.99519, -0.032652, 0.041025, -0.082791)
5.6 (0.99604, -0.030866, 0.039724, -0.073298)
6.0 (0.99670, -0.029068, 0.038212, -0.065528)
6.4 (0.99720, -0.027368, 0.036605, -0.059177)
6.8 (0.99760, -0.025804, 0.034987, -0.053960)
7.2 (0.99791, -0.024385, 0.033408, -0.049639)
7.6 (0.99816, -0.023104, 0.031899, -0.046021)
8.0 (0.99837, -0.021948, 0.030472, -0.042960)

(0.41525,
(0.e,
(.0000,

(0.39119,
(0.40862,
(.0000,
(1.0000,
(.0000,
(1.0000,
(1.oooo,
(1.oooo,

0.40581, 0.67988, -0.44794)
-0.30182, -0.10023, -0.88221)

o., o., o.)
-0.33279, -0.079074, -0.85438)
-0.34610, -0.069336, -0.84168)

o., o., o.)
o., o., o.)
0., 0., 0.)
0., 0., 0.)
0., 0., 0.)
o., o., o.)

We have printed out 20 experiments, of which the first two are included in this
paper. All of these 20 experiments show the same pattern as the first two. Friedman’s
four-term index is superior to Hall’s four-term index for this bimodal model.

Explanations. By Cram6r [2, p. 133 and pp. 221-224], the statistics formed from
the third Hermite polynomial give the skewness of the data, and the statistics formed
from the fourth Hermite polynomial give the kurtosis of the data. Recall the argument
in Case 1 that if the data are sphered, with high probability, they are concentrated
on a small neighborhood of zero. Therefore, in the four-term Hall’s index, the zeroth,
first, and second terms do not change much, as they have much smaller variances than
those of the third and fourth terms. The third term is dominated by the skewness of
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the data, and the fourth term by the kurtosis of the data. In our experiments, the
four-term Hall’s index places too much weight on the skewness of the data and picks
up views with skewed density rather than bimodal density in many cases.

If more terms in Hall’s index are .used, one might get the same result as Fried-
man’s index does for this model. In fact, we can make a connection between Hall’s
consistency result [6], and the number of terms that should be chosen in a projection
pursuit index.

Denote by cH the true maxima of the :2 distance between the densities pa and
and by OF the true maxima of the :2 distance between the transformed densities

H and F be the projection pursuit solutions of the indices ImHas(’) and 1/2. Let am am
and ImF ((). Under some regularity conditions for the density function of the data, the
consistency result says that as N, m ,

F F On(N-IOlm

g ag On(N-IOlm

if m/N/3 0,

if m/N2/3 0,

where r > 1. This result shows that the number of terms in Hall’s index should be
about the square of the appropriate number of terms in Friedman’s index. In our
experiments, sample size N 100, N1/2 4.64, N1/4 3.16. According to the above
consistency result, m 4 in Friedman’s index is reasonable, while m 16 in Hall’s
index might give as good a result as the four-term Friedman index. In summary, a
rule of thumb for choosing the number of terms in Hall’s index is

(a) 3 _< m _< 36 in most cases;
(b) the smaller N is, the smaller m should be;
(c) the bigger p is, the smaller m should be.

Computationally, the maximization of the higher-order polynomial objective function
is much more expensive than the maximization of the lower-order polynomial objective
function. If we include more terms in Hall’s index to achieve the same accuracy of
Friedman’s index with fewer terms, some computational efficiency is lost.

Remark 1. It is easy to see that this loss of dimensionality due to sphering occurs
for all polynomially based projection pursuit indices for any versions of sphering that
satisfy (5). Hence the minimum number of terms for all such indices should be three.

3. How to select an algorithm. The primary goal of a projection pursuit
algorithm is to find the direction which maximizes a projection pursuit index. Just
like any other optimization algorithm, a projection pursuit algorithm is usually well
suited to a particular type of problem, or a particular combination of projection
pursuit index and data structure. By a naive (use of) algorithm, the computed value
for the observed max Ij(o) can be merely a local maximum of Ij(oO, which is far
away from the global maximum in some important cases. On the other hand, a
projection pursuit procedure should find multiple views of a multivariate data set,
i.e., it should enable one to keep running the algorithm based on some index until as
many informative directions as possible are discovered (cf. Friedman [4]). Therefore,
a good projection pursuit algorithm is one that can be used to find the first several
largest local maxima in a reasonable time.

Friedman [4] gave a practical projection pursuit algorithm for his index. This
algorithm has many computational advantages and uses an interesting idea called
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structure removal. Since the normal structure .is the "least interesting" and is as-
sociated with directions that minimize the index, the idea of the structure removal
is to transform the data along the "interesting" direction (found by the algorithm)
into standard normal data while keeping the structure along the other orthogonal
directions unchanged. The structure removal ensures that the interesting directions
already found will not be found again later.

Friedman’s projection pursuit algorithm can be described briefly as follows.

1. Preliminary search: search along p coordinates (or principle components in
the sphered case); the one with largest projection pursuit index is called a(1).

2. Coarse search: large stepping search along p orthogonal directions with origin
at a(1); the one with largest projection pursuit index is called a(2).

3. Local search: starting from a(2) search to a convergence point by using steepest
ascent or quasi-Newton algorithm as the local optimizer. The direction with largest
projection pursuit index after convergence of the algorithm is called a(3).

4. Structure removal: transform the data along a(3) into a standard normal data.
5. Loop: repeat above steps 2-4.

This algorithm is available from STATLIB.2

In the .following, we shall discuss Friedman’s algorithm and its modifications in
three different situations: (a) the data set is highly structured; (b) the data set is
pure noise; () neither (a) nor (b).

(a) Data set is highly structured. In this case, the objective function, i.e., the
projection pursuit index based on the data, has a few big peaks surrounded by many
small peaks. There is no doubt that Friedman’s index performs well in this case.

Two questions arise naturally. First, How many structure removals should be
performed? A small P-value associated with the current direction, or projection
pursuit solution, signals the stop of structure removals. Then the problem becomes
how to calculate the P-values, which is discussed in the next paragraph. Second,
What happens if the data set is not highly structured? This is discussed in (c), later
in this section.

(b) Data set is pure noise. This case occurs if (i) the data is just a result of
Gaussian noise; (ii) the P-value of an observed projection pursuit solution is computed
by using the Monte Carlo method. Specifically, the P-value is

(8) P P (es,-max Im(ol,)

_
I)bs I

under H Y/ ’s are i.i.d. Af(#, ) random samples with some p-dimensional vector
#, pxp nonsingular matrix . Here Ira(a) is based on the sphered version Zi’s of
Y’s and I,bs Ira(a*) max,esp-1 Im(a) is the index evaluated at the observed
projection pursuit solution. This P-value calculation gives a calibration for how large
"large" is, or how much structure can be seen from a particular projection pursuit
solution.

2This is a system for distributing statistical software and data. To obtain the program, contact
statl+/-b@temper, star. cmu. edu, then request the algorithm: send projpur from general. Do not
include a "subject."
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When data is unstructured, the objective function Im() has many bumps. There-
fore, using Monte Carlo methods to estimate the P-value involves the repeated maxi-
mization for functions which have many local maxima with a similar size. Hence the
corresponding optimization problem becomes very complicated and computationally
intensive. Sun [8] has an easily applicable analytical formula for calculating P-values
associated with Friedman’s index. We recommend using this formula as a conservative
measurement.

Day [3] showed apparent structures that can occur in projections of multivariate
normal data. To ensure that apparent structures of the noise data are found, it is
helpful to use the more thorough optimization procedure described in (c).

(c) Neither of the above extreme cases. In general, the data set may be neither
pure noise nor highly structured. Hence, it is useful to improve computational speed,
reliability, and accessibility of the projection pursuit algorithm so that the result is
reliable for a much wider class of data structures.

Gill, Murray, Michael, and Wright [5] developed several refined versions of an
optimization algorithm called NPSOL, which uses a sequential quadratic programming
algorithm. It is considered one of the most efficient algorithms among the existing local
optimizers. We have done many simulations to confirm its efficiency and reliability
in the context of projection pursuit. NPSOL is now available as a subroutine called
EO4UCF in NAG (mark 13). We suggest that the local optimizer in the third step of
Friedman’s algorithm be replaced by NPSOL (version 4.0 or the latest version).

If someone has the old IMSL (release 9.2), the subroutine called ZXMWD can be
used as a substitute for steps 1-3 in Friedman’s algorithm. With this substitution, the
modified Friedman algorithm does slightly better than the original when no structure
removal is used in the noise situation, because ZXMWD is a more exhaustive search
procedure.

Friedman’s idea of structure removal can be used as an enhancement to obtain the
global maximum or directions close to it. The direction that maximizes the projection
pursuit index among all the directions examined in the steps of the algorithm above
can be regarded as the global maximum. Our experiment shows that p times structure
removal is sufficient for a p-dimensional data set.

Since an optimization algorithm may not be rotation invariant, adding a rotation
technique for the Monte Carlo simulation of P-value in projection pursuit is usually
beneficial. The idea of the rotation is to run the same algorithm again for the rotated
data set Y"s from the original data set Y’s.

In summary, we suggest enhancing Friedman’s algorithm in practice by the fol-
lowing steps.

3. Local search: replace the local optimizer by NPSOL.
5. Loop 1" repeat steps 2-4 p times.
6. Loop 2: rotate the original data and repeat steps 2-5. The resulting direction,

which has the maximum index among all the above directions, is our first interesting
direction.

7. Next view: if the associated P-value of the solution derived in step 6 is large,
stop. Otherwise, remove the structure along the solution. Then repeat steps 1-6 to
obtain the next interesting view.

Sun [7] has done many simulations. The theoretical P-value approximation to (8)
(Sun [8]) is very good for the first view obtained from steps 1-6. In other words, we
are confident that the algorithm suggested above works for a wide class of functions
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because it works even for the noise data case. The views collected from steps 6 and 7
are close to the most informative multiple views of a multivariate data set.

Remark 2. The idea of structure removal can be implemented in the maximization
of an objective function that has known minima. Hence it has great potential, like
simulated annealing in the field of optimization.

Remark 3. The projection pursuit procedure should be used only after some
preliminary analysis and "structure removal" are done. For example, the sample mean
and covaxiance matrix can serve as a good first set of summary statistics. Sphering
the data removes the structure due to these first and second moments. If one or more
of the variables are categorical, they show obvious structure and can be removed from
the data set before implementing the projection pursuit procedure. See Friedman [4]
for more discussion of these points.

Appendix. A theoretical justification. Notation here is the same as in pre-
vious sections. For example, Yi,..., YN are the data and Z1,. ZN are the sphered
version of Y’s defined in (3). In this appendix, we show that as "/’ --. x) each 8(() is
distributed asymptotically according to a univariate normal population Af(0, a) for
j 1, 2,..., J, where a2, a are close to zero and a, a are close to one. This
gives a theoretical justification to the dimension reduction argument in Friedman’s
index. The idea is to apply Taylor expansions of Y8() about cZi’s at Zi’s.

Without loss of generality, let E a2Ip for a positive scalar a2 and a p p identity
matrix Ip. Denote Y (Yli,..., Ypi)r, Yj N-l(Yl /"" +YN), # (#l,..., #p)r,
and Zi (Zli, Zpi). Then

(9)

Set -1/2, (ij)pxp. In Anderson [1], Theorem 3.4.4 and the paragraphs follow-
ing it give

(10) ((rij)pp Ip/a Op (N-i/2).

As usual, here and in the following, we mean "Op(.) as N --, c" by Op(.). Again,
without loss of generality, let a be (1, 0,..., 0)r in YjS(a)’s. Then

P

(11) Zi Zli (rlj(Yji j) (Vii- ]1)/11 -- Ri,
j-1

where &ll 1/, and Ri ’j=2P dU (Y.i ). Equation (10) suggests that

(rij -_Op(N-i/2),&lj a + Op(N-1/2) for : 1. Hence, as the distribution of
Yji Y is independent of i, it is easy to see that

(12) Ri Op(N-1/2) uniformly for i 1,... N,

and these Zli’S are close to 21i:

(13) Zli 21i (Vii 1)((T (11) (Yl #1) + Ri On(N-i

We now derive the asymptotic distribution of the first term Y{(a). From (11)-
(13), we have the Taylor expansion
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(14)

where R (3/N)1/2 [R 2{(Y ,)/a}]. From E[(Yi-#j)2{(Yli-#l)/a}] 0
for all j and (12), we see

R On (N-1/2),
N

i:1
r

Hence, by N1/2 (a 11) Op(1), the second term in (14) is Op (N-1/2). As

(2/N)E{(Yi #)/a} l/r1/2 + Op(N-/2),

the third term in (14) is

where Rs (3/N)1/2 (Yi- #)/(ar1/2). Therefore,

(a) (a) Rls + Op (N-/2),

which can be easily distributed asymptotically as a Af(0, a2) random variable with

a2 0.04507.
8

Similarly, we can show that as N - each Y (a) is distributed asymptotically
as a Af(0, ay) random variable for j 2,..., J, where ay are as follows:

j=2 j=3 j=4 j=5 j-6 j--7 j--8

0.2421419 0.9665128 0.8642244 0.9933252 0.9536364 0.9977218 0.9788649
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PARALLEL ALGORITHMS AND SUBCUBE EMBEDDING ON A
HYPERCUBE*

ELEANOR CHU$ AND ALAN GEORGE
Abstract. It is well known that the connection in a hyporcube multiprocessor is rich enough to

allow the embedding of a variety of topologies within it. For a given problem, the best choice of topol-
ogy is naturally the one that incurs the least amount of communication and allows parallel execution
of as many tasks as possible. In a previous paper we proposed efficient parallel algorithms for per-
forming QR factorization on a hypercube multiprocessor, where the hypercube network is configured
as a two-dimensional subcube-grid with an aspect ratio optimally chosen for each problem. In view
of the very substantial net saving in execution time and storage usage obtained in performing QR
factorization on an optimally configured subcube-grid, similar strategies are developed in this work
to provide highly efficient implementations for three fundamental numerical algorithms: Gaussian
elimination with partial pivoting, QI factorization with column pivoting, and multiple least squares
updating. Timing results on Intel iPSC/2 and iPSC/860 hypercube multiprocessors are reported for
all three algorithms.

Key words, parallel computation, hypercube multiprocessors

AMS(MOS) subject classifications. 65F05, 65F50, 68R10

1. Introduction. This paper is a sequel to [3], where we propose medium-grain
parallel algorithms for hypercubes with substantial startup cost and message-passing
latency. This class of hypercube multiprocessors includes those commercially available
from Intel and NCUBE. It is well known in practice and evident in the literature
that fine-grain algorithms are designed for hypercubes with no startup cost and high
communication bandwidth, and that their performance and analytical results do not
carry over to medium-grain parallel algorithms.

In [3] we described medium-grain QR factorization algorithms that can dynami-
cally adapt to topological reconfiguration and achieve substantial saving in time and
storage. The topology we advocate is very closely related to the two-dimensional mesh
and torus, but enjoys a number of distinct features important in designing efficient
parallel algorithms. We obtain this topology by configuring the hypercube network
as a two-dimensional subcube-grid. A subcube-grid is not a mesh-connected processor
array. Although a 71 72 subcube-grid has 71 processors in each column and 72
processors in each row, the neighboring processors in the grid may or may not be
physically connected; instead, each row and each column of processors is required to
form a hypercube of smaller dimension, which is a subcube.

We observed in [3] that different communication algorithms may be built on
top of the basic subcube-doubling scheme by employing a variety of strategies in
updating the message to be forwarded to the next neighbor. In particular, we show how
redundant updates can maintain data proximity so that exactly the same synchronous
communication steps may be followed by all processors throughout the computation
for all possible choices of the dimensions 7 and 72. The communication scheme
we proposed in [3] allows us to employ the optimal aspect ratio "7/72," which is

*Received by the editors March 14, 1990; accepted for publication (in revised form) December
16, 1991. This work was supported in part by Canadian Natural Sciences and Engineering Research
Council grant OGP0008111, by National Aeronautics and Space Administration grant NAGW-1457,
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tDepartment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
$Present address, Departments of Mathematics and Statistics and Computing and Information

Science, University of Guelph, Guelph, Ontario, Canada N1G 2Wl.
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problem-dependent and is chosen at run time according to the particular dimensions
of an input matrix. Since all (p/2) disjoint pairs of processors exchange one message
per communication step, the total number of messages is independent of the choice of
the aspect ratio. The quantity that the optimal aspect ratio aims at reducing is the
message length and hence the total communication volume.

The performance of the parallel QR factorization algorithm described in [3] var-
ied widely, depending upon the choice of the aspect ratio. For some problems, the
execution time for the worst aspect ratio was as much as six times greater than for
the optimal aspect ratio.

In view of the very substantial net saving in execution time and storage usage
obtained in our earlier work [3], a natural question to ask is whether the same topology
can be adapted to parallelize other numerical algorithms efficiently. In this paper, we
propose new subcube-grid algorithms for the efficient parallel implementation of the
following numerical algorithms.

1. Gaussian elimination with partial pivoting. In 2, we show not only that its
subcube-grid implementation enjoys the same saving as QR factorization, but also
that partial pivoting can be incorporated without incurring extra message exchanges.

2. QR factorization with column pivoting. In 3, we show that column pivoting
can be incorporated into our parallel algorithms in [3] without increasing the number
(if messages exchanged. We also show that the increase in computing cost is very
small.

3. Multiple least squares updating. While the idea we use to develop the al-
gorithms in [3] can be immediately applied to multiple least squares updating, it is
equally important to have an efficient scheme to dynamically relocate the data of the
computed Cholesky factor as the aspect ratio of the subcube grid changes. In 4, we
show that with an appropriate mapping scheme, we can adapt the subcube doubling
technique to obtain a dynamic data relocation algorithm for the Cholesky factor, and
have thus obtained a feasible parallel algorithm for the continued process of multiple
least squares updating.

Timing results for all three algorithms on Intel iPSC/2 and iPSC/860 hypercube
multiprocessors are reported in 5, and they are compared with the performance of
other known algorithms.

2. Gaussian elimination with partial pivoting. Due to its fundamental and
practical role in solving linear systems of equations, Gaussian elimination is often the
first numerical algorithm considered when experimenting on a new computer architec-
ture. Since 1985, the year in which hypercube multiprocessors became commercially
available, much work has been done on the efficient implementation of this algo-
rithm and its variants on hypercubes [1], [2], [5], [7]-[11], [13]-[16], [22], [23]. The
topologies employed include the embedded ring, spanning-tree, and two-dimensional
mesh-connected processor array. The communication algorithms devised for these
embedded topologies often employ pipelining techniques to reduce communication
delay in message passing. The data-mapping strategies considered include column-
and row-oriented block or wrap mapping as well as submatrix block mapping. In [22],
the theoretical lower bound for communication complexity of the Gaussian elimina-
tion (with no pivoting) on a nearest-neighbor mesh network was established to be
0 (n2/x/) / 0 (nx/) for a lock-step (synchronous communication) Gaussian elim-
ination algorithm, and O (n2/v) + O (V/-) for any pipelined Gaussian elimination
algorithm, where p is the total number of processors. However, we should note that
the lower bounds above are obtained assuming that there is no startup cost, and that
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a vector message is pipelined on an element-by-element basis in passing to consecutive
processors. These assumptions are not sensible for an iPSC-type hypercube. Optimal
concurrent algorithms for Gaussian elimination with and without pivoting are also
proposed in [7]. However, since the algorithms proposed in [7] achieve optimality only
on a large hypercube machine with little latency and high communication bandwidth,
they are not suitable for currently available Intel or NCUBE machines.

While the row or column interchange step is recognized to be crucial in maintain-
ing stable computation in practice, it often causes extra communication and unwel-
come disturbance in an otherwise well-pipelined flow of messages. Thus the reduction
of the latency caused by pivoting has been the subject of several studies. In [11], Geist
and Romine compare the performance of several recently developed pivoting strate-
gies that balance the work load while keeping the communication cost low. They
implement all strategies in the C language and report their performance when factor-
ing a matrix of dimension 1024 on an Intel iPSC/1 hypercube of 32 processors. The
fastest algorithm is row-oriented, uses a synchronous spanning tree fan-in/fan-out
communication algorithm, employs the dynamic pivoting strategy proposed in [11],
and applies four pivot rows at a time using a loop unrolling technique. During each
of the (n- 1) elimination steps, there are two log2 p sweeps of the minimum spanning
tree rooted at the manager node processor. The two sweeps fan-in/fan-out a short
message consisting of the pivot element and the pivot row number. In addition, there
is a third log2 p sweep of a spanning tree rooted at the node processor that owns the
pivot row to be broadcast. Additional communications between possibly nonadjacent
nodes are necessary to explicitly permute the pivot row, although they show that the
cost is quite modest when the wrap mapping of rows to the p processors need not
be maintained. Another topology included in their experiment embeds a ring into
the hypercube network, which allows the column-oriented algorithm to run efficiently
when the communications can be pipelined. However, since pipelining interferes with
loop unrolling, the asynchronous column-oriented algorithm loses to the synchronous
row-oriented one on the iPSC/1 hypercube when loop unrolling is allowed.

In this work, we investigate the role of a subcube-grid topology for implementing
Gaussian elimination with partial pivoting on hypercubes with substantial message-
passing latency. The algorithm we propose incurs exactly log2 p synchronous message
exchanges between neighboring processors during each elimination step, regardless of
whether interchanges occur. Since the total number of message exchanges is a con-
stant independent of the aspect ratio of the subcube-grid, a square or close-to-square
subcube-grid can be employed to reduce the message length and hence the commu-
nication volume. Furthermore, since the message length is reduced when the number
of processors increases, the subcube-grid algorithms are expected to scale up well.

2.1. A new parallel implementation. We describe the algorithm for factoring
a matrix of order n on a hypercube of dimension d. The hypercube is configured as
a "1 2 subcube-grid, where /1 241 2 242, and d + d2 d. The rows of
the matrix are wrapped around the subcube-rows. Within each subcube-row, the
elements are wrapped around the /2 processors (that form the subcube) according to
their column subscripts. Although our implementation is independent of the aspect
values, the chosen dl and d2 should be equal or differ by at most 1 to achieve the
optimal performance. The following algorithm is executed by all p 24 processors
concurrently. The reader should keep in mind that the right-most dl bits of the
processor id correspond to the row mapping, and the left-most d2 bits correspond to
the column mapping.
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for E [1, n- 1]
if my share of the matrix contains column then

update my message to be my share of column
else

label my message content as dummy data
end if
b +- d2 low-order bits of my id
g +-- d2
while > 0 do

send my message to processor with id different
from my id in bit b-I

receive a message
if my message contains dummy data then

update my message to contain the message received
end if

end while
Store the final content of my message as the pivot column
Designate the row segment corresponding to the largest element

in the pivot column as the local pivot row
if my share of data contains elements from row and

the local pivot row number then
permute the two segments

end if
Update my message to contain the pivot element,

the local pivot row segment and its row number
b +-- dl high-order bits of my id
g+-dl
while / > 0 do

send my message to processor with id different
from my id in bit b-i

receive a message
if the magnitude of the pivot element in the message received is

larger than the magnitude of the pivot element in my message then
update my message to be the message received

else if the magnitude of the pivot element in the message received is
smaller than the magnitude of the pivot element in my message then
if the message received is marked as row then

mark my message as row
if my message contains my share of data then

permute the received message into the local pivot row
end if

end if
else {a tie occurs}

if the row number in the received message is smaller
than the row number in my message then
update my message to be the message received.

end if
end if
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g-g-1

end while
Use the final content of my message as the pivot row
if my share of the matrix contains row and

the pivot row is different then
permute my message content into my share of row i

end if
Use the pivot column and pivot row segments to update my share of data

end for

Assuming that /1 "/2 V/, the message sizes in the ith reduction step are [(n-
i)/vffi for the pivot column and [n/Vffi fo, the pivot row. During each reduction step,

log2 pthe pivot column messages are exchanged between neighboring processors for
times, as are the pivot row messages, resulting in a total of exactly log2 p synchronous
bidirectional exchanges per reduction step. Since the processor that needs to update
a message content and the one that needs to perform a local permutation cannot be
the same, the redundant permutations are free concurrent activities.

3. Parallel QR factorization with column pivoting. To incorporate column
pivoting into the subcube-grid algorithm in [3], the communication scheme is the
same as that proposed in 2 for Gaussian elimination with partial pivoting, apart
from applying the redundant (free) permutations to select the pivot column segment
instead of the pivot row segment. However, we must note that the criterion for
choosing the local pivot column is now different and it uses the "column norm."
To avoid communication in updating the column norms after each reduction step,
we make use of the important property that the two-norms of vectors are invariant
under orthogonal transformation. The modification to our original algorithm [3] is
quite minor as described below.

First, we compute the initial n column norms and distribute them to the appro-
priate processors along with the data, i.e., the processor that is assigned data from
the ith column will be sent the initial norm of the ith column. Therefore, all of the
processors in each subcube-column have the initial norms of the same [n//2 columns.
This amounts to distributing one extra row segment to each processor, and the cost
is not significant if (m/’71) >> 1, where m is the row dimension of the input matrix.

Second, we observe that since the norm is invariant under orthogonal transfor-
mation, the norm of the remaining (n- i) elements in each column can be computed
by simply subtracting the norm of the single ith row element from the current norm.
This can be accomplished without communication because every processor receives
the corresponding segment from the ith row after the last message exchange during
the ith reduction step in the original algorithm [3]. Of course, in using this technique,
one must avoid loss of accuracy through numerical cancellation. Although our test
code does not do this, in a production version some mechanism would have to be
incorporated to monitor for this problem, and recompute the column norms when
trouble was detected. We do not believe this feature would materially change our
timing results or our conclusions.

We can thus conclude that the communication complexity remains the same order
as our results in [3], and that the extra computing cost incurred in updating the norms
is evidently small.

4. Multiple least squares updating. The implementation of the multiple least
squares updating algorithm on the hypercube was first studied by Kim, Agarwal, and
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Plemmons in [18]. The proposed algorithms in [18] wrap mapped the Cholesky factor
and the incoming rows to the p processors either following the processor ids or the
processor order of an embedded linear array. Thus the communication cost in updat-
ing an n x n Cholesky factor by annihilating the input m x n matrix is O (n2 log2 p)
in either case. We obtain the same result in [3] when employing the hypercube as
a p x 1 subcube-grid in reducing an m x n matrix to upper triangular form via or-
thogonal transformation. Although the communication cost is independent of the row
dimension m of the input matrix and this configuration of the subgrid would be the
optimal choice if m >> n, it is not the desirable algorithm otherwise. Due to the
usually stringent time constraint in engineering applications, it is rare for m >> n
when the Cholesky factor must be updated by the newly available data. Thus it is
very important that the parallel implementation be flexible and efficient for all cases.
Since the algorithm we proposed in [3] was designed to work equally well for matrices
of all possible dimensions, it is certainly a good candidate for multiple least squares
updating on the hypercube. We show here that by using a different data-mapping
strategy for the computed Cholesky factor, we obtain a parallel algorithm that not
only always chooses the optimal aspect ratio for the embedded subcube-grid accord-
ing to the row and column dimensions of the newly available data, but also allows
dynamic relocation of the Cholesky factor if the aspect ratio changes. We also show
that the new data-mapping strategy maintains the work load as balanced as before.

Let us express the multiple least squares updating problem by

A,x, 0

where / results from modifying the upper triangular factor R by zeroing out all
elements in the m n matrix A via orthogonal transformations. We describe the
new data-mapping strategy and the dynamic data relocation scheme in the following
sections.

4.1. New data-mapping strategy. Instead of wrap mapping the rows and
columns of Rnn and Amxn to the Y1 ’2 subcube-grid, we propose block mapping
for the rows while maintaining wrap mapping for the columns. That is, each subcube-
row of processors contains a block of [n// consecutive rows from Rnn and a block
of m// rows from Amn. With each subcube-row, the data from each block are
wrap mapped to the "Y2 processors in the subcube according to their column subscripts,
exactly as proposed in [3].

We want to emphasize here that the wrap mapping of rows was necessary to
maintain balanced work load in reducing a full m n matrix to its upper triangular
form, but it is no longer necessary if the entire matrix A is zeroed out by updating
an available triangular R. The reasons are two-fold:

1. In the latter case, all elements in the same column of Amn are modified the
same number of times regardless of the row number.

2. The subcube-doubling communication algorithm as adapted in [3] has the
unique feature that all processors always perform log2p synchronous exchanges of
messages regardless of the location of the pivot row. Consequently, the fact that each
processor owns consecutive pivot rows from R will not affect the work load distribution
at all.

4.2. A dynamic parallel data relocation scheme. Since the row dimension
of the data matrix A varies with the amount of data available at different times, the
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subcube-grid is to be dynamically configured to achieve the optimal aspect ratio and
the new input matrix will be distributed to the processors accordingly.

When the aspect ratio differs from the one used in the previous update, it becomes
necessary to relocate the previously distributed Cholesky factor R. The mapping
strategy we proposed above allows us to relocate R to the new 71 x 72 subcube-
grid efficiently. The following observations are the keys to the design of the parallel
algorithm.

1. 71 2dl and 72 2d2, where 1 / 2 d, and d is the dimension of the
hypercube.

2. 71 x 2 and 72 2 x 2-, for -d <_ i <_ d2. By this observation, we
simply need an algorithm for i 1, because the same algorithm can be executed i > 1
times to get the resulting distribution. This observation contributes to the simplicity
of the algorithm.

3. The sequential ordering of processors on the subcube-grid following the pro-
cessor id row by row plays an important role in the parallel algorithm.

4.2.1. The parallel algorithm. Since the row dimension of the input matrix
is initially known to the host, we require the host to compute the new aspect and
send it to all p node processors in the hypercube together with the data from the input
matrix A. Therefore, there is no extra communication involved in broadcasting the
value to all processors in the subcube-grid, and 2 P/’71 can then be computed
by each processor. The parallel algorithm can be best explained by an example. We
consider the case of changing a 4 x 4 subcube-grid to a 2 x 8 subcube-grid as shown
below.

Po P P2 P3
P P P P Po P P P P P P P
Ps P Po P--* Ps P Po P P P P4 P
P2 P3 Pa P15

Since the columns of the factor R were wrap mapped to the processors in each subcube
row, processors P0, P, P2, and P3 can simultaneously send half of the data (corre-
sponding to appropriate columns) to Pa, Ph, P6, and PT. Since a block of consecutive
rows are stored in each processor, processors P4, Ph, P6, and P7 will send one-half of
their data (corresponding to appropriate columns) to processors P0, P, P2, and P3
at the same time. The processors Ps, Pg, P0, and PI will understandably exchange
the same amount of data with processors P2, P3, P4, and P5 at the same time.
Again, because of the subcube-grid connectivity, this amounts to "one" synchronous
message exchange between a pair of directly connected processors. Each message
consists of half of the data the processor previously has and thus data distribution
remains balanced.

4.2.2. Communication complexity results. We can thus conclude that for
i 1, the communication cost is one near-neighbor exchange of one message of (n2/2p)
floating-point numbers. Since

_
d, the communication volume for relocating R is

((n21og2p)/2p) in the worst case.

5. Numerical experiments on an iPSC/2 and an iPSC/860. In this sec-
tion we report timing results on a 64-node Intel iPSC/2 hypercube and a 128-node
iPSC/860 hypercube at Oak Ridge National Laboratory. The ratio of communica-
tion speed (measured by eight-byte one-hop transfer time A) to computation speed
(measured by eight-byte multiply time T) is /T .. 59 for the iPSC/2 and /T .. 1000
for the iPSC/860 [6]. Our analysis in [3] suggests that the optimal aspect ratio of
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the subcube-grid is insensitive to such a hardware characteristic. Our conclusion
is supported by the consistent performance of our various subcube-grid algorithms
on iPSC/1 [3], iPSC/2, and iPSC/860. Our algorithms are implemented in double-
precision Fortran 77. We have two implementations for the QR factorization algo-
rithm. The basic version uses Givens rotation and an enhanced version uses a hybrid
scheme [21] adapted for subcube-grid implementation in [3]. The QR factorization
times represent the basic Givens version unless they are specifically indicated as being
from the hybrid version. Our Fortran programs are compiled using the Green Hill
Fortran compiler (vl.8.5). The compile time option is specified in each table.

5.1. Sequential times. In Table 1 we report the sequential execution times
for both Gaussian elimination with partial pivoting, TGEPP and QR factorization
with column pivoting, TQRCp. Since our parallel code reduces to a sequential code
with negligible overhead when running on a 1 1 subcube- grid, the sequential times
are obtained from running the parallel code on a single node on the iPSC/2 or the
iPSC/860 machine.

TABLE 1
Sequential times on an iPSC/2 and an iPSC/860.

Sequential times on an iPSC/2
(f77 compile time option: -OLM)

m--n
lOO

’2oo
300
400
500

TGEpp (sec) TQRcP (sec)
4.7
37.4
125.4 340.3
296.1 799.3
577.0 1552.9

Sequential times on an iPSC/860
(f77 compile time option: OLM)

m--n
ioo
200
300

TGEpp (sec) TO, ICp (sec)
0.2 0.76
1’4 4.4
4.8 13.1

28.7400 11.3

00 22.1 53.6

For larger matrices, the estimates for the sequential times were obtained from
the data in Table 1 through a least squares fit of the polynomial representing the
analytical expression for the execution time. Listed in Table 2 are the estimated
times for matrices of dimensions 1000, 1024, 2000, and 2048. These values are useful
in estimating the speedup and efficiency of the parallel algorithms.

5.2. Parallel times and performance comparison with other algorithms.

5.2.1. Gaussian elimination with partial pivoting. Efficient C programs for
parallel Gaussian elimination with partial pivoting as proposed by Geist and Romine
[11] were provided by the authors in the appendix of report [12]. Since the C programs
in [12] were originally coded for an iPSC/1, the older first generation of hypercube,
we have made necessary changes to call the iPSC/2 and iPSC/860 message-passing
primitives. In addition, we have also converted the C code from the original single-
precision mode to double-precision mode so that their performance can be compared
with our algorithms, which are coded in double-precision Fortran.
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TABLE 2
Least squares estimates on an iPSC/2 and an iPSC/860.

Least squares estimates on an iPSC/2
m- n TGEpP (sec) TQRCp (sec)
1000 4,595 12,293
1024 4,933 13,196
2000 36,678 97,833
2048 39,381 105,034
Least squares estimates on an iPSC/860
m Tapp (e) TQncp (e)
1000 176 388
10’24 189 416
2000 1,406 2,944
2048 1,510 3,157

The test matrices we use for comparison are of dimensions 1024, 2048, and 4096
for p 32, 64, and 128, because the code in [12] does not run if the matrix dimension
n is not an integral multiple of p, the number of processors.

For the RSRP algorithm [11], [12], the effectiveness of the loop unrolling tech-
nique is measured by applying pivot rows at a time (nmod--i, 1, 2, 3, 4). The
pipelined CSRP algorithm was originally coded for applying two pivot columns at
a time (nmod-2) [11], [12]. The timing results in Table 3 indicate that the tech-
nique of loop unrolling appears to be much less effective on an iPSC/860 than on an

iPSC/2. Second, the results in Table 3 indicate that the pipelined CSRP algorithm
performs significantly better than RSRP for both p 32 and p 64 processors on an

iPSC/860, while CSRP performs better than RSRP on an iPSC/2 with 64 processors.
Third, for a 1024 x 1024 matrix, there is little improvement to the iPSC/860 execu-
tion time by doubling the number of processors from 32 to 64 due to the dominating
communication cost.

TABLE 3
Execution times of C code by Geist/Romine [12].

Gaussian elimination with partial pivoting

Execution times of C code by Geist/Romine [12]
(modified for iPSC/2 in double-precision)

cc compile time option: -OLM

n p RSRP pipelined CSRP
nmod-- 1 nmod--2 nmod--3 nmod--4 nmod--2

1024 32 172.5 sec 139.4 sec 136.1 sec 133.8 sec 139.0 sec
64 99.3 sec 84.2 sec 84.3 sec 84.9 sec 79.1 sec

Execution times of C code by Geist/Romine [12]
(modified for iPSC/860 in double-precision)

cc compile time option: -OLM

n p RSRP pipelined CSRP
nmod--1 nmod--2 nmod--3 nmod--4 nmod--2

1024 32 17.7 sec 16.7 sec 17.8 sec 17.8 sec 10.3 sec
64 16.5 sec 16.1 sec 16.7 sec 16.8 sec 7.7 sec

Table 4 compares the double-precision C implementation of the RSRP and the
pipelined CSRP algorithms [11], [12] with our Fortran implementation of Gaussian



90 ELEANOR CHU AND ALAN GEORGE

elimination with partial pivoting. Our Fortran times were obtained when the optimal
aspect ratio was used to configure the subcube-grid. Some RSRP times are missing
from Table 4 because the factorization was not completed in a reasonable length of
time. Our correspondence with the author indicates that the execution times were
probably prolonged by calls to trap handlers such as underflow.

TABLE 4
Comparing different Gaussian elimination algorithms on an iPSC/2 and an iPSC/860.

Gaussian elimination with partial pivoting
Double-precision C/FORTRAN times on an iPSC/2

n

1024
P
32
64

RSRP (nmod=l) pipelined CSI:tP (nmod=2) Subcube-grid (nmod=l)
(cc -OLM) (cc -OLM) (f77 -OLM)
172.5 sec 139.0 sec 171.9 sec
99.3 sec 79.1 sec 94.7 sec
Gaussian elimination with partial pivoting

Double-precision C/FORTRAN times on an iPSC/860

n p
1024 32

64
2048 32

64
128

4096 64
128

RSRP (nmod=l)
(cc -OLM)

pipelined CSRP (nmod=2)
(cc -OLM)

Subcube-grid (nmod=1)
(f77 -OLM)

17.7 sec 10.3 sec 11.6 sec
16.5 sec 7.7 sec 9.1 sec

63.1 sec 68.4 sec
41.2 sec 40.1 sec
30.3 sec 31.3 sec

252.0 sec 240.9 sec
164.2 sec 152.8 sec

5.2.2. QR factori.ation with column pivoting. In Table 5 we report the
iPSC/2 and iPSC/860 times obtained from running our parallel QR factorization
algorithm with and without pivoting on the optimal subcube-grid configuration.

The most current QR factorization with column pivoting times was reported by
Coleman and Plassmann [4], [19], [20] and is quoted in Table 6. The algorithm pro-
posed in [4] and [19] wrap maps the rows of an m n matrix (m > n) to a ring
of processors embedded in a hypercube network. Comparing the performance of our
subcube-grid (Givens) algorithm with that of the Householder algorithm implemented
on a ring of p processors [19] in Table 6, we observe that the saving in communication
time by employing an optimal subcube-grid enables the Givens algorithm to be com-
petitive in the cases m n 400 (p 16, 32); m 400, n 200 (p 32); m 400,
n 100 (p 32); and m 200, n 100 (p 16, 32). The actual differences in the
execution times appear to be smaller when the compile time option-OLM is used.
In the case of m n 400 and p 16, the subcube-grid Givens algorithm is slightly
faster than the Householder algorithm without the-OLM option (68.3 seconds versus
70.7 seconds), but the situation reverses when the-OLM option is used (58.2 seconds
versus 53.6 seconds).

In general, we note that the differences between the f77 times and f77-OLM
times appear to be consistently more drastic in Plassmann’s Householder algorithm:
the reduction in times ranges from 28 percent to 31 percent in most cases. This
is contrary to the 14 percent to 20 percent reduction in the subcube-grid Givens
algorithm and the 10 percent to 15 percent reduction in the subcube-grid hybrid
algorithm.

Since Plassmann’s algorithm employs row-oriented Householder transformations,
the timing results reported in [19] are also compared with a hybrid version of our
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m
ooo
1200

800

3000

300

TABLE 5
Parallel QR fac$oriza$ion on an iPSC/2 and an iPSC/860.

QR factorization (by Givens rotations)
Parallel times on an iPSC/2

(f77 compile time option: -OLM)

T
n p (no pivoting)

1000 32 406.7
64 215.7

800 32 367.1
64 191.6

1200 32 363.5
64 196.5

300 32 163.3
64 87.3

3000 32 157.1
64 84.1

TQ,Rcp (sec)
(with pivoting)

421.8
223.8
377.7
201.9
376.7
199.4
167.0
87.4
162.7
87.6

Optimal

8x4
8x8
8x4
8x8
4x8
8x8
32xl
32x2

QR factorization (by Givens rotations)
Parallel times on an iPSC/860

(f77 compile time option: -OLM)

2x16
2x32

m n p
1000 1000 32
1200 800 32
800 1200 32
3000 300 32
300 3000 32

TQR (sec) TQRcp (sec) Optimal
(no pivoting) (with pivoting) 71 x 72

19.4 23.0 8 x 4
18.2 20.9 8 x 4
17.9 21.4 4 x 8
8.1 8.9 32 x 1
7.5 9.1 2 x 16

subcube-grid algorithm. The hybrid version combines Householder transformations
and Givens rotations. It involves slightly more arithmetic operations than using
Householder transformations alone, but it is particularly suitable for the subcube-grid
implementation [3]. This idea of using both types of transformations in a somewhat
different context was proposed by Pothen and Raghavan in [21]. The results in Table
6 indicate the significant saving from running the hybrid algorithm on the optimal
subcube-grid. In addition, while Plassmann’s times include the transformation of
right-hand side [4], [19], [20], our times include extra arithmetic due to the scaling
operations employed in our implementations to avoid overflow and underflow. Fi-
nally, none of the sequential or parallel implementations use LINPACK BLAS. The
results in Table 6 again indicate the influence of compile time option -OLM. While
compiling the code without the-OLM option, running the hybrid algorithm on the
optimal subcube-grid gives the minimum execution times. With the-OLM option, we
note that the QRFAC routine from MINPACK [17] gives the fastest sequential times
after a reduction of 28-29 percent. Comparing the parallel Householder algorithm
with the subcube-grid hybrid algorithm, the timing results are comparable for cases
when m >> n and the optimal 71 ’2 is given by p x 1 or (p/2) x 2. The saving
in communication time by employing the optimal subcube-grid becomes evident in
cases m n 400 (p 16,32), m 400, .n 200 (p 32), m 200, n 100
(p 16, 32). More significant saving in execution times can thus be expected from
the subcube-grid hybrid algorithm for cases m < n.

5.2.3. Multiple least squares updating. In Table 7 we report the times for
updating an n n Cholesky factor by an m n matrix, and the worst possible relocation
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TABLE 6
Comparing different QR factorization algorithms on an iPSC/2.

Qtt factorization with column pivoting

m n p

400 400 1
8
16
32

800 200 1
8
16
32

Double-precision FORTRAN times (seconds) on an iPSC/2
Plassmann [19] Subcube-grid Subcube-grid
(Householder) (givens**) (hybrid**)

f77 [19] Jf77-OLM [20] f77 If77-OLM f77

$785.6 $560.3f 958.6 799.3 690.0* 590.9
119.1 85.2 128.8 108.7 93.2* 82.0f
70.7 53.6 68.3 58.2 49.3* 43.6
47.5 40.3 37.5 32.4 28.8* 26.0f

$547.8 $390.5f 674.1 564.2 485.4* 412.1
75.2 53.3 90.1 74.8 62.9* 55.3
40.6 28.9) 46.7 39.9 33.1" 29.3
23.8 16.9 25.1 21.7 18.7" 16.7f

11.7 II 13.11
:216"1f
27.8 II 347:2
14.9 [I 25:0

  o5.6,
14.1]"
7.9t

3.4 I 4"11

2.7 2.g

400 12001 1 *250.0

laUl 14"41
16001100] 1 $303.1

11861
lal 11"61

a I11

oo IlOO I1 o.

1321 42
oo Ioo .4

16 a.8
a2 a.O

*The minimum f77 execution time.

2a.a 219.4.

’*
19.4
11.3

41.0
21.4 17.s*
11.6 lO.O*

20.6
1.
.4 I.*

10.5
6.0 g.l*

3.6 [3.4*

g.. .o*
The minimum f77-OLM execution time.

:The QRFAC routine from MINPACK [17] reported in [19] and [20].
**Scaling is employed to avoid overflow/underflow in this implementation.

Optimal

1if7-OLM "yl ,, "2,.
lxl
4x2
4x4
8x4
lxl
4x2
8x2
16x2

188.2 lx 1""
26.2 42

.o s
8.8, 18 4

o.o 11

15.7 16 1
9.o a:xl...l
11:. x
1.1 8 1
s. lO1

5.o 16x

s.o sl
4., SUl.o x 2

4.s 111
4.1, 14ul
.ot s.xa

cost. Our experiments show tremendous saving by relocating the Cholesky factor in
all cases. As noted in Table 7, Givens rotations were employed in our algorithm to
update the Cholesky factor. The updating time can therefore be further reduced by
using the hybrid QR factorization scheme.
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TABLE 7
Multiple least squares updating times on an iPSC/2 and an iPSC/860.

Multiple least squares updating (by Givens rotations)
Double-precision FORTRAN times on an iPSC/2

(fT? compile time option: None)
m 1000, n 1000, p 64

From To Relocation

’1 X "2 ’1 x 0’2 (see)
64 1 64 x 1 0.012

32 x 2 2.689
16 4 3.189
8 8 3.307

From
’)’1 x ’)’2

64xl

From
’)’1

lx64

Updating Total

(sec) (sec)
431.5 431.5
379.1 381.8
363.1 366.3*
367.9 371.2

m 100, n 2000, p 64
To Relocation Updating

’’1 ’)’2 (sec) (sec)
64 1 0.023 531.5
16 x 4 4.690 214.2
2 x 32 9.039 168.2
1 x 64 10.574 191.1

m 2000, n 100, p 64
To Relocation Updating

’1 0’2 (sec) (sec)
1 64 0.005 60.9
16 4 2.583 i0.0
32 x 2 2.889 8.9
64 x 1 2.987 8.7

Total
(sec)
531.5
218.9
177.2"
201.7

Total
(sec)
60.9
12.6
11.8
11.7"

Multiple least squares updating (by Givens rotations)
Double-precision FORTRAN times on an iPSC/860

(f77 Compile time option: None)

1 X

64x 1

From
I ’)’2
1 x64

From
"I "Y2
64x 1

16 4 0.918
4 16 1.939
1 64 2.755

*Minimum execution time.

m 2000, n 2000, p 64
To Relocation UPdating

0’1 x ’2 (sec) (sec)
64 1 0.005 143.5
32 2 0.572 111.6
16 x 4 0.864 103.1
8 x 8 1.340 113.7

m 1000, n 1500,p 64
To Relocation Updating

")’1 X ’’2 (sec) (sec)
1 64 0.004 155.8
2 x 32 0.302 83.5
4 16 0.716 51.8
8 8 1.166 38.8

m 100, n 2000, p 64
To Relocation Updating

")’1 X ")’2 (sec) (sec)
64 1 0.005 69.7

20.3
13.1
23.6

Total

143.5
112.2
104.0"
115.0

Total
(sec)
155.8
83.8
52.5
40.0*

Total

69.7
21.2
15.0"
26.4
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STABILITY OF COMPUTATIONAL METHODS FOR
CONSTRAINED DYNAMICS SYSTEMS*

URI M. ASCHER AND LINDA R. PETZOLD$

Abstract. Many methods have been proposed for numerically integrating the differential-
algebraic systems arising from the Euler-Lagrange equations for constrained motion. These are
based on various problem formulations and discretizations. We offer a critical evaluation of these
methods from the standpoint of stability.

Considering a linear model, we first give conditions under which the differential-algebraic problem
is well conditioned. This involves the concept of an essential underlying ODE. We review a variety
of reformulations which have been proposed in the literature and show that most of them preserve
the stability of the original problem. Then we consider stiff and nonstiff discretizations of such
reformulated models. In some cases, the same implicit discretization may behave in a very different
way when applied to different problem formulations, acting as a stiff integrator on some formulations
and as a nonstiff integrator on others. We present the approach of projected invariants as a method
for yielding problem reformulations which are desirable in this sense.

Key words, differential-algebraic equations, Euler-Lagrange equations, stability, multibody
systems, numerical ODEs

AMS(MOS) subject classifications. 65L05, 70H35

1. Introduction. Various techniques have been proposed in the literature for
the numerical solution of the Euler-Lagrange equations, which govern the motion
of mechanical systems with constraints [19]. Several of these techniques are used
in commercial codes. The equations to be solved form a system of second-order
ordinary differential equations (ODEs) for the (generalized) multibody coordinates.
They also involve Lagrange multiplier functions and are subject to constraints, e.g.,
on configuration and/or motion. Mathematically, this may be considered as a system
of differential-algebraic equations (DAEs) of index 3 in a special semi-explicit form [6].
It is well known that a direct discretization of such a DAE yields numerical difficulties;
this is what gives rise to a multitude of other, more specific solution techniques.

Typically, such a solution technique consists of a step of problem reformulation,
which involves reducing its index, followed by a discretization of the resulting formu-
lation. In recent work [9], [10] it has been shown that for a certain model problem,
some of these formulations can be equivalent. An important consideration in selecting
an appropriate solution method (i.e., a combination of formulation and discretization)
is the stability of the method and the subsequent stability restrictions that a chosen
step size must satisfy. In this paper we investigate the stability of various solution
techniques.

In order to be more specific, we write the Euler-Lagrange equations for a con-
strained multibody system

(1.1a) M(p)p" f(p, v) GT(p)A (T(p),
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1991.
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(1.1b) 0 g(p),
(1.1c) 0 ((p)v -b (p).

Here the unknowns are: p, the generalized coordinates; v (dp/dt) =_ p, the gener-
alized velocities; and A and , the Lagrange multiplier functions. In (1.1a) M is the
mass matrix (we consider such formulations where M(p)(t) e 7npnp is symmetric
positive definite), f stands for the applied forces, and G(p) is the Jacobian matrix of
the holonomic constraints

(1.2) G(p) gp, G(p)(t) e nnxnp.

Similarly, ( p, ((p)(t) e 7nxn, and we assume that the matrix (GT T
has a full column rank (i.e., the constraints are independent) for each t.

In (1.1b) there are n configuration (position) constraints and in (1.1c) there are

n, motion or other constraints. For simplicity of presentation we shall often assume

that either n 0 (hence disappears from (1.1a) as well), i.e., that there are only
holonomic constraints, or that n --0 (whence A disappears from (1.1a)).

Clearly, two differentiations of the constraints (1.1b) allow elimination of A from
(1.1a). Thus the original DAE has index 3. On the other hand, if n 0 and n1 > 0,
then only one differentiation of (1.1c) is needed to eliminate and obtain an ODE,
so the index is 2. Both of these cases can be cast in the form (2.1) below with m 2
and m-- 1 (for the equivalent first-order form of (1.1a)), respectively.

In order to give a methodical stability discussion we proceed in stages and con-
sider the linearized form of the DAE (1.1). The class of nonlinear problems considered
here behaves like its linear variational form away from singularities (i.e., in a neigh-
borhood of an isolated solution). Thus our arguments will be valid in these general
circumstances. We assume that the given linear DAE problem is well conditioned,
and in 2 specify precisely what this means using a constructed essential underlying
ODE (EUODE). The theory includes the linearizations of (1.1) as special cases.

In 3 we then consider a variety of problem reformulations and show that they also
are well conditioned under certain reasonable assumptions. We cover the Baumgarte
stabilization technique, a variety of "stabilized" and direct index reductions, and
transformations to state-space form. This allows us to consider in 4 discretizations
of the various formulations.

We consider stiff and nonstiff discretizations of such reformulated models. In some
cases, the same backward differentiation formula (BDF) discretization (see, e.g., [6]),
or other stiff discretizations, may behave in a very different way when applied to
different reformulations of the same problem, acting as a stiff integrator on some
formulations and as a nonstiff integrator on others. The need to restrict the step size
in BDF for numerical stability occasionally arises even in formulations that explicitly
enforce the constraints. For (1.1), assuming that there are only position constraints
which vary on the scale of the solution, such a situation may arise if the mass matrix
M has both large and moderate eigenvalues, in which case M-1GT may be much less
pleasant than G. (A corresponding physical situation is a heterogeneous multibody
system, i.e., a system that includes bodies with very different masses. 1) We present
the approach of projected invariants with a particular choice of the projection as a
method for yielding problem reformulations that are desirable in this sense. Section
5 concludes with a summary and recommendations based on our results.

1We thank Dr. Dan Rosenthal of IASNA Corporation for illuminating us on this point.
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Throughout this paper, we use the following notation: Let I" be the Euclidean
vector norm. For a matrix A we denote the induced matrix norm by IIAII. For
a function u(t), 0 <_ t <_ tf, we denote the corresponding max function norm by
Ilull := max{lu(t)l, 0 _< t <_ tf}.

2. Problem conditioning. The DAE of order m,

(2.1a) x(m) f(z(x), y, t),
(2.1b) 0 g(x, t),

where zj(t) _= x(J-1) (t) (dY-lx(t)/dt-1) (1 _< j _< m) and

has index m + 1 if gxfy is nonsingular for all t, 0 _< t _< tl. The Euler-Lagrange
equations for dynamical systems with holonomic constraints are in this form with
m 2, x the generalized coordinates, and y the Lagrange multipliers. Here we
consider the linear (or linearized) form

m

(2.3a) x(m) EA + By + q,
j=l

(2.3b) 0 Cx + r,

where Aj, B, and C are smooth functions of t, 0 <_ t <_ ti, Aj(t) E 7nxxn, j
1, ,m, B(t) e nnxn, C(t) e Tnxn, ny <_ nx, and CB is nonsingular for
each t (hence the DAE has index m + 1). All matrices involved, together with their
derivatives, are assumed to be uniformly bounded in norm by a constant of moderate
size. The inhomogeneities are q(t) e 7’ and r(t) e T.

We derive a stability result for this system. As in [1], there exists a smooth,
bounded matrix function R(t) T(n-n)xn whose linearly independent, normalized
rows form a basis for the nullspace of BT (R can be taken to be orthonormal). Thus,
for each t, 0 _< t _< tf,

(2.4) RB O.

We assume that there exists a constant K1 of moderate size such that

(2.5) (CB)- ][ _< g

uniformly in t, and determine (see [1, Lemma 2.1]) that there is a constant K2 of
moderate size such that

(2.6) ()--11[ _K2.

The constant K2, in addition to K, depends also on lIB]I, I]CII, and ]IRI]. Let K be
a moderate bound on B, C, R, and their derivatives:

(2.7) B() II, C() II, R() _< K3, j o, 1,..., m.

Define new variables

(e.s) u=Rx, O<_t _tf.
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Then, using (2.3b), the inverse transformation is given by

(2.9) x --= Su- Fr,
C -r

where S(t) e Tnx(n’-n) satisfies

(2.10) RS I, CS O,

and

(2.11) F :-- B(CB)-1.

By our assumptions and (2.6), this mapping is well conditioned. Both S and
F are smooth and bounded. The first m derivatives of S and F are bounded by a
constant involving K2 and K3. Taking m derivatives of (2.8) yields

(2.12) u(’) (Rx) (m) RAj d- R(m-j+l)
zj d- Rq.

=1 j-1

Further, using m- 1 derivatives of (2.9) we obtain the essential underlying ODE

(2.13) u(m) RAj -t- R(m-j+1) [(Su)(j-l) --(Fr) (j-l)] + nq.
.= j-1

For a unique solution of (2.3) one needs to impose m(nx-ny) independent bound-
ary conditions

(2.14) B0z(0) + Bz(tf) .
These could be, for instance, initial conditions which, together with (2.3b) and its first
m- 1 derivatives all sampled at t 0, form mnx initial conditions which specify z(0).
The boundary conditions can be written as m(nx -ny) conditions on u and its first
m- 1 derivatives needed to specify a unique solution for the EUODE (2.13). If this
ODE problem is stable, i.e., if Green’s function (t, s) and its first m- 1 derivatives
in t are bounded in norm by a constant of moderate size, say K4 (cf. [3, Chap. 3]),
then a similar conclusion holds for the DAE. We obtain the following theorem.

THEOREM 2.1. Let the DAE (2.3) have smooth, bounded coefficients, and assume
that (2.5) holds and that the underlying problem for (2.13) is stable. Then there is a
constant K of moderate size such that

(2.15a) llzll _< K llqll / llr( )ll /
j=O

((2.15b) IlYll -< K llqll / llr( )ll / I/ I
j=O

Proof. Our assumptions guarantee the well-conditioning of the transformation
m--1from x to u and back. The boundary data for u is therefore bounded by -j=0 r(j) /
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I/1 times a moderate constant. We may write u(t) in terms of Green’s function G(t, s),
differentiate m- 1 times, and take norms, obtaining

Ilu<t)ll R Ilqll + IIr<)ll + I/1
j=0

0</<m-1

with k a moderate constant depending on K2,K3, and K4. Conclusion (2.15a) is
then obtained using (2.9).

Now, given x we obtain y through multiplying (2.3a) by C, yielding

(2.16) y=(CB)-IC x(m)- Ajzj-q
j--1

Differentiating (2.3b) m times we substitute for Cx(m) in (2.16), and using (2.15a),
obtain the bound (2.15b). 0

Remark. The EUODE (2.13) is not unique. For any nonsingular, smooth, well-
conditioned transformation T(t) E 7(x-n)(nx-), the transformed R(t) given by

(2.17) R - TR

still satisfies (2.4), (2.6), and (2.7). Hence R is unique only up to such a transformation
and, correspondingly, so is the EUODE. However, a transformation of the variables
u in (2.8) corresponding to (2.17) does not alter the existence (or lack thereof) of a
bound of moderate size on the Green’s function, and hence the stability properties
are properly reflected in Theorem 2.1. For later theoretical purposes, we may wish
to choose T such that the EUODE (2.13) is amenable to a direct discretization. In
particular, for m 1 and a BDF discretization we can choose T so that the resulting
matrix (RAt + R’)S is essentially diagonally dominant or block upper triangular (see
[14], [15], and [3]). 0

We remark that a bound similar to (2.15) may also be obtained using Theorem
2.1 of [1] applied to the index-2 DAE

(2.18a) zj zj+ + B/j, j 1,... ,m- 1,

m

Ajzj + By + q,(2.18b) zm
j--1

(2.18c) 0 Cz + r,

(2.18d) 0 Cz2 + C’z + r’,

(2.18e) 0 C(’-i)z + r(’-i)

j=i J 1

subject to the original boundary conditions (2.14). Here we have applied a particular
so-called stabilized index reduction technique [11], adding multiplier functions #j(t) E
Tn to compensate for insisting that the constraint (2.3b) and its first m-1 derivatives
be all satisfied at all t. This DAE problem has the same exact solution as the original
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higher-index problem (2.3), (2.14) because differentiation and substitution for each
of the algebraic constraints in (2.18) yields CB#. O, which implies #j 0, j
1,..., m- 1. The EUODE for (2.18) is obtained using R of (2.4) m times, i.e., for
the variables

(2 19) wj := Rzj Rx(j-) j 1,...,m,

we obtain

R. +R’zj j 1, .,m 1,(2.20a) w +

RAjz: + R Zm + Rq,(2.205) w
j--1

where zj are expressed in terms of w using the recursive relation

(2.21) .=Sw-F r(j-)+
j-1 C(-0. j=l ...,m.

=1 1-1

It is easily shown that the "stabilized" index-2 form (2.18) with (2.14) is stable when-
ever the original high-index equation (2.a) is.

3. Other transformations. The EUODE (2.1a) uses a minimal number of con-
straint differentiations. Therefore, we view ghe sumption that it is stable with the
given boundary operator essential. om ghis we now derive stability for a number
of other problem reformulations ghat have appeared in the literature.

3.1. Baumgarte stabilization. The most straightforward transformation of
the DAE (2.3) into an ODE involves replacing the constraint

g(x,t) Cx + r 0

with its mth time derivative plus initial conditions:

(a 1) g() dmg(x(t), t)
dtm

O,

d d-(a.lb) g(x(0), 0) g(x(0), 0) dt-lg(X(0)’ 0) o.

However, this causes well-known drift difficulties. A generalization of Baumgarte’s
method [a] rec (a.l)with the equation

d
(a.2) ,g(x(,), ) o.

j=0

where are chosen so that m 1 and the roots of the polynomial

m

(a.a) (,) ..
j=0

are all nonpositive. For instance, one may choose a(T) (T + 7)m for some 7 0.
We now investigate the stability of (2.3a), (3.2), (2.14), and (3.1b).

In (3.2) we have an expression for Cx(m) that we may substitute into (2.3a)
multiplied by C and eliminate y:
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Y-- -(CB)-1 Ej--1 CAj +
j- 1

+ Cq + r(’) +

__
g() l"

Substituting back into (2.3a) we obtain an ODE for x

jl
m

FC(m-j+l)
zj(3.5a) x(m) HAj-

J- 1

m-1

+Hq- Fr(m) F E cg(t)’
l=O

(3.5b) g(0 E c(_j+l)zj + r(0
j=l j-1

with F given by (2.11) and H the projection

(3.6) H I- FC SR.

We then ask the question regarding the stability of the ODE problem (3.5), (2.14),
(3.1b). Obviously, the differentiation in (3.2) has enlarged the size of the ODE prob-
lem, so the question really is whether the new solution modes thus introduced (to-
gether with (3.1b)) cause an instability.

To resolve this question, define

(3.7) u Rx, v Cx.

Then

(3.8) x Su + Fv

(cf. (2.9)). So, by (2.6),

IIxll _< g2(llull + IIvll).

To see what u and v satisfy, multiply (3.5a) by R and by C. This gives

(3.9a) u(m) E RA + R(m-j+l) [(Su) (j-l) + (Fv)(j-)] + Rq,
j--1 j-1

m-1 m

(3.9b) v() E aJv(j) E aJr(j)’
j=o j=o

(3.9c) v(j)(0) -r(j)(0), j 0,..., m 1.

Now, letting tf -- cx, we have in (3.9b), (3.9c) a uniformly stable initial value
problem for v as long as at most one root of a(r) is 0 and the rest have negative real
parts. For instance, with

(3.10) a(T) (T + 7)m,
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any choice of /> 0 yields a uniformly, asymptotically stable problem for v, while the
choice - 0, which corresponds to using (3.1a) in place of (3.2), allows for a mild
instability, viz. a polynomial error growth (of degree m- 1), to occur. Moreover, if the
EUODE is asymptotically stable and - > 0, then the ODE (3.5) is also asymptotically
stable. In other words, the solution modes introduced by the Baumgarte technique
are strictly decreasing if > 0.

Once v is integrated it may be substituted into (3.9a) to obtain the EUODE for
u. The problem for (3.9) is therefore stable, and by (3.8), so is the problem that the
Baumgarte technique yields.

This analysis agrees with practical observations. First, the direct index reduction
(3.1) has only a mild instability for a stable original problem. This instability gets
worse as m increases, i.e., it is worse for the DAE with position constraints (1.1a),
(1.1b) than for the DAE with motion constraints (1.1a), (1.1c). Second, any > 0
in (3.10) yields a stable problem in (3.5). The difference in performance for different
values of > 0, when there is any, is due to discretization effects applied to stable
ODE problems. This is taken up in 4, but we may already expect here that if K
in (2.15) is indeed of moderate size and the discretization mesh is very fine, then the
results will not be sensitive to the choice of /. In practice, the choice of " in sensitive
situations is far from clear.

3.2. Reduction to index 2. In (3.1) and (3.2) we have differentiated g(x,t)
m times, reducing the index to 1. A subsequent elimination of y gives an ODE. If
instead we differentiate the constraints only m- 1 times, we obtain a DAE of index
2 consisting of (2.3a) and

(3.11) E &J7g(x(t)’ t) 0,
j=0

with &m-1 1. This is subject to (2.14) and

d,-e
(3.12) g(x(0), 0) dtm_2 g(x(0), 0) 0.

The stability analysis for this problem formulation proceeds precisely as before:
using the transformation (3.7), (3.8) we obtain (3.9a) and

m--1 m--1

(3.13a) E &Jv() E &ir()’
j=0 j=0

(3.13b) v(j) (0) -r(j) (0), j 0,..., m 2.

The ODE (3.13a) is asymptotically stable if the roots of 5"(r) m-1=0 &r all
have negative real parts. Considering in particular

(3.14) 5(T) (T + 7)m-l,

there is asymptotic stability if > 0 and a polynomial growth of order rn- 2 if
0. The latter corresponds to direct index reduction. In particular, for mechanical

systems with m 2 one direct differentiation of the constraints ( &0 0) yields
a stable, although not asymptotically stable, problem (3.13) for v.

The stability of the index-2 problem (2.3a), (3.11), (2.14), (3.12) follows, as before,
from that of (3.13) and the analysis of 2.
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The justification for considering this type of index reduction is that certain im-
plicit discretization schemes like BDF may already be successfully applied to the
resulting formulation (cf. [6], [16], and [1].). This is considered in 4.

Another problem reformulation that reduces the index to 2 is, of course, the
stabilized index reduction technique of (2.18). In 3.5 below we consider an entire
family of additional stabilized index reductions.

3.3. State-space form. The problem formulations considered hitherto in this
section all end up in an ODE of size mnx, requiring supplementary boundary condi-
tions. In contrast, the EUODE (2.13) only has size m(nx-ny), and no supplementary
conditions are required for the problem reformulation. Moreover, incorporation of the
constraint (2.3b) and its first m- 1 derivatives into the transformation has insured
no drift in a subsequent discretization.

This can be done more generally: Let R(t) be a smooth, bounded function, R(t) E
1"(’-’)x’- such that

(3.15) _< R, II/()11 _< R, j 0,1,...,m

for a constant/ of moderate size. (We do not require/B 0.) Define

(3.16) fi Rx, x _= fl-/r.
C -r

Taking a0 am-1 0 in (3.5a) (i.e., 7 0 in (3.10)), we multiply it by/ to
obtain

(3.17a)

(3.17b)

fl(m) HAj +
.= j-1

+/HQ-/Fr(m)

(/(m-j+l) :FC(m-j+I))] zj

l<_j<_m.

This state-space ODE is subject to the boundary conditions (2.14), suitably trans-
formed. The EUODE is obtained as a special case with R R.

The stability of the problem formulation (3.17) follows immediately upon relating
fi and u through x, i.e., using (3.16), (2.8), (2.9), and their derivatives. The obtained
stability bound depends on g (and of course on g of (2.15)).

A favorite practical choice for / is as a piecewise constant function [20], [18].
Thus, choosing R at a certain reference time tc so that (3.15) is satisfied, one proceeds
to integrate in t, holding this/ constant so long as (3.15) _holds with a reasonable K.
When (3.15) is deemed violated, a new constant matrix R is chosen based on a new

reference point, giving a different ODE (3.17). The segments are connected in such
switching points through continuity of .. The lack of nonzero derivatives of/ over
the integrated segment gives~(3.17) an attractive form. A robust detection scheme
for the necessity to change R may prove to be the more difficult aspect of such a

procedure, as discussed in 4.
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3.4. Overdetermined DAE. Consider deriving the EUODE from the first-
order form

(3.18a) zj .j+l, j 1,... ,m- 1,
m

EAz+By+q"(3.18b) z,
j=l

We proceed to define wi Rzj and obtain the back-transformation using

The transformation matrix for each j is (). If we now write down the equations to
be satisfied, (3.18), (3.19), they form an overdetermined DAE (ODAE). This overde-
termination is subsequently resolved when multiplying (3.18a) and (3.18b) by R,
obtaining the EUODE (2.20) in terms of

(3.e0)
The fact that (3.18), (3.19) is indeed an ODAE is reflected by the fact that we

could replace (3.18a) by the "stabilized form"

(3.21) zj Zj+I -- Bj,and obtain precisely the same EUODE, as in (2.18). Note that the DAE (3.21),
(3.185), (3.19) is not overdetermined any more, and that we have not used the fact
that #j 0.

The ODAE (3.18), (3.19) subject to (2.14) has a unique solution, but when we
replace it by a discretized form using one of the conventional difference schemes,
we cannot expect an exact solution to exist. Still, one can multiply the discretized
(3.18) by R, and (3.21) can replace (3.18a) provided that R and B are sampled at
the same point t. The discretized DAE (3.21), (3.185), (3.19) is therefore equivalent
to a particular projection for solving the problem of minimizing the residual of the
discretized ODAE subject to satisfying the discretized (3.19) (cf. [9] and [10]).

Similar arguments apply when replacing R by a more general smooth, bounded R
satisfying (3.15). Before applying R we must differentiate the constraints once more
and substitute (3.1) into (3.185) to eliminate y, obtaining

HAj
j 1

(3.22) zm FC(m-j+) zj + Hq- Fr(m)

A particular projected solution for the discretized ODAE (3.18a), (3.19), (3.22) with
(3.19) treated as constraints is then obtained from the same discretization applied to
(3.17) written in first-order form, and this in turn is equivalent to the discretized form
of the DAE (3.22), (3.19) and

(3.23) zj zj+ +/tt, j 1,..., m- 1,

with/(t) e 7nXn having full rank and satisfying

(3.24) RB O.

For other possibilities, see [9], and [10]. Here we note that the stability treatment
of the ODAEs we have described is covered by our previous stability analysis.
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3.5. Projected invariants. Consider the following general procedure: Differ-
entiating the constraints (2.3b) m times and eliminating y from (3.18b), we obtain
(3.22), which, together with (3.18a), forms an explicit ODE system for z. However,
this allows for unacceptable drifts in the constraints after discretization, so we reim-
pose the first k constraints of (3.19), for some integer k <_ m,

The constraints (a.25) form an invariant of the ODE (a.laa), (a.22) (el. Gear [1]).
o satisfy these constraints even after discretiaion, we project the ODE follows.
or k given smooth, full-rank bounded matrix functions Rj(t) (n-)xn

satisfying (a.l) (for R), require tha

(a.26a) Rj} Rjj+I, j 1,..., min(k, m 1),

(3.26b) RmZ Rm HAj FC(m-j+l)
zj + Hq- Fr(m)

= j-1

(if k m).

This is equivalent to writing

(3.27a) zj Zj+I -- Bj#j, j 1,..., m- 1,

HAj
j-1

(3.27b) zm FC(m-j+l)
zj + Hq- Fr(m) + Bm#,,

where By 0 if j > k, but for 1 <_ j <_ k, Bj(t) E Tn(n-n) have full rank and
satisfy for each t

(3.28) Hi gycT, RyBy 0,

with Ny smooth well-conditioned matrices. The additional unknowns #y(t) E Tn are
multipliers.

Using a discretization on a mesh, the discretized equations (3.26) or (3.27) are
required to hold together with (3.25) at all mesh points.

Clearly, the obtained system (3.27), (3.25) is a DAE of index 2 in Hessenberg
form, which, together with (2.14), is well conditioned if the original problem is. Also,
the projected invariant approach can be viewed as an ODAE approach, although we
feel that it gives more insight. The advantage here compared with the stabilized
index reduction (2.18) is that there the stabilizer B is dictated by the problem while
here we may choose By (i.e., Ry, as long as (3.15) is satisfied). This proves useful in
cases where CT behaves very differently from B, because here we may in fact choose
Bj CT (see Examples 3 and 4 in 4).

Summarizing the results of this section, we have seen that the stability of the
original problem is preserved by problem reformulations such as stabilized index re-

duction, introduction of (properly chosen) Baumgarte parameters, and reduction to
state-space form. Direct index reduction leads to a mild instability (i.e., the possi-
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ble error growth is polynomial, not exponential)2, which becomes progressively worse
for higher-index problems. Finally, overdetermined DAEs can be regarded as a spe-
cial case of one of the above forms, depending on the projection that is used in the
numerical solution procedure. In the next section, we will consider the stability of
discretization methods applied to these various formulations.

4. Discretization.

4.1. Backward Euler for an index-2 DAE. To better understand the sta-
bility behavior of numerical methods applied to the above formulations, consider the
Hessenberg index-2 system

(4.1a) x’ Ax + By / q,

(4.15) 0 Cx + r,

which is a special case of (2.3) for m 1 and may arise from stabilized or direct
reduction of a higher-index system to index 2. For simplicity of presentation, we will
consider discretizing (4.1) by the backward Euler method, which gives

(4.2a)
(4.2b)

x x-i + hAnx + hBnyn + hq,

0 Cnxn -rn.
Note that, if we first derive an explicit ODE in x by differentiating (4.1b), use

this to eliminate y, and then discretize using backward Euler, we get

xn (I- hHA + hFC’)-[xn_ + hHq- hFr’]

(all quantities are sampled at tn, unless otherwise noted). So the amplification matrix
is

(4.3) (I- hHA + hFC’)-.
But for (4.2) we obtain, upon multiplying (4.2a) by C and substituting (4.2b) to
eliminate Yn,

xn H(xn- + hAxn + hq) Fr.

Then, using

Hnxn- Xn-I F(Cn- + hC_ + O(h2))xn_

yields

xn (I hHA)-[(I hFC’ + O(h2))x_l + hHq- F(rn rn_)],

so the amplification matrix is approximately

(4.4) (I- hHA)-(I- hFC’).

2We note that this result cannot be achieved by merely looking at local eigenvalues. For an
example, see [10]. We also note that in some engineering applications, any significant drift from
the original constraint manifold may be considered unacceptable; thus even the mild instability may
pose a problem.
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Taking A 0 for simplicity, we see that, while in (4.3) we have the backward Euler
matrix for the ODE

(4.5) x’ -FC’x,

in (4.4) we have the forward Euler matrix for the same ODE. If (4.5) is stiff then the
backward Euler scheme for (4.1) behaves like a nonstiff method!

The same phenomenon can also be seen as follows. Let un Rnxn, where
P R(tn) (cf. (2.4), (2.8)). Then xn Shun- Fnrn. Multiplying (4.2a) by R
and changing variables to u, we find that

(4.6) un un-1 / h((R’S)n_ -b O(h))un- -b hRASun h(R’ / O(h))Fr / hRq.

We note that (4.6) is a consistent discretization of the EUODE, but it is not the
same as backward Euler applied directly to the EUODE because in (4.6), the term
involving RS is discretized explicitly. Thus for problems where RS is large but the
solution is smooth, we would expect that the step size for (4.2) must be restricted to
maintain numerical stability.3 A similar problem of numerical instability arises when
the higher-index problem is discretized directly by such a method.

The analysis using u has the advantage that the amplification matrix has a smaller
size (because there are fewer unknowns). But it depends on the choice of R as per
(2.17), whereas (4.3)-(4.5) are independent of the choice of R. When considering (4.6)
and RS one must avoid premature conclusions about suitability of the backward Euler
scheme, although a positive stability conclusion (upon finding that RS is not large
for a given problem) is immediate.

It is natural to ask under what conditions and for which formulations FC (or RS
for the best scaling) can become large. The question is more immediately answered
for FC B(CB)-C. If we assume that the solution x varies at a rate similar
to that of C, so that the step size taken for accuracy reasons satisfies hl[C’[I << 1,
then FC’ can be large only if I[S[I or I[(CB)-[] are large (and forming the product
B(CB)- does not cancel this effect). Assume also that I[CI[, [I(CCT)-I[[ O(1). In
such a case the projected invariant approach (3.27) with k m 1 and B CT is
rather useful: the obtained index-2 DAE, which is subsequently discretized, is

(4.7a) x’ (HA FC’)x / Hq- Fr’ / CT#,
(4.7b) 0 Cx + r,

so CT plays the role that B plays in (4.1) and a BDF discretization is expected
to behave like a stiff solver because CT(CCT)-IC is not large in norm. This is
demonstrated below, in Example 2. The price paid to obtain (4.7) does include an
additional differentiation of the constraints.

We note further that for systems such as (4.7), where B CT, RS is of moderate
size, even if I[(CCT)-I[[ i8 large. "We show this for the case where C has a smooth
singular value decomposition (SVD)

3This property of inherently explicit treatment of RS when the index-2 problem is discretized
directly is shared also by higher-order BDF and by most implicit Runge-Kutta schemes. We note
also that because of the strong relationship between semi.-explicit index-2 problems and fully implicit
index-1 problems [11], this problem of numerical instability can also be expected to occur for certain
fully implicit index-1 DAEs.
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(which is guaranteed if C is analytic [7]). We may choose R- (0
each t)

I UT. Then (for

( )(F S)= =v o
0 I

so

It follows that

Hence for most reasonable C, the performance of numerical methods based on dis-
cretization of the projected invariants formulations should not degrade due to stability
when approaching a rank-deficiency in C (i.e., no smaller step sizes are enforced due
to stability).

4.2. Discretization and stiffness. A number of numerical methods currently
implemented in CAD codes consist of more or less standard stiff or nonstiff discretiza-
tions applied to one of the formulations in 3. By a "nonstiff discretization" we mean
a difference scheme (e.g., explicit Runge-Kutta) that works efficiently for a nonstiff
initial value ODE, but becomes inefficient for a stiff ODE because absolute stability
restrictions force a step size selection h that is much smaller than what accuracy re-
quirements alone would dictate. A "stiff discretization," e.g., a BDF scheme, does not
usually suffer from such absolute stability restrictions and is inherently an implicit
difference scheme.

We now consider such methods:
1. Baumgarte stabilization, followed by (i) a nonstiff discretization or by (ii) a

stiff discretization.
2. Safe reduction to index 2 (as in 3.5 or 3.2 or in (2.18)), followed by a stiff

discretization.
3. Reduction to state space form, followed by (i) a nonstiff discretization or by

(ii) a stiff discretization.
Given that we consider essentially the same discretization schemes applied to

problem reformulations that we have just proved equivalent under mild conditions,
one might expect all of these methods to perform equally well. As it turns out,
however, it is surprisingly easy to give examples (as we shall do below) where each
of the three methods significantly outperforms the other two. Indeed, it is often not
very clear in the literature what is meant by the term "stiffness" when it is applied
to a higher-index DAE. To understand this, we distinguish among four cases for the
EUODE (2.13) (or (2.20)).

1. The EUODE is nonstiff; B and C vary slowly.
2. The EUODE is nonstiff; B or C do not vary slowly.
3. The "frozen coefficients part" of the EUODE, viz. fi(m) =1 RAjSfi(j- 1)

(or the homogeneous (2.20) with constant (frozen) coefficients) is stiff; B and C vary
slowly. In this case, the stiffness is caused by the "ODE part" of the system.

4. The "variable coefficients part" of the EUODE, i.e., what remains after sub-
tracting out the frozen coefficient part, is stiff. In this case, the stiffness is caused by
time- or solution-dependent coupling of the constraints with the differential equations.
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Case 1. Many mechanical systems yield ODEs that are not stiff. If no part of
the mechanical system moves rapidly in time and the system is not heterogeneous, we
may expect a nonstiff ODE to result in all problem formulations of 3. In this case,
a Baumgarte stabilization (3.5) with, say, 7 1 in (3.10), can be efficiently solved
using a nonstiff discretization. For such examples, see [4]. Note that 7 should not be
taken large in this case, because this may introduce artificial stiffness (cf. (3.9b)).

While the Baumgarte technique yields a nonstiff ODE (so, for instance, an ex-
plicit difference scheme may be applied to (3.5)), the other two reformulations require
satisfaction of constraints and therefore have an implicit part, even if the reduced
ODE is discretized using an explicit scheme [18] (similarly [16]). In simple situations
(where the mth constraint differentiation is not a bother either), such a Baumgarte
technique is therefore more efficient.

Case 2. Generally, a robust discretization would have to use a step size commen-
surate with the variation of B and C. With such a step size, a Baumgarte technique
or an index-2 reduction method should perform well, as above, except that the ad-
ditional constraint differentiation or a poorly scaled choice of the parameter in the
Baumgarte technique might increase errors.

With C varying-significantly, however (e.g., corresponding to a rapidly rotating
shaft), the robustness of a state-space form reduction using a constant R may be
called into question.

Example 1. For

C(t) (sin(ut), cos(ut)), 0 <_ t,

with u _> 1 a parameter, an appropriate choice for R satisfying (3.15) at t 0 is

/ (1,0), O_<t_<l.

But then,

is singular at t (j + 1/2)r/u for all j integers. It is clear that one must restart/
(i.e., switch coordinates) at steps O(1/u) apart. While the discretization step for any
of the other methods must be O(1/u) as well, a simple discretization step involves
much less effort than a restart.

What is potentially worse, detecting restart points is not easy in practice. (This
is somewhat similar to using a Riccati method for stiff boundary value ODEs; see [8].)
To see what happens when a singularity point is missed, we continue the example as
follows:

x -x + By + q,

0 Cx + r,

with B CT, Xl(0)- 1, and q and r are chosen to be

2et + (2-0
q

cos(t)e2et + (2-t)

r -(sin(ut) + cos(ut))e
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such that the solution is xT e(1, 1), y -e/(2 t). With

R(t) (cos(t),- sin(gt)),

we have ST R, FT C, and the homogeneous part of the EUODE is

U --U

with u(0) given. This problem is stable, with g O() in (2.15), independently of

The state-space form with/ (1, 0) gives, on the other hand, an ODE whose
homogeneous part is

fi’= -(1 + tan(t))fi.

So, if one ignores or misses a singularity point, then one may end up integrating an
unstable ODE.

In Table 4.1 we list some results obtained using a backward Euler discretization
with step size h .01 for 1000. The problem is solved over the interval t E [0, 1].
We denote by -), the Baumgarte parameter (i.e., we have replaced the constraint
g(x, t) 0 with g’ +-g 0 except for the case - oc, which corresponds to a
direct discretization of the given problem). The discretization of (4.7) is referred
to as projected invariant. The reported errors are the max-norm of errors in both
components of x, and the reported drift is the magnitude of the residual of the original
constraint, at the endpoint of the time interval.

TABLE 4.1
Behavior of methods for example 1.

Method -), Error Drift

Baumgarte 0. .26e+79 .33e+79
Baumgarte 1. .10e-79 .13e-t-79
Baumgarte 10. .37e-75 .48e+75
Baumgarte 100. .63e-53 .85e+53
Baumgarte 1000. .27e+08 .13e+09
Baumgarte 10000. .23e-3 .23e-4
Baumgarte c .20e-3 .14e- 15

Projected invariant NA .20e-3 0

State-space form (/?/-- (1, 0)) NA .42e-1 0

This example shows the index-2 reduction method in a particularly favorable light:
since ]g’[ >> ]gl, a rather large - is needed for the Baumgarte technique to work well.
Insisting on satisfying (4.1b) or (4.75) in the context of an index-2 Hessenberg DAE
is advantageous.

Case 3. We apply the same BDF scheme to discretize the three formulations. It
is well known that BDF schemes usually perform well for stiff initial value ODEs. It is
less well known that the theory justifying this performance is at present incomplete,
and applies mainly to scalar equations. Consider a stiff initial value ODE

(4.8) x’= A(t)x

and its backward Euler discretization

(4.9) h1 (xn xn_1) Ax,
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where 0 to < tl < < tN 1, hn tn tn-1, An "= A(tn). Given a nonsingular
transformation T(t), let

(4.10) w T-ix.

Then w satisfies the ODE

(4.11) w’ (T-1AT- T-1T’)w =_ Vw.

If U is upper triangular with off-diagonal elements that are not too large, or if U is
essentially diagonally dominant (see [14], [15], or [3, Chap. 10]),then a backward Euler
scheme applied to (4.11), i.e., the discretization is applied after the transformation,
performs well as a stiff discretization scheme. (To see this we may consider the
diagonal part of U first, obtaining stability results for a scalar equation for each of
the equations in (4.11), and follow this by a contraction argument for the full U.)
But if we apply the transformation (4.10) after the discretization (4.9), we obtain
(Wn :-- T-lxn),
(4.12) hl(wn wn_l) TIA,Tw, (T11T_l + O(h,))w_l.
Therefore, the variable transformation term T-1TIw is discretized explicitly at n- 1
instead of at n. Usually the term T-1AT dominates, accounting for the practical
success of the backward Euler and higher-order BDF schemes.

Our Case 3 corresponds to the domination of T-1AT in (4.11), (4.12): It is easy
to see that the frozen coefficient part of the EUODE (2.20) is preserved in various
transformations even after discretization (i.e., it is not significant whether the refor-
mulation precedes discretization or vice versa). Therefore, a BDF discretization of any
of the three formulations in this case results in a stiffly stable numerical method and
performs well. The method of reduction to index 2 without the extra differentiation
is most straightforward under these circumstances.

Case 4. In contrast to Case 3 above, the variable coefficient part of the various
transformations, i.e., those terms involving derivatives of R, S, C, etc. in (2.13),
(2.20), (3.5), and (3.17), does not generally get reproduced under discretization, as
we saw in 4.1. The phenomenon is similar to that in (4.12_), but it may be practically
worse because unlike in the ODE case, R and S (and R) do not depend on Aj of
(2.3) at all, so it is easy to envision situations where the variable coefficients part of
the EUODE dominates. In such circumstances a backward Euler discretization may
behave like a nonstiff discretization, causing a possible slowdown in an automatic
integrator. Application of a state-space form method may be advantageous, then, if
the restart difficulty is not present.

Example 2. Consider for 0 _< t _< 1

xi (2 t)py + ql(t),

x (- 1)y + q2(t),

0 (t -- 2)Xl -- (t2 4)xe + r(t),
with Xl (0) 1. Here _> 1 is a parameter. The inhomogeneities q and r are chosen
to be

q
(1 + :-i)e

r -(t2 + t- 2)et,
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such that the exact solution is xl x2 et, y -(et/(2 t)).
This is essentially the same example as Example 1 in [1], but with A1 0, so

there is no frozen coefficient part in the EUODE. With

we have

R
(4- t2)-C (t + 2) - 1

so (2.5), (2.6), and (2.7) are satisfied with K O(1), K2 O(u), K3 O(1). The
EUODE for the homogeneous problem is

RSu u
2-t

subject to an initial condition. Hence this is a stable problem with K4 O(1),
K O() in (2.15). Note also that IIFII O() and IIC’ll O(1).

We certainly expect any of the numerical methods mentioned in this section to
work well when the discretization step size h maxn ha satisfies h << 1. It is more
interesting to find out what happens, say, when h 10, which for u 1000 yields a
rather small step relative to the variation of the solution.

First consider a state-space reduction using/)--(1, 0). Thus ST (1, 1/(2- t))
and the homogeneous part of the ODE (3.17) is

2-t

If the inhomogeneous version of this ODE is discretized by a BDF scheme, or any other
L-stable scheme, then not only is stability maintained for h large, but also accuracy
improves as increases with h fixed, because there is only a fast, stable solution
mode present and no slow ones. The transformation back from fi to x preserves this
accuracy. Thus, the state-space reduction performs superbly here.

In contrast, the same BDF discretization applied to the other formulations has
a significant nonstiff behavior. In Table 4.2 we display results using Baumgarte’s
technique with backward Euler and applying backward Euler directly to the original
index-2 DAE. Tests are performed with 1000, h .01.

TABLE 4.2
Behavior of methods for example 2.

Method , Error Drift
Baumgarte 0. .19e-2 .85e-2
Baumgarte 1. .22e-2 .49e-2
Baumgarte 10. .10e-2 .29e-3
Baumgarte 100. .27e-4 .93e-8
Baumgarte 1000. .13e+42 .45e+39
Baumgarte oo .92e+74 .45e+58

Projected invariant NA .14e-4 0

State-space form (/)-- (1,0)) NA .14e-4 0
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A comparison between Tables 4.1 and 4.2 confirms that the practical control of
the Baumgarte parameter may indeed be a nontrivial affair. Note also the excellent
performance of the discretization of (4.7). D

Example 3. This example is a linear model in the form of a "mechanical system."
We consider the initial value problem for the system

(4.13a) p’= v,
(4.13b) Uv f(p, v, t) GTA,
(4.13c) 0 g(p, t),

with g C(t)p + r(t), G C, and where M(t) is symmetric positive definite. For
0 < t < 1 we choose

(0 0 )f- v + q(t) C (1, t- 2),
0 (2+t)v

1 2-t
M(t) (2 + t),2 -,(2,- 1)

-u(2u- 1)

resulting in

(--)(t+2)
The inhomogeneous terms q(t) and r(t) and the initial conditions have been chosen
so that the solutions for both components of p and v are et, and et/(2 t). This
example is closely related to Example 2, and in particular, it has the same term
with R" 0. We will consider its solution in two different formulations. In the first
formulation, the twice-differentiated constraint is used to eliminate A, and then the
original constraint is reintroduced via a new Lagrange multiplier #, to obtain

(4.14a) p’ v + D#,
(4.14b) v’ HM-If- Fz,
(4.14c) 0 g(p, t),

where z 2C’v + C"p + r". This is the projected invariant formulation (3.27)
with rn 2, k 1. We will consider various choices for the projection matrix D(t),
satisfying that CD is nonsingular for each t. The second formulation is the following
stabilized index-2 system,

(4.15a) p’ v + D#,
(4.15b) Mv’ f GTA,
(4.15c) 0 g,

(4.15d) 0 gt _= Gv -4-gt

(in our linear case g’ Cv + C’p + r’). The latter formulation was proposed in [13]
for D GT (= cT).
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In Table 4.3 we present the results for the projected invariant formulation (4.14)
with projections D given by B, CT, "unit" (0, 1)T, and for the direct index-two ("d-
2") formulation (i.e., where the constraints in (4.13) have been simply differentiated
once), for values of u 1,100 and 1000. In Table 4.4 we present the results for the
stabilized index-2 formulation (4.15) under the same conditions. All test results are
with the backward Euler scheme on the interval [0, 1], with a uniform step size h .01.
The recorded errors are measured at t 1 in the indicated variable (maximum over
the two components). For the first nine rows of Table 4.3 (and Tables 4.5 and 4.7 as
well), "Drift" indicates the drift in the velocity constraint (derivative of the original
constraint) at the endpoint of the interval. For direct index-2 formulation, where the
drift in velocity constraint is 0 but the drift in position constraint is not, the latter
is indicated. Since the drifts for the stabilized formulation (4.15) are essentially zero
(except when everything blows up), they are not recorded in Table 4.4.

TABLE 4.3
Example 3, projected invariant formulation.

Projection # Error(p) Error(v) Drift

B 1 .16e-2 .13e-1 .12e-1 .49e-2
B 100 .91e-4 .38e-2 .35e-2 .14e-3
B 1000 .34e+73 .93e+74 .36e-2 .93e+74
CT 1 .16e-2 .12e-1 .12e-1 .35e-2

CT 100 .18e-2 .74e-2 .35e-2 .37e-2

CT 1000 .18e-2 .72e-2 .36e-2 .37e-2
unit 1 .24e-2 .lle-1 .12e-1 .26e-2
unit 100 .27e-2 .65e-2 .35e-2 .29e-2
unit 1000 .27e-2 .64e-2 .36e-2 .29e-2
d-2 1 NA .13e-1 .12e-1 .37e-2
d-2 100 NA .37e-2 .17e-1 .36e-2
d-2 1000 NA .10e-71 .11e73 .10e-+-69

TABLE 4.4
Example 3, stabilized index-2 formulation.

Projection Error(p) Error(v)
B 1 .86e-4 .13e-1 .12e-1
B 100 .44e-6 .37e-2 .17e-1
B 1000 .28e-3 .35e-2 .78

CT 1 .13e-3 .12e-1 .12e-1

CT 100 .18e-7 .37e-2 .17e-1

CT 1000 .99e+73 .18e-74 .20e+76
unit 1 .26e-3 .lle-1 .12e-1
unit 100 .42e-7 .38e-2 .17e-1
unit 1000 .16e-t-75 .15e-75 .16e+77

Additional experiments were carried out for the problem (4.13) with f 0 and
the same exact solution. The results are summarized in Tables 4.5 and 4.6, which are
analogous to Tables 4.3 and 4.4, respectively.

We note that, as predicted, methods using the B-projection or involving B in
a Hessenberg index-2 formulation (even when stabilized using other projections) can
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TABLE 4.5
Example 3 with f 0, projected invariant formulation.

Projection tt Error(p) Error(v) Drift

B 1 .16e-2 .12e-1 .86e-2 .49e-2
B 100 .91e-4 .38e-2 .35e-2 .14e-3
B 1000 .34e+73 .93e+74 .35e-2 .93e+74
CT 1 .17e-2 .lle-1 .86e-2 .35e-2

CT 100 .18e-2 .73e-2 .35e-2 .37e-2

CT 1000 .81e-2 .72e-2 .35e-2 .37e-2
unit 1 .25e-2 .10e-1 .86e-2 .27e-2
unit 100 .27e-2 .65e-2 .35e-2 .28e-2
unit 1000 .27e-2 .64e-2 .35e-2 .28e-2
d-2 1 NA .12e-1 .86e-2 .37e-2
d-2 100 NA .62e-2 .13e-1 .36e-2
d-2 1000 NA .60e-2 .13e-1 .36e-2

TABLE 4.6
Example 3 with f 0, stabilized index-2 formulation.

Projection Error(p) Error(v)
B 1 .74e-4 .12e- 1 .86e-2
B 100 .45e-4 .18 .19
B 1000 .11e+150 .32e+150 .28e+153
CT 1 .lle-3 .lle-1 .86e-2

CT 100 .34e-4 .53e-2 .12e-1

CT 1000 .33e-4 .52e-2 .12e-1

unit 1 .22e-3 .99e-2 .86e-2
unit 100 .68e-4 .50e-2 .12e-1

unit 1000 .67e-4 .49e-2 .12e-1

experience a serious error growth when hu is large, due to the large size of the R’S-
term. Only the projected invariant formulations using the "good" projections CT and
"unit" yield acceptable results for both choices of f when hu 10. The backward
Euler scheme performs like a nonstiff integrator in these circumstances for the other
methods. The good behavior of the projected invariant formulation for the projections
CT and "unit" follows directly from the discussion earlier in this section.

Let us calculate the EUODE for this example. Writing (4.13) with f E(t)v in
the form (2.3), we have m +- 2, x +-- p, y +- -A, A1 - 0, A2 +- M-1E. With R and
S as in Example 2 we obtain

(RAt + R")Su 0,

(RA2 + 2R’)(Su)’ u[RM-E + 2(0,-1)][Su’ + S’u].

For E corresponding to Tables 4.3 and 4.4, RM-1E (0, 1), so by (2.13) the homo-
geneous EUODE is

2-t (2-t)2
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For E 0 corresponding to Tables 4.5 and 4.6, the homogeneous EUODE is

2u 2u
u//-- --’U/-U.

So the EUODE in both cases is stable for u > 0 and stiff for >> 1.
If we now choose

E= 0 (2+2t),
then RA2 -2R’, so the EUODE is nonstiff. In Tbles 4.7 and 4.8 we record results
analogous to Tables 4.3 and 4.4 for this case where the EUODE is nonstiff.

TABLE 4.7
Example 3 with a nonstiff EUODE, projected invariant formulation.

Projection u # Error(p) Error(v) Drift

B 1 .15e-2 .15e-1 .18e-1 .49e-2
B 100 .88e-4 .10e-1 .18e-1 .32e-3
B 1000 .34e-+-73 .93e-74 .1Be-1 .93e+74
CT 1 .15e-2 .13e-1 .18e-1 .34e-2

CT 100 .15e-2 .13e-1 .1Be-1 .34e-2

CT 1000 .15e-2 .13e-1 .18e-1 .34e-2
unit 1 .22e-2 .12e-1 .1Be-1 .26e-2

unit 100 .22e-2 .12e-1 .18e-1 .26e-2

unit 1000 .22e-2 .12e-1 .1Be-1 .26e-2

d-2 1 NA .14e-1 .1Be-1 .37e-2
d-2 100 NA .30e+2 .30e+15 .30
d-2 1000 NA .17 .54 .53e-2

TABLE 4.8
Example 3 with a nonstiff EUODE, stabilized index-2 formulation.

Projection , # Error(p) Error(v)
B 1 .11e-3 .15e-1 .18e-1
B 100 .47e-4 .37 .35
B 1000 .54e-6 .36 .34

CT 1 .16e-3 .13e-1 .18e-1

CT 100 .lle+2 .23 .22e-+-4
CT 1000 .18e-2 .60e-1 .34
unit 1 .32e-3 .12e-1 .18e-1
unit 100 .13e+4 .14 .13e+6
unit 1000 .28e-2 .26e- 1 .27

We note with no surprise that the problem does not get easier when the large
terms in the EUODE cancel one another. The results in Table 4.7 for the projections
with CT and "unit" are independent of u: this is because (4.14b) is independent of u
in this special case.

Example 4 [2]. This example is also in the "mechanical system form" (4.13).
This time we choose M I but let the constraint matrix vary possibly rapidly, as in
Example 1. We set

g C(t)p + r(t), G C (sin(t), cos(t)) BT, f -,2v + q(t)
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and choose initial conditions and inhomogeneities such that the solution is the same
as in Example 3. The stability of this problem is discussed in [2].

Here we test the performance of two projected invariant formulations, in addition
to the previous reformulations (4.14) and (4.15) (with D GT). In both of these
additional formulations we require satisfaction not only of the "position constraints"
(4.15c), but also of their derivative (4.15d) ("velocity constraints"). The first of these
additional formulations is as in 3.5 with k m 2 and B1 B2 CT. This gives
the system

(4.16a) p’ v + GTI,
(4.16b) v’ HM-lf Fz + GTT,
(4.16c) 0 g(p,t),
(4.16d) 0 g’ _= Gv + gt.

The method (4.16) should certainly perform well for Example 3, but here the matrix
function L (0g’/0p) (= C’) may contain large elements when u is large. The second
variant balances this out by adding another stabilizing term to (4.16a), replacing it
by

p V + GTI + LTT.
In Table 4.9 we compare numerical results for various values of and h using a

backward Euler discretization of (i) the previous, simpler projected invariant formu-
lation (4.14) with D GT (denoted "Pc"); (ii) the projected invariant method (4.16)
(denoted "Pb"); (iii) the projected invariant method (4.17), (4.16b), (4.16c), (4.16d)
(denoted "Pc"); and (iv) the stabilized index reduction method (4.15) with D GT

[13] (denoted "S").
Note that the various variants perform qualitatively similarly when h is small.

But when h 10, there are large errors in v for the formulations Pb and S (these
two are almost identical for this problem). The projected invariant formulations Pa
and Pc, which do balance the constraint matrix and the multiplier matrix in the
index-2 formulation, perform significantly better for h large. The scheme Pc is more
complicated than Pc, though, so computing and using L in (4.17) may not be desirable
for reasons other than stiff stability. [3

A number of methods have been proposed in the literature (see [9] and references
therein, [1], [12], [16], and [17]), where at each step in t, an integration step for the
ODE (3.18a), (3.22) or another form of the DAE is followed by a projection using a
weighted least squares norm to satisfy the constraints (3.25) at the end of the step.
Thus, using, e.g., backward Euler for the unstabilized (4.14a) (i.e., with D 0) and
(4.14b), we have at the nth step

(4.18b)
h-l(n Pn-1) Vn,

h-l(vn Vn--1) HnMifn Fnzn,

and then we find Pn, which satisfies

(4.19) g(Pn, tn) --0

and minimizes

(4.20) (pn--n)TWn(Pn--On),
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TABLE 4.9
Example 4, additional projected invariant formulations.

Projection h Error(p) Error(v)
Pa 1 .01 .22e-2 .82e-2

.001 .22e-3 .81e-3
Pb .01 .36e-2 .47e-2

.001 .37e-3 .48e-3
Pc .01 .29e-2 .30e-2

.001 .28e-3 .30e-3
S .01 .36e-2 .47e-2

.001 .36e-3 .48e-3
Pa 100 .1 .22e-1 .17e-1

.01 .19e-3 .65e-4
.001 .59e-5 .15e-4

Pb .1 .22e-1 .22e+1
.01 .19e-3 .19e-1

.001 .57e-5 .56e-3
Pc .1 .17e-3 .17e-1

.01 .68e-6 .66e-4
.001 .16e-6 .15e-4

S .1 .22e-1 .22e+1
.01 .19e-3 .19e-1
.001 .58e-5 .56e-3

where W, is a symmetric positive definite matrix. This idea can clearly be written in
the generality of 3.5 and gives another variant for resolving overdetermination.

The necessary conditions for the constrained minimization (4.9), (4.20) are

(4.21) W(p ) c#,

where #n is a Lagrange multiplier. Therefore,

(4.22) pn__Pn_Wj1 T Cnn"Cnn Pn--1 - hvn + W- T

However, an unfortunate choice of Wn may again produce a nonstiff behavior out of
a BDF scheme, because (4.22) is in essence a backward nuler discretization of (4.14a)
with D W-1CT. For Example 3, in particular, the choice W M is not advisable.

For some schemes, though, the choice of W is not sufficiently arbitrary. For
instance, in [1] the integration step is an implicit Runge-Kutta (or collocation) step
applied directly to an index-2 DAE (4.1). This necessitates in the following projection
the choice of W so that W-ICT B. Therefore, that method applied to Example
2 also behaves like a nonstiff integrator. A way to remedy this is to transform (4.1)
into (4.7) before applying the projected Runge-Kutta method. For Example 2, this
works very well.

In the context of mechanical systems, we note that the projected invariant scheme
(4.14) satisfies precisely only the position constraints, not their derivative relation
g 0 (which gives velocity constraints). Should the latter be deemed important to
satisfy precisely as well, it can be achieved with the formulation (4.14) as described
above, i.e., by projecting vn at the end of each step to satisfy (4.15d), minimizing the
required change in Vn (in the least squares norm) and keeping Pn unchanged (cf. [2]).
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5. Conclusions. We have considered various problem formulations and their
discretizations for higher-order, higher-index DAEs such as those that arise in the
numerical integration of Lagrange’s equations of the first kind for multibody dynamics.
A linearized form of the equations was considered, allowing a methodical examination
of a number of methods that are in use in practice with respect to stability. While the
numerical examples we use do not derive directly from particular mechanical systems,
they are simple to follow thoroughly and at the same time they highlight effects that
we believe occur in some actual mechanical systems. This yields a number of tentative
conclusions, based on the methods considered.

1. All reasonable problem reformulations used in practice are stable under certain
mild assumptions. The exception is a direct index reduction, which has an algebraic
instability of degree m- 1. Thus, for holonomic constraints, two direct constraint
differentiations yield a linear instability. Applying only one direct differentiation is still
stable, though not asymptotically stable. (Note, however, that asymptotic stability
of v in (3.9b) does not yield a similar statement for u in (3.9a).)

2. Applying the same discretization to two stable problem formulations does not
necessarily yield similar method characteristics.

3. For simple, slowly varying nonstiff problems, a number of good alternatives ex-
ist. One is a Baumgarte stabilization coupled with an explicit discretization. Another
is the half-explicit methods; see, e.g., [17] and [5].

4. For problems with a stiff frozen coefficient part, a BDF (or other stiff) dis-
cretization applied to a stable index-2 reduction is recommended.

5. For heterogeneous problems, where the mass matrix has widely varying eigen-
values (or when C is much better behaved than B in (2.3)), and for problems with
rapidly varying constraints, the projected invariants stabilization (4.14) (with the pro-
jection based on CT) coupled with a BDF discretization or other suitable stiff method
is recommended. If it is important that the velocity constraints be satisfied precisely,
then we recommend either the projected invariants method Pa (4.14) followed by a
projection onto the velocity constraints as described at the end of 4, or else the
projected invariants method Pc (4.17), (4.16b), (4.16c), (4.16d).
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REDUCING THE SYMMETRIC MATRIX EIGENVALUE
PROBLEM TO MATRIX MULTIPLICATIONS*

SHING-TUNG YAUtAND YA YAN LU$

Abstract. A numerical method for the symmetric matrix eigenvalue problem is developed by
reducing it to a number of matrix-matrix multiplications. For matrices of size n, the number of such
multiplications is on the order of log2 n. On high performance parallel computers, it is important
to minimize memory reference, since the movement of data between memory and registers can be
a dominant factor for the overall performance. The matrix-matrix multiplication is more efficient
than matrix-vector or vector-vector operations, since it involves O(n3) floating point operations while
creating only O(n2) data movements. The number of data movements of the traditional methods
based on reduction to the tridiagonal form is O(n3), while that of our method is O(n2 log2 n).
Asymptotically, there are fast numerical algorithms for matrix multiplications that require less than
O(n3) floating point operations. One example is the O(n2"376) method of Coppersmith and Winograd
[Proc. 19th Ann. ACM Symp. Theory Comput., 1987, pp. 1-6]. Therefore, in principle, our method
for the symmetric matrix eigenvalue problem requires only O(n2"376 log2 n) operations.

Key words, eigenvalue problem, matrix multiplication, parallel computation, FFT

AMS(MOS) subject classifications. 65F15, 65N25, 15A18

1. Introduction. Recently, much effort has been devoted to developing efficient
numerical algorithms for matrix eigenvalue problems on high performance parallel
computers. New methods and modifications of the traditional methods [27], [18],
[24] developed on sequential computers are being studied in the new environment.
The Jacobi method [14] has attracted much attention [22], [4], since it is natural for
parallelization. Meanwhile, the idea that one first reduce the matrix to a condensed
form through orthogonal similarity transform is still the basis for many studies. The
reduction process itself has been analyzed and the resulting block methods [3], [23],
[7], [12] could have a better performance on parallel computers. When the matrix
is symmetric, new methods have been developed for the condensed form: tridiagonal
matrices. The method in [17], [13], and [15] is based on evaluating the characteristic
polynomial of the tridiagonal matrix. It computes the eigenvalues through multisec-
tioning and the eigenvectors through inverse iteration. Methods based on the idea of
divide and conquer have been developed and implemented in [6] and [9]. Recursively,
two smaller tridiagonal eigenvalue problems are first solved, then combined to obtain
the eigensystem of the larger tridiagonal matrix.

One important issue that appeared in the high-performance computers is the cost
of data movement. It becomes necessary to organize the algorithms such that we reuse
the data as much as possible. Matrix-matrix multiplication performs O(n3) opera-
tions (without using any asymptotically faster algorithms) on O(n2) data, and it is
more efficient than matrix-vector or vector-vector operations. Therefore, it is desir-
able to develop algorithms that are rich in matrix-matrix operations. This has led to
the development of block algorithms for matrix computations [10]. These block algo-
rithms are usually variants of the original well-established sequential algorithms. We
believe that it is helpful to think about the problem from a new starting point and to
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develop new algorithms that fully take advantage of the new computer architectures.
In this paper, we develop a method that reduces the symmetric matrix eigen-

value problem to a number of matrix multiplications. The total number of such
multiplications is O(log2 n). The traditional algorithm performs O(n3) floating point
operations requiring O(n3) data movement. Without using any asymptotically fast
matrix multiplication algorithms, our method performs O(n3 log2 n) operations with
O(n2 log2 n) data movement. Meanwhile, much effort has been devoted to achiev-
ing a lower asymptotic bound [19], [25] for matrix multiplications. The method in
[5] requires only O(n2"376) operations to multiply two n n matrices. Practical im-
plementation of the Strassen method [25] that requires O(nlg. 7) operations on the
CRAY-2 has been reported [2]. In any circumstance, from a theoretical point of view,
the number of operations required in our algorithm has a lower asymptotic bound:
O(n2"376 log2 n).

2. Basic ideas. Consider a real symmetric matrix A with eigenvalues A1, A2,
.., An and eigenvectors gl, g2, ..., gn. Starting from an initial vector expanded in

terms of the eigenvectors as

vo (1gl / o2g2 W W Ongn,

we can construct a polynomial of A, say PN(A), and multiply it by the vector vo. We
obtain

PN(A)vo oPg(A)g + o2PN(,k2)g2 +"" + oPg(),)g,.
The central idea in the polynomial acceleration methods, such as those for a linear
system of equations, is to choose the polynomial so that it peaks up at one of the
eigenvalues and is close to zero otherwise. The vector PN(A)vo can thus be regarded
as an approximation to the corresponding eigenvector.

There are several difficulties with this approach. It apparently only computes
one eigenpair at a time. Meanwhile, the initial peak of the polynomial may not be
so close to the desired eigenvalue that the computed vector is not accurate enough,
and we need to shift the peak of PN(A) and repeat the process. All of these are too
expensive to be of any practical interest.

The main purpose of this paper is to introduce the fast Fourier transform (FFT)
into this process, such that the above difficulties can be overcome and all the eigen-
values of A can be computed simultaneously.

Consider a unitary matrix B whose eigenvalues #1, #2,..., # all lie on the unit
circle. Let PN(Z) be a polynomial that has a peak at z 1 and is constructed to be
close to zero on the unit circle away from the vicinity of z 1. Let the eigenvectors
of B be g, g2,..., gn (the same notations that are used for the eigenvectors of A) and

nthe initial vector v0 be expanded as v0 j=l (Jg" We have that

n

u(A) Pg(e-i’B)vo oPN(e-i)’#)gj.
j"’l

Apparently, if is chosen such that #jo is close to ei and other eigenvalues of B are
not "close" to ei, then the coefficients of gj will be small except when j j0. Thus
u(A) can be regarded as an approximation to the eigenvector of #o. If the polynomial
PN (z) is written as

P (z)
j=O
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then we have that
N-1

j=0

N-1

j=0

where vj BJvo Therefore, if the vectors vj are computed first, FFT can be used to
compute u(A) at many different values of A simultaneously.

In order to apply the above approach to the symmetric matrix eigenvalue problem,
we need to first link the matrix A with a unitary matrix, then find a suitable polyno-
mial PN(z) and finally compute the vectors vj. After the vectors u(A) are computed
through FFT, we need to select the vectors that can be regarded as eigenvectors.
When there are close or multiple eigenvalues, a local refined scheme with possible
supplementary vectors is proposed such that all the eigenvalues can be computed to
the full double precision. We discuss these issues in the next sections.

3. Unitary matrix. The natural choice for the unitary matrix B is eiA. The
fact that A is a symmetric matrix brings an important difference between eiA and eA.
The eigenvalues of eA may be extended to a large range such that the finite precision
arithmetic computers may regard eA as near rank deficient. The situation for eiA is

different, since all the eigenvalues have norm one.
However, we still want to avoid the situation where all the eigenvalues of eiA lie in

just part of the unit circle. We prefer a more or less uniform distribution on the unit
circle for more efficiency of our algorithm. Therefore, we first estimate the largest
and smallest eigenvalues of A, and find a lower bound and an upper bound for the
spectrum. Then, the matrix is shifted and scaled (still denoted by A) such that its
eigenvalues are within the interval [0, 2r).

Estimating the extreme eigenvalues of A is not a difficult task, since we do not
really need any high precision for the extreme eigenvalues--only the true lower and
upper bounds are needed. A few steps of the Lanczos method are usually sufficient
for this purpose. A small number of matrix-vector multiplications are needed in this
step.

The computation of eiA is an expensive step. On sequential computers, this
could be a more difficult task than the symmetric matrix eigenvalue problem itself.
However, the situation on high-performance parallel computers is different, since its
computation can be carried out in a small number of efficient matrix-matrix multi-
plications. The following method requires only six such multiplications to compute
cos(A) with double precision. The expansion for sin(A) is also given, although we
only use it to compute sin(A)v0, where v0 is the initial vector. (If sin(A) is desired,
we can compute it in two more matrix multiplications.) The method is based on the
Chebyshev expansions of cos(rx) and sin(rx)/x for x within [-1, 1] and it essentially
uses the method for evaluating polynomials of a .matrix proposed by Paterson and
Stockmeyer [20] and Van Loan [26].

For cos(rx), we have

cos(vrx) 50 - 51T2(x) q- 52T4(x) q-... q- 510T20(x) q-

No terms after T20 are needed for double precision. Using the formula Tj+k 2TjTk-
T-k (for j > k), we can rewrite the above expansion in terms of To, T2,..., T10. A
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k

0

1

2

3

4

5

6

7

8

9

10

TABLE 1
Coe]ficients for cos(rx) and sin(rx)/x.

Ck 8k

-0.30424217764410000D+00 0.13475263146739893D+01

-0.97086786526208879D+00 -0.15565912566288138D+01

0.30284915514918853D+00 0.22275791179570700D+00

-0.29091923138480781D-01 -0.14193172035956216D-01

0.13914657144750502D-02 0.51171426651805082D-03

-0.40189944510754951D-04 -0.11893504653342084D-04

0.15565534023630612D-05 0.38601607212752680D-06

-0.21653060683708492D-07 -0.46251621156060299D-08

0.22702183556992598D-09 0.42608348743303411D-10

-0.18590593629629630D-11 -0.31125835925925928D-12

0.12222734929968973D-13 0.18474722480287380D-14

similar expansion is developed for sin(rx) based on the even function sin(x)/x. We
have

cos(x) co + cT + cT4 +... + cTo + To(cT + cTT4 +... + coTo),

sin(x)/x ,, so + siT2 + s2T4 +... + s5To + Tlo(S6T2 + srT4 +... + soTo).

For the symmetric matrix A whose eigenvalues are within [0, 2r), we define X
A/r I. Therefore, eiA -eiEx. Using the formula Tj+k 2TjTk Tj-k, we can
compute T2(X),Ta(X),T6(X),Ts(X), and Tlo(X) in a total of five matrix multipli-
cations, cos(TrX) in one more multiplication. However, sin(rX) requires two more
multiplications, since the expansion used is for the even function sin(rx)/x. Fortu-
nately, only the multiplication of sin(rX) with a given initial vector is really needed,
which can be computed by the above expansion with only matrix-vector multipli-
cations involved. Therefore, a total of six multiplications each involving two real
symmetric matrices are needed. We list the coefficients in Table 1.

4. Chebyshev polynomial. We consider a polynomial of degree N- 1, PN(Z),
such that its real part has a peak at z 1 and is small on the unit circle except at
the vicinity of z 1. We can scale the value of PN(Z) at z 1. This leads to a
constrained uniform approximation problem: find 0,1,2,... ,N-1, such that the
polynomial PN(Z) NEk--O kzk satisfies the following two conditions:

1. PN(1)= 1;
2. The maximum of IRe(PN(z))I over the part of the unit circle defined as

s { 1 _< o <_ (2- ,)-}

is minimized, where 5 is a small number that we can choose.
It turns out that the coefficients 0,,...,/N- can be taken as real num-

bers because of the symmetry with respect to the real axis on the complex z plane.
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Therefore,

Re(Ply(Z)) 0 -- 1 cos(O) --"-’-[- N-1 cos((N- 1)0)
0 + IT1 (cos(O)) +... + N_ITN_I (COS(O))
0 (cos(0)).

The polynomial QN(X) defined above satisfies the conditions: (i) QN(1) 1; and
(ii) m[QN(X)[ over-1 x cos(5)is minimized. Therefore, QN(X)is the
Chebyshev polynomial [21] translated to the interval [-1, cos(5)] and scaled with
constant. That is,

TN-1 1 + COS(r)
cos(  )

The coeNcients 0,,... ,- are simply the Chebyshev expansion coeNcients of

N(Z) 0r0(z) + lrl(z) +"" + N-1TN-I().

In order to compute these coeNcients, we define by

k

j=0

for k-- 0, 1,...,N- 1, where

2 1 cos()
1 + cos() 1 + cos()"

The first two sets of coecients are

0)- 1; 1)- b, 1 -g.

}k) 0; if j > k, we have the following recurrence relationships:Let

for j > 1, and

(kq-1) ak) + 2b(ok) 0(k-l)

kq-1)--a (2/30(k) + 3k)) + 2b/3(ok)_ 0(k-1).

These recurrence relationships are used to compute the coefficients 3k) for increasing

values of k. After/0(N-l) /N-1) (N-1)
,’’’,’N-1 are computed, we simply multiply by

1/TN_I((3 cos 5r)/(1 + cos 5r)) to obtain/0,/3,...,/N-.
The total number of floating point operations involved in this step is O(N2).

Meanwhile, it is efficient on vector and parallel computers because of its highly vec-
torizable nature.
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5. vj and u(A). We consider the computation of the vectors vj eijAv0 for
j 1, 2,..., N- 1. The straightforward approach requires N- 1 matrix-vector
multiplications. While v0 is the initial vector, vl eiAvo can be computed easily.
Since we have computed cos(A), we are ready to obtain the real part of Vl. The
expansion developed for sin(A) can be used to compute sin(A)v0 in just a few matrix-
vector multiplications. The remaining vectors can be obtained through the recursive
formula

V+l 2 cos(A)v vj_

for j _> 1. N is usually taken as O(n), therefore, computing all vi (for j 1, 2,..., N-
1) requires a similar amount of operations as the orthogonal reduction of a symmetric
matrix to a tridiagonal matrix used in the standard method. Because of the efficiency
of matrix-matrix operations, we reformulate the algorithm as follows:

(b)

(c)

(d)

B1 cos(A),

v2 2B1v1

B2 cos(2A),

(v3, va) 2B2(vl, v2) (Vl, v0);

B4 cos(4A),

(Vh, V6, VT, Vs) 2B4(vx, v2, v3, v4) (V3, V2, Vx, V0);

In log2 N steps, all these vectors are computed.
Once these vectors are computed, they are used to compute the vectors {u(A)},

which can be kept real. We have

N-1

j=O

N-1

jRe(vy) cos(jA) / yIm(v) sin(jA).
j=o

The vectors v0, v,..., VN-1 are complex (except that the initial v0 can be taken
real). Therefore, we can have a FFT program that computes real vectors u(A) at
2N different values of and overwrites the memory space of vo, v,..., Vy-. For

0, 1,..., 2N 1, we denote u(A)=/g by u, that is,

N--1

ul Re je-ijl/Nvj.
j=0

When N is taken as a power of 2, the resulting FFT is quite efficient.

6. Selection and refinement. We have now computed the vectors

u RePy(e-il/geiA)vo
n

akPN(e’(-’/N))gk
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for l= 0, 1,..., 2N 1, where PN(Z) E;_ jzj is the previously defined polyno-
mial; .Xk, gk are the eigenvalues and eigenvectors of matrix A, respectively; and the
initial vector v0 (normalized) is expanded as

n- kgk.

k--1

The purpose of this section is to devise a method of computing the eigenvalues and
eigenvectors of A using as much information in {us} as possible. When one eigenvalue,
say Ak*, is well separated from the others, if l* is an integer such that l*Tr/N is the
closest to Ak., then us. will be very close to gk* subject to a scaling. An estimate of
k* is obtained as

Of course, we do not know l*, but we can compute Air for all l, then compare it with

lr/N. When the difference between them is small (or reaches a local minimum), that
particular value of can be saved, and the corresponding us and lt give rise to an
approximate eigenpair of A.

The problem with this approach is that it only works for isolated eigenvalues. If
there are two eigenvalues that are close, the value of N may be too small to separate
them. Meanwhile, for a multiple eigenvalue, we will only get one eigenvector, which is
the component of v0 on its eigenspace. The method presented below overcomes these
difficulties by a subspace method that computes eigenvalues in each well-separated
cluster and by adding supplementary vectors when necessary.

Given the vectors no,u1,..., U2N-1, we first group them into clusters that are
orthogonal with each other and select the most valuable vectors from each cluster.

Recall that related to the polynomial PN(Z), there is a number a 1/TN-1((3-
cosr)/(1 + cosiTr)) such that IRePN(e)I < t if 101 < 57r (for --r <_ 0 < r).
Apparently, is a measure of the narrowness of the peak at z 1 of Pn(z). When
i is chosen (usually O(1/n)), we choose N such that a is smaller than the desired
accuracy for eigenvectors. The eigenvalues can be computed as accurately as O(t2)
(but this is also limited by the machine epsilon). Therefore, if we are happy with
nine significant digits for the eigenvectors and require full double precision for the
eigenvalues, we may choose a 10-9. The corresponding N is approximately 8/i.

Let e(> to) be a small multiple of to. We retain only the vectors whose two-norms
are larger than . In other words, we find {k, k} for j 1, 2,..., nc, such that

luk[2 >e, if for some j, k_<k_<k,
]Uk]2 <_ , otherwise.

Thus {k, k} defines the jth cluster and nc the total number of clusters. The vectors
in different clusters are orthogonal to the accuracy of e.

Inside each cluster, we only retain those vectors whose two-norms are local max-
ima and not too small (close to e). They are further arranged in decreasing two-norms

Wj w w pj
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for the jth cluster, where pj is the number of vectors retained in this cluster. The
number of all the retained vectors is

P Pl + P2 zt- + Pnc"

If p n, all n eigenpairs can be found based on these chosen vectors. As we will show
later, a small symmetric eigenvalue problem with a pj x p matrix is solved for the
jth cluster and the py eigenpairs of the matrix A in this cluster are obtained.

When p < n, we first need to supplement n-p vectors in order to compute all n
eigenpairs. Starting from n-p random vectors, we orthonormalize them with the p
retained vectors and obtain

W [Wp..[_l, Wp+2,..., Wn]

satisfying the following conditions:

T j 0, for j 1, 2, nc 1 2, pj, k p + 1, p + 2, n,Wk W

WkTWl 5kl, for k, p + 1, p + 2, n.

Then WTAW is an (n- p) (n- p) symmetric matrix. Its eigenvalue problem is
solved, and we obtain the following:

WTAW Q

p-bl
p+2

".
T,

where Q is an (n-p) (n-p) orthogonal matrix. For 1 WQ [p+l, p+2,
p+l], we have

p--i

17VTAITV

The n-p vectors of are grouped into different clusters. For vector k, we define

[k Nftk/r.

If for some j, k <_ [k <_ k, then k belongs to the jth cluster If does not
belong to any cluster, then {/k, k} is an eigenpair of A and no further computation
is necessary. This latter case corresponds to the situation where the initial vector has
no component in that eigenvector (or the component is so small that we must ignore
it). Therefore, each of these n-p vectors is either combined with one of the clusters
or left alone as an individual eigenvector. We still denote the number of vectors in
the jth cluster by pj, with the understanding that pj may have been increased. After
an orthonormalization process, we have

.., pj
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such that (w T Jwt kt. Then the reduced eigenvalue problem for the pj pj
symmetric matrix W]AWj is solved as a subproblem and we obtain the following:

where Qj is a pj pj orthogonal matrix. Let

The column vectors of l/VVy are the eigenvectors of A in the cluster and the correspond-
ing eigenvalues are #, #,..., #.

The method presented in this section selects the most useful vectors from the
2N vectors uo, ul,..., U2N-1, groups them into a number of orthogonal clusters, adds
more vectors, if necessary, and reduces to a small symmetric matrix eigenvalue prob-
lem in each cluster. We note that the reduced eigenvalue problems in different clusters
can be solved simultaneously, therefore, this part of the algorithm is highly parallel.
The complete algorithm will be presented in the next section.

7. The algorithm. Consider a real symmetric matrix A. The following steps
find the eigenvalues and eigenvectors of A to the desired precision.

1. Scaling and translation. Use any available method, e.g., the Lanczos method,
to find the largest and smallest eigenvalues of A approximately, then translate and
scale the matrix A, such that the resulting matrix has eigenvalues in the interval

2. Computing the coefficients /0,1,...,N-1. Take 5 l/n, N (power of 2
preferred) is the smallest integer such that- 1/TN_((3- cosset)/(1 + cosir)) < desired accuracy for eigenvectors.

The coefficients 0, ,..., N--1 are defined by

TN_((2x + 1 cos(br))/(1 + cos(ir)))
N-1

QN(X) TN- ((3 cos(ir))/(1 + cos(tbr))) /kTk(x),
k=0

and computed through the recursive formula in 4.
3. Computing the matrix cos(A). Let X A/r- I. The matrices T2(X),

Ta(X), T6(X), Ts(X), and T10(X) are computed in five matrix multiplications based
on Tk+z 2TkTz -Tk-z. Then cos(A) cos(rX) is computed in one more matrix
multiplication based on the following expansion:

cos(TrX) ,. co q- clT2 -k c2T4 q- q- C5Tlo + Tlo(C6T2 q- c7T4 -}-’"-k cloTo),

where the coefficients are given in 3.
4. Computing the vectors vj eijAvO. The real part of v is easily obtained

from cos(A). The imaginary part is based on the expansion

sin(A)vo sin(rX)vo
, X[so + sT2 + s2T4 q-’"-’k sbTo

+To(s6T2 + sTT4 q- q- SloTlo)]vo.
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After Vl is computed, the other vectors are computed following these steps:

(b)

(c)

(d)

B1 cos(A),

v2 2Blvl 50;

B2 cos(2A) 2B I,

(v3, v4) 2B2(Vl, v2) (vl, v0);

B4 cos(4A) 2B22 I,

(V5, V6, VT, V8) 2B4(Vl, v2, v3, v4) (v3, v2, Vl, vo);

In practice, the matrices B1, B2, B4,... are overwritten and stored in one real sym-
metric matrix, and all the computed vectors are stored in a complex n N matrix
V [v0,

5. Using the Fourier transform. For A kyr/N, k 0, 1,2,...,2N- 1, the
vectors

N-1

j=0

N-1

jRe(vj)cos(jkyr/N) + jlm(vj)sin(jkyr/N)
j=0

are computed through FFT. The matrix V is now overwritten by the real n 2N
matrix

U-- [u0, ul,...,U2N_I].

6. Finding the eigensolution. A threshold e is first chosen as a small multiple of
the column vectors of U are then grouped into a total of nc clusters: (k, k} for

1, 2,..., no, such that

b<k <if for some j,

otherwise.

In the jth cluster, py vectors are found such that their two-norms reach local maxima.
These pj vectors are ordered with decreasing two-norms and orthonormalized. They
are

I) I)1 -t- P2 -t- + Pnc is the total number of vectors selected. If p < n, n p
random vectors are first generated then orthonormalized with the column vectors of
W1, W2,..., Wnc and we obtain

W [Wp+l, Wp+2,..., Wn].
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The symmetric matrix eigenvalue problem for the (n- p) (n- p) matrix WTAW
is solved:

p+l
p-l-2

WTAW Q QT,

where Q is an (n- p) (n- p) orthogonal matrix. Let p+l, p+2,..., ?p-t-1 be the
n-p column vectors of WQ. For p + 1,p + 2,..., n, if there exists j such that

k <_ N/r <_ k, then the vector is added to the jth cluster. That is,

Wpj+

If cannot be put into any cluster, it is left alone as an eigenvector of A with
corresponding eigenvalue .
Finally, for each cluster Wj, a pj pj symmetric matrix eigenvalue problem is solved:

where Qy is a pi pj orthogonal matrix. The column vectors of WjQ are the eigen-
vectors of A in the jth cluster and the corresponding eigenvalues are #, #,..., #j.

The method presented above works even if the eigenvalues of A are poorly dis-
tributed. However, if many eigenvalues have almost the same value, the work for
the supplementary vectors and the resulting clusters is expensive. In most cases, say,
for a random matrix, p is close to n, so the operations spent on the supplementary
vectors are negligible. Usually, the subproblems in each cluster only involve small
matrices. That is, pj is usually quite small compared with n. These subproblems for
supplementary vectors and for the clusters can be solved by the standard EISPACK
routines or the same algorithm recursively.

8. Error analysis. For this algorithm to be useful, the computed eigenvalues
and eigenvectors must not be sensitive to the initial errors that are present in the
matrix A and in computing eiA by an expansion. Since we are using matrix expo-
nentials and repeated squares, we might suspect that our algorithm can be unstable.
However, this is not true.

First, we must emphasize that for a symmetric matrix A, eiA is a well-behaved
unitary matrix. The usual fear of exponential growth of error does not apply here.
The difference between ei(A+E) and eiA is small, when E is a symmetric matrix with
small entries. This is related to the fact that the eigenvalues of A and E are real, and
the nice properties of sine and cosine are valid here.

Second, while we are computing vy eijAv0 for j 1, 2,..., N- 1, our results
are not based on VN- and other vectors with large subscripts only. If, at the initial
stage, our expansion for eiA gives us an approximation that can be written as ei(A/E)

the best we can do for the vector vy is to obtain eij(A/E)vo Indeed, when j is large,
the difference between eiJAvo and eij(A/E)vo is significant. However, our computation
is based on
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N-1

Uk Re E Je-Ok/Nvj
j=0

for k 0, 1,..., 2N- 1. If eij(A+E)v0 is plugged into the above equation for vj, the
computed vectors {uk } simply correspond to the matrix A + E, and are very useful
when E can be kept small.

The expansion designed for eiA in 3 gives rise to an accurate and reliable scheme
for its numerical computation. The computed error for each entry of the matrix
is limited by a small multiple of machine epsilon e0 for double precision (2-52 here),
which is almost the best we can have. Of course, since we use approximate expansions
for both cos(A) and sin(A), it is quite impossible to write these two computed matrices
in terms of one small symmetric matrix E as cos(A + E) and sin(A + E). Rather,
we must introduce two small matrices E1 and E2 for cos(A) and sin(A), respectively.
However, the computed imaginary part of vl, that is, sin(A + E2)v0 can be written
as sin(A + E1)(v0 + ve), where ve is a vector with O(e0) elements. From the recursive
formula, we conclude that for vectors vj, we obtain

)j cos(j(A + E))vo + isin(j(A + E1))(v0 + v)

eiJ(A+E1)vo + isin(j(A + E))v.

The computed values for Uk are

N-1 N-1

k Re E Je-ijkr/Neij(A+E1)vo + E J sin(jkr/N)sin(j(A + E1))v
j=o j=o

N-1

"e-ijkr/geij(A+E)vO + e.=ReE 3

j=0

The first part corresponds to the exact uk for a perturbed matrix A+ E. The second
part gives rise to a small error because of the inconsistent approximations for sin(A)
and cos(A). When ve is expanded in terms of the eigenvectors of A + E, say

we see that
n N-1

E &k E J sin(jkr/N) sin(jk)k.
k--1 j--0

The absolute value of.the coefficient of Ok
N-1

&k E / sin(jkr/N) sin(j)k)
j=0

N-1

j=O

Therefore, the two-norm of cannot exceed that of v, whose entries are on the order
of machine epsilon.

The selection of vectors from the set (uk} is based on their two-norms. Those
vectors with small norms are ignored. Therefore, the errors will not have much
.impact for our final result and the scheme based on them is stable and reliable.
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9. Numerical test. We have tested our algorithm for many matrices. The com-
puted eigenvalues and eigenvectors are compared with the result by EISPACK. The
accuracy of the eigenvalues is full double precision, while we limit our accuracy for
eigenvectors to nine digits. All the results we computed are found to be correct when
compared with those by EISPACK.

The parameter 5 is usually taken as 1In and N 8/5 ,- 8n is the number of
vectors (complex) that we must compute in order to guarantee the nine-digit accuracy
for eigenvectors. Unfortunately, 5 cannot be taken much larger to reduce the memory
space, because we might end up with a situation where the vectors {uk} cannot be
separated into different clusters (thus the subproblem is the same size as the original
problem).

For random matrices, the eigenvalues are usually well distributed. But some close
eigenvalue clusters also exist. Meanwhile, supplementary vectors are usually neces-
sary. However, in all our testing of random matrices, the number of supplementary
vectors is significantly less than n and the resulting clusters usually only have a few
eigenvalues. For n 128, the size of all the subproblems (for supplementary vectors
and for clusters) seldom exceeds 10. Therefore, at least for our choice of 5 and N, the
time spent on these subproblems is usually not a significant part of the total time.
Of course, the sizes of these subproblems depend on the distribution of eigenvalues.
If the eigenvalues are extremely clustered, our method can face a difficulty. For sim-
plicity, the subproblems are solved by the EISPACK routines for real and symmetric
matrices.

The most time-consuming part of the algorithm is the computation of vj for j
1, 2,..., N 1. On sequential computers, vj can be obtained directly by the recursive
formula involving cos(A). Each complex vector v requires a multiplication of the real
symmetric matrix cos(A) and the complex vector vy-1. If N 8n, the total number of
operations (for both summation and multiplication of real numbers) is approximately
32n3. The QR method for the symmetric matrix requires approximately 9n3 flops
[11] when eigenvectors are also desired. Therefore, this part is already three to four
times slower. If we rearrange the computation of vy as presented in 5 or 7, we need
log2 N- 1 multiplications of two real symmetric matrices. If a straightforward method
is used for matrix multiplications, and N 8n, we need (log2 n+2)n3 more operations.
Of course, the computation of vy can now be used in multiplications of real symmetric
n n matrices with complex matrices of order n 1, n 2, n 4,..., n N/2. On
parallel computers, the efficiency of BLAS3 routines can justify the use of the extra
multiplications. A more practical aspect of its advantage over parallel computers
will be reported in a separate paper. For the moment, on sequential computers for
n 128, the extra work of nine multiplications of real symmetric matrices makes this
part of the algorithm four to five times slower than the EISPACK routine.

The computation of cos(A) requires six multiplications of real symmetric matrices.
The total number of operations is 6n3. We do not compute sin(A), since only sin(A)v0
is needed. The other part of the algorithm is relatively efficient. Although 2N could
be quite a large number, the step for computing uk is still efficient, because of the
FFT algorithm. The selection and refinement process usually does not involve large
subproblems, and it is quite efficient.

Following is a typical example. We consider the matrix

A (sin(3000(i + j 2)2)).
For n 128, its eigenvalues are shown in Fig. 1, where each vertical line represents
an eigenvalue. We can see that some of the eigenvalues are very close. In our compu-
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FIG. 1. Eigenvalues of (sin(3000(i + j 1)2)) for n 128. (Each eigenvalue is represented
by a vertical line.)

tation, the parameters are chosen as l/n, N 8n. With a random initial vector,
11 supplementary vectors are necessary. The result is a total of 59 clusters, classi-
fied according to their size (the number of eigenvalues in the cluster) and listed in
Table 2. All the eigenvalues are accurate with at least 14 significant digits and the cor-
responding eigenvectors with nine digits when compared with the results by EISPACK
routines. The accuracy of the eigenvectors is controlled in step 2 of the algorithm.
Here, we have chosen N and di such that < 10-9. Therefore, nine accurate digits for
the eigenvectors are expected. Let Q [ql,q2,... ,qn] be the numerically computed
eigenvectors, and 1, 2,..., n be the computed eigenvalues. We have also calculated
the following two matrices:

)R1 QTQ_ I, R2 QTAQ- "..

The entries of these two matrices are all approximately 10-9. Their Frobenius norms
(square root of the summation of all the entries squared) are obtained:

1
IRIlF 8.171 10-9, 1

IR21F 5.678 10-9.
n n

Similar results are obtained for various other testing matrices.
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TABLE 2
Eigenvalues in clusters.

Cluster size

1

2

Number of clusters

24

19

3 8

4 4

5 2

6

7

8

9 0

10 1

1

10. Conclusion. We have shown that for a symmetric n x n matrix A, its eigen-
values and eigenvectors can be found through a number of matrix multiplications. The
number of such multiplications is O(log2 n).

The principle of this method is based on the fact that matrix multiplication can
be implemented more efficiently than matrix-vector or vector-vector operations. The
advantage of BLAS3 operations is expected to be more important in future super-
computers with more processors. Our algorithm starts with six symmetric matrix
multiplications to compute cos(A), then computes intermediate vectors in roughly
log2 n steps, each involving two matrix multiplications. Although the total number of
operations used in our algorithm is much larger than the standard method based on
the reduction to tridiagonal matrices, we expect it to be useful on parallel computers
in the future.

In theory, the O(n3) operations required in the straightforward method for matrix
multiplication can be reduced significantly. Strassen [25] first discovered a method
that requires O(n287) operations. Later, Pan [19] developed a method that only
requires O(n2"a96) operations. Recently, an O(n2"376) method was developed by Cop-
persmith and Winograd [5]. These methods with lower asymptotic powers are of
significant theoretical interest. A number of important problems, such as solving a
set of linear systems of equations and inversion of a matrix, can be reduced to matrix
multiplications [1]. Our study here links the symmetric eigenvalue problem to the
matrix multiplication. An asymptotic efficient algorithm for matrix multiplications
can thus be used, which results in an O(n2"376 log2 n) algorithm for the symmetric
eigenvalue problem.
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AN IMPLEMENTATION OF THE LOOK-AHEAD LANCZOS
ALGORITHM FOR NON-HERMITIAN MATRICES*

ROLAND W. FREUNDf:, MARTIN H. GUTKNECHT, AND NOeL M. NACHTIGALf

Abstract. The nonsymmetric Lanczos method can be used to compute eigenvalues of large
sparse non-Hermitian matrices or to solve large sparse non-Hermitian linear systems. However, the
original Lanczos algorithm is susceptible to possible breakdowns and potential instabilities. An
implementation of a look-ahead version of the Lanczos algorithm is presented that, except for the
very special situation of an incurable breakdown, overcomes these problems by skipping over those
steps in which a breakdown or near-breakdown would occur in the standard process. The proposed
algorithm can handle look-ahead steps of any length and requires the same number of matrix-vector
products and inner products as the standard Lanczos process without look-ahead.

Key words. Lanczos method, orthogonal polynomials, look-ahead steps, eigenvalue problems,
iterative methods, non-Hermitian matrices, sparse linear systems

AMS(MOS) subject classifications. 65F15, 65F10

1. Introduction. In 1950, Lanczos [20] proposed a method for successive reduc-
tion of a given, in general non-Hermitian, N x N matrix A to tridiagonal form. More
precisely, the Lanczos procedure generates a sequence H(n), n 1, 2,..., of n x n
tridiagonal matrices which, in a certain sense, approximate A. Furthermore, in exact
arithmetic and if no breakdown occurs, the Lanczos method terminates after at most
L (_< N) steps with H(L) a tridiagonal matrix that represents the restriction of A or
AT to an A-invariant or AT-invariant subspace of CN, respectively. In particular, all
eigenvalues of H(L) are also eigenvalues of A, and, in addition, the method produces
basis vectors for the A-invariant or AT-invariant subspace found.

In the Lanczos process, the matrix A itself is never modified and appears only
in the form of matrix-vector products A. v and AT w. Because of this feature, the
method is especially attractive for sparse matrix computations. Indeed, in practice,
the Lanczos process is mostly applied to large sparse matrices A, either for computing
eigenvalues of A or, in the form of the closely related biconjugate gradient (BCG)
algorithm [21], for solving linear systems Ax b. For large A, the finite termination
property is of no practical importance and the Lanczos method is used as a purely
iterative procedure. Typically, the spectrum of H(n) offers good approximations to
some of the eigenvalues of A after already relatively few iterations, i.e., for n << N.
Similarly, BCG, especially if used in conjunction with preconditioning, often converges
in relatively few iterations to the solution of Ax b.

Unfortunately, in the standard nonsymmetric Lanczos method a breakdown, more
precisely, division by 0, may occur before an invariant subspace is found. In finite-
precision arithmetic, such exact breakdowns are very unlikely; however, near-break-
downs may occur, which lead to numerical instabilities in subsequent iterations. The
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possibility of breakdowns has brought the nonsymmetric Lanczos process into discredit
and has certainly prevented many people from using the algorithm on non-Hermitian
matrices. The symmetric Lanczos process for Hermitian matrices A is a special case
of the general procedure in which the occurrence of breakdowns can be excluded.

On the other hand, it is possible to modify the Lanczos process so that it skips over
those iterations in which an exact breakdown would occur in the standard method.
The related modified recurrences for formally orthogonal polynomials were mentioned
by Gragg [14, pp. 222-223] and by Draux [7]; also, in the context of the partial
realization problem, by Kung [19, Chap. IV] and Gragg and Lindquist [15]. However,
a complete treatment of the modified Lanczos method and its intimate connection
with orthogonal polynomials and Pad6 approximation was presented only recently, by
Gutknecht [16], [17]. Clearly, in finite-precision arithmetic, a viable modified Lanczos
process also needs to skip over near-breakdowns. Taylor [27] and Parlett, Taylor, and
Liu [25], with their look-ahead Lanczos algorithm, were the first to propose such a
practical procedure. However, in [27] and [25], the details of an actual implementation
are worked out only for look-ahead steps of length 2. We will use the term look-ahead
Lanczos method in a broader sense to denote extensions of the standard Lanczos
process which skip over breakdowns and near-breakdowns. Finally, note that, in
addition to [16] and [17], there are several other recent papers dealing with various
aspects of look-ahead Lanczos methods (see [1], [2], [4], [5], [9], [13], [18], and [23]).

The main purpose of this paper is to present a robust implementation of the look-
ahead Lanczos method for general complex non-Hermitian matrices. Our intention
is to develop an algorithm that can be used as a black box. In particular, the code
can handle look-ahead steps of any length and is not restricted to steps of length 2.
On many modern computer architectures, the computation of inner products of long
vectors is a bottleneck. Therefore, one of our objectives is to minimize the number of
inner products in our implementation of the look-ahead Lanczos method. The pro-
posed algorithm requires the same number of inner products as the classical Lanczos
process, as opposed to the look-ahead algorithm described in [27] and [25], which
always requires additional inner products. In particular, our implementation differs
from the one in [27] and [25] even for look-ahead steps of length 2.

The outline of the paper is as follows. In 2, we recall the standard nonsymmetric
Lanczos method and its close relationship with orthogonal polynomials. Using this
connection, we then describe the basic idea of the look-ahead versions of the Lanczos
process. In 3, we present a sketch of our implementation of the algorithm with
look-ahead and some of its basic properties. In 4, we discuss in more detail issues
related to the look-ahead feature of the algorithm, while in 5 we are concerned with
issues related to the implementation of the algorithm. Finally, in 6, we report a few
numerical experiments with the algorithm, for both eigenvalue problems and linear
systems, and in 7, we make some concluding remarks.

We remark that an extended version of the present paper is available as a technical
report [11]. In particular, details omitted here can be found therein. Furthermore, the
look-ahead Lanczos process can be used to compute approximate solutions to Ax b,
which are defined by a quasi-minimal residual (QMR) property. The resulting QMR
algorithm is described in detail in [12] and [13].

For notation, we will adhere to the Householder conventions with only a few
exceptions, which we will note. Throughout the paper, all vectors and matrices can be
assumed to be complex. As usual, MT --[#ji] and MH --[ji] denote the transpose
and the conjugate transpose, respectively, of the matrix M [#y]. The largest and
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smallest singular values of M are denoted by amax(M) and amin(M), respectively.
The vector norm [[x[[- is always the Euclidean norm and [[M[I amax(M)
denotes the corresponding matrix norm. The notation

Kn(c,S) :- span {c, Bc,... ,Bn-ic}
is used for the nth Krylov subspace of Cg generated by c E Cg and the N x N matrix
B.

denotes the set of all complex polynomials of degree at most n. Furthermore, A is
always assumed to be a possibly complex and in general non-Hermitian N xN matrix.

Finally, we note that in our formulation of the nonsymmetrie Lanezos algorithm
and its look-ahead variant, we use AT rather than AH. This was a deliberate choice
in order to avoid complex conjugation of the scalars in the recurrences; the algorithms
can be formulated equally well in either terms (ef. (2.18)).

2. Background. In this section, we briefly recall the classical nonsymmetric
Lanczos method [20] and its close relationship with .formally orthogonal polynomials
(FOPs). Using this connection, we then describe the basic idea of the look-ahead
Lanczos algorithm.

Given two nonzero starting vectors Vl E CN and Wl CN, the standard non-
symmetric Lanczos method generates two sequences of vectors L{Vn}n=l and {Wn }nL--1
such that, for n 1,..., L,

(2.1)
span {vl, v2,..., v,}= Kn(vl,a),

span {wl, w2,..., wE} K,(wl,AT),
and

6i:/:0 ifi=j, / for all =1(2.2) wTivj 0 otherwise,
i, j n.

The actual construction of the vectors vn and wn is based on the three-term recur-
rences

where

VET AVE anVn nVn-1,

Wn+l ATWn OnWn nWn-l

are chosen to enforce (2.2). For n 1, we set /31 0 and v0 w0 0 in (2.3).
Letting

V(n) "----[Vl V2 Vn and W(n) := [wl w2 w,(2.4)
denote the matrices whose columns are the first n of the vectors vj and wj, respec-

H(n) :=

tively, and letting

1 c2

0

0 1
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denote the tridiagonal matrix containing the recurrence coefficients, we can rewrite
(2.3) as

AV(n) v(n)H(n) +[0 0 VaT1 ],
ATw(n) W(n) H(’O + [0 0 w,+ ].

Moreover, the biorthogonality condition (2.2) reads as

(2.6) (W(’O)Tv(n) D(n) "= diag (51,52,..., 5n).

Let L be the largest integer such that there exist vectors vn and Wn, n 1,..., L,
Note that L _< N and that, in view of (2.3), L is thesatisfying (2.1) and (2.2).

smallest integer such that

(2.7) W/lVL+ --0.

Moreover, let

Lr Lr(v, A) := dim KN(v, A) and Lt Lt(w, AT) := dim Kg(w, AT)

denote the grade of Vl with respect to A and the grade of Wl with respect to AT,
respectively (cf. [29, p. 37]). There are two essentially different cases for fulfilling
the termination condition (2.7). The first case, referred toas regular termination,
occurs when VL+ 0 or WL+ O. If VL+ 0, then L Lr and the right Lanczos
vectors v,..., VL span the A-invariant subspace KL(v,A). Similarly, if WL+ --0,
then L Lt and the left Lanczos vectors wi,..., W.LI span the AT-invariant subspace

KLI (Wl, AT). Unfortunately, it can also happen that the termination condition (2.7)
is satisfied with vi+ 0 and wi+ O. This second case is referred to as serious
breakdown [29, p. 389]. Note that, in this case,

L < L. := min {L, Lr},

and the Lanczos vectors span neither an A-invariant nor an AT-invariant subspace of
(N.

It is the possibility of serious breakdowns, or, in finite-precision arithmetic, of
near-breakdowns, i.e.,

Twn+ vn+ 0, but Wn+i ? O and Vn+ O,

that has brought the classical nonsymmetric Lanczos algorithm into discredit. How-
ever, by means of a look.ahead procedure, it is possible to leap (except in the very
special case of an incurable breakdown [27]) over those iterations in which the stan-
dard algorithm would break down. Next, using the intimate connection between the
Lanczos process and FOPs, we describe the basic idea of the look-ahead Lanczos
algorithm.

First, note that

(2.8)
Kn(Vl,A)- {(A)vl I On--1},

Kn(Wl,AT) {(AT)wl e )n-1}.

(2.9) Vn n-l(A)v and Wn n-I(AT)w,

In particular, in view of (2.3), for n 1,..., L,
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where I/n_ On_ is a uniquely defined monic polynomial. Then, introducing the
formal inner product

(2.10) ((I), ):= (((AT)wl)T ((A)vl)= wT(A)(A)vl,
and using (2.1), (2.8), and (2.9), we can rewrite the biorthogonality condition (2.2)
in terms of polynomials:

(2.11) (lX/n_l, ) 0 for all e Pn-2

and

(2.12) (lI/n_l, lI/n_l) : 0.

Note that, except for the Hermitian case, i.e., A AH and Wl 1, the formal inner
product (2.10) is indefinite. Therefore, in the general case, there exist polynomials

0 with "length" (, ) 0 or even (, ) < 0.
A polynomial n-1 E P-I of exact degree n- 1 that fulfills (2.11) is called a

FOP (with respect to the formal inner product (2.10)); we refer the reader to, e.g.,
[3], [7], and [16]. Note that the condition (2.11) is empty for n 1, and hence any
0 0 0 is a FOP of degree 0. From (2.11),

is a FOP of degree n- 1 if and only if its coefficients 0,..., n-1, are a nontrivial
solution of the linear system

0

(2.13) #2 .’"

n--2
#2n--5

2n--5 2n--4

2 --n--1 n+l

’n--2 2n--3

Here

#j := wTAjV (1, A), j =0,1,...,

are the moments associated with (2.10). A FOP n-1 is called regular if it is uniquely
determined by (2.11) up to a scalar, and it is said to be singular otherwise. We
remark that FOPs of degree 0 are always regular. In particular, a regular FOP is
unique if it is required to be monic. Moreover, singular FOPs occur if and only if the
corresponding linear system (2.13) has a singular coefficient matrix, but is consistent
for some "),,_ 0. If (2.13) is inconsistent when n- 0, then no FOP n-1 exists.
This case is referred to as deficient. By relaxing (2.11) slightly, one can define so-
called deficient FOPs (see [16] for details). Simple examples (see, e.g., [12, 13]) show
that the singular and deficient cases do indeed occur. Thus, regular FOPs need not
exist for every degree n- 1. We would like to stress that this phenomenon is due to
the indefiniteness of (2.10). For a positive definite inner product (., .), unique monic
formally orthogonal polynomials always exist, up to the degree equal to the grade of
Vl with respect to A. Such a definite inner product is induced in the Hermitian case
A AH cud Wl -. In this case, the FOPs are true orthogonal polynomials with
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respect to a positive weight whose support is a set of points on the real axis (see, e.g.,
[26]). In addition, they have real coefficients and therefore

(, ) wT (A)(A)v- vH(AH)(A)v- III,(A)v II 2

Finally, given a regular FOP -1, it is easily checked whether a regular FOP of
degree n exists. Indeed, using (2.13), one readily obtains the following lemma.

LEMMA 2.1. Let n-1 be a regular FOP (with respect to the formal inner product
(2.10)) of degree n- 1. Then, a regular FOP of degree n exists if and only if (2.12)
is satisfied.

Let us return to the standard nonsymmetric Lanczos process (2.3). Using (2.7),
(2.9), (2.10), and Lemma 2.1, we conclude that a serious breakdown occurs if and
only if no regular FOP exists for some L < L,. In this case, the termination index L
is the smallest integer L for which there exists no regular FOP of degree L.

On the other hand, there is a maximal subset of indices

(2.14) {nl,n2,...,nj} C_ {1,2,...,L,}, nl := 1 < n2 <... < nj <_ L,,

such that, for each j 1, 2,..., J, there exists a monic regular FOP @nj-1 E Pnj-l"
Note that nl 1 since I’0(A) 1 is a monic regular FOP of degree 0. It is well
known [7], [15] that three successive regular FOPs @,_1_1, @,b_l, and @n+l_ are

connected via a three-term recurrence. Consequently, setting, in analogy to (2.9),

Vn n.-l (A)vl and w
nj

_
(AT)w,

we obtain two sequences of vectors {vn and {Wn }j=l which can be computed
by means of three-term recurrences. These vectors will be called regular vectors,
since they correspond to regular FOPs. Note that the starting vectors Vl and w are
always regular. The look-ahead Lanczos procedure is an extension of the clsical
nonsymmetric Lanczos algorithm; in exact arithmetic, it generates the vectors vn
and wn j 1,..., J. If nj L, in (2.14), then these vectors can be complemented

to a bis for an A-invariant or Ainvariant subspace of Cy. An incurable breakdown
occurs if and only if ng < L, in (2.14). Finally, note that

wv= =0 for all v6 ._(v,A), we ._(w,AT), j=l,...,J.

The look-ahead procedure we have sketched so far only skips over exact break-
downs. It yields what is called the nongeneric Lanczos algorithm in [16]. Of course,
in finite-precision arithmetic, the look-ahead Lanczos algorithm also needs to leap
over near-breakdowns. Roughly speaking, a robust implementation should attempt
to generate only the "well-defined" regular vectors. In practice, then, one aims to
generate two sequences of vectors {vn }= and {Wn }=1 where

is a suitable subset of (2.14). We set j 1, since Vl and Wl are always regular. The
problem of how to determine the set (2.15) of indices of the "well-defined" regular
vectors will be addressed in detail in 4.

In order to obtain complete bes for the subspaces K(v, A) and K(w, AT),
we need to add vectors

v e K(v,,A) K_(v,A) and w e K(w,AT) K-I(w,AT),
n ny_ + 1,..., nj 1, k 2, 3,..., K,
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to the two sequences {Vnjk}(=l and {Wnjk}kK=l, respectively. Clearly, (2.16) guar-
antees that (2.1) remains valid for the look-ahead Lanczos algorithm. The vec-
tors in (2.16) are called inner vectors. Moreover, for each k, the vectors v,, n
nj,nj + 1,...,nj+l 1, and correspondingly for wn, are referred to as the kth
block. The inner vectors of a block built because of an exact breakdown correspond
to singular or deficient FOPs, while the inner vectors of a block built because of a
near-breakdown correspond to polynomials that in general are combinations of reg-
ular, singular, and deficient FOPs. We will refer to both the regular and the inner
vectors Vn and wn generated by the look-ahead variant as right and left Lanczos vec-
tors, in analogy to the terminology of the standard nonsymmetric Lanczos algorithm.

So far, we have not specified how to actually construct the inner vectors. The
point is that the inner vectors can be chosen such that the Vn’S and Wn’S from blocks
corresponding to different indices k are still biorthogonal to each other. More precisely,
with Y(n) and W(n) defined as in (2.4), we have, in analogy to (2.6),

(2.17) (W(n))Tv(n) D(n), n nj 1, l-- 2,3,... ,g.

Here, D() is now a nonsingular block diagonal matrix with l- 1 blocks of respective
size (nj+l-nk) x (nj+-nj), k 1,... ,1-1. Similarly, (2.5) holds, for n n-1,

2, 3,..., K, where H(") is now a block tridiagonal matrix with diagonal blocks of
size (nj+l -nj) x (njk+ -nj), k- 1,... ,1- 1 (cf. (3.4)-(3.5)).

There are two fundamentally different approaches for constructing inner vectors
with the property (2.17). In both cases, inner vectors are first generated using a simple
three-term recurrence. However, in the first approach, each inner vector in a block
is then biorthogonalized against the previous block as soon as it is constructed. This
variant will be called the sequential algorithm. In the second approach, all the inner
vectors in a block are first constructed using the three-term recurrence, and then the
entire block is biorthogonalized against the previous block and possibly, depending on
the size of the current block, against vectors from blocks further back. This variant
will be called the block algorithm. The sequential algorithm is more suitable for a
serial computer, while the block algorithm is more suitable for a parallel computer.
In this paper, we describe only the sequential algorithm and its implementation. A
sketch of the block algorithm can be found in [11]. Details of an actual implementation
and numerical results will be presented elsewhere.

Finally, two more notes. First, the inner product (2.10) could have been defined

(2.18) (, ) (-(AH)-)H ((A)vl) -HO(A)q(A)vl,

and the algorithm could be formulated equally well in either terms. Second, in the
rest of the paper, we will use the notation tk :-- nj for the indices of the "well-
defined" regular vectors. However, notice that there is no guarantee that the indices nk
generated by the look-ahead Lanczos algorithm in finite-precision arithmetic actually
satisfy (2.15).

3. The sequential algorithm. In this section, we start the discussion of the se-
quential Lanczos algorithm with look-ahead. We present a sketch of the algorithm and
its basic properties, then discuss some aspects related to its practical implementation
in the next two sections.

First, we introduce some notation. As in the last section, n 1, 2,..., denote the
indices of the Lanczos vectors vn and Wn. The index k 1, 2,..., is used as a counter
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for the blocks built by the look-ahead algorithm. Moreover, we always use l(n) to
denote the index of the block which contains the Lanczos vectors Vn and wn. Recall
that by nk we denote the indices of the computed regular vectors, which are always
the first vectors in each block k. Thus, nt is the index of the last computed regular
vector with index _< n. We have n 1. Capital letters with subscript k denote the
matrices containing quantities from block k. For example,

Vk :-- [Vn vn+l Vnk+-i

is the matrix whose columns are the Lanczos vectors from a completed block k. Cap-
ital letters with superscripts (n) denote matrices containing quantities from steps 1
through n, as in (2.4). With this notation, the matrix form of the sequential algorithm
with look-ahead is similar to (2.5)-(2.6)

AV(’) V(’)H(’) + [0 0 Vn+l ],
(3.1) ATw() W(’)H(’) +[0 0 Wn+l ],

and

(3.2) (w(n))Tv(n) D(n).

Here

(3.3) D(n) diag(51,52,...,St), 5k W[Vk, k 1,2,...,l l(n),

is block diagonal, and the blocks 51, (2,..., (1-1 are nonsingular. If n nl+l 1, then
the/th block, St, in (3.3) is also nonsingular and it is called complete. In particular,
if tit is complete, then D(’) itself is nonsingular, and (3.3) reduces to (2.17). In this
case, the next regular vectors vn+l and Wn+ can be computed and start a new block.

In (3.1),

(3.4) H(n)

01 2 0 0

/2 a2 ". ".

0 ". ". 0

0 0 7t oq

is an n n block tridiagonal upper Hessenberg matrix with blocks of the form

(3.5) a

0 0 1

0 "’. "’. = "’.

0 0 1 0 0

while the/k’s are in general full matrices. Note that here we violate the Householder
conventions by using small Greek letters to denote quantities which may be matrices.
The justification is that in general the algorithm takes regular steps, and hence these
quantities are usually scalars. Let hk := nk+l --nk, k 1, 2,..., be the size of the kth
block. For k < l(n) the matrices Ck, , and 7k are of size hk x hk, hk-1 hk,
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and hk hk-1, respectively. In general, however, the/th block need not be complete.
Hence, the matrices at,/t, and t corresponding to the current (/th) block are of size
t t, ht-1 t, and t ht-1, respectively, where t :- n + 1 nt.

We will assume that the inner vectors in a block are generated using a three-term
recursion of the form

(3.6) vn+l Av, ,v, nVn_

Wn+l ATWn nWn ?nWn-l

where , and r], are recursion coefficients and n 0, k 1,2, One may
choose these coefficients so that they remain the same from one block to the next and
change only with respect to their index inside the block, n- nk, or one may choose
these coefficients so that they change from one block to the next. For instance,
one practical choice for the polynomials in (3.6) are suitably scaled and translated
Chebyshev polynomials, so that the inner vectors are generated by the Chebyshev
iteration [22]. In this case, the translation parameters could be adjusted using spectral
information obtained from previous Lanczos steps. We do not necessarily advocate
the use of fancy recursions in (3.6). From our experience, the algorithm we propose
builds very small blocks, typically of size 2 or 3. Except for p-cyclic matrices (cf.
Example 6.3 in 6) or contrived examples, the largest block we observed in test runs
with "real-life" matrices was of size 4. It occurred for a matrix arising in oil-reservoir
simulations where out of 1500 steps, the algorithm built 2 2 blocks 49 times, 3
3 blocks 7 times, and one 4 4 block (see [13, Ex. 2]). Hence, the recursion in
(3.6) is not overly important, and in our experiments, we have used the recursion
coefficients Cn 1 and, if n nk, ?n 1. On the other hand, for the block version
of the algorithm, where larger blocks are built, more attention needs to be paid to
the recursion used. As indicated, details of the block algorithm will be presented
elsewhere. Finally, one could consider orthogonalizing (in the Euclidean sense) the
right, respectively, left, Lanczos vectors within each block. However, for the blocks
we have seen built, such an orthogonalization process did not lead to better numerical
properties of the algorithm. Therefore, in view of the additional inner products that
need to be computed, orthogonalizing within each block is not justified.

In practice, for reasons of stability, one computes scaled versions of the right and
left Lanczos vectors, rather than the "monic" vectors v and wn corresponding to
monic FOPs. A proven choice (see [25] and [27]) is to scale the Lanczos vectors to
have unit length. We denote by 0n and )n the scaled versions defined by

O, := vl llv,ll and FVn :--

and more generally, we will denote by hat (^) quantities containing or depending on
the scaled vectors. For example, setting

/:/(n) :__ diag (llvll, Ilvell Ilvnll)H(n)diag(ll IIvll, 1/Ilvell ,..., 1/IIv,ll),

/2/() ] IlVn+ll-I(en) :-- T Pn+l :: en := [0 0 1 IT E ]1n

we can rewrite the first relation in (3.1) in terms of scaled vectors follows:

(3.7) A?() ?(n+l)n).
With this note, we now present a sketch of the sequential Lanczos algorithm with
look-ahead.
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ALGORITHM 3.1 (SEQUENTIAL LANCZOS ALGORITHM WITH LOOK-AHEAD).
(0) Choose 1, bl e CN with [[3 [I [[b II 1;

Set 91 ?I, rl I, I
Set n 1, 1, 30 --b0 --0, V0 Id0 -q}, p 1 1;

For n 1,2,...
(1) Decide whether to construct 3n+l and bn+l as regular or inner vectors

and go to (2) or (3), respectively;
(2) (Regular step.) Compute

(3.s)

set n+ n + 1, -l + 1, I2V -.q}, and go to (4);
(3) (Inner step.) Compute

,+ ATb, -,b, -(rl,/,)b,- I?V_[-T_ATb,;
(4) Compute Pn+ I[n+ [I and n+

If p+ 0 or + 0, stop;
Otherwise, set

3n+i n+i/Pn+i, bn+i on+i/n+i,
(3.10) [ 3n+ ], ldt [I2d, bn+l ],

(5) Add the nonzero elements of the nth column to /:/(n)
and set ((e.n))n+l,n Pn+l.

Note that, if 3n+ and bn+ are inner vectors, the size of the current incomplete
block is increased by 1; if they are regular vectors, then the/th block is complete
and a new block, the (1 + 1)st, is started, with 3n+ and n+l as its first vectors.
Finally, we remark that, in view of (3.7), the nonzero elements of the nth column of
/:/(n) occur as coefficients in the first recursion of (3.8), respectively, (3.9).

4. Building blocks. In this section, we discuss the criteria used in step (1) of
Algorithm 3.1 to decide whether a pair of Lanczos vectors 9n+ and bn+ is built as
inner vectors or as regular vectors. We propose three criteria, namely, (4.3), (4.4),
and (4.5) below. If all three checks (4.3)-(4.5) are satisfied, then n+ and bn+ are
constructed as regular vectors; otherwise, they are constructed as inner vectors. Let
us motivate these three criteria.

First, recall (cf. (3.3)) that for 9n+ and n+l to be built as regular vectors it
is necessary that be nonsingular. Therefore, it is tempting to base the decision
"regular versus inner step" solely on checking whether 6t is close to singular, and to
perform a regular step if and only if

(4.1) O’min(l(n)) >_ tol,

for some suitably chosen tolerance tol. For example, Parlett [23] suggests tol e1/4

or tol e1/3, where e denotes the roundoff unit. Then (4.1) would guarantee that
complete blocks of computed Lanczos vectors satisfy

(:rmin ($k) -- tol, k= 1,2,
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This, together with (3.3), would imply by [23, Thm. 10.1] that

tol tol
(4.2) amin((n))_> and amin(i]V(n))_>--:, n--nk-1, k-1,2,

/n

Since the columns of lY(n) and IYV(n) are unit vectors, ffmin(r(n)) and (Tmin(l/r(n))
are a measure of the linear independence of these vectors; in particular, (4.2) would
ensure that the Lanczos vectors remain linearly independent. However, in the outlined
algorithm, the block orthogonality (3.2)-(3.3) is enforced only among two or three
successive blocks, and in finite-precision arithmetic, biorthogonality of blocks whose
indices are far apart is typically lost. The theorem assumes that (3.2)-(3.3) hold for
all indices, and without this, the theorem fails in finite arithmetic. We illustrate this
with a simple example.

Example 4.1. In Fig. 4.1, we plot (Tmin(/(n)) (dots), minl<k<l(n)(O’min(k)) (solid
line), and amin((n)) (dotted line), as functions of the iteration index n 1, 2,...,
for a random 50 x 50 dense matrix. The theorem predicts that

Tmin(9(n))
_

min (O’min(k)),

which is clearly not the case.

107

104

101

10"5

10-s

lO-11

10-7
0 io ,oo

FIG. 4.1. O’min(/(n) (dots), minl<_k<l(n)(rmin(k)) (solid line), and v/-d O’min (9(n)) (dotted
line), plotted versus the iteration index n.

As this simple example shows, the check (4.1) alone does not ensure that the
computed Lanczos vectors are sufficiently linearly independent. In particular, if the



148 R. W. FREUND, M. H. GUTKNECHT, AND N. M. NACHTIGAL

look-ahead strategy is based only on criterion (4.1), the algorithm may produce within
a block Lanczos vectors that are almost linearly dependent. When this happens, the
check (4.1) usually fails in all subsequent iterations and thus the algorithm never
completes the current block, i.e., it has generated an artificial incurable breakdown.

In addition, numerical experience indicates another problem with (4.1)" for values
of tol that are "reasonably" larger than machine epsilon, the behavior of the algorithm
is very sensitive with respect to the actual value of tol. We also illustrate this with
an example.

Example 4.2. We applied the Lanczos algorithmto a nonsymmetric matrix A ob-
tained from discretizing a three-dimensional partial differential equation (cf. Example
6.5 in 6). This example was run on a machine with e 1.3E-29. In the first case,
we set tol el/4 6.0E-08, while in the second case, we set tol e1/3 2.3E-10.
In Fig. 4.2, we plot min(/(n)) versus the iteration index n for the two runs, the
dotted line for e/4 and the solid line for e1/3. In the first case, the algorithm starts
building a block that it never closes, and the singular values clearly become smaller
and smaller. Yet if tol is only slightly smaller, as in the second case, the algorithm
runs to completion, in this case solving the linear system to the desired accuracy, and
thus indicating that the block built in the first case was not a true, but an artificial
incurable breakdown.

104

10-3

10-31
0 50 100 0

FIG. 4.2. e1/4 (dotted line) and e/3 (solid line), plotted versus the iteration index n.

We note that the sensitivity of look-ahead procedures to the choice of tolerances,
such as tol in (4.1), was also observed in [5]. However, no remedy for this phenomenon
is given in [5]. Furthermore, we remark that the problem of generating almost linearly
dependent vectors is not specific to the Lanczos biorthogonalization process. Indeed,
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similar effects can also occur in true orthogonalization methods (cf. [28]).
Examples 4.1 and 4.2 clearly show that the decision "regular versus inner step"

cannot be based on (4.1) alone. Instead, we propose to relax the check (4.1), so that
it merely ensures that (n) is numerically nonsingular, and to add the checks (4.4)-
(4.5) below, which guarantee that the computed Lanczos vectors remain sufficiently
linearly independent. Hence, instead of (4.1), we check for

(4.3) rmin (l(n)) ,
where e denotes the roundoff unit.

Our numerical experiments have shown that typically the algorithm starts to gen-
erate Lanczos vectors which are almost linearly dependent, once a regular vector +1
w computed whose component A K+(v,A) is dominated by its component
in the previous Krylov space K(v,A) (and similarly for +1). In order to avoid
the construction of such regular vectors, we check the/-norm of the coefficients for
_

and in (3.8); n+ can be computed a regular vector only if

nl --1 n

(.) [(1T An)j] < n(A) and ](:IA)j[ < n(A)

Here n(A) is a factor depending on the norm of A; we will indicate later how this
factor is computed. Similarly, we check the/1-norm of the coefficients for It_l and
12Vt in (3.8); n+ can be computed as a regular vector only if

n --1 n

(4.5) "-TIT-1ATn)J(ht-1 1<_ n(A) and ](-TITATn)j]
_

n(A).
j-n-i j--n

The pair )n+l and+ is built as regular vectors only if the checks (4.3)-(4.5) hold
true.

We need to indicate how n(d) is chosen in (4.4)-(4.5). Numerical experience with
matrices whose norm is known indicates that setting n(A) I[A[[ is too strict and can
result in artificial incurable breakdowns. A better setting seems to be n(A) 10. I[A[[,
but even this is dependent on the matrix. In any case, in practice one does not know
[[A[[, and there is also the issue of a maximal block size, determined by limits on
available storage. To solve the problems of estimating the norms and a suitable factor
n(A), as well as cope with limited storage and yet allow the algorithm to proceed as
far as possible, we propose the following procedure. Suppose we are given an initial
value for n(A), based either on an estimate from the user (for example, n(d) from a
previous run with the matrix A), or by setting

n(A) max {IIAtlI ]IATcoi]I}.
Note that here A denotes the matrix actually used in generating the Lanczos vectors,
thus including the case when we are solving a preconditioned linear system. We then
update n(A) dynamically, as follows. In each block, whenever an inner vector is built
because one of the checks (4.4)-(4.5) is not satisfied, the algorithm keeps track of the
size of the terms that have caused one or more of (4.4)-(4.5) to be false. If the block
closes naturally, then this information is not needed. If, however, the algorithm is
about to run out of storage, then n(A) is replaced with the smallest value which has
caused an inner vector to be built. The updated value of n(A) is guaranteed to pass
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the checks (4.4)-(4.5) at least once, and hence the block is guaranteed to close. This
also frees up the storage that was used by the previous block, thus ensuring that the
algorithm can proceed.

5. Implementation details. We now turn to a few implementation details. In
particular, we wish to show how one can implement the sequential algorithm with
the same number of inner products per step as the classical Lanczos algorithm. For a
regular step, one needs to compute 51, VA)n, and vIT_IA)n in (3.8). For an inner

step, one needs to compute I_lAOn in (3.9) and to update in (3.10). We will
show that for a block of size h, only 2h inner products are required: 2h 1 will be
required to compute , and one inner product will be required to compute VTAn.
We will obtain IlA)n without performing any inner products. To simplify the
derivations, we will use the "monic" vectors vn and wn. All quantities involving the
scaled vectors On and n can be obtained from the corresponding quantities involving
v and Wn simply by scaling. Finally, we remark that, using a similar argument as in
(5.1) below, one easily verifies that

WlTAvn v1TATwn and W_IAVn v1T_IATWn

the coefficients TTATn and [-_TT_IAT@n which occur in theTherefore, recur-

sions for the left Lanczos vectors in (3.8) or (3.9), can be generated from
and --llfid1AOn, without computing any additional inner products.

First consider St. Using (2.9) and the fact that polynomials in A commute, we
deduce that

(5.1) wT vj wTl i(A).i(A)vl wTI y(A)i(A)vl wyv.
This shows that the matrix 5t is symmetric, and hence we only need to compute its
upper triangle.

We will now show that once the diagonal and first superdiagonal of 51 have been
computed by inner products, the remaining upper triangle can be computed by recur-
rences. Let wi and vy be two vectors from the current block. Using (3.6) and the fact
that the inner vectors from block are orthogonal to the vectors from the previous
block, we have

Thus, wTv. depends only on elements of 5t from the previous two columns, and hence,
with the exception of the diagonal and the first superdiagonal, can be computed with-
out any additional inner products. Note that the recurrences and the orthogonality
used in the above derivation are enforced numerically, and so computing wTvj by
the above recurrence should give the same results--up to roundoff--as computing the
inner product directly.

We will now show how to compute W[cAv, with only one additional inner product,
while wIT_IAV can be obtained with no additional inner products. Consider wTAv,
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for w a vector from either the current or the previous block. Then, we have

wT Avn (ATwi)TVn (Wi+l -}- iWi "" 17iWi-1)TVnTw+v + wTv + wT_lV.

For < nt- 1, W_lvn O, and hence wTAvn O. For i nt-1, the above
T ,Avn Treduces to wm_ wm v,, which is computed as part of the first row of tit. For

nt <_ i < nt+,, all of the terms needed are available from tit. Finally, for the last
vector in the current block, i nt+, 1, we do not have win+iT Vn, and hence have to
compute it directly, thus requiring another inner product.

6. Numerical examples. We have performed extensive numerical experiments
with our implementation of the look-ahead Lanczos algorithm, both for eigenvalue
problems and for the solution of linear systems. In this section, we present a few
typical results of these experiments. Further numerical results are reported in [12]
and [13].

Approximations to the eigenvalues of A can be obtained from the look-ahead
Lanczos algorithm by computing some or all of the eigenvalues of the Lanczos matrix
/:/(n), the so-called Ritz values. In general, spurious approximate eigenvalues, caused
by a loss of orthogonality among the Lanczos vectors, can occur among the Ritz val-
ues. This phenomenon is not due to the nonsymmetry of the matrix A; indeed, it also
appears in the symmetric Lanczos process. We have used the heuristic due to Cullum
and Willoughby [6] to identify and eliminate spurious Ritz values. Although this pro-
cedure was originally proposed for the scalar tridiagonal matrices generated by the
standard Lanczos process, we also found it to work satisfactorily for the block tridiag-
onal matrices/:/(’) produced by the look-ahead Lanczos algorithm. The eigenvalues
of/:/() were always computed using standard EISPACK routines.

For the solution of nonsingular linear systems

(6.1) Ax b,

we combine the look-ahead Lanczos algorithm with the QMR approach. More pre-
cisely, let xo E CN be any initial guess for (6.1) and choose the normalized starting
residual vector

)1 rO/PO, ro b- Axo, Po I1oll,

as the first right Lanczos vector in Algorithm 3.1. The QMR method then generates
approximate solutions to (6.1) defined by

(6.2) Xn xo + (n)zn, n 1, 2,...,

where z is the solution of the least-squares problem

min Ilpoe,- (n)zl[ e, "= [1 0(6.3)
zC II II

0 ]T E ](n+l).

We remark that, using (3.7), one easily verifies that the residual vector corresponding
to the iterate (6.2) satisfies

(6.4) rn := b- Ax (+’) (poe, [4()z )
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Thus the choice (6.3) of z just guarantees that the Euclidean norm of the coefficient
vector in the representation (6.4) is minimal. For details and further properties of the
QMR method, we refer to [13].

Example 6.1. This example is an eigenvalue problem, taken from [6]. Consider
the differential operator

iu

on the unit square (0, 1) (0, 1). We discretize (6.5) using centered differences on a
29 29 grid with mesh size h 1/30. This leads to a nonsymmetric matrix of order
N 900. Unit vectors with random entries were used as starting vectors 01, 1 for
Algorithm 3.1. The look-ahead Lanczos process was run for 320 steps, during which
it built seven blocks of size 2. In Fig. 6.1, we plot the Ritz values (marked by "o")
generated by the look-ahead Lanczos process after n 40, 80, 160, 320 steps. We
note that after 40 steps, the complex conjugate pair of Ritz values with maximal real
part had converged to eigenvalues of A. After 80 steps, 12 Ritz values (all on the right
edge of the spectrum) had converged, while after 160 steps the 30 Ritz values (24 on
the right edge and 6 on the left edge of the spectrum) had converged to eigenvalues of
A. In many cases, the standard and the look-ahead Lanczos procedures give similar
results. In particular, for this example, the results obtained from both the standard
and the look-ahead Lanczos algorithm match those reported in [6].

Example 6.2. This example is an eigenvalue problem, taken from [24], whose
exact eigenvalues are known. Generally, problems of this type arise in modeling
concentration waves in reaction and transport interaction of chemical solutions in a
tubular reactor. The particular test problem used here corresponds to the so-called
Brusselator wave model. This example was run for a matrix A of size N 100.
Again, unit vectors with random entries were used as starting vectors 0, )1. The
look-ahead Lanczos algorithm needs n 112 steps to obtain all the eigenvalues of A;
it built two blocks of size 2. For this example, we have also run the standard Lanczos
process without look-ahead, and computed the Ritz values after n 100, 112, 120
steps. The denominators Twn Wn were checked to exceed V in magnitude. In all
three cases, some of the Ritz values obtained from the standard Lanczos process after
deleting spurious eigenvalues do not correspond to any of the eigenvalues of A. In
particular, the standard Lanczos process does not obtain the smallest eigenvalues of
A even after 120 steps, and generates incorrect Ritz values, as shown in the plot. In
Fig. 6.2, we plot the Ritz values generated by the look-ahead Lanczos process (marked
by "o") and the Ritz values generated by the standard Lanczos process (marked by
"+"), both after 120 steps.

Example 6.3. Here we consider a 6-cyclic matrix

(6.6) A

11 0 0 0 0

B2 I2 0 0 0
0 B3 I3 0 0
0 0 B4 I4 0

0 0 0 B5 I5
o o o o

B1
0

0

0

0
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FIG. 6.1. Ritz values for Example 6.1, obtained after n 40, 80,160, 320 steps of the look-ahead
Lanczos algorithm.

where the diagonal blocks 11, 12, 13, 14, 15, and 16 are identity matrices of size
827, 844, 827, 838, 831, and 838, respectively, so that A is a matrix of order
N 5005. This matrix arises in Markov chain modeling. For general p-cyclic ma-
trices A of the form (6.6), Freund, Golub, and Hochbruck [10] have shown that work
and storage of the look-ahead Lanczos process can be reduced to approximately l/p,
as compared to arbitrary starting vectors, if vl and wl have only one nonzero block
conforming to the block structure of A. Here, we have chosen

0
if;l=

0

where fl, gl E ]1827 have random entries. The look-ahead Lanczos algorithm gener-
ates blocks that alternately have sizes 1 and 5, starting with a block of size 1. In Fig.
6.3, we plot the Ritz values (marked by "o") generated by the look-ahead Lanczos
process after n 40, 80, 160, 320 steps. The standard Lanczos algorithm without
look-ahead generates one Ritz value 1 in the first step, and then breaks down in the
second step. Clearly, this example shows that the use of look-ahead is crucial if one
wants to exploit the special structure of p-cyclic matrices.

Example 6.4. Here we solve a linear system (6.1) where A is the SHERMAN5
matrix taken from the Harwell-Boeing test collection of sparse matrices [8]. The
matrix is of dimension N 3312 and has 20793 nonzero elements. The right-hand
side b in (6.1), as well as the first left Lanczos vector 1 were generated as different
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FIG. 6.2. Ritz values (marked by "o," respectively "+") for Example 6.2, obtained from the
look-ahead, respectively standard, Lanczos algorithm.

unit vectors with random entries, and we set x0 0 and 31 r0 b. The QMR
method takes n 1652 steps to reduce the norm of the initial residual by a factor of
10-6; see Fig. 6.4, where the residual norm Iir,ll is plotted versus n (solid line). The
underlying look-ahead Lanczos algorithm built 34 blocks of size 2 and 7 blocks of size
3. We would like to stress that, for this example, look-ahead is crucial. Indeed, if
look-ahead is turned off, then QMR based on the standard Lanczos algorithm does
not converge. The corresponding stagnating residual norms (dashed line) are also
depicted in Fig. 6.4.

Example 6.5. Here we consider the partial differential equation

(6.7)

where

Lu= f on (0,1) x (0,1) x (0,1),

Lu
Ox

ezy -x -y exy -y exy

+ (x+y+z)OU ( 1+ + l+x+y+z

with Dirichlet boundary conditions u 0. The right-hand side f is chosen such that

u=(1-x)(1-y)(1-z)(1-e-) (1-e-y) (1-e-z)
is the exact solution of (6.7). We set the prameters in (6.7) to 30 nd 7 -250,
and then we discretize (6.7) using centered differences on a uniform 15 x 15 x 15
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FIG. 6.3. Ritz values for Example 6.3, obtained after n 40, 80, 160,320 steps of the look-ahead
Lanczos algorithm.

grid with mesh size h 1/16. This leads to a linear system (6.1) with coefficient
matrix A of order N 3375 and 22275 nonzero elements. The QMR iteration was
started with x0 0. For the first pair of Lanczos vectors, we have chosen 1
)1 b/llbll in Algorithm 3.1. The QMR approach takes n 149 steps to reduce the
norm of the initial residual by a factor of 10-6; see Fig. 6.5, where the relative norm
Ilrnll/IIr011 is plotted versus n (solid line). For this run, the underlying look-ahead
Lanczos algorithm built three blocks of size 2. Next, we note that the matrix A
is just the one used in Example 4.2. Recall that the look-ahead Lanczos algorithm
based on the check (4.1) with tolerance tol= el/4 6.0E-08 encountered an artificial
incurable breakdown. We also ran QMR based on this version of the look-ahead
Lanczos algorithm, and the resulting convergence curve is shown as the dotted line
in Fig. 6.5. Notice that, due to the artificial incurable breakdown, QMR does not
converge in this case (cf. Fig. 4.2). Finally, we remark that QMR based on the
standard Lanczos algorithm without look-ahead also converges for this example and
gives a curve similar to the solid line in Fig. 6.5.

7. Conclusion. We have proposed an implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices. Our implementation can handle look-ahead
steps of any length. Also, the proposed algorithm requires the same number of inner
products as the standard Lanczos process without look-ahead. It was our intention
to develop a robust algorithm which can be used in a black box.

FORTRAN 77 codes of our implementation of the look-ahead Lanczos algorithm
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FIG. 6.4. Residual norm I111 plotted versus n for Example 6.4.
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FIG. 6.5. Relative residual norm I1,’,,11/11,’oll plotted versus n for Example 6.5.
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and the QMR method are available electronically from the authors (na.freund@na-
net.ornl.gov or na.nachtigal@na-net.ornl.gov).
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WAVELET-LIKE BASES FOR THE FAST SOLUTION OF
SECOND-KIND INTEGRAL EQUATIONS*

B. ALPERT, G. BEYLKIN$, R. COIFMAN, AND V. ROKHLIN

Abstract. A class of vector-space bases is introduced for the sparse representation of discretiza-
tions of integral operators. An operator with a smooth, nonoscillatory kernel possessing a finite
number of singularities in each row or column is represented in these bases as a sparse matrix, to
high precision. A method is presented that employs these bases for the numerical solution of second-
kind integral equations in time bounded by O(n log2 n), where n is the number of points in the
discretization. Numerical results are given which demonstrate the effectiveness of the approach, and
several generalizations and applications of the method are discussed.

Key words, wavelets, integral equations, sparse matrices, fast numerical algorithms
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Introduction. Integral equations are a well-known mathematical tool for for-
mulating physical problems. As a numerical tool they have several strengths (good
conditioning, dimensionality reduction, and the ability to treat arbitrary regions),
but have one overriding drawback: the high cost of working with the associated dense
matrices. For a problem requiring an n-point discretization, the inverse of a dense
n n matrix must be applied to a vector. Even to apply the matrix itself to a vector
requires order O(n2) operations; application of its inverse by a direct (noniterative)
method requires order O(n3) operations. If an iterative method is employed, the num-
ber of iterations depends on the condition number of the problem and each iteration
requires application of the n n matrix. For large-scale problems, the resulting costs
are often prohibitive.

In recent years a number of algorithms ([5], [10], [11], [14]) have been developed
for the fast application of linear operators naturally expressible as dense matrices, the
best known of which are the particle simulation algorithms developed by Greengard
and Rokhlin [10]. These schemes combine low-order polynomial interpolation of the
function, which defines the matrix elements with a divide-and-conquer strategy. They
achieve (the equivalent of) order O(n) application of a dense n n matrix to a vector.

Over a somewhat longer period, mathematical bases have been constructed with
certain multiscale properties. Families of functions ha,b,

ha,b(X) ,a.-1/2 h(X b) a, bER, he0,
a

derived from a single function h by dilation and translation, which form a basis for
L(R), are known as wavelets (Grossman and Morlet [12]). These families have
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been studied by many authors, resulting in constructions with a variety of properties.
Meyer [13] constructed orthonormal wavelets for which h e Ca(R). Daubechies [7]
constructed compactly supported wavelets with h E Ck(R) for arbitrary k, and [7]
gives an overview and synthesis of the field.

A recent paper [6] establishes a connection between the fast numerical algorithms
and the multiscale bases. It introduces the use of wavelets for the application of an
integral operator to a function in O(n log n) operations, where n is the number of
points in the discretization of the function. Alpert’s thesis [4] gives an earlier report
of the present work. Another paper [2] constructs a class of simple wavelet-like bases
for L2[0, 1] in which a variety of integral operators are sparse. In the present paper,
rather than employ a wavelet basis for L2, we construct a class of bases that transform
the dense matrices resulting from the discretization of second-kind integral equations
into sparse matrices. The n n matrices resulting from an n-point discretization are
transformed into matrices with order O(n log n) nonzero elements (to arbitrary finite
precision). In these bases, the inverse matrices are also sparse, and are obtained in
order O(n log2 n) operations by a classical iterative method (due to Schulz [15]).

The method of this paper was developed with the aim of solving integral equa-
tions resulting from problems in potential theory, characterized by integral kernels
that are smooth apart from diagonal singularities. In these problems, when high fre-
quency modes have a significant presence in the given field (the right-hand side of the
equation), a large number of points will be required in the discretization. The dis-
cretization must also be maintained for the integral operator, which dictates the need
to solve a large-scale system of equations. If, instead, one has an integral operator
with a globally smooth kernel, no large-scale system is required. In this case a direct
method is entirely adequate, and preferable to the method given here.

In 1 we present the mathematical construction of the new bases. In 2 we briefly
introduce Nystrhm’s method for the solution of integral equations, and show how
the wavelet-like bases result in sparse representation of integral operators and their
inverses. We demonstrate that the Schulz method of matrix inversion is efficient
in this context. In 3 we present the numerical algorithms for computation of the
new bases, transformation of an integral operator into the bases, and computation
of its inverse, and we analyze the time complexity of these algorithms. A variety
of numerical examples are presented in 4 to demonstrate the effectiveness of the
approach, and generalizations and applications are discussed in 5.

1. Wavelet-like bases.

1.1. Properties of the bases. Given a set of n distinct points S (xl, x2,...,

x c R (the discretization) we construct an orthonormal basis for the n-dimensional
space of functions defined on S. For simplicity, we assume that n k. 2Z, where k and
are positive integers, and that X < x2 < < x. The basis has two fundamental

properties:
1. All but k basis vectors have k vanishing moments; and
2. The basis vectors are nonzero on different scales.

Figure 1 illustrates a matrix of basis vectors for n 128 and k 4. Each row
represents one basis vector, with the dots depicting nonzero elements. The first k
basis vectors are nonzero on Xl...X2k, the next k are nonzero on X2k-}-l...,X4k
and so forth. In all, one-half of the basis vectors are nonzero on 2k points from S,
one-fourth are nonzero on 4k points, one-eighth are nonzero on 8k points, etc. Each
of these n/2 + n/4 -}- n/8 +...-+- k n k basis vectors has k zero moments, i.e., if
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FIG. 1. The matrix represents a wavelet-like basis for a discretization with 128 points, for
k 4. Each row denotes one basis vector, with the dots depicting nonzero elements. All but the

final k rows have k vanishing moments.

b (bl,..., b) is one of these vectors, then

n

E bi xi
y

i--1

=0, j=O,l,...,k-1.

The final k vectors result from orthogonalization of the moments (xlJ,x2J,... ,Xnj)
for j 0, 1,...,k- 1.

These properties of local support and vanishing moments lead to efficient rep-
resentation of functions that are smooth except at a finite set of singularities. The
projection of such a function on an element of this basis will be negligible unless the
element is nonzero near one of the singularities. As a simple example, we consider the
function f(x) -log(x) on the interval [0, 1] with the uniform discretization x- i/n.
A hand calculation shows that for any c > 0, f may be interpolated on the interval
[c, 2c] by a polynomial of degree 7 with error bounded by 4-9, or roughly single pre-
cision accuracy. If we choose k 8 in constructing the basis, f will be represented to
this accuracy by the k basis vectors nonzero on Xl,..., X2k, the k basis vectors nonzero
on x,..., xak, and so forth, down to the k basis vectors nonzero on x,..., Xn, in
addition to the k orthogonalized moment vectors. The number of nonnegligible co-
efficients in the expansion of f in this basis grows logarithmically in n, the number
of points of the discretization. Although this example is idealized, its behavior is
representative of the general behavior of an analytic function near a singularity.

1.2. Construction of the bases. The conditions of "local" support and zero
moments determine the basis vectors uniquely (up to sign) if we require somewhat
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more moments to vanish. Namely, out of the k vectors nonzero on x1,..., X2k, we
require that one have k vanishing moments, a second have k / 1, a third have k / 2,
and so forth, and the kth have 2k-1 vanishing moments. We place the same condition
on the k basis vectors nonzero on x2k+l,... ,X4k, and so on, for each block of k basis
vectors among the n- k basis vectors with zero moments.

We construct the basis by construction of a finite sequence of bases (shown
in Fig. 2), each obtained by a number of orthogonalizations. The first basis re-
sults from n/(2k) Gram-Schmidt orthogonalizations of 2k vectors each. In particu-
lar, the vectors (xlJ,... ,x2kJl for j 0,..., 2k- 1 are orthogonalized, the vectors
Ix2k+Y,... ,Xak) for j 0,... ,2k- 1 are orthogonalized, and so forth, up to the
vectors (x,_2k+:,..., XnJl for j 0,..., 2k 1, which are orthogonalized.

FIG. 2. Each of the four matrices represents one basis, as in Fig. 1. The upper-left matrix is

formed by orthogonalizing moment vectors on blocks of 2k points. The upper-right matrix is obtained

from the upper-left matrix by premultiplying by an orthogonal matrix which is the identity on the
upper half. Similarly, the lower matrices are obtained by further orthogonal transformations. The
lower-right matrix represents the wavelet-like basis for n 64, k 4.

Half of the n vectors of the first basis have at least k zero moments; in forming
the second basis, these vectors are retained; the remaining n/2 basis vectors are trans-
formed by an orthogonal transformation into basis vectors, each of which is nonzero
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on 4k of the points Xl,..., xn, and half of which have at least k vanishing moments.
The orthogonal transformation results from n/(4k) Gram-Schmidt orthogonalizations
of 2k vectors each. Similarly, the third basis is obtained from the second basis by an
orthogonal transformation that itself results from n/(8k) Gram-Schmidt orthogonal-
izations of 2k vectors each. Before we can specify these orthogonalizations, we require
some additional notation.

Suppose that V is a matrix whose columns vl,..., V2k are linearly independent.
We define W=Orth(V) to be the matrix that results from the column-by-column
Gram-Schmidt orthogonalization of V. Namely, denoting the columns of W by
Wl W2k we have

linear span{wl,...,wi} --linear span{vl,...,vi},
i,j 1,...,2k.

wTwj j,

For a 2k x 2k matrix V we let Vv and VL denote two k x 2k matrices, Vv consisting
of the upper k rows and VL the lower k rows of V,

V--
vL

Now we proceed to the definition of the basis matrices. Given the set of points
S {Xl,...,Xn} C R with x < < Xn, where n k. 21 we define the 2k x 2k
moments matrices Ml,i for 1,..., n/(2k) by the formula

(i)

1 xs+l Xs+l
2k-1

1 Xs+2 Xsi+22k-1

1 Xsi+2k Xsi+2k
2k-1

where si (i- 1)2k. The first basis matrix U1 is the n x n matrix given by the
formula

Vl,1

Vl,2

Vl,2

Ul,n L

Vl,nlU

where Vl,iT Orth(Ml,i) and 71 n/(2k). The second basis matrix is U2U1, with
U2 defined by the formula
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where Im is the m m identity matrix and the n/2 n/2 matrix U is given by the
formula

V2,1U

L

U2,2U

V2,n L

V2,n u

where n2 n/(4k), U2,iT Orth (M2,i), and the 2k x 2k matrix M2, is given by

( U1,2-IUM1,2-I )M, U,M,
for 1,... ,n/(4k). In general, the jth basis matrix, for j 2,... ,log2(n/k), is
Uj... U1, with Uj defined by the formula

where U is given by the formula

Uj’I L

Uj,1U

L

U

L

\ Uj,nj u

where nj n/(2Jk); Uy, is given by

(2) Uy,,T Orth(Mj,);

and My, is given by

(3) Mj,i ( Uj-l’2i-lUMj-l’2i-1 )gj-l,2iUMj-l,2i

for 1,...,n/(2Jk). The final basis matrix U U...U1, where log2(n/k),
represents the wavelet-like basis of parameter k on x1,..., Xn. Note that the matrices
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U and Uj are of dimension n x n, U is it/2j-1 x n/2j-1 Vj,i and Mj,i are 2k x 2k,
and U.L. and U.v.

3,, 3,,
are k x 2k.

Remark 1.1. The definitions given for the basis matrices are mathematical defini-
tions only; in a numerical procedure, considerable roundoff error would be introduced
by the orthogonalizations defined above. In the actual implementation, the matri-
ces Mj,i are shifted and scaled, resulting in a numerically stable procedure that is
equivalent to the above definitions (in exact arithmetic). Details of this procedure are
provided in 3.

It is apparent that the application of the matrix U to an arbitrary vector of length
n may be accomplished in order O(n) operations by the application of U1,..., Ut in
turn. Similarly, U-1 UT may be applied to a vector in order O(n) operations.
Certain dense matrices, in particular those arising from integral operators, are sparse
in the basis of U and their similarity transformations can be computed in O(n log n)
operations. These techniques are developed in the following sections.

Figure 3 illustrates the vectors of one basis from this class.

FIG. 3. Basis vectors on four scales are shown for the basis where n 128, points Xl,..., Xn
are equispaced, and k 8. The first column of vectors consists of rows 1-8 of U, the second column
consists of rows 65-72, etc. Note that half of the vectors are odd and half are even functions, and
that the odd ones are generally discontinuous at their center.
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2. Second-kind integral equations.

2.1. Nystrbm method. A linear Fredholm integral equation of the second kind
is an expression of the form

(4) f(x) K(x, t) f(t) dt g(x),

where the kernel K is in L2[a, b] 2 and the unknown f and right-hand side g are in
L2[a, b]. We use the symbol/C to denote the integral operator of (4), which is given
by the formula

(CJ’)(z) K(, t) I(t) dr,

for all f e L2[a, b] and x e [a, b]. Then (4), written in operator form, is

(5) (I- E)f g.

The NystrSm, or quadrature, method for the numerical solution of integral equations
approximates the integral operator by the finite-dimensional operator R, charac-
terized by points x, x2,..., xn [a, b] and weights w, w2,..., wn R, and given by
the formula

n

(6) (Rf)(x) wj K(x, xj) f(xj),
j=l

for all f e L2[a,b] and x e [a, b]. Substitution of R for E in (5), combined with
the requirement that the resulting equation holds for x x, x2,..., x, yields the
following system of n equations in the n unknowns f, f2,..., fn:

n

(7) fi wj g(xi, xj) fj g(xi), i 1,..., n.
j:l

The approximation (,..., f) to the solution f of (4) may be extended to all
x [a, b] by the natural formula

n

(8)
i=1

which satisfies fn(xi) fi for 1,..., n. How large is the error en f- fn of
the approximate solution? We follow the derivation by Delves and Mohamed in [8].
Rewriting (7) in operator form, we have

(9)

and combining (5) and (9) yields (I-
exists, we obtain the error bound

(10) I111 I1(I- )-Xll" I1(- R)fll,

The error depends, therefore, on the conditioning of the original integral equation,
is apparent from the term I1(I- )-Xll, and on the fidelity of the quadrature R to the
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integral operator ]C. It is not necessary that I1- RII be small, rather merely that R
approximate K; well near the solution f. Quadrature rules that have this property, but
that are defined only on the points x1,..., xn, are developed in [3]. In these rules the
quadrature weights wj of (6) become wij, which depend on the point of definition xi,

for i 1,..., n. The quadrature rules converge rapidly for kernels with singularities
of known location and type. These rules are used below in the numerical examples of
4.

2.2. Sparse representation of integral operators. We concern ourselves
here with kernels K K(x, t), which are analytic except at x t, where they possess
an integrable singularity. We initially discretize the integral operator using a simple
equispaced quadrature. Given n _> 2, we define points x1,..., xn to be equispaced on
the interval [a, b],

(11) xi a + (i 1)(b- a)/(n 1),

and define the elements Tij of the n x n matrix T by the formula

f n-_lK(Xi,Xj), i j,
(12) T

0, i =j.

Note that the matrix T T(n) corresponds to a primitive, trapezoid-like quadrature
discretization of the integral operator K:. The matrix T possesses the same smoothness
properties as the kernel K(x,t). Transformation of T by the bases developed in

1 produces a matrix that is sparse, to high precision. The number of elements is
effectively bounded by order O(n log n).

When the matrix representing the quadrature corrections developed in [3] is added
to T, producing high-order convergence to the integral operator, this complexity
bound remains valid.

The matrix T, transformed by the orthogonal n x n matrix U, can be decomposed
into the sum of a sparse matrix and a matrix with small norm. Given e > 0, there
exists c > 0, independent of n, such that the transformed matrix can be written in
the form

UTUT V + E,

where the number of elements in V V(n)is bounded by c n logn and E E(n)
is small: IIEII < e IITII. We do not prove this assertion here; the proof parallels the
proofs of similar statements in [2], but is somewhat more tedious.

2.3. Solution via Schulz method. The sparse matrix representing the integral
operator also has a sparse inverse, which can be computed rapidly.

Schulz’s method [15] is an iterative, quadratically convergent algorithm for com-
puting the inverse of a matrix. Its performance is characterized in the following
lemma.

LEMMA 2.1. Suppose that A is an invertible matrix, Xo is the matrix given by
Xo AH/IIAHAll, and.for m O, 1, 2,... the matrix Xm+ is defined by the recursiou

Xm-t- 2Xm X,AX,

Then Xm+ satisfies the formula

(13) I- Xm+A (I- XmA)2.
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Furthermore, Xm A-1 as m --. oc and for any e > 0 we have

(14) III- X.AII < provided m > 2log2 (A) + log2 log(l/e),

where a(A) IIAII" IIA-II is the condition number of A and the norm is given by
IIAII- (largest eigenvalue of AHA)/2.

Proof. Equation (13) is obtained directly from the definition of X,+I. Bound
(14) is equally straightforward. Noting that AHA is symmetric positive-definite and
letting A0 denote the smallest, and A1 the largest, eigenvalue of AHA we have

(15)
III- XoAII

From (13) we obtain I XmA (I- XoA)2m which in combination with (15) and
simple manipulation yields bound (14). v1

The Schulz method is a notably simple scheme for matrix inversion and its conver-
gence is extremely rapid. It is rarely used, however, because it involves matrix-matrix
multiplications on each iteration; for most problem formulations, this process requires
order O(n3) operations for an n n matrix. We observe, however, that a sparse ma-

trix, possessing a sparse inverse, whose iterates Xn are also sparse, may be rapidly
inverted using the Schulz method. We have seen above that a discretized integral
operator I- T, similarity-transformed to the representation A I- UTUT, has only
order O(nlogn) elements (to finite precision). In addition, ATA and (ATA)" are
similarly sparse. This property enables us to employ the Schulz algorithm to compute
A-1 in order O(nlog2 n) operations.

2.4. Oscillatory coefficients. We now consider a somewhat more general class
of integral equations, in which the integral operator is given by the formula

(DCJ’)(x) p() K(x, t) I(t) dr,

where the kernel K is assumed to be smooth, but the coefficient function p can be
oscillatory. In particular, we only restrict p to be positive. In terms of generality, these
problems lie between the problems with smooth kernels (and constant coefficient) and
those with arbitrary oscillatory kernels.

Writing the corresponding integral equation in operator form, we obtain the equa-
tion

(16) (I- D1C)f g.

Although D is a diagonal operator, and/C is smooth, it is clear that the discretiza-
tion of the operator DE will not be a sparse matrix in wavelet coordinates. In this
framework, it would appear that the construction of this paper is inapplicable. If
we instead consider the operator D1/2D1/2, in which oscillations in the rows match
those in the columns, it becomes clear that the construction of 1 can be revised.
Rather than constructing basis functions orthogonal to low-order polynomials xJ, we
can construct them to be orthogonal to p(x) 1/2 xj. The sole revision in our definition
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of basis matrices U1,..., U is to replace the definition (1) of the moments matrices

Ml,i for i 1,..., n/(2k), by the new definition

Ps+l 0 0 1 Xs-t-1 Xs+l
2k-1

0 Psi+2 0 1 Xs-t-2 Xs-t-22k-1

0 0 Ps+2k 1 Xs4_2k Xs+2k
2k-1

where si--(i- 1)2k and pj -p(xj)/2.
Now the integral equation (16) can be transformed to the equation

(I- D/21CD/2)(D-I/2f) (D-/2g),

which is discretized to a system that is sparse in the revised wavelet-like coordinates.
The inverse matrix is also sparse.

3. Numerical algorithms. In 1 we defined a class of bases for functions de-
fined on {x,...,xn}, and in 2 we showed that, to finite precision, second-kind
integral operators and their inverses are asymptotically sparse in these bases. In this
section we present procedures for computation of the bases, discretized integral oper-
ators in these bases, and the inverses of these operators. In 4 we give some numerical
examples based on our implementations of these procedures.

The computation of the new bases is discussed next, followed by a discussion of
the transformation of the integral operators to the new bases. We defer discussion
of the computation of the inverses, sketched above, to 3.3, which contains detailed
descriptions of all of the algorithms. Finally, 3.4 gives the complexity analysis for
the algorithms.

3.1. Computation of wavelet-like bases. It was mentioned in 1 that the
mathematical definition of U,..., U, if used directly, would result in a numerical
procedure that would create large roundoff errors. A correct procedure is obtained
by shifting and scaling the matrices Mj, defined there.

For a pair of numbers (#, a) e R (R\{0}) we define a 2k 2k matrix S(#, a)
whose (i, j)th element is the binomial term

(17) S(#,a)i,y=
i 1 a-for _< j, and S(#, cr)i,j 0 otherwise. The matrix S(#, a) is upper-triangular and

nonsingular, and its inverse is given by the formula

(18) S(#, a)- S(-#/a, 1/a).

Furthermore, the product formula

(19) S(1, (:yl)S(2, 0"2) S(1 -]- 201,0102)

is easily verified.
We define M},i for j 1,..., and i= 1,..., n/(2Jk) by the formula

(20)
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where uj, (Xl+(-l)k2J + xk2J)/2,a:i, (xik2# -xl+(i-1)k2J)/2, and the matrix
Mj,i is defined by (1) and (3) in 1. The matrix Ui, is given by the formula

(21) U,,T Orth(M,),
which is equivalent to the definition given by (2). This equivalence immediately follows
from the fact that S(#, a) is upper-triangular and nonsingular.

The matrices M for i 1, n/(2k) are actually computed by the formula1,i

UI, UI,

(
(22) M, Ul,i Ul,i

1 ,+2-1,, (x2..71,)2k-1
wh , (-)e. Likewise, th tris M,, or e,..., ,d 1,..., ,/(ek)
are computed by the formula

(23) M,i
Uj_,2i_ M_l,2i_

U 2v_,, M_,,

where S,i and Si are defined by the formulae

(a) ,, s(u_,,_l,_,:,_)-s(u,,,,,),
(5) s,, s(_1,,, _,)-(,,, ,,).

Application of the inverse and product rules given in (18) and (19) to (24) and (25)
yields formul by which S), and Sj.i can be computed:

(26) S),i S((j,i- j-t,2i-t)/a-t,2i-, aj,i/aj-t,2i-),

(2) s, s((,,,- -1,,)/-1,,, ,,/-,,).

The matrices M, given by (22) and (23) are eily seen to be mathematically
equivalent to those defined by (20); nonetheless, computation of M, using (22) and
(23) avoids the large roundoff errors that would otherwise result.

3.2. ansformation to wavelet-like bases. We sume that for equispaced
points x,...,xn (defined in (11)) and some k, the orthogonal matrices U,...,U
defined in 1 have been computed (1 log2(n/k)). We now present a procedure for
computation of UTUT, where U U... U and T is the discretized integral operator
defined in (12).

3.2.1. Simple example. We begin with a simplified example in which T is
replaced by an n n matrix V of rank k whose elements j are defined by he
equation

k k

r:l s:l
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Each row and each column of V contains elements that are the values of a polynomial
of degree k- 1. The matrix V can be written as V pTAp, where the elements
of the k n matrix P are defined by Pij xj

i-1 and A is the k k matrix with
elements Aij. Recalling that the last k rows of the basis matrix U consist of an
orthogonalization of the moment vectors (xlJ,... ,xn) for j 0,..., k- 1, we can
rewrite V as V (P’)TA’p’. Here the k n matrix P’ consists of the last k rows of
U and A’ is a new k k matrix with elements Aj.

By the orthogonality of U, it is clear that the nxn matrix UVUT U(p’)TA’P’UT
consists entirely of zero elements except the k x k submatrix in the lower-right corner,
which is the matrix A’. Given a function to compute elements of the n n matrix V,
the matrix A’ can be computed in time independent of n by using a k k extract of
values from V. We form the k k matrix V’ with elements V defined by the formula

Then V’ (P")TA’p", where P" is the k x k extract of P’ with elements given by

Pi’ P,j,/k" Thus we obtain

(29) A’-((P")T)-IV’(P")-I
from P" and V’ readily in O(k3) operations, and we have obtained UVUT.

3.2.2. General case. The integral operator matrix T is, of course, not of low
rank, but it can be divided into submatrices, each approximately of rank k (see Fig.
4). The submatrices near the main diagonal are of size k k, those next removed
are 2k 2k, and so forth up to the largest submatrices, of size n/4 n/4. The total
number of submatrices is proportional to n/k. Given an error tolerance e > 0, k may
be chosen (independently of n) so that each submatrix of T, say Ti, may be written
as a sum, T V +Ei, where the elements of V are given by a polynomial of degree
k- 1 and IIEII < ellTll.

The simplified example, in which the matrix to be transformed is of rank k, is now
applicable. Each submatrix of T is treated as a matrix of rank k and is transformed to
the new coordinates (for its own scale) in order O(k3) operations. To make this precise,
we write T To /... /-2 where Ti consists of the submatrices of size 2ik 2 k. For
each i, the submatrices of Ti may be interpolated by rank k submatrices, as indicated
by the extract of (28), to obtain matrices V. Thus T.-- V / E, where IIEill is small.
In the simplified example above, we have shown that the transformed matrices

(30)

W1 VlYl VlT,
W2 U2U1V2u1Tu2T,

can be computed by many applications of (29),. all in order O(nk2) operations. This
estimate follows from the fact that there are O(n/k) submatrices, each of which is
transformed in O(k3) operations. Now we define n n matrices R0,..., Rt recursively:

(31) R
Wo, i 0,

UR_ UT -+- W i >_ 1
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FIG. 4. The matrix represents a discretized integral operator with a kernel that is singular along
the diagonal. The matrix is divided into submatrices of rank k (to high precision) and transformed
to a sparse matrix with order O(n log n) elements. Here n/k 32.

(here Wl-1 Wl 0). Then R contains the final result, R U(T- E)UT, where
E Eo + + E_2.

The matrix-matrix products in the definition of R0,... ,R can be computed
directly, since the factors and the products contain no more than O(n log n) elements.
A simple implementation with standard sparse matrix structures results in a total
operation count of order O(n log2 n), but an implementation using somewhat more
elaborate data structures, in which repetitive handling of data is avoided, requires
only order O(n log n) operations.

Computation using the result Rl is made more efficient by removing the elements
ofR which can be neglected, within the precision with which R approximates UTUT.
For a given precision , we discard a matrix E’ by eliminating elements from R below
a threshold T. The threshold depends on the choice of norm; in our implementation,
we use the row-sum norm

IIAII max IA51,
./=1

for an n x n matrix A. The element threshold

(32)

clearly results in a discarded matrix E’ with IIE’II < IITII.
3.3. Detailed descriptions of algorithms.

PROCEDURE TO COMPUTE Vl,..., Vl
Comment [Input to this procedure consists of the number of points n, the number of
zero moments k, and the points xl,..., Xn. Output is the matrices Uj,i for j 1,...,
and i= 1,..., n/(2Jk), which make up the matrices U,..., Ul (note l= log2(n/k)).
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Step 1

Compute the shifted and scaled moments matrices M, for i 1,..., n/(2k) according
to (22).

Step 2

Compute Ul,i from M,i by (21) using Gram-Schmidt orthogonalization for i
1,...,

Step 3

Comment [Compute M, and Uj,i for j 2,..., and i= 1,..., n/(2Jk).
do j 2,...,1

do 1,...,n/(2Jk)
v andUj_ vCompute U_1,2_ Mj_,2i_ ,2 Mj_I,2.

Compute Sj, by (26) and S2, by (27);
multiply to obtain M, by (23).

Orthogonalize M,i to obtain Uj, by (21).
enddo

enddo

PROCEDURE TO COMPUTE UTUT
Comment [Input to this procedure consists of n, k, the matrices Uj, computed
above, a function to compute elements of T, and the chosen precision e. Output is a
matrix R such that IIR- UTUTII < ellTII.

Step 4

Compute the k k extracts, indicated by (28), of the submatrices of T shown in
Fig. 4.

Step 5

Extract the matrices P" (29) from U, U2U1,..., Ut-2... U and compute W0, WI-2
according to (30).

Step 6

Compute R0,..., Rt by (31), discarding elements below a threshold T determined by
the precision e (32).

PROCEDURE TO COMPUTE UT-1UT
Comment [Input to this procedure consists of n, the matrix Rt which approximates
UTUT, and the precision e. Output is a matrix Xm which approximates UT-UT.

Step 7

Compute the matrix X0 RtT/IIRtTRt by direct matrix multiplication, discarding
elements below a threshold T determined by the precision e (32).

Step 8

Comment [Obtain the inverse by Schulz iteration.

do m 0, 1,... while III- X,RtlI >_ e
Compute Xm+l 2Xm XmRtXm, discarding elements below threshold.

enddo
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3.4. Complexity analysis. In Table 1, we provide the operation count for each
step of the computation of UT-1UT.

TABLE 1

Step Complexity Explanation

1 O(nk)

2 O(nk)

3 O(nk2)

4 O(,k)

5 O(na)

6 O(nlogn)

7 O(n log2 n)

8 O(n log2 n)

Total O(n log2 n)

There are n/(2k)2k x 2k matrices; each element of the matrices is
computed in constant time.

For each of the n/(2k) matrices, perform a Gram-Schmidt orthogo-
nalization requiring order O(k3) operations.

For each of n/(4k)+n/(8k)+... + 1 n/(2k)- 1 matrices, compute
four products of a k 2k matrix with a 2k 2k matrix, construct
two 2k 2k matrices, and orthogonalize one 2k 2k matrix.

There are 6(1+3+7+...+(n/(2k)-l))+ 3(n/k)-2, or order O(n/k),
submatrices of T and for each matrix we compute k2 elements.

There are n/(2k)Tn/(4k)+... T 1 n/k- 1 matrices P", each the
product of two k k matrices. These are each inverted and multiplied
with the O(n/k) matrices of the previous step.

The diagonally banded matrix W0, which contains O(n) elements,
grows to O(n log n) elements by the computation of UWoUT, as can
be seen by simply examining pictures of W0 and U. The nonzero
elements of the transformed W1,..., W-2 are a subset of those of
W0.

Multiplication of two matrices, each with order O(n log n) elements,
to obtain a product with order O(n log n) elements.

Two multiplications like that of Step 7 are made per iteration; the
number of iterations is independent of n and given by bound (14).

4. Numerical examples. In this section we present operators from several inte-
gral equations, the discretization and transformation of the operators to our wavelet-
like bases, and the inversion of the operators via Schulz method.

4.1. Uncorrected quadratures. We first examine simple quadratures with
equal weights, except weight zero at the singularity, as represented by matrix T
T(n) defined by (12). We transform the matrix I- T to wavelet-like coordinates as
described in 3.2, then compute (I- T) -1.

These discretizations are not particularly useful for the solution of the integral
equations, due to their slow convergence to the integral operators. They nonetheless
make good illustrative examples, for they retain the smoothness of the operator kernels
and produce correspondingly sparse matrices. In the next section, we examine the
results of using high-order quadratures.

For various sizes n of discretization, we tabulate the average number of elements
per row in the transformed matrix U(I- T)UT and the computation time to ob-
tain the matrix. In addition, we display the average number of elements per row
of its inverse, and the time to compute the inverse. Finally, we show the error in-
troduced by these computations. The error is determined by the application of the
forward and inverse transformations to a random vector: Choose a vector v of length
n with uniformly distributed pseudorandom elements; compute (I- T)v directly, by
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a standard procedure requiring order O(n2) operations; transform to wavelet-like co-
ordinates, obtaining U(I- T)v; apply the computed value of U(I- T)-IUT to the
vector U(I- T)v; transform to original coordinates by application of uT; compare
the result v’ to v. The measure of error is the relative L2 error, defined by the formula

The programs to transform and invert, as well as those to determine the er-
ror, were implemented in FORTRAN. All computations were performed in double-
precision arithmetic on a Sun Sparcstation 1.

The first set of examples is for the kernel K(x, t) log Ix t[, for a wavelet-
like basis of order k 4 and various choices of precision e. The matrix sparsities,
execution times, and errors appear in Table 2. Although the sparse matrices are not
banded, we loosely refer to the average number of matrix elements per row as the
matrix bandwidth. We make the following observations.

TABLE 2
operator I ]C defined by the formula ((I ]C)f)(x) f(x) f: log Ix t[ f(t)The dt is dis-

cretized, transformed to the wavelet-like coordinates with k 4, and inverted. For various precisions
e and various sizes of discretization, we tabulate the average number of elements/row N1 of the ma-
trix in wavelet-like coordinates and the time in seconds to compute it, corresponding statistics N2
and t2 for the inverse, and the error (see text).

Transform. Inversion L2

N1 t N2 t2 Error

10-2

10-3

10-4

64 7.2 2 8.3 2 0.503E-02
128 5.9 3 6.5 4 0.257E-02
256 3.8 7 4.4 4 0.250E-02
512 2.8 13 3.1 6 0.236E-02
1024 1.9 26 2.1 6 0.227E-02
2048 1.4 49 1.4 6 0.221E-02
4096 1.2 97 1.2 8 0.221E-02
8192 1.1 195 1.1 12 0.217E-02

64 17.6 2 19.5 14 0.350E-03
128 18.1 5 20.0 36 0.270E-03
256 18.0 11 20.0 83 0.331E-03
512 14.5 21 15.7 123 0.257E-03
1024 13.3 41 15.5 262 0.340E-03
2048 8.5 73 9.8 287 0.233E-03
4096 5.8 131 6.5 304 0.222E-03
8192 3.7 242 4.4 312 0.221E-03

64 28.4 3 30.3 36 0.104E-03
128 32.1 6 34.3 111 0.140E-03
256 34.5 15 37.5 302 0.161E-03
512 33.1 31 35.8 618 0.177E-03
1024 30.2 63 33.6 1280 0.189E-03
2048 25.0 121 27.6 2040 0.192E-03

1. The bandwidths N1, N2 of the operator and its inverse decrease with increasing
matrix size. In other words, in the range of matrix sizes tabulated, the number of
matrix elements grows more slowly than the matrix dimension n.
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2. The operator matrix in wavelet-like coordinates is computed in time that grows
nearly linearly in n.

3. The inverse matrix is computed in time which grows sublinearly in n. This
is due to the fact that the cost of multiplying the sparse matrices is roughly order
O(nN2), for size n and bandwidth N. One result is that the cost sometimes drops as
n increases.

4. The accuracy is within the precision specified. In fact, due to the conservative
element thresholding (32), the actual error is considerably less than e.

5. The cost increases with increasing precision e, due to the increasing bandwidths
generated. The bandwidths increase approximately as log(l/e).

6. For k 4, our fast transformation algorithm does not maintain the speci-
fied precision of e 10-a. This anticipated result follows from the error estimate
for polynomial interpolation of logarithm on intervals separated from the origin. An
unanticipated attendant result is that the bandwidth increases as the quality of ap-
proximation deteriorates (compare to k 8, below). As a result, we did not complete
examples for n 4096, 8192.

7. The inversion of the 8192 8192 matrix preserving three-digit accuracy is
done in five minutes on the Sparcstation. This compares to 95 days (estimated) for
inverting the dense matrix by Gauss-Jordan and to 24 minutes for one dense matrix-
vector multiplication of that size.

The condition number of the problem, as approximated by the product of the
row-sum norms of U(I- T)UT and its computed inverse, is 3 (independent of size).
Five iterations were required by the Schulz method to achieve convergence.

In Fig. 5 we show stages in the transformation of the matrix I- T. In particular,
for e 10-3 and n 64, the matrices R0,... ,Rt-1 defined in (31) are shown. In
addition, for n 128, the transformed matrix U(I- T)UT and its inverse are shown
in Fig. 6.

In the next set of examples, for which results are displayed in Table 3, we used
the wavelet-like basis of order k 8. We observe the following.

1. The bandwidths of the operator matrix and its inverse are less for k 8 than
for k 4. The inversion times are correspondingly smaller.

2. The time required to compute the operator matrix is almost four times as large
as that for k 4. This is due to the cost of transforming the near-diagonal band,
which is twice as wide for k 8 as for k 4.

3. The obtained accuracy exceeds the specified precision consistently.
4. As for k 4, the scaling with size n is linear for the transformation step and

sublinear for the inversion step.
In the final set of examples in which uncorrected quadratures were used, we

perform computations for k 4 and e 10-3, with various operator kernels. Table 4
presents the results. The first three kernels contain singularities of the types s(x)
log(x) and s(x) xa for a +1/2, and are nonsymmetric and nonconvolutional. It
is readily seen that the bandwidth is strongly dependent on the type of singularity,
with the singularity x-1/2 producing the greatest bandwidth. We mention also that
this particular integral equation is poorly conditioned; the condition numbers of the
discretizations for n 64, 128,256,512, 1024 are 9, 17, 34, 98,469, respectively.

The fourth kernel provides an example with an oscillatory coefficient p(x)
sin(100x)). The bases developed in 2.4, which depend on p, are used to(1+

transform the discretized integral operator to sparse form. We see in Table 4 that the
inverse is also very sparse.



FAST SOLUTION OF SECOND-KIND INTEGRAL EQUATIONS 177

":.:.’ .’::i’.:..’:::
:.:

:.:." :::i’.’.:::
".o. :::i-.

FIG. 5. The matrices constructed in the transformation of I- T, matrices R0,..., R3 defined
in (31), are shown for kernel g(x, t) log Ix tl, e 10-3, and n 64. Matrix R4 looks like R3
and is not shown.

4.2. Solution of integral equations. In the preceding subsection, we exam-
ined the characteristics of various integral operators and their inverses in wavelet-like
coordinates. We used completely straightforward discretizations; the quadratures rep-
resented sums of the integrands at equispaced points (excluding singular points). Such
simple quadratures converge too slowly to the integral operators to be of much use in
solving integral equations, and we now turn to the high-order quadratures developed
in [3].

We first present examples that correspond to the various kernels already tested
and shown in Table 4. In Table 5 we tabulate the results, and bandwidth differences
from Table 4 reflect the effect of the quadratures.

For the remaining examples we choose integral equations that can be solved an-
alytically, so that the accuracy of the method can be checked. We consider a class of
integral equations with logarithmic kernel,

(33) f(x) p(x) log Ix tl f(t) dt g.(x), x e [0, 1],

where the right-hand side g, is chosen so that the solution f is given by the formula
f(x) --sin(rex). The integration can be performed explicitly, yielding
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FIG. 6. Trans/ormed matrix U(I T)UT (top) and its inverse (bottom) are shown/or kernel
g(x,t) log Ix- tl, e 10-3, and n 128.

log Ix tl m sin(mr) log(x) cos(m)log(1 x)dt

-cos(mx)[Ci(mx) Ci(m(1 x))]

-sin(mx)[Si(mx) + Si(m(1 x))],

where Ci and Si are the cosine integral and sine integral (see, e.g., [1, p. 231]). Equa-
tion (33) clearly requires quadratures with increasing resolution as rn increases; for
our examples we let n m, which corresponds to 27r points per oscillation of the
right-hand side gin.
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TABLE 3
The operator I- ]C defined by the formula ((I- ]C)f)(x) f(x)- f log lx- f(t)dt is

discretized, transformed to the wavelet-like coordinates with k 8, and inverted. (See Table 2 and
text.)

Transform. Inversion L2

N1 tl N2 t2 Error

10-2

10-3

64 5.8 4 6.2 1 0.191E-02
128 5.0 10 5.5 2 0.368E-02
256 3.3 22 3.6 3 0.184E-02
512 2.7 46 2.9 4 0.113E-02
1024 1.8 92 1.8 4 0.177E-02
2048 1.4 182 1.4 5 0.170E-02
4096 1.2 363 1.2 8 0.928E-03
8192 1.1 729 1.1 11 0.166E-02

64 13.4 5 14.5 8 0.373E-03
128 14.2 13 15.5 21 0.332E-03
256 13.5 28 14.5 46 0.259E-03
512 12.7 57 13.6 90 0.225E-03
1024 10.2 114 11.1 134 0.198E-03
2048 7.7 221 8.3 176 0.179E-03
4096 4.9 429 5.2 185 0.174E-03
8192 3.5 818 3.7 208 0.173E-03

64 21.8 6 23.0 23 0.280E-04
128 26.3 15 28.0 81 0.253E-04
256 28.7 35 31.0 235 0.246E-04
512 28.4 75 30.9 538 0.184E-04
1024 25.5 149 27.2 969 0.925E-05
2048 22.0 297 23.8 1739 0.899E-05
4096 17.7 561 19.1 2610 0.798E-05

Initially we choose coefficient p(x) 1. The results are given in Table 6. Here
the error shown is the error of the computed solution relative to the true solution of
the integral equation. Many of the observations of the preceding examples can be
repeated here; additionally, we make the following comments.

1. The bandwidths are greater than for the uncorrected quadratures, but this
effect generally decreases with increasing size.

2. The integral equations are solved to within the specified precision in every case
but one. The exception, for e 10-4 and n 64, is likely due to the small number
of quadrature points and high specified precision.

3. An integral equation requiring an 8192-point discretization is solved to three-
digit accuracy in less than 20 minutes on the Sparcstation.

For our second set of integral equations, we let the coefficient p be the oscillatory
function given by the formula p(x) 1+ 1/2 sin(100x). We carry out the transformation
described in 2.4 to solve the integral equation (33). The results are shown in Table 7,
and as with Table 6, the error refers to the error of the computed solution relative
to the true solution of the integral equation. For the oscillatory coefficient we see

performance similar to the constant-coefficient problem, but the cost is higher.

5. Generalizations and applications. In this paper, we have constructed a
new class of vector-space wavelet-like bases in which a variety of integral operators
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TABLE 4
operator I-1 defined by the formula ((I-)f)(x) f(x)- f: K(x, t) f(t) dr, for nonsym-The

metric, nonconvolutional kernels K(x, t) shown below, is discretized, transformed to the wavelet-like
coordinates with k 4 and e 10-3, and inverted. (See Table 2 and text.)

Transform. Inversion L2

K(x, t) n N1 tl N2 t2 Error

cos(xt2) log Ix tl

cos(xt2)lx t1-1/2

cos(xt2)lx t11/2

sin(lOOx)) x(1+7
log Ix

64 18.2 2 20.2 15 0.318E-03
128 18.6 5 20.4 37 0.302E-03
256 17.9 11 19.8 82 0.301E-03
512 14.9 22 16.3 131 0.284E-03
1024 12.9 42 14.7 242 0.315E-03
2048 8.5 76 9.5 283 0.241E-03
4096 5.5 137 6.1 291 0.231E-03
8192 3.6 252 4.3 310 0.230E-03

64 27.2 3 28.9 32 0.256E-03
128 31.6 7 34.1 122 0.357E-03
256 35.6 16 40.6 454 0.434E-03
512 37.3 35 46.3 1509 0.643E-03
1024 34.5 72 45.4 4166 0.821E-03

64 6.8 2 7.3 2 0.303E-03
128 4.4 4 4.7 2 0.204E-03
256 2.9 8 3.0 3 0.209E-03
512 2.1 15 2.3 3 0.165E-03
1024 1.5 30 1.5 3 0.208E-03
2048 1.4 60 1.4 6 0.909E-03
4096 1.1 119 1.2 7 0.614E-03
8192 1.1 242 1.1 12 0.666E-03

64 30.5 3 33.8 44 0.344E-03
128 31.8 6 35.1 103 0.363E-03
256 21.2 12 24.1 119 0.348E-03
512 18.6 23 20.7 225 0.372E-03
1024 15.8 45 18.4 404 0.392E-03
2048 10.6 82 12.2 466 0.355E-03
4096 6.4 145 7.4 497 0.336E-03
8192 4.0 265 4.6 510 0.331E-03

are represented as sparse matrices. The inverses of these matrices are also sparse, a
fact which enables the corresponding integral equations to be solved rapidly. We have
asserted that the time complexity for an n-point discretization is bounded by order
O(n log2 n), but observed order O(n) performance in practice. This cost should be
contrasted with a cost of order O(n2) for direct application of a dense matrix, and
order O(n3) for direct inversion.

A number of limitations exist in the procedures described above. These restric-
tions may be categorized as "software limitations" and "research questions." We
discuss software limitations first.

5.1. Software limitations. Throughout the paper, we have assumed that the
size of the problem n has the form n 21k for some 1. This restriction is not
fundamental; it merely simplifies the software.

A second software restriction is the assumption of only diagonal singularities.
This case is an important one in practice, but in certain situations we may encounter
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TABLE 5
operator I--: defined by the formula ((I-:)f)(x) $(x)-f K(x,t) f(t) dr, for nonsym-The

metric, nonconvolutional kernels K(x,t) shown below, is discretized with the corrected trapezoidal
rules, transformed to the wavelet-like coordinates with k 4 and e 10-3, and inverted. (Compare
to Table 4.)

Transform. Inversion L2

K(x, t) n N1 tl N2 t2 Error

cos(zt2) log Ix

cos(xt2)lx t1-1/9.

cos(xt2)lx tll/Z

64 28.3 4 31.6 38 0.164E-03
128 31.5 9 34.3 103 0.162E-03
256 30.8 21 33.9 221 0.172E-03
512 27.0 41 29.7 370 0.177E-03
1024 21.0 80 23.7 454 0.357E-03
2048 14.8 143 17.2 566 0.317E-03
4096 9.5 250 10.4 555 0.282E-03
8192 5.8 448 6.9 665 0.271E-03

64 32.4 4 39.8 87 0.133E-02
128 38.3 10 45.7 251 0.412E-03
256 42.7 23 49.3 638 0.464E-03
512 45.1 51 51.3 1494 0.562E-03
1024 46.2 110 52.1 3309 0.635E-03

64 10.4 3 18.4 9 0.867E-03
128 7.6 6 13.8 13 0.526E-03
256 5.1 13 9.3 16 0.358E-03
512 3.3 25 5.2 15 0.292E-03
1024 2.3 48 3.1 15 0.201E-03
2048 1.9 96 2.3 20 0.393E-03
4096 1.5 188 1.7 25 0.405E-03
8192 1.3 374 1.4 36 0.404E-03

singularities or near-singularities off the main diagonal. The scheme described in

3.2 for transformation of a matrix to wavelet-like bases can be readily revised to an
adaptive scheme, which works as follows: an m x m submatrix A is transformed to
wavelet-like coordinates under the assumption that it can be approximated to high
precision along both rows and columns by polynomials of degree less than k. This
assumption is then checked by dividing A into four submatrices, each of dimension
m/2 x m/2, transforming each submatrix, and "gluing" the pieces together. If the
results from the two computations match (to high precision), no further refinement of
the original submatrix is needed. Otherwise, the procedure is repeated recursively on
the m/2 x m/2 submatrices. The cost of this adaptive procedure is roughly five times
as great as the cost of a static procedure in which the structure of the singularities is
known a priori.

5.2. Research questions. The list of research issues is, of course, much longer.
One of the most pressing issues is the generalization to two and three dimensions.
Although, conceptually, the generalization of the wavelet-like bases to several dimen-
sions is quite straightforward (see, e.g., [2]), actual procedures to perform the required
orthogonalizations have not been developed. Also, the issue of high-order quadratures
for two and three dimensions has not been resolved.

Another question is whether similar "custom-constructed" bases can be used to
create sparse representations of integral operators with oscillatory kernels. Initial
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TABLE 6
The integral equations f(x) f: log Ix t[ f(t)dt gin(x), for which an explicit solution is

known, are solved by the methods of this chapter (compare to Table 2 and see text). For e
10-2, 10-3, 10-4 we set k 4, 4, 8, respectively.

lransform. Inversion L2

e n, m N1 N2 t2 Error

10-2

10-3

10-4

64 11.4 3 14.4 7 0.283E-02
128 10.7 7 13.2 14 0.212E-02
256 8.6 13 10.6 20 0.140E-02
512 6.3 26 7.6 26 0.112E-02
1024 3.6 48 4.5 28 0.821E-03
2048 1.9 90 2.3 21 0.932E-03
4096 1.3 174 1.5 15 0.674E-03
8192 1.1 344 1.1 13 0.499E-03

64 27.7 4 31.3 36 0.235E-03
128 31.0 9 34.2 99 0.169E-03
256 30.6 20 33.6 215 0.161E-03
512 27.5 41 30.2 377 0.130E-03
1024 21.7 79 24.4 470 0.597E-03
2048 15.5 143 18.1 604 0.479E-03
4096 9.7 248 10.6 579 0.415E-03
8192 6.0 444 7.3 690 0.354E-03

64 37.2 8 45.9 78 0.127E-03
128 47.1 23 56.5 278 0.473E-04
256 52.9 54 60.9 745 0.311E-04
512 55.0 118 61.4 1701 0.100E-04
1024 52.3 248 57.2 3287 0.734E-05

efforts in this direction for a limited class of such operators, in particular for Fourier
transforms with nonequispaced points and frequencies, appear promising [9].

5.3. Applications. In this paper the primary application of our new wavelet-
like bases has been the solution of second-kind integral equations. The bases are very
effective for the fast solution of a wide class of such problems. In addition, we expect
many other classes of problems to be solved efficiently using these techniques. We list
a few of these problem types.

1. Elliptic partial differential equations rewritten as integral equations by the
Lippman-Schwinger method, in which the Green’s functions are nonoscillatory.

2. Evolution of homogeneous parabolic partial differential equations (PDEs) with
constant or periodic boundary conditions, by explicit time steps. This method consists
of repeated squarings of the operator for a single time step, leading to an order
O(n log t) algorithm for evolving an n-point discretization for t time steps.

3. Evolution of general parabolic PDEs by implicit time steps, in which the elliptic
problem on each time step is solved in wavelet-like coordinates.

4. Evolution of hyperbolic PDEs by a method of operator squaring analogous to
the scheme proposed for homogeneous parabolic PDEs above.

5. Problems of potential theory and pseudodifferential operators.
6. Signal compression, including signals of seismic, visual, and vocal origin. There

is also reason to expect that analysis of such compressed data will be simpler than
analysis of data resulting from less efficient compression schemes.
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TABLE 7
integral equations f(x) p(x) f: log Ix f(t) dt gin(x), for which an explicitThe solution

is known, are solved by the methods of this chapter (compare to Table 2 and see text). For e
10-2, 10-3, 10-4 we set k 4, 4, 8, respectively.

Transform. Inversion L2

e n, m N1 N2 t2 Error

10-2

10-3

10-4

64 19.7 4 23.9 18 0.360E-02
128 17.7 8 21.0 36 0.182E-02
256 12.6 15 14.6 47 0.174E-02
512 8.4 29 9.8 57 0.112E-02
1024 4.7 55 5.7 56 0.104E-02
2048 2.4 103 2.7 45 0.902E-03
4096 1.6 198 1.7 38 0.720E-03
8192 1.3 392 1.3 35 0.543E-03

64 36.2 4 41.3 63 0.228E-02
128 40.8 10 47.0 186 0.209E-03
256 40.5 23 47.3 427 0.177E-03
512 34.7 46 40.9 712 0.125E-03
1024 26.6 87 32.5 1042 0.134E-03
2048 18.7 158 22.5 1065 0.597E-03
4096 12.2 281 14.2 1127 0.529E-03
8192 7.2 502 8.4 1104 0.461E-03

64 47.6 9 58.2 123 0.230E-02
128 60.7 25 77.3 479 0.180E-03
256 64.1 59 81.2 1204 0.124E-03
512 62.5 128 76.3 2492 0.125E-04
1024 58.8 267 69.3 4672 0.862E-05

In this paper we strayed from the original mathematical definition of wavelets to
construct classes of bases tailored for numerical computation. The basis vectors’ prin-
cipal properties of local support and vanishing moments lead to sparse representations
of functions and operators that are smooth except at a small number of singularities.
There is little doubt that other bases can be constructed along similar lines to possess
various properties. One current challenge is the construction of bases suitable for the
efficient representation of a variety of oscillatory operators.
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AN h-r-ADAPTIVE APPROXIMATE RIEMANN SOLVER FOR THE
EULER EQUATIONS IN TWO DIMENSIONS*
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Abstract. A new adaptive strategy for solving the Euler equations of compressible flow is
presented. The method of Roe [J. Comput. Phys., 43 (1981), pp. 357-372] is extended into two
dimensions for an arbitrary quadrilateral grid and is coupled with the h-adaptive quadrilateral
refinement-unrefinement algorithm of Demkowicz and Oden [TICOM Report 88-02]. Refinement
of a quadrilateral grid retains a certain grid structure which is fully exploited by the extension of
the higher-order version of the method into two dimensions. A total variation diminishing (TVD)
analysis is presented for a nonuniform grid, together with an assessment of the solution error induced
by the nonuniformity in the grid. Grid movement is also considered and adaptive strategies are dis-
cussed and tested. The adaptive scheme proves to be highly robust. Improved accuracy and large
savings in computer time are obtained.

Key words, adaptive, grid refinement, higher-order, TVD, Riemann solver, compressible Euler
equations

AMS(MOS) subject classifications. 65M06, 65M50

1. Introduction. In the early seventies, much of the research on numerical
methods for hyperbolic conservation laws focused on producing schemes that were
known to produce physically meaningful solutions whenever they converged to the
exact solution. At the same time, schemes were sought that did not oscillate in the
vicinity of shocks. The first family of schemes that fulfilled these requirements were
the so-called monotone difference schemes in which the numerical fluxes are monotone
functions of the cell-centered values of the discrete solutions.

Unfortunately, monotone schemes were found to suffer from two major deficien-
cies: they are no more than first-order accurate, and they are usually overdissipative,
smearing shocks over several grid spacings. These defects promoted an extensive se-
ries of investigations for the "holy grail" in conservation law solvers: schemes that did
not oscillate but did yield higher-order (e.g., second-order) accuracy.

An advance in this direction for the case of one-dimensional scalar conservation
laws was made by Harten [3], who introduced the notion of a TVD (total variation
diminishing) scheme. The idea is that if the total variation of the solution can be
controlled so that it never increases over a timestep, then a nonoscillating solution
with second-order accuracy can be obtained. This can be accomplished by limiting the
values of the numerical flux "flux-limiting methods"); several alternative flux-limiting
strategies were discussed by Sweby [4]. Among these is the method of Roe [1], which,
while usually very effective, may violate the entropy condition for the conservation
law. An "entropy fix" was proposed by Harten and Hyman [5] for overcoming this
defect in Roe’s approach.

It should also be noted that most of the theoretical results were developed for
one-dimensional scalar conservation laws. Goodman and LeVeque [6] argued that
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any two-dimensional TVD scheme had to also be monotone, and hence, may be only
first-order accurate. However, numerical experiments suggest that two-dimensional
generalizations of one-dimensional TVD schemes (which are not strictly TVD schemes
in two dimensions) can be second-order accurate in many cases. Moreover, they can
also be robust and yield nonoscillating, high-resolution simulation of shocks (see, e.g.,
Yee [7]).

The simple but less reliable alternative to using a TVD scheme is to resort to some
variant of a Lax-Wendroff scheme and combine it with an ad hoc artificial viscosity
method, which can be tuned to eliminate spurious oscillations in some cases [8].

However, the resolution of discontinuities obtained by any discrete scheme will
still be limited by the local cell size. Adaptive grid techniques have been developed
by several authors, (e.g., [9], [10], [11], [12], and [13]) with a common aim of con-
centrating (either by inserting or moving) grid nodes into the areas of the flow field
where they are most needed (where the flow gradients are large), thereby reducing
the discretization error as the element size reduces. For a numerical scheme of given
accuracy, grid adaption can lead to increased accuracy and a reduction in computer
time and computer storage requirements.

Although adaptive techniques can improve on the results obtained with artificial
viscosity methods, any spurious oscillations that occur can be highlighted by the
adaptive grid and amplified [9]. This provides a strong motivation for combining
TVD schemes with adaptivity. In particular, the combination of a second-order flux-
limited scheme on an adaptive quadrilateral grid has a two-fold advantage over its
triangular counterpart.

First, a dynamically refined quadrilateral grid is far less likely to produce badly
distorted elements than a dynamically refined triangular grid, and therefore, we can
expect convergence on a quadrilateral grid.

Second, the flux-limiting concept can be naturally generalized to an adaptive
quadrilateral grid.

In this paper, we develop an adaptive, two-dimensional TVD scheme for systems
of hyperbolic conservation laws, particularly Euler’s equations. This scheme functions
on an arbitrary unstructured mesh of quadrilateral cells (unstructured in the sense
that the cells may be dynamically refined or unrefined). We employ an extended
version of Roe’s scheme in two dimensions with flux limiting and an entropy fix.

Error indicators are computed at the end of a designated number of timesteps,
and the mesh is automatically refined (an h-method) or unrefined using the technique
of Demkowicz and Oden [2]. This adaptive technique is applicable to both time-
dependent and steady-state problems.

In addition (currently only) for steady-state problems, grid node relocation (an
r-method) is induced according to an equidistribution principle. The grid is postpro-
cessed and automatically aligns grid lines along discontinuities.

The r-method is also combined with the h-method (currently) for steady-state
problems. After the grid has been relocated and subsequently refined, results superior
to those of h-adaptive schemes without node relocation are obtained.

In all of the numerical experiments performed, the adaptive h-scheme (for time-
dependent and steady-state problems) and the h-r scheme (for steady-state problems)
perform surprisingly well, giving excellent resolution of flow features on rather coarse
grids. Large savings in computer time were also observed with the same code taking
four times longer to run on equivalent uniform fine grids.
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2. Roe scheme. We begin by reviewing the scheme proposed by Roe [14], [15]
for the scalar conservation law

ut A- f(u)x 0
(2.1)

u(x, O) Uo(X),

t>0

where u(x, t) has initial data u(x, O) Uo(X). We also write (2.1) in the form

ut + a(u)uz O, a(u) df
du"

We next partition the domain l into finite difference cells Ii [xi_ 1/2 xi+1/2] E Z,
with centroids xi. A piecewise constant mesh function W takes on values Wi W(xi).
We use the following standard notation for differences:

AW+1/2 A_W+ A+W W+ W;

for the grid ratio #:

(2.24) # At/Ax;

for the local CFL number :

#Afi+1/2 #a(ui, Ui+l) #ai+1/2(2.2b) ui+1/2 Aui+1/2
and a(ui, Ui+l) is the discrete wave speed at i + 5"

The first-order Roe [14] scheme (in space and time) is the conservative upwind
scheme

(2.3) u+= I u ui_1/2 Au’_1/2, ui_ 1/2 >_ O,

u u+1/2Au+1/2, u+1/2 < 0,

which is stable and oscillation free for

(2.4) lul < 1.

We note that (2.3) can be written as

u #(hi+ 1/2 hi_ 1/2),
where

(2.5b) hi+1/2 h(ui+l, ui) 1/2(f(u’) + f(uin+l) -]ai+ 1/2

is a consistent numerical flux function with

h(u, u) f(u).

It is well known that this scheme must be modified to ensure entropy satisfaction,
which is achieved here by employing the Harten and nyman entropy fix [5]. Roe [14]
extended his scheme to second-order accuracy and assured monotonicity preservation
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(monotone data at time level n remains monotone at time level n + 1) by the use of a
flux limiter, a device previously used by van Leer [16]. The monotonicity-preserving
schemes of Chakravarthy and Osher [17] and narten [3] employ similar devices, and
the relationships between the schemes is discussed by Sweby [4], who presents a unified
approach to designing such schemes.

All of the above-mentioned schemes can be shown to be TVD, a notion first
introduced by Harten [3]. The total variation, at time level n + 1, TV(un+l), of the
solution is defined by

(2.6) TV (tn+l)- E i" n+l- U+1
[i+I

Harten [5] defined a TVD scheme for which

TV (un+l)
_
TV (u’).

One immediate consequence of (2.7) is that the total variation remains bounded,
which is one of the criteria that must be satisfied in order to establish convergence of
a difference scheme approximating (2.1) (see [18], [19], and [20]).

An important practical consequence of (2.7) is that the solutions obtained from
a TVD scheme are free of spurious oscillations, which follows from Harten’s [3] obser-
vation that a TVD scheme is monotonicity preserving.

Harten [3] has also shown that sufficient conditions for a scheme of the form

U+1 tin -ci_ Au _1/2 + Di+ 1/2 Au+ 1/2

to be TVD are

(2.8b) 0<_Ci_1/2, 0_<Di+1/2, 0_<C+1/2+D+1/2_<I.
From (2.3) and (2.4), it follows that the first-order upwind scheme satisfies (2.8b)
(and is therefore TVD) if for all i,

(2.9) lug+1/21 <_ 1.

3. A TVD scheme on a nonuniform grid. While much attention has been
focused on the application of the Roe scheme via the use of uniform grids, very
little attention has been given in the case of nonuniform grids [21]. Since the usual
definitions of accuracy on a uniform grid do not necessarily apply to nonuniform grids,
we shall refer to the usual first-order scheme as the low-order scheme, and the usual
second-order schemes as the high-order scheme on nonuniform grids.

In this section we shall consider how to construct a high-order TVD scheme on a
nonuniform grid in one dimension. Our primary concern is that the scheme remains
conservative on a nonuniform grid. We shall consider the question of accuracy after
deriving a TVD scheme in conservation form on a nonuniform grid.

Consider the Lax-Wendroff scheme on a uniform grid:

2 n 2Aun(3.1) U+1 U 1/2(/]i-1/2 tt_1/2 -+-/]iT1/2 tt+1/2) -- 1/2(I/]i+1/21 t/,i+ 1/2 -I/]i_1/21 i-1/2)
This scheme may be written in conservation form as

(a.e) uT+l at(h,+ 1/2 -1/2
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where

h+1/2=(fi+fi+l) At 2 n

2 -x lai+1/21 Aui+1/2"
The scheme (3.2) is said to be conservative since conservation may be demonstrated
immediately by summing (3.2) over all grid points to obtain

Omitting boundary terms, the contribution on the right of (3.4) is zero, hence

(3.5) E(u+1 Ur)AX O,

and (3.5) indicates that the area (or "mass") f udx is conserved. So far we have
assumed that Ax is constant, but if we consider the nonuniform grid shown in Fig. 1,
then we can replace Ax with the local element length Axi in (3.2)-(3.4) and retain
conservation. The nonuniform grid approximation is

At
(hi+ _hi_ ),(3.6) t+1 U 1/2 1/2

where

fi + fi+l ) At
lai+ 1/212Aui+1/2,

(3.7b) Axi+1/2 (Xi+l xi).

Note the introduction of Axi+ 1/2 in hi+1/2, which ensures that the flux summation will
continue to cancel for a nonuniform grid.

Xi--1 Xi+ 1

element

FIG. 1. Nonuniform grid.

The low-order scheme of 2 can be similarly generalized to a nonuniform grid with
(3.7a) replaced by

l(f/
_
f/+l)-(3.8) hi+1/2 5 lai+1/2 IAui+1/2,

while (3.6) remains unchanged. Expanding (3.6) and (3.8) and taking the case hi+ 1/2 _>
0, the scheme can be written in the upwind form

(3.9) u+1 u Atai-1/2
Ax Au_ 1/2.
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As in the case for uniform grids [4], the Lax-Wendroff scheme can be rearranged as
the first-order upwind scheme together with an antidiffusive term, i.e.,

(3.10) u+i =It

Following the usual TVD analysis [4] an antidiffusive term can be added in the con-
servation form

(3.11) Ax - +1/2 1/2 1/2

where i+1/2 is the flux limiter. The resulting scheme is

(3.12) uT1 n
ui Axi

A- (At(1)ai+A_1/2- -+1/2 1/2+

Rearranging (3.12) into the form

(3.13) u+l n Au=u -c_1/2 _1/2,

where

(3.14) ci_1/2 Axi At 1- r-.+ i_1/2 2

a_1/2 (1 _1/2)Au_ 1/2 a+1/2 At(3.15) r+ ui+1/2 Axi+1/2ai+ 1/2 (1 ui+ 1/2 )Aui+ 1/2

and comparing with (2.8), it follows that the scheme will be TVD for

(3.16) 0 _< c_1/2 _< 1.

Taking to be positive the left-hand inequality of (3.16) is satisfied for

(3.17) +1/2 2

r+ <-(I-u/_1/2)"
The right-hand inequality is satisfied for

(3.18a) -1/2 -< (1- ui_1/2) u
where

(3.18b) ui txi

The bound on for a uniform grid

(3.19) _< min(2r+, 2)
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is certainly obtained if

1
(.e0) mx(,)- > ’
and 0 <_ v_1/2 _< 1, and (3.20) is satisfied if

Axi(3.21) a_1/2 At < 2

which corresponds to a maximum Courant-Friedrichs-Lewy (CFL) condition of 5,
but with respect to the mean cell length. A similar analysis can be performed for a
negative wave such that < min(2r-+l 2), where r is defined below.

The general high-order TVD scheme for a nonuniform grid which is used here can
be written as

(3.22a) un+l un #(A_hi+ 1/2 + A_((/1/2(r+)_/+1/2(rl))Au+1/2)),
where h+1/2 is the first-order flux (3.8) and

(3.22b)

u+1/2 is defined in (3.15) together with r/+. When the wave has a negative sign,

(1 + i+ )hi+
_
Aui+

ri+ (1 + u+ 1/2 )a+ 1/2 Aui+ 1/2

and (r) can be any of the usual flux limiters ranging from minmod to superbee [4].
4. Accuracy on a nonuniform grid. In Appendix A we show that while the

low- and high-order schemes of (3.6)--(3.8) have a local truncation error of O(1) on a
nonuniform grid, the error in the solution converges with O(Ax) and they are therefore
supraconvergent schemes [22].

While this result holds for an arbitrary fixed nonuniform grid, we stress that
the grids used in this paper are obtained via an equidistribution principle. The grid
continually adapts with the solution such that the finest grid zones overlay the regions
of the flow field with steep flow gradients. Away from the interfaces between grids with
differing levels of refinement the grid is uniform and, therefore, the local truncation
error of the scheme is restored to the uniform grid value, typically O(Ax2).

Therefore, although formally, only first-order convergence can be demonstrated,
the adaptivity can be expected to provide a better convergence rate than that for a
fixed arbitrary nonuniform grid.
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5. Roe scheme for systems of conservation laws. The extension of the
scalar algorithms described above to systems of equations is performed by applying
a scalar algorithm to each characteristic equation obtained by decomposition. The
main difficulty with this approach is ensuring that conservation is obtained upon
recomposition to the conservative variables.

In Roe’s scheme [1] for solving the system of conservation laws

( )
O Of()

0
Ot Ox

with initial data

o)
a linearized equation is used to approximate the solution to the Riemann problem.
A constant mean-value Jacobian A(UL, uR) is constructed such that the following
three properties are satisfied:

(i) 2(UL, UR) is consistent, as UL --* un (UL, UR) -- A(u), where A(u) Ju;
(ii) For any UL, UR, A(U_L,
(iii) The eigenvectors of A are linearly independent.
Condition (ii) ensures that the resulting scheme is conservative; (ii) and (iii)

ensure that in the case of a single shock wave, the solution to the Riemann problem
will be exact [1]. In order to apply the scalar scheme, the system is decomposed by
expanding Au as

and the flux difference AJ’ as

(5.3) Af AAu

where Au and a are the changes in the conservative and characteristic variables,
respectively, and Aj and ej are the eigenvalues and eigenvectors of/i., respectively.

Condition (ii) enables the first-order scheme to be written as

(5.Ca)

where now

(5.4b)

u+l n (hi+ hi=u - 1/2 1/2

This scheme is immediately applicable to nonuniform grids provided that the grid
ratio # defined in (3.22) is used in (5.4). The high-order version of this scheme can
be derived as in the scalar case (3.22), by the addition of an antidiffusive flux to the
first-order flux hi+1/2, resulting in

(5.5) u7 u? gA_ hi+ -4- 2e,j (J+ (?"+) J- (?"iJl)) Oj )i+1/2

where a superfix j represents the jth characteristic component; each component has
its own wave speed M and gradient aY, and these replace the scalar wave speed a and
the gradient Au, respectively, in (3.15) and (3.22).
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6. Two-dimensional scheme. Consider a system of conservation laws in two
dimensions written in integral conservation form

(6.1) jf (us + fx 4- gy)dT 0

with initial data

o) u).

In order to solve (6.1), the scheme of 5 is extended into two dimensions for an arbi-
trary, quadrilateral grid. Assuming that the conservation variables u have a piecewise
constant variation over each element, an application of the Gauss flux theorem to (6.1)
over a given element results in

(6.2)
-u /(ldy gdx)

k

k

where

F :J’c +

ck dyk/gk, Sk --dxk/g,

(Ck, Sk) are the direction cosines of the kth outward normal, and Te is the element (e)
area. By further assuming a one-dimensional variation in the variables u across each
element face k, the resolved flux Fk can be regarded as being locally one-dimensional.
Thus the scheme of 5 can be applied with the Roe flux (corresponding to F) substi-
tuted in the above summation (6.2) for each face of the element. The local Jacobian
matrix is given by

OF 05 +

and the corresponding eigenvectors and eigenvalues of this matrix (which appear in
the Roe flux) must satisfy

(6.3b) Au ejozj, AF Z zjejozj.

Finally this scheme can be written in the classical finite-volume form as

(6.4a)

where

(6.4b) f,-- 1/2 (f 4- fe), gi- (g 4- g),
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and the summation index i varies over the sides of the element e, (Axi, Ayi) being
the vector element of the length tangential to side i and ei being the ith neighboring
element number.

The high-order version of this scheme can also be written in the form (6.4a).
The antidiffusive flux of (5.5) is generalized into two dimensions by associating an
antidiffusive flux contribution with each face of the element. The local eigenvalues
and eigenvectors of (6.3) are used in the construction of the antidiffusive flux at each
face. The flux limiters corresponding to the even- and odd-numbered faces of the
element (Fig. 2) are evaluated with respect to the underlying x and y directions of
the grid, respectively. Each antidiffusive term is then multiplied by its corresponding
element face length and the sign of the local outward normal vector before being
assembled on the right-hand side of (6.4).

FIG. 2. Local coordinate system.

For a regular grid, the resulting scheme is second-order accurate with respect
to the x-y coordinate directions. Formal second-order accuracy, including cross-
derivative terms, can be achieved via the time-splitting technique of Strang [23].

The Roe matrix A, together with the eigenvectors, eigenvalues, and characteristic
increments j, are presented in Appendix B for the Euler equations of compressible
flow in two dimensions.

7. Adaptive refinement and unrefinement. In this section we shall briefly
describe some of the principle features pertaining to h-refinements which are con-
tained within the general data structure developed by Demkowicz and Oden [2] for
quadrilateral grids. A description of the logic and account of the structure is given
by Demkowicz in [24].

Following the nomenclature of Demkowicz and Oden [2], when a refinement of a
quadrilateral element takes place the element is divided into four subelements, which
are called "sons." The group of four sons is called a "family" and the original element
is called the "father" element (Fig. 3).
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Father Four sons

FIc. 3. Initial refinement.

A typical refinement, Shown in Fig. 4, gives rise to nodes such as p which are
called hanging nodes or irregular nodes. Whereas each regular node is located at
the corner in common with all of its neighboring elements, the irregular node is not
located at a corner for all of its neighboring elements. In this data structure only one
irregular node per element side is permitted.

d c

b

FIG. 4. Refinement with irregular nodes p, q.

Due to this constraint (one irregular node per side) any element can have a maxi-
mum of eight sides and eight neighbors. Following Devloo [25] the sides of the element
are labeled one to eight in the sequence shown in Fig. 5.

FIG. 5. Element side numbering.
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This numbering sequence gives rise to some attractive logical relations which are
exploited within the data structure [24], [25] and within the extension of the above
two-dimensional scheme to an unstructured grid.

Returning to Fig. 4, if one of the sons (b) of the family is refined, the constraint
(one irregular node per element side) causes the neighboring element to be refined so
that some spreading of the refinement process can occur. This is illustrated in Fig. 6.

d c

a b

FIG. 6. Spreading of refinement.

Adaptive strategy. As in [9], a crude computational grid is generated by dividing
the flow domain into a suitably small number of quadrilaterals. The initial crude
grid is then globally refined to create a reasonable coarse grid (e.g., Fig. 12), which is
used for the first part of the computation. After a specified number of timesteps (or
iterations) the adaptive strategy (described below) is invoked.

The adaptive criteria for deciding when to refine an element and unrefine a family
is based on monitoring the density gradient as in [9] and [10]. The density is chosen
as the key variable because it is discontinuous at shocks and contact discontinuities.

The actual adaptive strategy is listed below. The condition on the gradient of
the sons of the family in (iii)(a) makes the procedure much more robust.

(i) Define the refinement and unrefinement tolerances (user specified constants)
Er, Eu, respectively.

(ii) Find the maximum L density gradient throughout the field,

IlVpll max IVPI EL.
I<_L<_FLM

(iii) Looping over the families (NF I,NRFAM), find the density gradient mod-
ulus IVPlc of each son ei(i 1, 4) of the family (number NF). Define the
mean family density gradient by

IVPINF 1/4 IVpl  .
i--1

If for each son (ei) of the family (NF),

(a) IVpl , IlVpll and

(b) IVPlN IlVpll ,

then unrefine the family and define the new element vector of conservation
variables by
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(7.1) il AeUei Aei

where ue are the conservative variables of the ith son of the family NF and

Ae is the area of the ith son (element).
(iv) Looping over the elements (NEL 1,NRELEM), find the density gradient

modulus IVPlNEL of each element NEL. If

IVPlN  IlVpllo ,

refine the element NEL to produce four sons ei(i 1, 4). The conservation
variables for each of the four sons is defined by the value of the father, i.e.,

(7.2) ue UNEL"

The use of (7.1) and (7.2) ensure that conservation is maintained after a
sequence of unrefinements and refinements.

The use of (7.2) is the most diffuse option. A bilinear interpolation would be
more accurate, but then conservation would be more difficult to enforce.

8. Extension of the Roe scheme to an unstructured grid. The low-order
scheme described in 6 is relatively easy to extend to an unstructured grid of the
type discussed above. For an element-wise implementation of the scheme, instead of
looping over sides one to four, as in the case of a structured grid, it is convenient to
loop over sides one to eight, and test for the existence of a neighbor for any side N,
say, between five and eight (5 _< N _< 8). If there is no neighbor, go to the end of the
loop, otherwise the lengths Ax, Ay, defined in 6 are halved before performing the
flux calculations of 6 for sides N and N 4.

For side N- 4 the flux calculation will involve quantities at and i2 while for
side N the flux calculation will involve quantities at and i6 (see Fig. 7).

.i

N-4 oi

FIG. 7. Flux calculation on unstructured grids.

The extension of the higher-order scheme is far more complicated. The support of
the scheme in the case of a structured grid is sketched in Fig. 8. Unlike the low-order
scheme, which involves five elements, the higher-order scheme involves nine elements,
the additional four elements being "neighbors of the neighbors" of the element in
question.

The higher-order upwinding can be conveniently obtained on a structured grid
where global curvilinear and "directions" may be identified and the flux limiting
performed along these "directions."
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FIG. 8. Support of two-dimensional first-order scheme o and second-order scheme x.

Turning now to the case of an "unstructured grid" of the type discussed above,
it is easy to see that while the grid is unstructured in the sense that certain grid
lines terminate in the field, the grid still retains a certain structure in the sense that
global and "directions" can still be identified throughout the grid. This property
is completely exploited by constructing directional flux limiters corresponding to the
even-numbered sides ( direction) and odd-numbered sides ( direction) of the ele-
ment, respectively. (This extension of the flux-limited scheme would not be applicable
to an unstructured triangular grid such as that generated in [10].)

For illustration we shall consider the construction of the flux limiters in the
direction (corresponding to a positive wave) which contribute to the solution at the
central element (i). Various grid configurations that may occur in the " direction"
which affect the positive wave limiters are sketched in Fig. 9.

We introduce a notation (consistent with Fig. 6) that relates the standard flux
limiters (3) in the direction to the even-numbered sides of the element, and that
denotes the flux limiters corresponding to sides 2, 4, 6, and 8 by, 2, Ca, 6, and Cs,
respectively. For a regular (structured) grid (Fig. 9(a)), the solution at element will
involve the usual flux limiters 2 (r+) and 4 (r+_1), where r+ is defined in

4 as

(8.1) r’+
_1/2(1 _1/2)(u- u_l)

i+1/2 (1 i+1/2)(Ui+l Ui)"

We shall adopt the more general notation

(s.2) r(Ui_l, ui, ui+1) ri+.
In the second configuration (Fig. 9(b)), 2, 4, and 6 now make contributions to the
solution at element i, where now

(8.a) 4 (r(ui-2, ui-1, ui)),

6 (r(ui_ 1, Ui, Ui6 )),

where i2 and i6 are the right-hand element numbers (Fig. 9(b)).
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(a) i-2 i-1 i+1

(b)

(c)

(d)

i-2 i-1

i4
i+l

(e)

FIG. 9. Adaptive support of scheme ( direction; > 0).

In the third configuration (Fig. 9(c)), 2, 4, and 8 make contributions to element
i. In this case 2 is a function of both r(ui4, ui, u+l) and r(u8, ui, u+). As a general
rule, whenever the flux limiter is a function of two ratios (as in this case), we shall
define the limiter to be a minimum of the two possibilities. Therefore,

2 min ((r(Ui4 Ui, Ui+l)), (r(Z$is, Ui, Ui+l)))
(8.4) , (r(u._, ,., )),

((u_,,, )).

In the fourth configuration (Fig. 9(d)), all of 2, 4, 6, and 8 make a contribu-
tion to element i. As in the third case, 2 is chosen as

2 min ((r(u, ui, u.)), (r(us, u, u2))).

Similarly, since 6 is now a function of two ratios, then

6 min ((r(u,, ui, u6)), (r(us, u, u6)))
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(f)

()

i.,
i, s

(i) i

s i.

FIG. 9 (continued).

while the limiters 4 and Cs are evaluated as in the third case.
In the configurations in Figs. 9(e)-(g) the evaluation of 2 is identical to the third

case described above, while for the configurations in Figs. 9(h)-(j) the evaluations of
2 and 6 are identical to the fourth case described above.

In configurations (e)-(j), 4 and/or Cs are functions of two ratios and we continue
to apply the above rule, for example, in Fig. 9(i),

4 min((r(Uia, ui4, ui)), (r(uib, ui4, ui))),

Cs min((r(uic, ui8, u)), (r(ud, us, u))).

A similar analysis is performed for a negative wave with each configuration (e)-
(j) inverted with extra refinements now appearing in the right-hand element of the
support. Finally, the same analysis is performed for both positive and negative waves
in the direction, where the limiters on the upper side of the element are 3 and
while the limiters on the lower side of the element are 1 and 5.
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9. Grid movement. The grid movement considered in this work is strictly for
steady-state calculations and is induced via an equidistribution scheme constructed
using

where re are the position vectors of the centers of gravity of the elements surrounding
node (with position vector ri) and the summation is performed over these elements.
Similar approaches have been used in [9] and [26].

As noted in [26], the scheme (9.1) can be identified as an equidistribution tech-
nique in the limit as the iterative cycle converges. Consider the x component of (9.1)
written as

(9.2) x+1

where we IVple. In one dimension the centers of the elements which surround node
i are

(9.3) xel 5(xi + x-l), xe. 1/2(x+l + xi),

(9.4) we1 wi_1/2, we. wi+1/2.

Equations (9.2), (9.3), and (9.4) give

(9.5) x+ x (xin+l X)Wi+ 1/2 (X xin_l)Wi_1/2
(w +1/2 + w _1/2

and as x+ x - O, we obtain

(9.6) Axi+1/2wi+1/2 Axi_1/2wi_1/2 constant.

After some experimentation it was found that a reasonably robust equidistribution
scheme can be defined as

(9.7) rn+

 ((IVpI /IIVPlIo )A  ) +

where is a user-defined constant which determines the strength of the grid move-
ment, and (= 10-a) is a regularization constant which prevents any singularity from
occurring (in (9.7)). Ae is the Jacobian of the eth element.

10. Results. The adaptive schemes described above are used to solve the Euler
equations of compressible flow, written in conservation form

(10.1) us + Jx + gy -0,
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where

(10.2)

u (p, pu, pv, E)T,

(J pu, pu2 + p, puv, u(E + p)

9 pv, puv, pv +p,v(E +p)

Here p, p, and E are the density, pressure, and energy per unit volume for an ideal
gas, (u, v) are the cartesian components of velocity, and

E p [1/2(q2)+ p/p(/_ 1)],
being the ratio of specific heat capacities and q2 u2 + V2.
Three kinds of physical boundary conditions are imposed, namely, (i) supersonic

inflow, (ii) supersonic outflow, and (iii) solid wall.
Since the scheme is cell-centered, a band of dummy nodes is required at all bound-

aries to complete the definition of the discretization of the scheme.
In condition (i) all conservation variables are specified at the dummy nodes with

their free-stream values

u dummy u free-stream.

In condition (ii) the dummy values are found by assuming that the normal gradi-
ents of the flow variables are zero at the outflow boundary, so that Ou_/On O, which
results in

t dummy u interior.

In condition (iii) at a solid wall, the normal velocity is set equal to zero while
reflection conditions are used for the density p, energy E, and tangential velocity v
with

Op OE Ov
On On On 0,.

where the tangential velocity v is defined by v q.

_
and q is the velocity vector.

A second layer of dummy values are introduced (via reflection) at a solid wall to
complete the support of the second-order scheme.

We present the results obtained for three test cases. In all cases the computed
density contours will be shown for 30 uniform intervals both for uniform and adaptive
grid computations, respectively.

For the first two cases involving steady-state flow, three kinds of adaptive strategy
are tested: (i) grid movement using equidistribution; (ii) grid refinement/unrefinement;
and (iii) grid refinement and movement.

10.1. Supersonic flow over a wedge. The wedge has an inclination of 20 to
the horizontal. Initially the flow is assumed to be uniform throughout the field with
a free-stream Mach number M 3.0. An exact solution for this problem can be
obtained [27], which consists of a uniform shock wave extending from the compression
corner into the flow field at an angle of 37.5

The result obtained using a uniform 32 16 grid Fig. 10(a) is shown in Fig.
10(b). The exact solution lies within the band of density contours.
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(a)

(b)

FIG. 10. Wedge--regular grid.

Using the uniform grid solution as an initial data for the equidistribution scheme
(9.7), the solution and grid shown in Fig. 11 are obtained by applying (9.7) for three
iterations, each iteration being performed after 300 steps, with a 4.3. A consid-
erable improvement in shock resolution is obtained which may be due not only to
the local reduction in the size of the element in the shock region, but also to the
improvement in the local orientation of the grid relative to the shock.

Next we consider the h-refinement strategy of 7. An initial solution is obtained
on a 16 x 8 grid (Fig. 12). The solution (and grid) obtained after two applications of
the h-refinement strategy of 7 is shown in Fig. 13, and after a third application, in
Fig. 14. Each application was made after 200 steps. The refinement and unrefinement
tolerances are er 0.16 and eu 0.16, respectively. The final solution is well aligned
with the exact solution, and very good resolution of the shock has been obtained.

Finally, the combination refinement and movement (h- r) is tested using the
solution of Fig. 13 as an initial data; the result shown in Fig. 15 is obtained after
three movements, one every 300 steps, with a 5.

10.2. Blunt body. The second steady-state problem that we consider is a blunt
body placed in a supersonic flow field with free-stream Mach number Mo 6.57 and
/- 1.38 at 0 angle of attack. The larger (extended body) version of this problem
has been studied by Oden, Strouboulis, and Devloo [9] and Bey et al. [28].

An initial skeleton grid of 5 x 5 elements is generated and globally refined twice
to produce a 20 20 uniform grid, which is smoothed by using (9.7) with the density
gradient removed.
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FIG. 11. Wedge--regular grid with node relocation.

FIG. 12. Wedge--initial coarse grid.
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FIG. 13. Wedge--with five grid levels of h-refinement.

FIG. 14. Wedge--with six grid levels of refinement.
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FIo. 15. Wedge--h-r method.

The solution obtained on the uniform 20 20 smoothed grid is shown in Fig. 16.
The exact shock location of this problem is found following Billig [29] and lies at the
center of the computed shock location.

As in the previous case, the uniform grid solution (Fig. 16) is used as an initial
data for the equidistribution scheme (9.7). After using (9.7) for two iterations, one
every 200 steps, the result in Fig. 17 is obtained. The effect of grid distortion upon
the solution error is not analyzed here. However, in both of the steady-flow problems,
(9.7) proves to be an extremely effective simple tool for enhancing the initial uniform
grid solutions.

Next, the h-refinement strategy of 7 is applied. The refinement algorithm is
applied (with r 0.007, u 0.44) using the solution in Fig. 16 as an initial data,
then applied again after 100 steps and 500 steps. The solution obtained at convergence
is shown in Fig. 18 together with the final grid. The shock resolution is much improved
and is aligned with the exact solution.

Finally, the combination of h-refinement and movement is tested with six itera-
tions of grid movement, one every 200 steps, with a 5.0. The resulting solution
and grid are shown in Fig. 19. The residual [[pn+l- phi[ is reduced to 0 (10-5)
by 2000 timesteps. All of the above results were computed with the non-time-split
scheme using the van Leer flux limiter [16], [4] with

(r) (r + Irl)/(1 + Irl).

The superbee limiter [4] was also tried but gave some convergence problems for these
cases.
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FIG. 16. Blunt body, regular grid.

FIG. 17. Blunt body, regular grid after node relocation.

10.3. A Mach-3 wind tunnel with a step. This problem, used by Woodward
and Colella [8] for comparing a variety of methods, is used here for a test of the
transient behavior of the method and solution. The problem begins with a uniform
Mach-3 flow throughout the field impinging on a step [8]. The sequence of results
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FIG. 18. Blunt body, h-refinement.

FIG. 19. Blunt body, h-r method.

obtained using the time-split scheme, together with the resulting adaptive grids, is
shown in Figs. 20-24 for output times t 0.5, 1, 2, 3, 4. These results were obtained by
starting on a uniform (Ax Ay 1/20) grid and applying the refinement algorithm
in the sequence given in 7 after every 25 timesteps.
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FIG. 20. 0.5, fully second-order time-split scheme.

FiG. 21. 1.0, fully second-order time-split scheme.

The condition (iii)(a) of 7 was particularly important in ensuring consistently
good results. The tolerances used are sr 0.061 and s 0.44. The superbee flux
limiter was used in all three formulations.

Excellent agreement is obtained between the adaptive- and fixed-grid solutions,
e.g., at time t 2 compare Fig. 22 with Fig. 25(a). In the final stage of the computa-
tion from t 3 to t 4 the fixed-grid method is unable to sustain the.shock reflection
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FIG. 22. 2.0, fully second-order time-split scheme.

L-t-

4-’ + + +
-I- IIII + -t-+
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FIG. 23. 3.0, fully second-order time-split scheme.

on the upper wall of the tunnel (Fig. 25(b)), in striking contrast to the adaptive grid
result of Fig. 24.

At transition cells (e.g., Fig. 7) the approximation (6.4a) induces truncation errors
of =LO(1) in the two neighboring cells i2 and i6, respectively. However, since disconti-
nuities never cross transition zones (due to adaptivity) this potential source of error
is avoided. Also this error cancels in the global sum with respect to conservation.
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FIG. 24. 4.0, fully second-order time-split scheme.

(a)

FIa. 25. Uniform grid computation (time split). (a) Time 2.0; (b) Time 4.0.
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The current version of the computer code has not been optimized in any way
and has been written mainly from the point of view of convenience. However, large
savings in computer time are obtained in all cases. A typical comparison between an
h-adaptive computation and a uniform fine grid (with the same level of refinement,
using the same computer code) shows the adaptive method to be about four times
faster. This factor tends to increase with grid level, thus, the gains obtained depend
considerably upon the adaptive strategies employed, particularly for the steady-state
cases.

Timestepping. A uniform timestep (fixed At throughout the grid) has been used
in all of the work presented here. A point for further investigation would be to
combine this method with the adaptive timestepping procedure of Berger [30], where
a variable-size timestep is used according to the local level of grid refinement.

There is a striking contrast between the adaptive method of Berger and Oliger
[11] and that employed here. Their method for refining the grid involves overlaying
sequences of finer grids on the coarse-grid areas which contain steep flow gradients.
This method inevitably involves using more elements than are required. Conversely,
in the adaptive method used here, only the actual elements which detect large flow
gradients are flagged for refinement, although in practice some transition elements are
created (see 7). While the former approach is logically more simple than the latter,
it would appear that it has a greater need for adaptive timestepping.

In Table 1, we give the grid level and number of elements for the adaptive grids
shown in Figs. 14, 18, and 24. An inspection of Table 1, together with the correspond-
ing grids and results, demonstrates that near optimal use has been made of the grid
refinements and unrefinements, with the majority of elements packed into the regions
of high flow gradients in each case.

TABLE 1
Grid levels and element counts.

Grid Number of
level elements Total

Wedge
Case 1

42 1
84 10
16 8 35
32 16 71
64 32 161
128 64 588

Blunt body 5 5 4
Case 2 10 10 37

20 20 119
40 40 276

Step 15 5 14
Case 3 30 10 66

60 20 265
120 40 836

866

436

1181

From the table it is possible to deduce the effective advantage of adaptive timestep-
ping. Assuming that the timestep is halved for each fine-grid level created, then for
every eight minimum timesteps, Case 3 of Table 1 reveals a potential saving of 16
percent of the run time of the adaptive code. This assumes no extra overhead in
performing the adaptive timestepping procedure. For the nine-point schemes used
here the support can be across four interfaces simultaneously in one direction (8),
which complicates the logic of adaptive timestepping in two dimensions.

For steady-state problems, nonconservative local timestepping could be used.
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However, Table 1 suggests that only a comparatively small reduction in computer
time would be obtained in the steady-state cases 1 and 2.

11. Conclusions. A two-dimensional version of the higher-order approximate
Riemann solver of Roe [14] is presented in finite-volume form for application to un-
structured quadrilateral grids.

A one-dimensional analysis of the solution error indicates that convergence is
formally O(Ax) for an arbitrary nonuniform grid.

However, the quality of the results and the very fine resolution obtained by the
high-order scheme on an adaptive grid is comparable with that obtained by the same
scheme on a fixed uniform grid, with a cell size corresponding to that of the finest
adaptive grid level.

Great savings in computer time are obtained; the adaptive code is a factor of 4
times faster than the same code run on the corresponding fixed uniform grid.

Appendix A. Question of accuracy on a nonuniform grid. In this ap-
pendix we will show that for a sufficiently smooth solution, when the cell-centered
low-order upwind scheme is applied to the linear advection equation on a nonuniform
grid, the error in the solution is of O(h) while the local truncation error is O(1). When
the error in the solution is better behaved than the local truncation error the scheme
is supraconvergent [22].

The low-order upwind scheme for linear advection (3.6), (3.8) can be written as

(A.1) u+l n cat
(uh u_) + Ilx (u\ ? + )2Ax u_

Substituting the exact solution u(x, t) into (A.1) and performing Taylor series expan-
sions about u(xi,t), the leading truncation error is found to be

(Ax+ + Ax_ 2Axe) (Ax+ A_)(A.e) au, ex - +O(t, x),

where

and Axi is the ith element length.
The local truncation (A.2)is O(1), which suggests that the numerical solution will

not converge to the physically correct solution. However, by performing an analysis
similar to Zreiss et al. [22] we can show that the error in the solution is of O(Ax).

First, we obtain the discrete error equation by subtracting the grid difference
equation (A.1) from the truncation error which results in

--ei _{_ n n(A.3) e+ n a(e+l en-) lal
At 2Ax 2Ax (e+ 2e + e_) .

Multiplying (A.3) by Axi and summing over i 1 to j gives

(A.4)

_
{?+1

At
i=1

n a n n n’ z, +( + +1) (+ )
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using (A.2) gives

ETiAxi- 1/2 E(aA_(Axi+I- Axi)- lal(Axi+1/2 Axi_1/2
i=1 i-1

Performing a summation by parts results in

(A.5) E TiAXi --’ E((Axi+i Axi)a Axi+1/2 lal)(ux,+l ux,).
i=l i=l

For u sufficiently smooth,

u,+ u, u+1/2 Axe+1/2 + 0Ax:,
hence (A.5) is of O(Ax).

0Using the initial data at time t 0 (n 0), u u(xi, 0) or

0-0.(A.6) ei

From (A.4), (A.5), and (n.6) it follows that

J Ax O(tx)() -X-i
i=1

Since (A.7) is true for any j, then

(a.) o(zx/

and the CFL condition (a.21) ensures that

O(zXx).

By induction it follows from (A.4) that

(a./ r/ O(ZX/ , ,
hence the solution converges with O(Ax).

Observations. The same analysis can be applied o the higher-order scheme o
show first-order convergence. For example, the Lax-Wendroff scheme used here (3.6),
(a.7) has a leading gruncation error of

(.10) (zx+1/2 + zx_1/2
2Axi au + O(Ax, At),

which is due to approximating the physical flux component of (3.7) by

(A.11) f + f+l
2

Second-order convergence can be recovered in two ways: (i) Replace (A.11) by
the second-order approximation

(A.12) Ax+if + Axf+
(Ax+ + Axe)
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which would reduce the truncation error to O(Ax). However, the introduction of
(A.12) into (3.7) results in a scheme which cannot be shown to be TVD, and the
exact shock resolution property of the Roe scheme is lost on an arbitrary nonuniform
grid.

(ii) Remove the O(1) truncation error in (A.10) by defining Axi to be the mean
cell length

(/Xx+. +/Xx_ ).Ax 1/2

This definition effectively removes the distinction between cell-centered and node-
based (cell vertex) schemes. However, it is not practical to carry over into two di-
mensions for the grids used here. (Note that the scheme (3.6), (3.7) would, therefore,
achieve second-order convergence if it had been applied using cell vertices as opposed
to cell centers in one dimension.)

Appendix B. The Roe decomposition for the Euler equations in two
dimensions. In order to satisfy (6.3b), we follow a similar procedure to that pre-
sented by Roe and Pike [31] for the one-dimensional case and by BRines [32] in two
dimensions. For the Euler equations (10) the matrix A(u) defined in (6.3a) takes
the form

(B.1)

0 c s 0

1/2(/- 1)q2c uU U -4- (2 ff)uc (2 /)vc V (? 1)c

( 1)q2s vU V + (2 ")us U + (2 /)vs (, 1)s

U((9’-1)q2-2pE) Ec+(1--/)(2 Y--+(1 9’) (2s+Uv)P

and has eigenvectors given by

(B.2)
el,2 [1, u =l= ac, v + as, H -4- Ua]T,
e3 [0, as,--ac,-aY]T

e4 "-[1, u, v, q2/2]T,

where H is the enthalpy (H q2/2 +TP/P(7-1)), a is the sound speed (a v/Tp/p),

U C -f" VS
(B.3)

V --us -4- vc,

with corresponding eigenvalues

A1,2 U - a,

(B.4) 3 U,

A4 :U.
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Following [31] and [32], aj (increments of the characteristic variables with respect to
the primitive variables (p, u, v, p)) are found to be

(B.5)

Equation (6.3b) is satisfied provided that u, v, h, p, and a appearing in (B.1)-(B.5)
are defined by

(B.6)

respectively, and the difference operator is defined such that

(B.7) Ap PR PL.
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INTERACTION SPLINES WITH REGULAR DATA:
AUTOMATICALLY SMOOTHING DIGITAL IMAGES*

CHONG GUt
Abstract. The idea of interaction spline was first proposed by Barry [Ann. Statist., 14 1986),

pp. 934-953] in the context of nonparametric Bayesian multivariate regression. Wahba [Computer
Science and Statistics, American Statistical Association, 1986, pp. 75-80] shows that Barry’s model
is a special case of a wider class of smooth functions which can be constructed from the tensor
product of reproducing kernel Hilbert spaces. Algorithms for computing interaction splines with
arbitrarily scattered data have been developed by Gu, Bates, Chen, and Wahba [SIAM J. Matrix
Anal. Appl., 10 (1989), pp. 457-480] and Gu and Wahba [SIAM J. Sci. Statist. Comput., 12 (1991),
pp. 383-398]. These algorithms require O(n3) flops for sample size n. The purpose of this work is to
develop fast algorithms for computing interaction splines with data sampled from a regular product
mesh. The algorithm is of order O(n) for practical problem size. Smoothing parameters can be tuned
using the generalized cross-validation. A possible application of the technique is image smoothing.
In image smoothing, a periodic interaction spline is observed to be a low-pass filter of a certain form.
Simulated examples are presented and practical aspects of the algorithms are discussed.

Key words, adaptive filter, conjugate gradient iteration, fast Fourier transform, generalized
cross-validation, image smoothing, smoothing parameter

AMS(MOS) subject classifications. 65D07, 65D10, 65F10, 65K10, 65U05

1. Introduction. Suppose one observes yj f(xj) + ej, j 1,...,n, where

x e [0, 1] d, Ee 0, var(e) w-1, and the ej’s are uncorrelated. The solution f
to the penalized least square problem

(1.1) min
1

wj(y. f(xj))2 q- llPxfll 2, s.t. f e 7,
n

defines a smoothing spline, where T/is a reproducing kernel Hilbert space (RKHS) of
functions on domain X with norm I1" ]1, and P1 is the orthogonal projector onto
a subspace /1 of co-dimension M < n. The solution has an expression fA

n)-M= dv + ’= cjj, where (}vM=l is a basis for ?/0, the orthogonal comple-
ment of T/l, and i P, where is the representer of the evaluation functional
[xj](.). The reproducing kernel (RK) of /is a bivariate function R(., .) (symmetric
in its two slots) such that R(x, .) is the representer of Ix](.). For /- T/0 @ /, 7/0
and :H1 are also RKHSs and the sum of their RKs R0 and R is equal to the RK R
of /. Substituting the solution expression into (1.1), the problem reduces to solving

min l(y_ Qc- Sd)TW(y- Qc- Sd)+ AcTQc,
n

where (Q)j,k R(xj,xk), (S)j,u (xj), and W diag(w,... ,wn); see [17, 1.3].
See also [1] for the definition and properties of RKHS. Note that the RK is uniquely
determined by the norm and vice versa. The notion of smoothness for f E /is defined
as the deviation of f from T/0, namely IIPfl]2. It is possible to specify different RKs
for the same set of functions to reflect different meanings by the word "smoothness."

*Received by the editors May 9, 1990; accepted for publication (in revised form) January 22,
1992. This research was supported by the Natural Sciences and Engineering Research Council of
Canada while the author was at the University of British Columbia. The revision was supported by
National Science Foundation grant DMS-9101730.

tDepartment of Statistics, Purdue University, West Lafayette, Indiana 47907.
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Interaction splines are defined on the tensor product RKHS (cf. [1]). Consider
RKHS 1 . ( .111 with the RK R R + R on [0, 1] and
with the RK R2 R + R2 on [0, 1], where 7-/ and 7-/ are of finite dimension. The
tensor product RKHS on [0, 1] 2 has a tensor sum decomposition 7-/ :H (R) 7-/2
(7-/ (R) 7-/) @ (7-/ (R) T/o2) (7-/ (R) n2) @ (7-/ (R) 7-/2) 7"/0,0 7"/1,0 7"/0,1 7-/1,1. The
norm in tensor product RKHS is usually defined indirectly via its RK, which is often
taken as the product of the RKs of the component spaces; see [1]. For example, a RK
in 7-/1,0 can be taken as Rl,0((Xl,X2), (x,x2)) Rl(xl,x)R(x2,x2). Let [[. be
the norm in the tensor product RKHS 7-/corresponding to the RK R1R2. It can be
shown that []f[[ -0-l[[Po,of[[ 2 -+-0-l[[Pl,0f[[ 2 q-0-l[[Po,xf[[ 2 -b 0-X[[P1,xf[[ 2 defines1,2
a class of norms with the corresponding RK OoRR + 01RR + 02RoRI12 + 01,2R11 R1,2
where the O’s are all positive and the Pi,j’s are projectors onto T/i,j’s (cf. [11]).
Letting 7{o 7-/0,0 and 7-/1 7-/1,o @ 70,1 @ T/1,1 in (1.1), with the norm indexed
by 0, one obtains interaction splines with multiple smoothing parameters A/01, A/02,
and A/01,2, where the 0’s determine the contributions (weights) of the norms of the
individual spaces 7"/1,0, 0,1, and 1,1 to the combined norm of the space T/l; see,
e.g., [10] [11], [9] and [3]. Let { Ul}v=i be a basis in 7-/ and {2}MI a basis in 7-/o2.
It can be seen that the M MIM2 product functions 122 form a basis for T/o,o.
The quantities in (1.2) are thus

2(1.3) (Q),k
(1.4) (S)j,v (x)- (1()2(2))(xj).
The generalization of the above procedure to (d > 2)-dimensional space is straight-
forward; see, e.g., [11]. Details are omitted here.

A class of RKHS of univariate functions on [0, 1] is the space W {f f()
abs.cont., - 0,..., m- 1, f(f(m))2 < 0} with the norm

m--l( )2 f01Ilfll E f() _}_ (f(m))2
--0

and the corresponding RK
m

l’m-lkt) (- tl),
v-’0

where k B/! and B is the th Bernoulli polynomial. Write Wn 71"m (
q,, where 71"m is the space of polynomials of order less than m with the norm

m--1-=0 (fo f(v))2, and ,-qm contains functions satisfying f f() 0, 0,..., m- 1,
with the norm fol(f(m))2. The RK of rm is

m-1

(1.5) E k(s)k(t),
’-’0

and the RK of S, is

(1.6) km(s)km(t) + (-1)m-lk2m([S t[);

see [4]. The subset of periodic functions of W comprises a RKHS of the form
{ 1} @ .qper_m where .qPerv

m is the periodic subset of S,. The RK of { 1} is 1 and the RK
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of.P_r is 1)m-lk2m(IS tl); see [17, 2.1] In fact, {kv}v=0 is an orthonormal basis
m--1

Sfor rm with norm ’]=0 (f f())2 and k individually span m mutually orthogonal
one-dimensional subspaces of rm with norms (f f())2. We shall use
u 1,..., m, as a basis for rm. In this article, the term interaction spline refers to
the case where the component spaces are either Wn’s or their periodic restrictions.

The idea of interaction spline was first proposed by Barry [2] in the context
of nonparmetric Bayesian regression. Barry’s model is equivalent to using W
(1} @ 1 for all of the component spaces. The formulation sketched above follows
Wahba’s development [16]. The computation of interaction splines for arbitrarily
scattered xy’s is studied by Gu, Bates, Chen, and Wahba [10] and Gu and Wahba [11],
where it is argued that O(n3) operations are inevitable. Some asymptotic properties
of interaction splines were investigated by Chen [3]. The purpose of this article is to
develop fast algorithms for computing interaction splines, assuming that the x’s fall
on a tensor product mesh of equally spaced grids. We will restrict our development
to d 2. Extension to d > 2 is straightforward but tedious. A possible application
of the technique is the automatic smoothing of digital images.

In 2, basic algorithms are developed for situations of different complexities. Sec-
tion 3 discusses the implication of the periodic splines as automatic low-pass filters. In
4, numerical efficiency of the building blocks is studied and examples are presented.
Section 5 concludes the article with discussion.

2. Algorithms. We assume d 2. The operator "(R)" will hereafter stand for
the Kronecker product of matrices. The superscript "H" will stand for the conjugate
transpose of matrices and vectors.

2.1. Preliminaries. It can be shown that the linear system

(2.1)
(WQ + nAI)c + WSd Wy,

sTc 0

gives a solution to problem (1.2); see, e.g., [9]. We will use the generalized cross-
validation (GCV) method of Craven and Wahba [4] to automatically choose the
smoothing parameters, which are the nA and the O’s hidden in the matrix Q. The
GCV method has been proved to be asymptotically optimal for minimizing prediction
mean square errors; see [17] for more references.

For W I, letting r A(, 0)y denote the vector of predictions f(xj), the GCV
score to be minimized is defined by V(A, 0) n(y- )T(y_ r)/[tr(I- A(A, 0))] 2.
It can be shown that (nA)c y- p and hence Y ncTc/[trB] 2 where c By.
Let P- I- Ps I- s(sTs)-1ST be the projection matrix to the orthogonal
complement of the column space of S. Since STc 0, it is easy to see that c P-c.
Applying P- from the left to the first equation of (2.1) (with W I), it follows that

(2.2) (P-QP- + nAI)c P-y.
We will solve c from (2.2) and calculate V via

(2.3) V ncTc/[tr(PQP + nAI)-lP]2.

d can be solved from the first equation of (2.1). The computation for a general W
will be discussed in 2.4.

Suppose one has n nln2 data on the regular mesh {(xl,jl, x25.)" jl 1,..., nl;

j2 1,..., n2}, where xl,i (j- .5)/nl, x2,y (j- .5)/n2. Define $1 and $2 with
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entries (S1)j,, (xl,j) and (S2)j,, (x2,j), where, , k,_l form a basis
for 7-/ and 1-/. From (1.5), it is easy to see that R(x15,X,k) (SST1),k and
R(x25,X2,k) (s2sT2)j,k. Also define Q and Q2 such that (Q)j,k Rl(X5,x,k)
and (Q2)j,k R(x25,X2,k). Order the data such that j2 varies most frequently

2and order the basis functions of 7-/0,0, , ,(),(2), such that u(2) varies most
frequently. It follows from (1.3) and (1.4) that

Q Ol,2(Q1 (R) Q2) q- O(Q (R) ssT) + 02(SlSlT (R) Q:),
S- S (R)S.

The developments below are based on (2.4).
2.2. Periodic spline with equal weights. Defining Pn as an n n matrix with

the (i,j)th entry (Pn)i,j (-1)m-k2m(li- jl/n), where k2, B2,/(2m)! is the
scaled Bernoulli polynomial, the key to the developments is the spectral decomposition

Hr. P.r A.,
where Fn is the Fourier matrix with entries (Fn)j,k n-/2 exp(2zri(j 1)(k- 1)/n),
where x/Z-l, and An diag(Al,n,...,An,n), where

Al,n 2n(2r)-2m j=l(jn)-m

A, n(2r)-2m Ej=-( 1 + jn)-2m 2,., n;

see [4]. If both 1 and 2 are periodic, then S1 1, $2 1, FQ1F An A1,
and FH Q2F A A2 where S h length n; $2 h length n2; F Q and

n2

A are of dimension n nl; and Fn2, Q2, and A2 have dimension n2 n2. Writing
FHr rl r. r’y, r’s (rSl)(s), r’Qr, and 8 FHc,

(2.2) becomes

(2.6) nAI)6+ y,

where P I- P I- P P. It follows that e and 2 e,
where el (1, 0,...,0)T have lengths nl and n2, respectively. It can be seen that

P diag(0, I), Q 0,2(A @ h2) + 01(A1 @ J2) + 02(J1 @ h2), where

(2.7) J diag(n,O)nx and J2 diag(n,O)nxn2.

Hence (2.6) is a diagonal system with real diagonals. Since

y-Hp(pp + nAi)-2p
and

trB tr(FHBF) nAI)-tr[(P QP + P ],
the score V h an expression explicit in A’s and 0’s and so do its derivatives. Hence
V can be minimized with respect to the smoothing parameters via an appropriate
Newton-type method. There is one redundant dimension in the smoothing parameters
and one can simply fix nA. See, e.g., [11], for a related algorithm. The calculation of

FHy, which is the forward two-dimensional discrete Fourier transform (DFT) of
y on a two-dimensional array, can be conducted via the fast Fourier transform (FFT).
A backward DFT of c F6 via FFT gives the solution to the original problem (2.2).
We can check that the one-dimensional coefficient d in this setup is equal to the overall
average of the y’s, which is independent of the smoothing parameters.
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2.3. General spline with equal weights. For a general problem, Q and P are

not diagonal. However, the matrix-vector multiplication of (x (and ofPx) is of order
O(n) (note that Qx is not), and hence for fixed nA’s and 0’s one can solve (2.6) via the
preconditioned conjugate gradient iteration; see, e.g., [8, Chap. 10]. To be specific,
note that Qi Ai+,i,H where ,i FHti and ti (km(xi,1),... ,km(xi,m))T, 1,2
(cf. (1.6)). It can be shown that

P+/-~QQ+/- Q+/- (1,2 (hi -- ,11H - (2/01,2)11H) (R) (A +H + (O1/01,2)22H))p_.
A convenient preconditioner for the conjugate gradient iteration is

C 01,2(A1 (R) A2) + 01 (A1 (R) J2) + 02(J1 (R) A2) + nM,

where J1 and J2 are given in (2.7). It is easily seen that PQP + nI- C is of
lower rank. We assume that S1 and $2 both have a column of constant.

To evaluate the GCV score V, one needs to calculate tr((P-(P- + nAI)-IP).
Girard [6] noticed that if one replaces y by a vector e of independent and identically
distributed (i.i.d.) random noise with mean 0 and variance 1 and solves for ce, then

EccTe tr((P-QP- / nAI)-P). Therefore, he suggests using c or a slightly
better version nce/eTe to estimate the trace. Simulation results about this method
can be found in [6] and further theoretical justifications can be found in [6] and [7].

We now describe another approximation for the trace term in the denominator
of the GCV score which is appropriate for the current setup. Let 1 M
0 < < p be the ordered eigenvalues of -P# QP#, where M is the number of

columns in S. Write PQP UAUH (U1, U2)A(U1, U2)H, where A diag(#j),
U1 consists of the eigenvectors of # M 0, and U2 consists of the
eigenvectors of the remaining n- M positive eigenvalues. Since PU1 O and

P is a projector, P U2U. It then follows that tr((P-QP + nAI)-1P)
tr((A + nAI)-IuHu2uu) y=M+(nA + )-1 Writing u < < Pn for the

eigenvalues of Q/0,2 (hi + + (02/01,2))@ (h +2+ (0/01,2)2),
it can be shown that 01,2u Py+M O,2Uy+M, j 1,...,n- M; see, e.g., [14,
pp. 316-317, ex. 4]. Hence, the u9’s can be used to calculate bounds for the denomina-
tor of the GCV score. Computationally, the uj’s are just products of the eigenvalues
of Q + tt + (02/01,2)$1S and Q2 + t2t + (01/01,2)$2S, which are available in
O(n)+O(n) flops. For the problems covered in this article, this method is preferable
to Girard’s method in both speed and precision; see 4.

2.4. Unequal weights. For a problem with unequal weights, (2.1) leads to

(2.9) (PvsW1/2QW1/2 _1.pws + nAl)(W-1/2c) +/-Ps(W1/2y),

where +/- W1/2 STw1/2. Assuming W1/2Pws I-Pws I S(STWS)-1

A(W1/2y) and W-1/2c B(W1/2y), the GCV score is defined by

(2.10) V n(y r)TW(y- r)/[tr(I- A)] 2 ncTW-lc/[trB]2,

where the last equation follows the fact that (nA)(W-i/2c) wl/2(y- ). The
conjugate gradient iteration can be used to solve (2.9) for W-1/2c. It can be shown
that
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_t. / / +/- W/P,vsw Qw P,vs +/-=Pws F

 (a2 + +
FnW/2Ps.

We are not able to identify a convenient effective preconditioner for this iteration. A
standard conjugate gradient iteration for solving (2.9) needs a pair of FFTs in each
step.

The denominator of the GCV score involves

tr((PsW/ /Qw Pws +   O- Pws)
As indicated in 2.3, Girard’s method may be used to approximate the trace. To
apply the trace bounds bed on the eigenvalues, one needs W W Wu, which
in general is not true. Nevertheless, one might use an approximation of W with the
form W Wu to obtain approximate bounds. An obvious choice for W and Wu is
W diag(,.,..., ,.) and W diag(.,,..., .,:), where i,.’s and .,j’s are
the row-wise and column-wise geometric means of the weight matrix W.

2.5. Penalized likelihood. For categorical and/or ymmetric random schemes
it is usually sumed that yj follow a distribution with log likelihood lj(j) (yjj
b(j))/a(), where j f(xj) is the parameter to be modeled on xj and is a
nuisance parameter common to all observations. The penalized likelihood method
estimates f via

rain
2 /(f(x)) + ]pf2, f U.

It can be shown that the Newton method iterates on

rain w(O f(x))2 + Pf, f U,

where Oj U0j uj/wj, Uo,j is the previous iterate of j, uj -dlj/djno and
wj -d21j/dyno; see [9]. See also [12] and [13]. The algorithm of 2.4 can be used
to implement the steps of this Newton iteration.

3. Interaction splines as low-pass filters. The algorithm of 2.2 for periodic
interaction splines can be viewed automatic low-ps filters for high-dimensional
image. To see this, remember that y- (n)c, so the two-dimensional DFT of
is

(PQP +nM)-Hence, the smoothed image is obtained by damping the spectrum of the observed
image. The damping factor for the (i, j)th cell, i, j > 1, is

(cf. (2.5) and (2.6)); the factor for the (i, 1)st cell, i > 1, is 6i, (O,2i,n,n +
nOli,n)/((Oi,ui,mi, + n20i,) + n); the factor for the (1,j)th cell, j ) 1, is
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il,j (O1,2Al,l/j,n2 + nlO2Aj,n)/((O,2Al,nlAj,n. + nlO2Aj,n)+ n,k); and the factor
for the (1, 1)st cell is 1. The magnitude of Av, declines at a rate O(-2") over
2,..., n/2 (cf. [4]), hence the method is a low-pass filter. The threshold frequencies of
the filter are determined by the magnitude of the nA/O’s relative to that of the Av,’s.
Larger m leads to a greater declining rate in A,n, and in turn to a sharper threshold
boundary. The GCV method in this setting can be viewed as an effective method for
automatically tuning the threshold frequencies.

As an illustration, we generated a 64 x 64 image on (0,1)2 by adding Gaussian
noise with mean 0 and variance .04 to the function

(3.1) [cos(37r((x -.5)2 + (x2 -.5)2))/ cos(27r(x -.5))sin(27r(x: -.5))]/3.2,

and applied the algorithm to the image with m 2. See 4 for more details about
this example. The frequency responses and the equivalent smoothing kernel of the
GCV tuned filter are plotted in Fig. 3.1.

12

12

10 15 20 25 3O 10 15 20 25 30

Frequency

O.

0.0 0.1 0.2 0.3 0.4 0.5

(a) (b) (c)

FIG. 3.1. An automatic low-pass filter. (a) Frequency response on the edges: "1" indicates 5i,1
and "2" indicates 51,j (b) Half-power contour of 5i,j (c) Contour of a quarter of the equivalent
smoothing kernel on the space domain.

4. Examples and practicalities. The algorithms described in 2 are certain
combinations of primitive building blocks, namely the FFT, the Newton iteration,
the preconditioned conjugate gradient iteration, and the trace bounds computation.
Numerical performances of these building blocks are investigated in this section. The
timing was done on a Sun-SparcStation/330.

4.1. Periodic spline with equal weights. To illustrate the periodic algorithm,
we generated nl x n2 images, nl n2 32, 64, 128, on (0, 1) 2 by adding Gaussian
noise with mean 0 and variance .04 to the function in (3.1). We applied the algorithm
with m 2 to the image. Some timing results are summarized in Table 4.1. Also
included in Table 4.1 are the mean square errors of the estimates, defined by

1
n

mse -(](xj) f(xj))2,
n
j=l

where ] is the estimate and f is the true function.
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TABLE 4.1
Timing and mean square errors for periodic algorithm.

nl,n2 FFT (sec./pair) Newton (sec./iter.) mse

32
64
128

0.24 0.60/7 .00138
1.04 3.00/9 .00065
4.94 8.46/6 .00018

The contour plots of the true function and the reconstruction from the 32 x 32
noisy image corresponding to the first line of Table 4.1 are presented in Fig. 4.1.

o

o

o

o
o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

FIG. 4.1. Reconstruction of a periodic image. (a) The contour of the true function. (b) The
contour of a 32 x 32 reconstruction

The calculation was done in double precision. The FFT was conducted using
double precision modifications of routines from Swartztrauber’s FFTPACK [15]. We
used n)/l trA1/nl, n)/2 trA2/n2, and n/,2 tr(hl (R) h2)/nln2 as starting
values for the Newton iteration and the iteration converged in a few steps, where
convergence meant that the achieved score V was estimated to be less than 1.001Ymin,
where Ymin is the true minimum. Note that the bottom of V could be very flat and
one would be happy anywhere at the bottom. See [11] for a discussion. It can be seen
that the timing for FFT went up at a rate of roughly O(n log n), and the timing for
the Newton iteration (per step) went up at a rate of roughly O(n). It can be seen that
a pair of FFTs is roughly equivalent to three Newton steps. The Newton iteration
usually dominates the execution, since it needs more than three steps. The practical
order of the algorithm is slightly higher than O(n).

4.2. General spline with equal weights. To test the general algorithm with
preconditioned conjugate gradient iteration, we generated n n2 images by adding
Gaussian noise from N(0, .04) to Franke’s [5] test function
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.75 exp[--((9xl 2)2 + (9x2 2)2)/4] + .75 exp[--(9xl + 1)2/49- (9x2 + 1)2/10]
/.5 exp[--(9x 7)2 -(9x2 3)2/4]- .2 exp[-(9x -4)2 -(9x2 7)2/4].

We first applied the periodic algorithm to estimate the O’s and a starting nA. To
help the periodic algorithm choose reasonable smoothing parameters, we detrended
the images at the outset by P-y. Since the GCV method chooses A’s and O’s that
approximately minimize the mean square error of the smoothed image and since a
periodic smoothing of a nonperiodic image generally introduces large errors on the
boundary, the periodic GCV algorithm tends to choose smoothing parameters smaller
than appropriate. It is known that the GCV score (and the mean square error) is
less sensitive to the ratios of the smoothing parameters than to their magnitudes,
so we decided to fix the O’s as returned from the periodic algorithm but to do a
crude search on nA on the upper side of the nA returned from the periodic algo-
rithm (say, nA0). We have run the preconditioned conjugate gradient iteration for
nA nA0,3.18(nA0), 10(nA0),31.8(nA0), 100(nA0). Table 4.2 summarizes some tim-
ing results, the GCV bounds, and the mean square errors.

TABLE 4.2
Timing, GCV bounds, and mean square errors for general algorithm.

FFT Ntn CG Tr
nl, n2 nA (sec./pr) (sec./iter.) (sec./iter.) (sec.) 100V mse

32 nA0
32 3.18(nA0)
32 10(nA0)
32 31.8(nA0)
a (o)
64 3.18(nAo)
64 lO(no)
64 31.8(nAo)
128 (nAo)
128 3.18(nAo)
128 lO(nAo)
128 31.8(n,ko)
128 lO0(nAo)

0.25 0.60/7 15.84/22 0.40 4.2837 +/- .0178 .00151
0.30 0.61/7 22.32/30 0.40 4.2343 +/- .0172 .00128
0.25 0.69/7 17.41/24 0.40 4.2547 +/- .0170 .00149
0.26 0.61/7 12.78/17 0.41 4.4092 +/- .0172 .00283

1.06 2.48/7 89.45/31 2.11 4.1150 -+- .0042 .00096
1.07 2.42/7 125.32/45 2.21 4.0986 +/- .0041 .00077
1.07 2.54/7 90.49/32 2.14 4.1095 +/- .0041 .00080
1.09 2.81/7 82.25/28 2.42 4.1802 +/- .0041 .00138

5.16 7.32/5 1005.78/87 13.55 4.1517 +/- .0011 .00063
5.17 7.30/5 865.44/76 13.58 4.1375 +/- .0011 .00043
4.99 7.22/5 697.60/61 13.07 4.1279 +/- .0010 .00030
4.85 7.19/5 813.86/72 12.21 4.1229 +/- .0010 .00022
4.85 7.20/5 722.20/66 12.80 4.1250 +/- .0010 .00023

The contours of the true function and the 32 x 32 reconstruction corresponding
to the second line of Table 4.2 are plotted in Fig. 4.2.

It can be seen that the GCV bounds provided very accurate approximation to the
true score, and the GCV score followed the mean square error closely. The execution
time for computing the trace bounds was negligible compared to the time for the
conjugate gradient iterations, so speed-wise the bounds dominate Girard’s method.
To compare the precision of the two methods, we computed ten samples of Girard’s
approximate GCV score using ncTee/eTe as the trace for the case listed in the first
line of Table 4.2. The mean of the 10 samples was .042707; the standard deviation
was .000625. As a comparison, the 100 percent confidence interval for V using the
trace bounds is (.042659, .043015) with a width .000356. Only one sample of Girard’s
approximation out of the ten fell into this interval. Nevertheless, this comparative
study by no means impairs the merits of Girard’s method, which applies to more
general problems and performs satisfactorily as a A-selector on many problems when
a single set of e is used at all the A values.

We finally remark on some practicalities about the algorithm. Comparing the
two convenient choices, the preconditioner C of (2.8) performed much better than
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{a) (b)

FIG. 4.2. Reconstruction of Franke’s function. (a) The contour of the true function. (b) The
contour of a 32 32 reconstruction.

the diagonal of +/- +/-P QP +nAI in our test runs; we have not been able to locate
other convenient preconditioners. We did have difficulty with the convergence of
the conjugate gradient iteration when applying the algorithm to certain undetrended
images, while detrending seemed to be effective in curing the problem. The problem
was that the criterion we set (.001) seemed to be too stringent for the linear system
with smoothing parameters chosen by the periodic algorithm for those undetrended
images. The starting value for the conjugate gradient iteration in general does not
seem to affect the speed of convergence, unless it is very close to the solution. However,
double precision is essential to fast (and even eventual) convergence of the iteration.

4.3. Unequal weights. For unequal weights, we ran the algorithm on a 32 32
image generated by adding noise to Franke’s test function. The noises were Gaussian

-/2from N(0, .04) scaled by weights wi,j For generating the weights, we generated two
sets of uniform deviates from V(0, 1), mapped them onto (-u/2, u/2), u 0,..., 5,
and took these as log wi,j, where the unbalancedness increases as u increases and
u 0 corresponds to equal weights. This procedure generated 11 sets of weights
in two groups (including the equal weights). Before applying the algorithms, we
first scaled the weights to make their geometric mean equal to 1. We ran the equal

p_L W/2.,weights periodic algorithm on ws to choose O’s and fix an n0, then we
applied the conjugate gradient iteration (without preconditioning) to solve (2.9) with
nA --nA0, 3.18nA0, 10nA0, 31.8nA0, and 100nA0. The GCV scores based on the trace
bounds using an approximate weight matrix W1 (R) W2 were computed, where W1 and
W2 are row-wise and column-wise geometric means of W. Girard’s estimates of the
GCV score were also computed using two sets of e for all the cases. Some timing
results for the u 5 weights in the first group, together with the corresponding
approximate GCV bounds, Girard’s GCV estimates, the mean square errors, and the
weighted mean square errors, are summarized in Table 4.3, where the weighted mean
square error is defined by
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TABLE 4.3
Timing for unequal weights.

Ntn CG Tr
n (sec./iter.) (sec./iter.) (sec.) 100V 100Vg,1 100Vg,2 mse wmse

3.18(no)
10(n0)
31.8(nA0)

0.52/6 31.95/61 0.42 3.7844 + .0016 3.8436 4.1274 .00179 .00454

0.53/6 21.97/40 0.42 3.8998 + .0016 3.9491 4.1735 .00137 .00350

0.51/6 15.13/27 0.42 4.0245 4- .0016 4.0725 4.2372 .00118 .00312

0.51/6 9.87/17 0.42 4.2898 4-.0017 4.3454 4.4561 .00161 .00420

o

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4.3. The contour of a 32 x 32 reconstruction of Franke’s test function using unequal weights.

1
n

wmse wj(/(xj)- f(xj))2
n

j=l

Asymptotically, the minimizer of (2.10) is supposed to minimize the weighted mean
square error; see [12] and [9].

The conjugate gradient iteration here mainly operates on real numbers and it
takes less execution time per step than that of the preconditioned conjugate gradient
iteration of the equal weights algorithm, which operates on complex numbers. How-
ever, the convergence is usually slower than that of the equal weights algorithm and
the execution time is longer when being applied to an equal weights problem. Table
4.4 summarizes the centers of the approximate GCV bounds (Vc), the two sets of Gi-
rard’s GCV estimate (Vg,1 and Vg,2), and the weighted mean square errors calculated
with all the 11 sets of weights and the five relative levels of A. It can be seen that
the three GCV estimates roughly parallel each other. For the weights with large u
in the first group, the GCV choices of A tend to undersmooth the data, while the
knowledge that a better A should be on the upper side of the choice of the periodic
algorithm prevents poorer choices. For the weights in the second group the GCV
choices performed reasonably well at all unbalancedness levels. The contour of the
reconstruction corresponding to the third line of Table 4.3 is plotted in Fig. 4.3.

5. Conclusion. In this article we have studied the computation of interaction
splines when the data are sampled from a regular product mesh with noise. Algorithms
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TABLE 4.4
GCV estimates and weighted mean square errors for unequal weights.

nA 100Vc 100Vg,1 100Vg,2 1000wmse 100Vc 100V,I 100Vg,2 1000wmse

nAo
3.1S(nAo)
10(nAo)
31.8(n0)
100(nAo)

nAo
3.18(nA0)
10(no)
al.S(no)
OO(no)

nAo
3.18(nAo)
lO(n),o)
31.8(nAo)
100(nA0)

nAo
3.1S(nAo)
10(nAo)
31.S(nAo)
100(nA0)

nAo
3.18(nAo)
10(nAo)
31.8(nXo)
lO0(nAo)

nAo
3.18(nAo)
lO(nAo)

31.8(n,Xo)
100(nAo)

4.284 4.232 4.289
4.234 4.185 4.234
4.255 4.214 4.252
4.409 4.373 4.412
4.655 4.619 4.670

log wi,j E (-0.0, 0.0)
1.504 4.284
1.276 4.234
1.495 4.255
2.828 4.409
5.074 4.655

4.232 4.289 1.504
4.185 4.234 1.276
4.214 4.252 1.495
4.373 4.412 2.828
4.619 4.670 5.074

4.216 4.173 4.273
4.190 4.143 4.228
4.214 4.173 4.239
4.362 4.327 4.380
4.420 4.588 4.642

log wi,j E (-0.5, 0.5)
1.943 4.384
1.585 4.335
1.631 4.344
2.727 4.481
4.944 4.728

4.346 4.441 1.414
4.292 4.377 1.190
4.307 4.378 1.396
4.448 4.514 2.689
4.697 4.768 5.080

4.135 4.096 4.247
4.140 4.096 4.223
4.215 4.177 4.274
4.442 4.414 4.487
4.741 4.721 4.782

log wi,j (-1.0,1.0)
2.332 4.474
1.959 4.427
2.193 4.435
3.793 4.575
6.246 4.843

4.461 4.597 1.380
4.399 4.528 1.161
4.407 4.518 1.398
4.550 4.648 2.799
4.820 4.914 5.498

4.028 4.026 4.223
4.067 4.043 4.216
4.136 4.109 4.245
4.345 4.325 4.424
4.702 4.690 4.762

log wi,j (-1.5, 1.5)
3.001 4.553
2.389 4.513
2.282 4.522
3.468 4.670
6.230 4.978

4.579 4.754 1.431
4.508 4.680 1.194
4.507 4.662 1.447
4.657 4.790 2.978
4.966 5.084 6.139

3.895 3.945 4.172
3.982 3.991 4.202
4.074 4.063 4.238
4.245 4.231 4.363
4.567 4.559 4.652

log wi,j. G (-2.0, 2.0)
3.871 4.624
2.981 4.589
2.637 4.599
3.230 4.750
5.388 5.111

4.706 4.912 1.591
4.622 4.833 1.286
4.607 4.805 1.499
4.751 4.923 3.059
5.112 5.260 5.388

3.784 3.857 4.127
3.900 3.923 4.174
4.024 4.024 4.237
4.290 4.288 4.456
4.821 4.829 4.955

log wi,j (-2.5, 2.5)
4.540 4.687
3.496 4.659
3.116 4.664
4.2O2 4.783
7.961 5.164

4.847 5.068 1.871
4.749 4.981 1.445
4.709 4.938 1.528
4.806 5.013 2.776
5.180 5.356 6.659

for situations of different complexities are proposed and their numerical performances
are timed. An important aspect of the algorithms is the automatic smoothing param-
eter selection using the generalized cross-validation method, for which two methods
were discussed and their merits in different situations explored. The ingredients of the
algorithms have orders of O(n) and O(n log n), where the O(n log n) of FFT is dom-
inated by the O(n) portion of the calculation. However, the overall execution time
mainly depends on the convergence speed of the conjugate gradient iteration, which
varies from problem to problem. Our simulations have demonstrated the effectiveness
of the technique on nice continuous functions with Gaussian noise. Further study is
needed to explore the effectiveness of the technique on other noise structures such as
binary images and Poisson images.
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A COLLECTION OF PROBLEMS FOR WHICH GAUSSIAN
ELIMINATION WITH PARTIAL PIVOTING IS UNSTABLE*

STEPHEN J. WRIGHT

Abstract. A significant collection of two-point boundary value problems is shown to give rise
to linear systems of algebraic equations on which Gaussian elimination with row partial pivoting is
unstable when standard solution techniques are used.
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1. Introduction. It is well known that when Gaussian elimination with row par-
tial pivoting is applied to a k k real matrix, a growth factor of up to 2k-1 may be
observed in the upper-triangular factor. A matrix which achieves this upper bound,
due to Wilkinson [9, p. 212], has passed into the folklore of numerical linear algebra.
However, matrices that exhibit growth factors which are exponential in their dimen-
sion have apparently not previously been observed in connection with any "practical
applications." In the next section, we discuss two-point boundary value problems for
which standard solution techniques give rise to matrices with this undesirable prop-
erty. An extreme case is derived in 3. Some random trials, reported in 4, suggest
that the collection of such problems may represent a significant fraction of the set of
two-point boundary value problems with coupled end conditions.

2. Examples arising from two-point boundary value problems. Consider
the general two-point boundary value problem

(1) y’ M(t)y + q(t), Bay(a) + Bby(b) , y(t) G [n,

and the particular problem defined by_
a-0, b=60, B=B-I.(2) n 2, M(t)-

1

(The values of q(t) and are not relevant to our present discussion.) The problem
defined by the data (2) is well conditioned; that is, its solution
perturbations in the data M(t), q(t), B, Bb, and which define it. To show this,
we can construct the analytic solution as follows: First, define Y(t) Nnx as a
fundamental solution of the homogeneous ordinary differential equation M(t)y.
Defining

Q BY(a)+ BbY(b)

G(x, t)
Y(x)Q-1BaY(a)Y-I(t)
-Y(x)Q-IBbY(b)Y- (t)

t<_x,
t>x,

*Received by the editors October 2, 1991; accepted for publication (in revised form) February 6,
1992. This research was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U. S. Department of Energy, under contract W-31-109-Eng-38, and by a Raybould
Fellowship from the University of Queensland, Australia.

Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.
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we can write

(a) (x) Y(x)-l + a(, t)q(t) dt

(see, for example, [1]). Well-conditioning is usually quantified in terms of norms of
the two operators in (3). For the constant-coefficient problem (2) (with M M(t))
we have, choosing Y(0) I, that

Y(t) eMt, I + e6M,

(4) hi SUPa<x<b []Y(x)Q-I[[ 1,

2 (b- a) SUPa_t,x_b IIG(x, t)l]oo - (b- a),
and so our claim of well-conditioning is verified.

A standard algorithm for problems of the form (1) is multiple shooting [6]. In its
simplest form, this algorithm proceeds by partitioning [a, b] into N subintervals, that
is, defining a mesh a tl < t2 < ( tN+l b by

ti a + ih, 1,...,N + 1, h- (b- a)/N.
On each subinterval [ti, ti+l], the following initial value problems are solved:

(5) Y M(t)Y, Y(t) I,
(6) y M(t)yp + q(t), ypi(t) O.

Defining s as the value of the true solution y at t, we note that

y(t) Y(t)s + ypi(t), t e Its, t+], i= 1,... ,N.

Since, clearly, y(t) must be continuous across the mesh points, we have

(7) Y(ti+)si + ypi(ti+) si+, i= 1,... ,N.

Moreover, from the boundary conditions,

(8) Ba81 + BbSN+I .
The equations (7) and (8) yield a system of linear equations whose solution is sl,...,

SN+. The coefficient matrix has the general form

(9) A -Y2 (t3) I

Bb

--YN(tN+I) I

For the data (2) we have in particular that Y(ti+l) gMh, and so (9) becomes

-eMh I(10)
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The conditioning of the "shooting matrix" A can be related to the conditioning of
the original problem (1) by a theorem of Osborne and Mattheij, which appears as
Theorem 4.11 in Lentini, Osborne, and Russell [3].

THEOREM 2.1. Suppose that II[BalBb]II

_
1 and that N is chosen large enough

that

IIY(ti+l)ll _< K’, i-- 1,...,N.

Then

condo(A) IIAIlllA-ll _< (K’+ 1)(at + n2N/(b- a)),

where gl and 2 are as defined in (4).
For (10), this bound translates to

cond() _< (lleMhl] + 1)(1 + N)

for h sufficiently small. (For (2) with N 200, the bound is about 459.) Suppose
that h is chosen small enough that all elements of eMh are less than 1 in magnitude.
This is certainly possible for (2), since

(11) eMh I + Mh + O(h2)
h 1 hi6

If Gaussian elimination with row partial pivoting is applied to the matrix A, no

pivoting occurs, and the following factorization is obtained:

(12) A-

I

I
eMh

e2Mh

eM(60-h)

where ], (I + e60M) with ], and /) lower and upper triangular, respectively
Clearly, exponential element growth has taken place in the last column of U. When
N 200 (h- 0.3), the largest element in the U factor is approximately 2.59 1021.

Poor performance of Gaussian elimination is not limited to matrices derived from
the multiple-shooting algorithm (5)-(8). Similar behavior also occurs when "back-
wards shooting" (from the right-hand endpoint of each subinterval) is used and when
a midpoint-rule finite difference discretization is applied to (1), (2).

As expected, a complete pivoting strategy produces a stable factorization. For
the matrix A, the largest element in the computed U factor is just 1.284, and both L
and U factors are sparse (density 1.41 percent for L, 1.18 percent for U), though the
fill-in pattern is somewhat irregular.

The behavior exhibited in (12) will occur whenever the coefficient matrix M has
negative diagonal elements, since then, provided h is sufficiently small, eMh will have
all its elements less than one in magnitude and no pivoting will occur. Terms of order
eM(b-a) will therefore appear in the U factor, and these will be large if any of the
eigenvalues of M have positive real parts.
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Mattheij [5] has observed that stability of the partial pivoting strategy is closely
related to the following feature of the pivoting pattern: if the matrix A is regarded
as a collection of N + 1 "row blocks," each containing n rows, then the number of
rows that are pivoted between row block and row block + 1 (i 1,..., N- 1) should
equal the number of eigenvalues of M whose real parts are positive. An assumption
that the pivoting pattern has this property is crucial to the analysis of Wright [11].
Although this property appears to hold for most of the standard two-point boundary
test problems in the literature, the matrices M just discussed lead to shooting matrices
for which it is not satisfied.

The trouble is not confined to matrices M with negative diagonal entries for which
no pivoting occurs during the factorization of the shooting matrix. The coefficient
matrix

M- [ -1019 -19130
has two positive eigenvalues, at approximately 3.755 and 16.245. Suppose we take the
remaining data as in (2), construct the shooting matrix as in (5)-(8), and apply row
partial pivoting. Blowup is again observed for sufficiently small h; when the shooting
matrix is factorized, only one row is pivoted between each successive pair of block
rows.

Neither is the blowup behavior restricted to constant-coefficient problems (i.e.,
those for which M M(t) is constant on [a, b]). Examples similar to those in this
note, but with nonconstant coefficients or nonlinear dynamics, can easily be con-
structed by modifying the examples above. Such examples are actually more "rele-
vant" since, in practice, they are often solved by multiple-shooting and finite differ-
ence algorithms and therefore run the risk of exhibiting the instability just described,
whereas constant-coefficient problems are usually solved by other means.

In order to produce the unstable behavior, it is necessary for the problem to have
coupled end conditions. If instead the boundary conditions have the separated form

[ox(a) a, [lx(b) --/b, o E RTM n, 1 Rnb n, na +nb n,

the matrix (9) is a permutation of a banded matrix that has a bandwidth of 2n. Since
element growth in row partial pivoting is at worst exponential in the bandwidth, the
type of growth depicted above cannot occur.

Alternative stable and efficient means for producing factorizations of the matrices
(9) are available. Wright [10] has described a structured QR factorization scheme for
these matrices and proved its stability. (A later modification of this scheme, based on
Givens rotations rather than Householder transformations, is stable while being not
much less efficient than the LU algorithm discussed above.) If speed is an important
consideration, the LU factorization can be attempted in the first instance and backup
strategies (such as QR factorization of A or LU factorization of AT) can be called
on only if instability is detected. LU factorization of AT will work for the problems
discussed above, though it can fail on other problems, for example, the problem

n 2, M(t) _: 6 a 0, b 60, Ba I, Bb 2I.
--1

Whether there exist problems for which LU factorization of both A and AT is unstable
is an open question.
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Liu and Russell [4] have apparently observed the effects of lack of stability of LU
factorization on a practical problem. They use a continuation code for parametrized
ordinary differential equations (ODEs) to solve the Kuramoto-Sivashinsky equation
and try various factorization techniques to perform the core operation of solving
the linear equations that arise repeatedly during the computation. (The coefficient
matrices of these linear systems are actually bordered versions of the shooting matrices

above.) They find that the continuation algorithm is less robust when an LU algorithm
with partial pivoting is used to perform the factorization than when a QR algorithm
is used.

3. Fraction of maximum possible growth. When n 1, it is not possible
to construct an example that leads to exponential blowup. A worst case appears to
be the scalar problem

+ e

which, when algorithm (5)-(8) is applied, produces a matrix for which element growth
of order N occurs in the U factor.

For n 2, we can investigate how closely the upper bound on element growth for
matrices of size (N + 1)n, namely, 2(N+l)n-1, is approached when the matrix has the
form (9). Consider a constant-coefficient problem defined by the data

(13) n=2, M=[ -cl -al ], a=O, b=L, Ba=Bb=I,

where a E (0, 1). The matrix M has eigenvalues A(-a +/- 1). By choosing N and
setting h L/N, we obtain a coefficient matrix similar to A in (10). To ensure that
no pivoting occurs during the factorization, we must choose N large enough that no
elements of eMh exceed 1. Explicit calculation of the matrix exponential shows that
this requirement is equivalent to

e-[e + e-] < 2,

or, if we define X e"xh,

p(X) X2 2X-+a + 1 < 0.

Since, for a e (0, 1), p(0) 1, p(1) 0, p’(1) < 0, and limx-++o p(X) +oo, the
equation

v(x) 0

has a solution X(c) that is strictly greater than 1. Since h L/N > 0, this is the
solution of interest to us.

If we assume that no pivoting occurs during the Gaussian elimination, it follows
from (12) that the largest element in the U factor is approximately equal to the largest
element in eML. A little calculation shows that this is approximately

E 1/2 e)’L(I-a).

Given the upper bound on the growth for matrices of dimension 2(L/h + 1), namely,

Emax 22(L/h+l)-l,
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we have

p(a) A-- log2E
log2 Emax

AL(1
In 2

-1

2(- + 1)- 1

1 Ah(1 a)
In 2 2

1
21n2

(1 a)lnX(a).

Simple analysis of p(X) shows that X(a) --, +cx and (1- a)lnX(a) -- ln2 as
a - 1-. Therefore,

1
lim p(a)= .c--,1-

In fact, we can show that p(a) is monotonic increasing on the interval (0, 1), with
lim_,0+ P(a) 0.

We conclude that for multiple-shooting coefficient matrices arising from (13), the
observed growth factor during Gaussian elimination may be as large as approximately
2N+1"

4. Discussion. In [7], Trefethen writes with reference to real k x k matrices:
"Perhaps large growth rates like 2k-1 correspond to unstable ’modes’ that are them-
selves somehow unstable, in the sense that computations tend to drift away from them
towards stabler configurations." The "drifting away" is precisely what fails to happen
for the matrices described above. Rather, the unstable modes are propagated and
reinforced because of the presence of a recurrence in which the relationship between
any two successive terms is the same. The highly specialized structure of the matrices

(9) and (10) accounts for the difference between our experience with randomly gen-
erated examples (reported below) and the experience of Trefethen and Schreiber [8],
who worked with randomly generated dense matrices and observed an average growth
rate of k2/3 for real k x k matrices when partial pivoting was used.

Higham and Higham [2] present a number of dense matrices that arise naturally
in applications for which the growth factors are between n/2 and n when both partial
and complete pivoting are used. They point out that large growth factors do not
necessarily imply large backward errors in the computed solution. However, for the
problems described above, we would expect both the forward and backward errors
in the computed solution to be large. Consider again the example (1), (2). Because
(1 q-e60M) is singular in double precision arithmetic, the computed U factor has a
zero element in its bottom right-hand corner. Suppose we choose q(t) and 3 in (1)
such that the true solution has y(t) si (1, 1)T for all t and i, and suppose that
we avoid the singularity in U by setting N+l SN+, where the hat denotes a
computed quantity. If we back-substitute for the remaining i, we obtain a relative
error of 2.88 x 105 in the computed solution of (7), (8). The backward error, which is
defined as

[[c- A[I
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TABLE 1
Number of "blowups" during each o]five trials, each trial consisting

of 100 randomly generated problems.

Trial
/. (1010, cx)) / /. e (103, 10101
n=2 n=4 n=6

1
10
100
.1

2 (Sa-Sb--I)

0/0 0/0 0/0
2/2 2/a
3/3 4/5 6/1
0/0 0/0 0/0
2/2 5/5 10/6

where & is the computed solution of the system Ax c, is found to be 0.0286. All
computations here were performed in double precision.

An interesting open question is: Among all constant-coefficient problems of the
form (1), is the set of triplets (M, Ba, Bb) that give rise to matrices on which Gaussian
elimination fails truly a "nontrivial" subset of

{(M,B,,Bb) M, Ba, Bb e Rnn, I[[B,IBb]II < 1}?

Computational experiments with randomly generated constant-coefficient problems
shed a little light on this question. We generated n x n matrices M (n 2, 4, 6) by
choosing each matrix element from a uniform distribution on [-10, 10]. In the first
four sets of trials, the elements of Ba and Bb were chosen likewise and then scaled
so that II[BalBb]lloo 7. We chose 7 1, 10, 100, and 0.1 in trials A, B, C, and D,
respectively. In trial E, we set B Bb I. In each trial, 100 randomly generated
problems were solved by using (5)-(8) with 1024 subintervals, with a 0 and b 10.
For each trial we define the following quantity # that measures the "blowup" in the
U factor

max(U)

where max (U) is the magnitude of the largest element in the upper-triangular factor.
Each entry in Table 1 has two components. The first is the number of problems (out
of 100) for which # exceeded 10l and the second is the number of problems for which
# E (103, 101]. When # > 1010, the resulting loss of precision is usually large enough
to destroy the accuracy of the computed solution.

Three features of Table 1 are worth noting. First, the likelihood of blowup seems
to increase as n increases. This is not a surprise---as n grows we would expect a
mismatch between the number of positive eigenvalues and the number of rows that
are pivoted between successive blocks (see 2) to become more likely. Second, the
choice B I (which can be obtained by a simple transformation whenever the B in
(1) is nonsingular) seems to be particularly inappropriate, though it is the "natural"
choice in many circumstances. The reason for this should be clear from the discussion
near the end of 2. Third, a wise strategy appears to be to scale Ba, Bb, and by
a moderately small constant. From Theorem 2.1 and the definitions of Q and al, we
see that this may cause some slight deterioration in the conditioning of the matrix
(9), but trials A and D indicate that exponential blowup is much less likely to occur.
A "too small" choice of 9’ may lead to Assumption 1 in [11] being violated during
factorization of the first few row blocks, but after this initial phase, the pivoting
pattern exhibits the "stable" pivoting feature described in 2.
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AN OPTIMAL TWO-LEVEL OVERLAPPING DOMAIN
DECOMPOSITION METHOD FOR ELLIPTIC PROBLEMS

IN TWO AND THREE DIMENSIONS*
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Abstract. The solution of linear systems of algebraic equations that arise from elliptic finite
element problems is considered. A two-level overlapping domain decomposition method that can
be viewed as a combination of the additive and multiplicative Schwarz methods is studied. This
method combines the advantages of the two methods. It converges faster than the additive Schwarz
algorithm and is more parallelizable than the multiplicative Schwarz algorithm, and works for general,
not necessarily self-adjoint, linear, second-order, elliptic equations. The GMRES method is used to
solve the resulting preconditioned linear system of equations and it is shown that the algorithm is
optimal in the sense that the rate of convergence is independent of the mesh size and the number of
subregions in both R2 and R3. A numerical comparison with the additive and multiplicative Schwarz
preconditioned GMRES is reported.

Key words, overlapping domain decomposition, elliptic equations, finite elements, iterative
method

AMS(MOS) subject classifications. 65F10, 65N30

1. Introduction. The domain decomposition technique is a class of precondi-
tioned iterative methods for solving partial differential equations and has been proved
to be very effective for parallel computing. In this paper, we study a new class of
methods based on the Dryja-Widlund decomposition [7], in which the usual finite
element space is optimally decomposed into the sum of a finite number of uniformly
overlapped, two-level subspaces. Based on this decomposition, two methods, the ad-
ditive Schwarz (ASM) [3], [5], [7] and the multiplicative Schwarz methods (MSM) [2],
[6], have been studied. A recent paper [4] shows that MSM, despite its having less
parallelism, is substantially faster than ASM in terms of their algebraic convergence
rates. In this paper, we develop a new method that can be viewed as a combina-
tion of ASM and MSM, and it converges faster than the additive Schwarz method
and is more parallelizable than the multiplicative Schwarz method. If the number
of processors is about the same as the number of subdomains that have the same
color, which will be described in detail later, then the parallelism of the new method
is as good as that of ASM. We show that the new method, accelerated by certain
Krylov space-based iterative methods, such as GMRES, has an optimal convergence
rate independent of the mesh sizes and the number of subproblems for general elliptic
problems, not necessarily symmetric, in both two- and three-dimensional spaces. The
main difference between the new method and MSM is the treatment of the coarse grid
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operator. There are other recently developed iterative methods that make special use
of the coarse grid operator; see, e.g., [1], [11], and [12].

The paper is organized as follows. In 2, we briefly introduce the elliptic finite
element problem and the Dryja-Widlund decomposition. Then, we discuss the idea
of transformed systems with certain well-known examples in 3. The new method is
introduced in 4, in which the convergence rate of the new method is also analyzed.
In 5, we provide a numerical comparison of the new method with the additive and
multiplicative Schwarz methods. We conclude the paper with a few remarks in 6.

2. Model problem and Dryja-Widlund decomposition. Let fit be a
bounded polygonal region in Rd (d 2 or 3) with boundary 0f. We consider the
weak form of the homogeneous Dirichlet boundary value problem: Find u E H(Q)
such that

(1) b(u. v)= (L v) Vv e

where the bilinear form b(u, v) a(u, v) + s(u, v) and

a(u, v) aij ox--dx and ,(u, v) bi-g:-_ vdx + cuvdx.
i,j--1

We assume that all coefficients are sufficiently smooth, the matrix {aij(x)} is sym-
metric and uniformly positive definite, and f E H-:(Q). We also assume that the
equation has a unique solution and that b(., .) satisfies, for some positive constants c
and C,

c I[ull2 <_ b(u, u) for all u e
b(u, v)I<_ C I]ulia]lVlla for all u, v

Here I1" lie a(., .)1/2 is the energy norm of H(). We solve (1) by the Galerkin
conformal finite element method. For simplicity, we use piecewise linear triangular el-
ements in R2 and the corresponding tetrahedral elements in R3. Following Dryja and
Widlund [7], we describe a two-level triangulation of and the corresponding finite
elemem spaces. We define {i, 1,..., N} to be a shape-regular finite element tri-
angulation of , where the diameter of i is of order O(H). We call i a substructure
and {i} the coarse grid or H-level triangulation of . In our second step, we further
divide each i into smaller simplices of diameter O(h), and the union of these forms
a shape-regular finite element triangulation of . We call it the fine mesh or h-level
triangulation of . We denote by Vg and Vh the continuous, piecewise linear finite
element function spaces over the H-level and h-level triangulations of , respectively.
The Galerkin approximation of (1) is formulated follows: Find u Vh, such that

(f. e v
We next describe the Dryja-Widlund decomposition of Vh. To decompose f into

overlapping subregions, we extend each fi to a larger subregion fi, i.e., fli C fi C f.
The overlap is of size O(H), or more precisely dist(0f’ f f, 0fli N 2) >_ H for all i,
for a constant > 0. We assume that 012’ aligns with the h-level elements and denote

if/0 12. For each if/i, > 0, we define V/h (Vh vhl Vh(X) O, Xi) C Vh. We
also use the subspace Voh VH. It is easy to see that Vh can be represented as the
sum of the N 4- 1 subspaces,

+ V2 +...+ v$.
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We now regroup the subregions in terms of the following coloring strategy. As-
sociated with the decomposition (’i}, we define an undirected graph in which nodes
represent the extended subregions and the edge intersections of the extended subre-
gions. This graph can be colored, using colors 0,..., J, such that no connected nodes
have the same color. We note that 0 needs its own color. It is obvious that the
coloring is not unique.

3. Transformed linear system. Let bi(., .) be a bilinear form, defined on the
subspace Vh, which we will refer to as the subspace preconditioner for b(., .). In this
paper, we only consider two cases:

(i) bi(., .) b(., .) for 0, 1,..., N;
(ii) b0(., .)= b(., .) and bi(., .)- a(., .) for i= 1,..., g.
We introduce the operator Ti Vh Yih by

bi(Tiuh, Vh) b(uh, Vh) VUh C Yh and VVh Vh.

We note that among all these operators, To is the only global operator and all the
others are local. We recall that u Vh denote the exact solution of the Galerkin
equation (2). It is easy to see that the vector Tu Vh can be computed, without
knowing u, by using the definition of Ti and the equation (2). As an immediate
consequence, if we define

T poly(T0, T1,..., TN)

as a polynomial of these Ti’s such that poly(0,..., 0) 0, then Tu Vh can also be
computed without knowing u itself. By denoting g Tu, we refer to

(3) Tu g

as the transformed system of (2). It is not difficult to prove the following theorem.
THEOREM 3.1. If T is invertible, then the equation (3) has the same solution as

the Galerkin equation (2).
We now group these maps Ti in terms of the color that the subregion was assigned.

For j 0, 1,..., J, we denote Qj as the sum of all Ti s that correspond to the
subregions with the jth color. In fact, Q0 To. We remark that N (the number
of subregions) may be large, while J (the number of colors) can still be small. We
next look at two special examples. The first one, which is the simplest case and the
degree of poly(...) is one, is the additive Schwarz method, in which the operator has
the form

TASM Qo + Q1 +... + Qj.

The second example is the so-called multiplicative Schwarz operator

TMSM I- Ej+

where I is the identity map and Ej+I (I Qo)(I Q1)"" (I Qj). The degree of
this polynomial depends on the number of colors, and the exact form of the polynomial
depends on how the subregions are colored.

It is important to note that even if the original equation (2) is not well conditioned,
the transformed systems can be uniformly well conditioned and more importantly the
transformed system can be so arranged that a highly parallelizable algorithm can be
developed for solving it. To build such a well-conditioned and easily parallelizable
transformed system is the main purpose of this paper.
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4. A new transformed system and its spectral bounds. The parallelism
of MSM results mainly from the fact that, for j 0, Qj is a sum of some local inde-
pendent subproblems that can be handled in parallel. However, the global operator
Qovh Tovh is very special and it cannot be handled in parallel with other local
subproblems. It is not the case for ASM, in which all subproblems, including To, can
be solved in parallel.

Motivated by the above observation, we now define an operator in which the
global operator To is made to be additive to the rest of the local operators:

(4) Tnew wTo + I- Ej,

where Ej (I Q1)"" (I Qj) and 0 < w E R is a balancing parameter. If we
define fnew TnewU, then our new algorithm can be described in the following way.

ALGORITHM. Find the solution of equation (2) by solving the transformed system

(5) TnowU 
with an iterative method.

We show in the next theorem that the operator Tnew is, under certain assumptions,
uniformly well conditioned. In other words, its spectral bounds are independent of the
mesh parameter as well as the number of subproblems. The symmetric part of Tnew
is uniformly positive definite, which guarantees the convergence of a class of Krylov
space-based iterative methods, such as the GMRES method [8], [9].

THEOREM 4.1. There exist constants Ho > 0 and w > O, independent of h and
H, such that if H <_ Ho, then

IIT owll < c

and

a(TnewUh,  th)

_
(j + 1)2 Iluhll VUh e Vh

a

where C C(Ho) and c c(Ho) are positive constants independent of H and h.
In order to prove the main theorem, we need to quote some known results for the

well-conditionedness of TMSM.
THEOREM 4.2 (Cai and Widlund [6]). There exist constants Ho > O, 9/i > O,

i 1, 2, such that if H <_ Ho, then

’1 9/H2 i 9/2IIEjIla - j2
and IIEj+llla

_
1-

(g + 1)2

where 9/ 9/(Ho) are independent of H and h.
LEMMA 4.3 (Cai and Widlund [5]). There exists a constant Ho > O, such that if

H <_ H0, then for any Uh Vh,

and

a(To h Uh) > lITo hll2- cHlluhll 2
a

where c c(Ho) and C--- C(Ho) are positive constants independent of H and h.
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Proof of Theorem 4.1. It is easy to see that the following identity holds:

Tnew wTo ToEj T I Ej+I.

The upper bound part of this theorem can be trivially proved by using Theorem
4.2 and Lemma 4.3.

For the lower bound part, we only prove the case where bi(., .) b(., .) for i
0,..., N. The proof for the other case can be obtained in a similar way. Directly from
the identity (6), we have

(7) a(TnewUh, Uh) wa(Tou, Uh) d- a(Uh, Uh) a(Ej+lUh, Uh) a(ToEjUh, Uh).

We now estimate the right-hand side of the above equality term by term. Following
Theorem 4.2, we obtain

(8) a(Ej+lUh Uh) < (1- )lluhll a,

where the constant - 1 V/1 -/2/(J + 1)2 > 0. It is easy to verify that

(9)
a(ToEgUh, Uh) b(ToUh, ToEjUh) S(Uh, ToEjUh)

a(ToUh, ToEgUh) + s(ToUh Uh, ToEguh).

By using Lemma 4.3, Theorem 4.2, and the fact that Is(u, v)l <_ Cllullz-Ilvlla for all
u, v E H0 (t), we have

Is(ToUh Uh, ToEjuh)l CHIluh IIa
and hence

a(ToEjUh, Uh) <_ IITouIIIIToEjuhlla + CHIluhll

(o) c Iluh I1 IIToUh I1 + CHlluh I1

< C C
-$-IIh I1 / IITouh I1 / CHIluh IIa,

where is an arbitrary positive constant. By taking /C, we have

c1(11) a(ToEjUh, Uh) <_ lluhlla / llToUhlla + CHIluhlla.

Taking all the above estimates (7), (8), (11), and the last inequality of Lemma 4.3
into account, we have

(TwUh, Uh)

_
lluhlla + llTouhll CHlluhll

()

--lluhll llTouhll CHIluhlla

Therefore, if we choose w C/(25), then

c
(la) a(T.w., u.) > CHua a"
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Thus, if H is small enough, we have

(14) a(TnewUh,Uh) )_ llUhll2 )_
8(J - 1)2 I]Uhlla’

which completes the proof of the main theorem.
A remark is in order here about the choice of w. w does not depend on the size

of the linear system, nor the number of subproblems. Our numerical experiments (cf.
the next section) show that the algorithm is not very sensitive to w. In fact, w 1
has always given us better convergence than ASM.

5. Numerical experiments and comparison with ASM and MSM. In
this section, we first briefly discuss the parallel complexity of the new algorithm as
compared with ASM and MSM, and then present some numerical results.

Let us make some basic assumptions before providing a parallel complexity anal-
ysis with p parallel processors. In this paper, we only focus on these computer ar-
chitecture independent factors. We assume that the communication, synchronization,
and load balancing costs can be ignored, and also that each subproblem is solved by
using only one processor.

Furthermore, we assume that all interior problems, defined on any extended sub-
structures, are of relatively the same size and need ti unit time (or number of arith-
metic operations) to solve. Of course, ti depends not only on how many unknowns
each subregion has, but also on the method used to solve the interior problem. This is
also true for tc in the coarse mesh problem. Table 1 shows the parallel complexity of
performing the preconditioner-vector multiplication by using multiplicative, additive,
and the new Schwarz-type methods.

TABLE 1
The parallel complexity of the algorithms with p processors.

Method # of iterations p-- # of subproblems p-- (max # of subdomains
with the same color + 1)

MSM O(1) Jti - tc JQ + tc

ASM O(1) max{t/, tc} max{gti, tc}
"NEW 0(1) max{Jti,tc} max{Jti,tc}

TABLE 2
Iteration counts for solving the Poisson equation (6 O) with different h, H, and overlap sizes.

Here w 1.0.

h- 32 64 128 32 64 128 64 128
0v’rlapPing size H-- 1/4 H-- 1/8 H-- 1/16
ovlp=h 8 8 10 8 7 7 6 6
ovlp--2h 8 8 8 7 7 ’7 6 6’
ovlp--4h 6 7 8 7 7 6

We next present some numerical results for solving this equation where

(15) -/u+Sux+SUy-f in f
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with u 0 on 0 and [0,1] [0,1]. In all cases, the exact solution u
exy sin(rx)sin(ry), and f can thus be set accordingly.

The unit square is subdivided into two-level uniform meshes, with h and H rep-
resenting the fine and coarse mesh sizes. The elliptic operator is then discretized by
the usual five-point central or upwinding difference methods over both meshes. The
full GMRES method, without restarting, with zero initial guess is used for all of the
transformed linear systems in the usual Euclidean norm, and the stopping criterion
is the reduction of the initial preconditioned residual by five orders of magnitude in
the L2 norm.

We first test a special case 0. Although this is a symmetric problem, we still
use GMRES as the outer iterative method. The iteration counts are given in Table 2.

Our second test problem is a nonsymmetric, constant coefficient problem. We
specify the constant > 0 in Table 3. The elliptic operator is discretized by two
schemes, namely, the central difference method, for relatively small , and the upwind
difference method, for relatively large .

The optimal choice of w is not unique and w 1.0 seems among the optimal
choices for the example that we tested. An example can be found in Table 4.

We finally compare the new algorithm with ASM and MSM by listing the con-
vergence history in Table 5. It is clear that the convergence rate of the new algorithm
is faster than that of ASM but slower than MSM. Some results for the same test
problems obtained using other domain decomposition methods can be found in [4].

TABLE 3
Iteration counts .for solving the nonsymmetric model equation with various values of and two

discretizations. The parameter h 1/128. Here w 1.0.

H- 1/4 H-- 1/8
Central difference method

1 5 10 50 100 150 1 5 10 50 100 150

ovlp--h 10 12 12 16 16 14 8 9 10 16 23 25

ovlp----2h 9 10 10 14 12 12 7 9 9 15 20 23

ovlp--4h 8 9 9 11 12 12 7 8 9 13 17 20

Upwind difference method

10 50 100 500 1000 10000 10 50 100 500 1000 10000

ovlp--h 12 13 13 11 11 11

ovlp--2h 10 11 11 11 11 11

ovlp--4h 9 10 10 10 10 10

11 14 15 16 16 17

10 13 14 15 15 15

9 11 12 12 12 12

TABLE 4
Iteration counts for dij:ferent balancing parameter w’s. Here 10, h 1/128, H 1/8,

ovlp 2h, and central dilCferencing is used.

w 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.5

Iteration 17 12 10 9 9 9 10 10 10 10
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TABLE 5
The maximum norm of the error, defined as the difference between the computed solution and

the true solution of the continuous problem, at each step of iteration. The parameters are h 1/128,
H 1/4, overlap 4h, and 50.0. The central differencing is used here. For the new algorithm,
w 1.0.

Iteration MSM NEW ASM

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1.126987e-01
3.011373e-02
5.950362e-03
1.467230e-03
4.354542e-04
2.405614e-04
1.969721e-04

6.025081e-01
3.440657e-01
1.932006e-01
7.443918e-02
3.493269e-02
1.581771e-02
7.474377e-03
3.709754e-03
1.234765e-03
3.609956e-04
2.050532e-04

5.994051e-01
5.605597e-01
3.647781e-01
3.019285e-01
1.113954e-01
9.212396e-02
3.602628e-02
1.901591e-02
1.255937e-02
7.544490e-03
4.329650e-03
2.030623e-03
9.756193e-04
6.124153e-04
5.179665e-04
2.999394e-04
2.096750e-04
2.000241e-04

6. Concluding remarks. In this paper, we introduced a new member in the
class of Schwarz-type overlapping domain decomposition methods. This class of meth-
ods has been shown to be fast, even in the case involving boundary layers; see, e.g.,
the recent paper of Tang [10]. The new method shares the robustness of other Schwarz
methods with added parallelism.

Acknowledgments. The author is indebted to Professors M. Dryja, O. Wid-
lund, and B. Smith for many helpful discussions and suggestions. The author would
also like to thank Professors W. Gropp and D. Keyes for providing their experimental
domain decomposition codes, which inspired the new algorithm.
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A NOTE ON COMPUTING EIGENVALUES OF BANDED
HERMITIAN TOEPLITZ MATRICES*

WILLIAM F. TRENCH?

Abstract. It is pointed out that the author’s O(n2) algorithm for computing individual eigen-
values of an arbitrary n n Hermitian Toeplitz matrix Tn reduces to an O(rn) algorithm if Tn is
banded, with bandwidth r.

Key words. Toeplitz, Hermitian, banded, eigenvalue, eigenvector
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In a recent paper Arbenz [2] (see also [1]) presented a method for computing the
eigenvalues of a Toeplitz matrix

n(1) Tn i--j)i,j=l,

where

t t-v and t 0 if Iv[ > r;

thus Tn is symmetric. If n > r (which we assume henceforth), then Tn is also banded.
Following Arbenz, we will say that Tn has bandwidth r.

Since [2] is so recent and easily accessible, there is no need to go into the details
of Arbenz’s algorithm here; rather, we focus on the important point that it yields
the eigenvalues of Tn with a computational cost of O(r(n + r2)) flops per eigenvalue.
Another approach to this problem is discussed in [3] and [6].

It seems worthwhile to point out that the quite different algorithm given by the
author in [9] for finding individual eigenvalues of a full Hermitian Toeplitz matrix with
O(n2) flops per eigenvalue requires only O(rn) flops per eigenvalue in the banded case.
Here we will give the briefest description of the algorithm that suffices to make this
point. For complete details, see [9]. For related results, see [10].

Theorems 1 and 2 of [9] imply the following theorem, which is the basis for the
algorithm.

THEOREM 1. Let Tn be a Hermitian Toeplitz matrix, let Tm (1

_
m

_
n) be its

m m principal submatrix, and define

qm(A)= Pm(A)
1<re<n,

where

po(A) 1 and Pm()) det[Tm Aim], 1

_
m <_ n.

If ) is not an eigenvalue of any of the principal submatrices T1,..., Tn-1, then
q_ (),..., qn() can be computed recursively as follows. Let

ql (A) to A, tx/(t0

*Received by the editors July 22, 1991; accepted for publication (in revised form) May 27, 1992.
This work was partially supported by National Science Foundation grants DMS 8907939 and DMS
9108254.

?Department of Mathematics, Trinity University, 715 Stadium Drive, San Antonio, Texas 78212.
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Then, .for 2 <_ m <_ n- 1,

q.(*) [1- IXm_l,m_l())12lqm_l(,,),

x..(A) (qm(A))-1 tm E tjX.--j,m--1 ()
j=l

and

(3) Xjm() Xj,m--l() Xrnm())m--j,m--l(), 1Nj<_m--1.

Finally,

q,(,k) [1- IXn_l,n_l(,,)12]qn_l(,).

Moreover, if ;k is an eigenvalue of Tn, then

[ -1 ]Yn()" Xn-l()

is an associated eigenvector, where

Xn-l()

Xl,n--l(.)

Xn--l,n--l(,)

Let the eigenvalues of Tn be

and suppose that we wish to compute Ak for a given k in {1, 2,..., n}. We assume
that ,k is not an eigenvalue of any of the submatrices TI,... ,Tn-1. From Sturm’s
theorem, the number of negative values in {ql(A), q2(A),..., qm (’)} equals the number
of eigenvalues of Tm- ,kIm less than ,. Therefore, if we can guess values a and b such
that Ak E (a, b), then Theorem 1 and bisection can be used to find a subinterval (a, )
of (a, b) which contains ,k but no other eigenvalue of Tn nor any eigenvalue of Tn-1.
Since qn is continuous on (a, ), we can then use a more elaborate iterative rootfinder
to compute ,k as a zero of qn. In [9] and [10] we chose the Pegasus modification [5, 7]
of the rule of false position, which has order of convergence approximately 1.642. If
{#j } is the sequence of iterates produced by the Pegasus computation, starting with

#0 c and #1 2, then we terminate this phase of the computation at the first
integer r such that

(4) I#- #,--11 < .5(1 + #.)10-K,

where K is a positive integer dictated by machine precision and accuracy requirements.
For a full Hermitian Toeplitz matrix Tn the computations in Theorem 1 require

approximately n2 flops for each A. Therefore, the computation of each eigenvalue
requires 0(n2) flops, where the "constant" buried in the "0" depends on the number
of iterations required for the given eigenvalue. Although this number depends upon
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the eigenvalue itself and on the starting values (a and b), computational experience
(see [9]) shows that for a given choice of g in (4), its average value over all eigenvalues
of a matrix of order n is essentially independent of n. Thus we can say that the cost
of the procedure is roughly M(K)n2 flops per eigenvalue. (For the computations
reported in [9], M(10) 11.) However, the point of the present note is that if Tn
is banded, then the computations in Theorem 1 require only O(rn) flops, so the
algorithm in [9] yields eigenvalues of T, at a cost of O(rn) flops per eigenvalue. The
reason for this is the following theorem, which is easily obtained from Theorem 1. We
omit the proof.

THEOREM 2. It addition to the assumptions of Theorem 1, let Tn have bandwidth
r < n. Then ql (,’),..., qn() can be computed recursively as in Theorem 1, except
that if m > r, then (2) and (3) can be replaced by

Xmm(A) (qm(A))-1 tjXm-j,m--l(A),
j=l

and

(6) Xjm()i) Xj,m_l() Xmm())m_j,m_l()i), 1 (_ j

_
r, m- r (_ j <_ m- 1

ifm>_r+l.
It is significant that the summation in (5) involves only r products rather than

m- 1 as in (2), and we compute only 2r (fewer if r < m < 2r) components of Xn-1
in (6), as compared to m in (3). Therefore, Theorem 2 implies that for large n the al-
gorithm of [9] requires approximately (3r+1)n flops to compute q0 (A), ql (A),..., qn
for a given A if Tn has bandwidth r. Since numerical experiments indicate no sig-
nificant differences between convergence properties of the algorithm for banded and
full matrices, this means that the average cost of computing a single eigenvalue of
a banded Hermitian Toeplitz matrix is M(K)(3r + 1)n flops, where M(10) 11 if
K 10 in (4).

Having obtained Ak by computations based on Theorems 1 and 2, we have as
byproduct the first r + 1 components,

Yn(Ak) --1, Y2n(Ak) Xl,n-l(k),...,Yr+l,n(k) Xr,n-l(k),

and the last r components,

Yn-r-t-l,n(k) Xn-r,n-l(k),... ,Ynn Xn-l,n-l(k),

of the associated eigenvector Yn(Ak). However, the last r components are not inde-
pendent, since if Ak is a simple eigenvalue of Tn, then either

Y,-i+l,,(Ak) Yi,(Ak) or Yn-i+l,n()k) =--Yin()k), 1 <_ <_ n

(see [4]). In any case, even if Ak has multiplicity greater than one, the first r compo-
nents of Yn (Ak) determine the rest. To see this, we recall from [8] that the components
of Y, (Ak) satisfy the difference equation

(7) E tjyi+j,n(Ak) AkYin(Ak), 1 <_ <_ n,
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subject to the boundary conditions

(8) Yin(Ak) O, --r + 1 <_ <_ O,

and

=o, n+l<_i<_n+r.

Therefore, if

(9) Yln(k),. ,Yvn(k)

are known, then the remaining components of Yn (Ak) can in principle be obtained by
treating (8) as initial conditions and computing recursively from (7)"

1
r--1

(10) Yi+r,n(Ak) tr .E (tj 5OjAk)yi+j,(Ak), i >_ 1.

Since the zeros of the characteristic polynomial

P(z) tz

of (7) occur in reciprocal pairs, the recursion (10) is unstable and therefore com-
putationally useless; nevertheless, it proves our assertion that the components (9)
completely determine Yn Ak

From this it seems reasonable to make the (admittedly vague) conjecture that
any meaningful question depending upon the eigenvector Yn(Ak) can in principle be
resolved from a knowledge of the components in (9), without actually computing the
remaining ones. However, if the remaining components are required, then it is useful
to recall from [9] that Xn-1(k) is the solution of the banded Toeplitz system

(T_ AI_)X

tl
t2

tr
0

.0
This is a tractable problem, since there are several well-known fast algorithms for
solving banded Toeplitz systems.
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EXPLOITING STRUCTURAL SYMMETRY
IN A SPARSE PARTIAL PIVOTING CODE*
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Abstract. This short communication shows how to take advantage of structural symmetry
to improve the performance of a class of partial pivoting codes for the LU factorization of large
sparse unsymmetric matrices. Experimental results demonstrate the effectiveness of this technique
in reducing the overall factorization time.
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1. Introduction. Many implementations of sparse LU factorization with par-
tial pivoting compute the factors one row or column at a time. Each step involves
both symbolic operations (to determine the nonzero structure) and numeric opera-
tions. With the development of fast floating-point hardware and vector processors,
the symbolic operations have come to represent a nontrivial fraction of the overall
factorization time. Thus any sizable reduction in this symbolic overhead would have
a significant impact.

The technique of symmetric reduction [4] exploits structural symmetry to decrease
the amount of structural information required for the symbolic factorization of a sparse
unsymmetric matrix (i.e., for obtaining the nonzero structures of the factor matrices).
This has the practical advantage of decreasing the run-time.

In this short communication, we show how to use symmetric reduction to im-
prove the performance of a class of partial pivoting codes for the LU factorization of
large sparse unsymmetric matrices, in particular, Sherman’s NSPFAC (a more recent
version of NSPIV [8]) and a code of Gilbert and eeierls [7]. For some problems the
speedup is more than a factor of two.

Notation. For an n n matrix M and two sets I and J of subscripts, we let
MIj denote the submatrix of M determined by the rows in I and the columns in J.
As a special case, we let MI, denote the submatrix of M determined by the rows in
I.

We let G(M) denote the associated directed graph. Here edges are directed from
row to column; i.e., (r, c) is an edge in G(i) if and only if mrc is nonzero. We use

Mthe notation r ---, c to indicate the existence of an edge from r to c in G(M), and
M

r == c to indicate the existence of a path from r to c. We also adopt the convention

that i i for any i.

2. Unsymmetric symbolic factorization. Let A be a sparse unsymmetric
n n matrix that can be decomposed (without pivoting) into L. U, where L is lower
triangular with unit diagonal and U is upper triangular. Let F denote the filled matrix
L+U.

*Received by the editors February 15, 1992; accepted for publication June 23, 1992.
Department of Computer Science and Research Center for Scientific Computation, Yale Uni-

versity, New Haven, Connecticut 06520. The research of this author was supported in part by U. S.
Army Research Office contract DAAL03-91-G-0032.

$Department of Computer Science, York University, North York, Ontario, Canada M3J 1P3.
The research of this author was supported in part by Natural Sciences and Engineering Research
Council of Canada grant A5509, and by the Institute for Mathematics and its Applications, with
funds provided by the National Science Foundation.
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Assume that we have determined the nonzero structures of the first k- 1 rows of
L and U; i.e., letting g-- (1,... ,k- 1} and g-- (k,... ,n}, we know the structure
of

The following result relates the structures of the rows Lk, and Uk, to the existence
of certain paths in G(UK,).

i orsomeTHEOREM 2.1 (see [7]). k F_ i if and only if k m m
Thus, to determine the nonzero structure of Fk, Lk, zt-Uk,, we can search

G(UK,) for nodes reachable from some node m for which a, 0.

3. Two sparse partial pivoting codes. We focus on two implementations of
sparse LU factorization with partial pivoting: Sherman’s NSPFAC (a descendant of
NSPIV [8]) and Gilbert and Peierls’s code [7] (referred to here as GP).

NSPFAC factors A by rows using column partial pivoting. While computing Fk,,
it represents the structure of the current, partially formed row by an ordered, linked
list of subscripts corresponding to nonzero columns. The linked list is initialized to
the nonzero columns in Ak,. For each nonzero tkj (in increasing column order), the
structural and numeric updates from Uj, to Fk, are applied in a single loop, one
element at a time. The numeric update involves two levels of indirection.

Gilbert and Peierls [7] observed that it is not necessary to apply the row updates
in increasing order--any order consistent with a topological order of G(UKK) would
suffice. They also noted that a depth-first search of G(UK,) starting from the nonzero
columns of At:, gives the nonzero structure of Fk,, and that a topological ordering
can be obtained as a byproduct, without additional work. Using this result, they
show that GP runs in time proportional to the number of floating-point operations,
a property not shared by other sparse partial pivoting codes.

In computing Fk,, GP first does a depth-first search to compute the structure
of Lk, (but not Uk,) as above. Then, for each nonzero gkj (in topological order), it
applies the structural updates from Uj, to Uk, and the numeric updates from Uj, to
Fk, in a single loop, one element at a time.

To estimate the time NSPFAC and GP spend in nonnumeric computations, we
wrote a sparse LU factorization code (called NF) that uses a predetermined pivot
sequence and precomputed factor structures.2 By using the same pivot sequence and
factor structures as computed by NSPFAC or GP, we can measure how much time
would be spent if the nonnumeric operations involving symbolic factorization and
pivot selection were removed.

Table 2 gives the run-times3 for ten problems from the Harwell-Boeing collection
[3]. For each test matrix A, the rows of the matrix were preordered by a minimum
degree ordering of AAt, as suggested by George and Ng [5]. The results for the Sun
SparcStation/1 show that the nonnumeric overhead can exceed 50 percent. For the

1Although GP computes the LU factorization by columns using row partial pivoting, to be
consistent we describe the Gilbert-Peierls approach by rows. In the numerical experiments, GP
factored A rather than A.

2NSPFAC scales rows by multiplying by the reciprocal of the pivot; GP scales columns by dividing
by the pivot. To make the comparisons fair, we used two versions of NF.

3All programs were written in Fortran; use double-precision arithmetic; and were compiled with
optimization enabled (f77 -0 (SC1.0 Fortran V1.4) on the SparcStation/1, xlf -0 (XL FORTRAN
Compiler/6000 Version 2.2) on the RS/6000).
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TABLE 1
Nonzeros in original and filled matrices.

Problem n

GEMATll 4929
JPWH991 991
LNS3937 3937
LNSP3937 3937
MCFE 765
ORANI678 2529
ORSREG1 2205
SAYLR4 3564
SHERMAN3 5005
SHERMAN5 3312

nz(A)
33185
6027
25407
25407
24382
90158
14133
22316
20033
20793

nz(FNsP) nz(FGp)
79774
134741
403017
383313
68288

262250
374957
624742
409475
242556

79757
131502
403520
383340
68288

262365
374957
624742
409475
242556

TABLE 2
Time (in seconds) for NSPFAC/GP and NF with the same pivot sequence.

Problem

GEMATll 2.61 1.44
JPWH991 29.79 17.75
LNS3937 68.58 39.76
LNSP3937 63.34 35.16
MCFE 7.18 4.16
ORANI678 32.17 15.64
ORSREG1 92.43 56.26
SAYLR4 168.39 102.90
SHERMAN3 97.31 58.60
SHERMAN5 42.50 26.01

SparcStation/1 RS/6000
NSP NF GP NF NSP NF GP NF

3.23 1.59 1.75 0.48
32.54 18.75 19.53 5.20
73.79 42.86 43.27 11.88
65.42 37.92 38.38 10.58
7.89 4.63 4.83 1.28

29.41 16.81 21.82 4.87
103.94 60.40 60.23 16.33
189.65 110.18 110.07 29.80
107.58 62.70 62.88 17.10
47.98 27.88 27.90 7.73

1.98 0.50
18.97 5.10
45.02 12.38
39.77 10.98
4.65 1.32

17.78 5.13
62.20 17.33

118.82 30.78
65.18 17.32
29.25 7.92

IBM RS/6000 Model 320, which has relatively faster (with respect to the speed of its
integer unit) floating-point hardware, the nonnumeric overhead can exceed 70 percent.

4. Symmetric reduction. Theorem 2.1 characterizes the nonzero structure of
Fk, in terms of the structure of Ak, and paths in the graph G(UK,). But by removing
from G(UK,) edges that are not needed to preserve the set of paths, a process called
transitive reduction [1], we can decrease the amount of searching required to determine
the structure.

If we remove all such redundant edges, then we get the elimination dag (directed
acyclic graph) [6], the minimal subgraph that preserves paths. However, if we remove
fewer redundant edges, we will still preserve the set of paths. The search time will
be larger than for the elimination dag, but the total time (including the time for the
reduction) may be less.

Symmetric reduction [4] is based on structural symmetry in the filled matrix F.
The symmetric reduction of G(UK,) is obtained by deleting all edges (i, m) for which
ji * uij 0 for some j < rain{k, m}. In effect, all nonzeros to the right of the first
symmetric nonzero are deleted; if no such symmetric nonzero exists, then all nonzero
entries are kept. We denote the resulting symmetrically reduced matrix by UK,.

Figure 1 shows the structures of two partial factor matrices FKd,, and FKs,,,
where K4 {1, 2, 3, 4} and K5 {1, 2, 3, 4, 5}. We use "." to indicate a nonzero
entry in the original matrix, and "o" an entry that fills in. Since 41 * u14 is the only
symmetric nonzero pair in FK,,., only the nonzeros to the right of u4 are pruned
from UK,, to get UKt.. On the other hand, there are two more symmetric nonzero
pairs in FKs,,, 52 * u25 and 54 $ u45, so that nonzeros are pruned in rows 2 and 4 to
get UKs,,.
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FK4,.

1 1

2
UK4,*

3 o o o

4 0 0

2

0 0 0

0

1 1

2 2

FK5,. 3 o o o UK5,, 3 o o o

4 o o 4 o

o 5 o o 5 o o

FIG. 1. An example to illustrate symmetric reduction.

TABLE 3
Normalized time for the original and two modified versions of NSPFAC/GP.

Problem

GEMAT11
JPWH991
LNS3937
LNSP3937
MCFE
ORANI678
ORSREG1
SAYLR4
SHERMAN3
SHERMAN5

SparcStation/1 IBM RS/6000
GP Red Mod NSP Red Mod GP Red ModNSP Red Mod

1.81 1.76 1.56
1.68 1.27 1.09
1.72 1.30 1.12
1.80 1.32 1.12
1.73 1.39 1.21
2.06 1.79 1.60
1.64 1.27 1.07
1.64 1.26 1.07
1.66 1.30 1.08
1.63 1.29 1.09

2.03 1.69 1.64
1.74 1.09 1.09
1.72 1.12 1.12
1.73 1.14 1.13
1.70 1.19 1.17
1.75 1.25 1.21
1.72 1.08 1.08
1.72 1.07 1.07
1.72 1.09 1.08
1.72 1.11 1.11

Harmonic Mean 1.73 1.37 1.17 1.75 1.16 1.15

3.65 2.50 2.29
3.76 1.58 1.19
3.64 1.67 1.27
3.63 1.68 1.29
3.77 1.86 1.43
4.48 2.86 2.51
3.69 1.58 1.17
3.69 1.59 1.20
3.68 1.59 1.18
3.61 1.63 1.23

3.96 2.64 2.50
3.72 1.24 1.21
3.64 1.36 1.33
3.62 1.36 1.33
3.52 1.42 1.38
3.47 1.62 1.49
3.59 1.20 1.18
3.86 1.26 1.24
3.76 1.27 1.25
3.69 1.33 1.28

3.75 1.78 1.37 3.68 1.40 1.36

Symmetric reduction preserves the set of paths in G(U) (see [4]). The argument
can be adapted to show that it also preserves the set of paths in G(UK,). The following
result is an immediate corollary of this observation and Theorem 2.1.

F A
for some m.COROLLARY 4.1. k --- if and only if k --, m

5. Numerical experiments. We incorporated symmetric reduction into NSP-
FAC and GP. In the process, we made a number of small modifications to the codes.

In NSPFAC, we split the innermost loop so that, when applying the update from
Uj, to Fk,, we complete the structural update before performing the numeric update.
Furthermore, we removed one of the two levels of indirection from the numeric update.

In GP, we removed the structural update to Uk, from the innermost loop and
disabled the test for accidental cancellation, for otherwise symmetric reduction might
not preserve paths. Furthermore, we combined the symbolic computation of Lk, and
Uk, into a single depth-first search that computes the structure of Fk, using Corollary
4.1.

Table 3 presents the ratios of the run-times of the original and two modified ver-
sions of NSPFAC and GP to the corresponding NF using the same pivot sequence.
The versions labeled "Red" include only those changes needed to incorporate symmet-
ric reduction; the versions labeled "Mod" also include the changes that remove one
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level of indirection (NSPFAC) or combine the depth-first searches (GP). As in Table
2, the rows of each test matrix A were preordered by a minimum degree ordering on
AA

The results show a dramatic decrease in the overall factorization time. The re-
duction is more pronounced on the RS/6000 due to the relatively faster floating-point
hardware. An even more dramatic reduction would be expected on a vector processor.

There are other ways to improve these sparse partial pivoting codes. One is to
use path-symmetric or partial path-symmetric reduction, as described in [4]. Another
is to switch from nodal to supernodal elimination [2], which we expect will give a
substantial improvement. A code with these features is currently under development
by the authors.

Acknowledgment. The authors thank John Gilbert for making available a pre-
release of sparse Matlab, which was used to generate the row orderings for the test
problems, and for suggesting the notation used for edges and paths.
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ANALYSIS OF THE IMPLICIT EULER LOCAL UNIFORM GRID
REFINEMENT METHOD*
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Abstract. Attention is focused on parabolic problems having solutions with sharp moving transitions
in space and time. An adaptive grid method is analysed that refines the space grid locally around sharp
spatial transitions, so as to avoid discretization on a very fine grid over the entire physical domain. This
method is based on static-regridding and local uniform grid refinement. Static-regridding means that for
evolving time the space grid is adapted at discrete times. Local uniform grid refinement means that the
actual adaptation of the space grid takes place using nested locally and uniformly refined grids. The present
paper concentrates on stability and error analysis while using the implicit Euler method for time integration.
Maximum norm stability and convergence results are proved for a certain class of linear and nonlinear
partial differential equations. The central issue is a refinement condition with a strategy that distributes
spatial interpolation and discretization errors in such a way that the spatial accuracy obtained is comparable
to the spatial accuracy on the finest grid if this grid would be used without any adaptation. The analysis is
confirmed with a numerical illustration.

Key words, partial differential equations, numerical mathematics, time-dependent problems, adaptive
grid methods, error analysis

AMS(MOS) subject classifications, primary, 65M50; secondary, 65M20

1. Introduction. Attention is focused on parabolic problems having solutions with
sharp moving transitions in space and time, such as steep fronts and disappearing
layers. For such problems, a space grid held fixed throughout the entire time evolution
can be computationally very inefficient. We consider an adaptive grid method that
refines locally around sharp spatial transitions so as to avoid discretization on a very
fine grid over the entire physical domain.

Our method is based on the techniques called static-regridding and local uniform
grid refinement (LUGR), as previously proposed by Berger and Oliger [3], Gropp
[6]-[8], Arney and Flaherty [2], Flaherty, Moore, and Ozturan [11], Trompert and
Verwer [13], and others. Static-regridding means that for evolving time the space grid
is adapted at discrete times. This should be contrasted with dynamic-regridding, where
the space grid moves continuously in the space-time domain. With the term LUGR
we mean that the actual adaptation of the space grid takes place using local, uniform,
refined grids. LUGR should be contrasted with pointwise refinement, which leads to
truly nonuniform grids. In this connection, our LUGR method bears resemblance to
the fast adaptive composite grid (FAC) method [10] for elliptic equations, where the
basic computational objective is to solve on an irregular grid by way of regular grids
only.

The idea of the method can be briefly described as follows. Given a coarse base
grid and a temporal step size, nested, local, uniform subgrids are generated. These
subgrids possess nonphysical boundaries and on each of these subgrids an integration
is carried out. They are generated up to a level of refinement good enough to resolve
the anticipated fine scale structures. Having completed the refinement for the current
base space-time grid, the process is continued to the next one while the fine grid results
computed at forward time levels are kept in storage so that they can be used for step
continuation.

* Received by the editors August 6, 1990; accepted for publication (in revised form) March 25, 1992.
f Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.
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An attractive feature of the static-regridding approach is the possibility of dividing
the solution process into the following computational procedures" spatial discretization,
temporal integration, error estimation, regridding, and interpolation. Depending on
the application, these individual procedures may range from simple or straightforward
to very sophisticated. This flexibility is attractive since it makes it possible to treat
different types of partial differential equation (PDE) problems with almost one and
the same code, assuming that the grid and the associated data structure remain
unchanged. Note that the choice of data structure is important for keeping the
unavoidable overhead at an acceptable level, because at each time step grids may be
created or removed, while communication between grids ofadjacent levels ofrefinement
frequently takes place.

The method we analyse in this paper has many similarities with the method
constructed in Trompert and Verwer [13]. In fact, the grid and data structure, the
spatial differencing, and the memory use are the same. However, in the present paper
we concentrate on analysis rather than on construction, while using implicit Euler
instead of the explicit Runge-Kutta-Chebyschev method for time integration. The
main aim of this paper is to present a detailed error analysis and to prove stability
and convergence for a certain class of PDEs. The central issue in this analysis is a
refinement condition and a strategy that distributes spatial discretization and interpola-
tion errors in such a way that the spatial accuracy obtained is comparable to the spatial
accuracy on the finest grid if this grid would be used without any adaptation.

Section 2 is devoted to the problem class on which we will concentrate. In 3 we
introduce the tools and the formulation for the multilevel LUGR method. In 4 we
discuss the maximum norm stability ofthis method. We prove an unconditional stability
result which is closely related to a maximum norm stability result of implicit Euler
when applied on a single space grid. Section 5 is devoted to the error analysis. In this
section we investigate the total local error with its component parts. Furthermore, here
we introduce the refinement strategy underlying the so-called refinement condition.
This condition enables us to control the contribution of the interpolation errors in
favour of discretization errors. Due to this condition, we are able to prove a convergence
result as if we are working on a single fixed grid. We further elaborate on this condition
in 6, where we show how to implement it for practical use. A numerical illustration
of the error analysis is given in 7. The numerical results found here are in complete
agreement with the analysis. Finally, 8 briefly discusses our future research plans.

2. The problem class. Following the method of lines approach [12], we consider
a real abstract Cauchy problem

(2.1) u,=L(t,u), O<t<-T, u(_x, 0)=u(_x),

where L represents a second-order partial differential operator that differentiates
the (possibly vector-valued) solution u(_x, t) to its space variable _x in a space domain
II in , 2, or 3. Boundary conditions are supposed to be included in the definition
of L.

With (2.1) we associate a real Cauchy problem for an explicit ordinary differential
equation (ODE) system in Rd,

d
(2.2) d--- U(t)= F(t, U(t)), 0< t=< T, U(0)= U,
which is defined by a finite-difference space discretization. Thus, U and F are vectors
in d representing grid functions on a space grid to covering the interior of the space
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domain. Each component of U and F is vector valued if u is vector valued. The
dimension d is determined by the spatial dimension, the grid spacing, and the number
of PDEs in (2.1). F is determined by the type of grid, by the actual finite-difference
formulas and, of course, by the precise form of L and its boundary conditions. Note
that boundary values have been eliminated and worked into the ODE system. In the
following, our method description and analysis are centered around this system.

Next we introduce some notations and assumptions needed for further specifying
(2.1) and (2.2). The symbol I1" denotes the maximum norm on the vector space Rd

or the induced matrix norm. Throughout our analysis we will deal only with the
maximum norm. The symbol /z[A] denotes the logarithmic matrix norm of the real
d x d matrix A (aij) associated with II" II, i.e.,

(2.3) tz[A]=m.a, x (a,+ laij,);
ji

/x[A] is a useful tool in the stability analysis of nonlinear, stiff ODEs and semidiscrete
PDEs [4]. In this analysis, the structure of the Jacobian matrix F’(t, q)=OF(t, )/0
plays a decisive role.

We are now ready to list the assumptions we make in further specifying (2.1),
(2.2). These assumptions are concerned with, respectively, the class of PDEs (2.1), the
smoothness of u, the choice of spatial grid and actual finite-differencing, and the
stability of the semidiscrete system (2.2).

(A1) The LUGR method is applicable in any number of space dimensions.
Following [13], we concentrate on the two-dimensional case, while is supposed to
be the unit square. With minor changes f/is allowed to be composed of a union of
rectangles with sides parallel to the coordinate axes. In fact, as we will see later, refined
grids normally are of this shape. In what follows, we will generally use the notation
u(x, y, t), rather than u(_x, t).

(A2) The solution u of (2.1) uniquely exists and is as smooth as the numerical
analysis requires. Specifically, for our purpose it suffices that u is a C:-function in
and a C4-function in (x, y).

(A3) We will invariably use uniform space grids. Thus our base grid can be written
as

(2.4) w {(x,, y): x, ih,, 1 -<_ -<_ M- 1 and yj =jhy, 1 <-j <-_ N- 1},

where h 1/M, hy- 1/N, and M, N are positive integers. The spatial differencing
on w is supposed to be based on three-point formulas of second-order consistency.
As a rule, we use central differencing. For boundary conditions involving first-order
derivatives, the one-sided, three-point formula is used.

(A4) A constant v exists such that tz[F’(t, rt)]=< v for all t6(O, T], qga, and
all grid spacings. Like (A1) and (A2), this assumption involves a restriction on the
class of PDE problems. Of course, they are made only for the sake of (model) analysis.
The LUGR method remains applicable in situations where these assumptions do not
hold or cannot be verified. On the other hand, for interesting classes of operators, such
as the scalar, nonlinear parabolic operator

(2.5) L(t, u)=f(t, x, y, u, (p(t, x, y)Ux)x)+f2(t, x, y, u, (p:(t, x, y)Uy)y),
with standard restrictions on f and pi, one can prove the existence of a constant , [4].

The inequality iz[F’(t, r/)]---v is to be interpreted as a stability condition, both
concerning the ODE system (2.2) and its implicit Euler discretization

(2.6) U U"-1 + -F(t,, U"), n 1, 2,...,
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where z tn tn_ is the step size and U is the approximation for U(tn). This inequality
enables us to formulate the following, powerful stability result for implicit Euler.
Consider the perturbed form

(2.7) 0n On- + zF(tn, 0n) + r", n 1, 2,...,

where r" is an arbitrary local perturbation and "-, 0 are perturbations to Un-,
Un. Then

1 ./r Un-(2.8) u" u" -<- / 11, n 1, 2,...,

for all z> 0 satisfying zu < [4]. Since , is independent of the grid spacing, this
stability inequality is valid uniformly in h, and hy. For u 0 we have contractivity for
all z > 0, while for u < 0 we even have damping for all -> 0. A result closely related
to (2.8) will be derived in 4.

3. The implicit Euler local uniform grid refinement method.
3.1. Outline. Although its elaboration readily becomes complicated, the idea

behind LUGR is simple. Starting from to, finer and finer uniform subgrids are created
locally in a nested manner in regions of high spatial activity. These subgrids are created
by bisecting sides of next coarser grid cells. A new initial-boundary value problem is
solved at each subgrid, and the integration takes place in a consecutive order, from
coarse to fine. Each of these integrations spans the same time interval. Required initial
values are defined by interpolation from the next coarser subgrid or taken from a

subgrid from the previous time step when available. Internal boundaries are treated
as Dirichlet boundaries and values are also interpolated from the next coarser subgrid.
The generation of subgrids is determined by the local refinement strategy and is
continued until the spatial phenomena are described well enough by the finest grid.

During each time step the following operations are performed:

1. Integrate on coarse base grid.
2. Determine new finer uniform subgrid at forward time.
3. Interpolate internal boundary values at forward time.
4. Provide new initial values at backward time.
5. Integrate on subgrid using the same steplength.
6. If the desired level of refinement is reached, go to 7, else go to 2.
7. Inject fine grid values in coinciding coarser grid points.

Thus, for each time step, the computation starts at the coarse base grid using the most
accurate solution available, since fine grid solution values are always injected in
coinciding coarse grid points. Moreover, all subgrids are kept in storage for step
continuation.

We consider the use of uniform grids attractive because uniform grids allow an
efficient use of vector-based algorithms, and finite differences on uniform grids are
faster and more accurate to compute than those on nonuniform grids. In this respect,
the current approach is to be contrasted with pointwise refinement leading to truly
nonuniform grids. Pointwise refinement techniques also require a more involved data
structure [5]. On the other hand, with the LUGR method, there are nodes that exist
on more than one grid at the same time, meaning that in these nodes integration takes
place more than once during one time step. Hence, the total number of nodal integra-
tions needed will be larger than on a comparable single nonuniform grid.

In [2], [3], [7] and [11] LUGR methods are examined based on noncellular
refinement and truly rectangular subgrids, which may rotate and overlap to align with
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an evolving fine scale structure. We avoid these difficulties. Our local subgrids do not
overlap, they may be disjunct, they need not be rectangles, and the actual refinement
is cellular.

3.2. The mathematical formulation. LUGR methods solve PDEs on the whole
domain at the coarsest grid only and on a part of the domain at finer subgrids. Our
method can be interpreted as a sequence of operations on vectors in Ra with varying
dimension d. The dimensions are time and level dependent because the number of
nodes changes per level of refinement and per time step. This constitutes a problem
for the formulation of the method. To bypass this difficulty, the fine grids will be
expanded so that they cover the whole domain. The dimensions are then fixed per
level of refinement, which facilitates the derivation of a concise mathematical formula-
tion. We emphasise that this grid expansion is auxiliary. In actual application, only
part of the expanded higher-level grids is processed.

Suppose that for a given time interval [0, T] and a given base grid, levels are
needed to describe the spatial activity of a solution sufficiently accurately when
integrating over the entire time interval [0, T]. Introduce for k 1,..., the expanded
uniform grids

(3.1) tok={(xi, Yj): xi--ihx,k, <--i<----2k-lM--1 and yj--jhy,k, l <=j<=2k-lN--1},

where N and M are the same integers as in (2.4), and hx,k- hx/2k-l, hy,k- hy/2k-l.
Note that for k 1 the base grid to1 to given by (2.4) is recovered.

Let the generic notation for a grid function r/ defined at tok be r/k, and let Sk
denote the space of these grid functions. We then denote the semidiscrete system
considered in Sk by

d
(3.2) d- Uk(t)= Fk(t, Uk(t)), 0< <- T, Uk(O) Uk.

Note that due to the grid expansion, only a part of the components of the ODE system
(3.2) is integrated for k > 1 in reality.

We are now ready to formulate the implicit Euler LUGR method. The following
formula defines the time step from step point tn_ to tn for levels of refinement:

n--1(3.3a) U gl UI + -F( tn, UI ),

(3.3b) U=D[RIkU’-+’Fk(t,,, U)]+(Ik-D)[Pk_lkU_+b],

for k=2,..., l, where
U S is the approximation to u at (.ok at t,,
Ik Sk --> Sk is the unit matrix,
D’Sk--> Sk is a diagonal matrix with entries (D), either unity or zero,
Rlk’.S -> Sk is the natural restriction operator from tol to tok, RII Ii,
Pk-lk:Sk- -> Sk is an interpolation operator from tok- to tog,

b Sk contains time-dependent terms emanating from the boundary 01-1.
Specifically, the nonzero entries of D (2 _-< k _-< l) are meant to determine that part of
tog where the actual integration takes place. This integration has the fine grid solution

DRIkU- as initial function and is defined by

(3.4) DU D[RIkU’-14- ’Fk(t, U)], k 2,..., I.

The definition of D is provided by the refinement strategy. For the time being, there
is no need to further specify D. Note that the nesting property of the integration
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domains is hidden in the precise definition of the matrices D. The interpolation step
is defined by

(3.5) "= 7,], k=2, 1,(Ik Dk) Uk (Ik Dk)[Pk-lkU-l+b

where the grid function b contains various time-dependent terms occurring in physical
boundary conditions. We need to include b because physical boundary conditions
have been worked into the semidiscrete system. For the analysis to follow, b plays
no role whatsoever.

The formulation (3.3a, b) automatically comprises the interpolation of boundary
values at grid interfaces. This follows directly from the observation that for nodes at
grid interfaces, the associated diagonal entry of D is zero (there is no integration at
grid interfaces). Further, we note that (3.3) implies an order, (3.3a) is carried out for
the coarse base grid and (3.3b) for k 2,..., successively. Having done this, the
updating will take place, meaning that U is replaced by RlkU from k l-1 to 1.
After this we move on to the next time step. Recall that, due to the grid expansion,
in (3.3a, b) the interpolation is carried out for all nodal points outside the integration
domain of tOg. This enables the stability and convergence analysis to be carried out in
the spaces Sk. However, in actual application, interpolation only takes place at the
local subgrids. In 6.2 it is shown that this does not interfere with the analysis.

4. Stability analysis.
4.1. Preliminaries. Consider, along the same lines as (2.7) for n 1, 2,..., the

perturbed scheme

(4.1a) ’ Rtl ll’ -t + 7’Fl( 6, ’) + r’,

(4.1b) Uk Dk[RlkUl-l+’Fk(t, ll)]+(Ik--Dk)[Pk-lkUk-l+b]+rk,
for k 2,..., with local perturbations rk, and introduce the errors ek Uk- Uk, for

andk I,...,/. To shorten the formulas, we introduce the auxiliary quantities eo,
Pol, where e 0e $I, D’ is the unit matrix 11, and Pol is the zero matrix. Then, by
subtracting (3.3a, b) from (4. I a, b), we get

n--1(4.2) Zek= D +(Ik-- )Pk-lkek-1 rk,kRlkel Dk -i- n 1 2,... k 1 l,

where Z Ik- 7"DMk and Mk is the integrated Jacobian matrix

(4.3) M= F’(6, OI+(1-O)U) dO,

which results from applying the mean value theorem for vector functions.
Assuming Z to be nonsingular, we can rewrite (4.2) as

(4.4)

with

ne-Iek Xkek-l + Fk + 4k, n l, 2, k l, l,

X (Z)-’(Ik-- D)Pk-lk,

(4.5) F=(Z)-’DRIk,
--1bk= (Z) rk.

Note that X’ =0 and that the operators X, F are associated, respectively, to the
interpolation and restriction. We can rewrite (4.4) in the standard form

(4.6) ek +k, n=l,2,..., k=l,...,l,
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where the amplification operators G and the local perturbation terms are defined
by

(4.7)
G’ F’,

G=XG +F k=2, l,k-1 k

(4.8)
Ik XkJ

_
+b, k=2, I.

The error recurrence (4.6) describes the error propagation for all refinement levels.
The main interest lies in the operator G’ and the local perturbation g,’, since coarse
grid values are always updated by fine grid values. In (4.6) this is reflected by the

n--1presence of el
The stability of the implicit Euler method in the above is contained in the following

lemma.
LEMMA 4.1. Let be the logarithmic norm value defined in assumption (A4) of 2.

Then,

1
II(zT)-’ll-< < 1, k 1,

1 ’ru

(4.9)
-’ru) ’V’ru<l if u>O, k I.II(/z)- ll < 2,

1 Vr>0 ifu<-O,

Proof. The result for k 1 is standard since D’ is the unit matrix (see [4, p. 46]).
The premultiplication of M for k > 1 with D has the effect that either entire rows
of M are put to zero, or are left unchanged. From (2.3) we can then immediately
deduce that for u > 0 the bound (1- ru)- still holds, whereas for u =< 0 the zero rows
introduce the bound 1.

Observe that the replacement of the bound (1- ’)- by the bound 1 for u < 0
implies that in this case we no longer exploit the damping property of implicit Euler.
For the analysis to follow, this is no restriction since here we are merely interested in
proving stability and convergence results. Specifically, the stability result we will prove
is not dependent on the damping in implicit Euler. To shorten derivations, we first
make another assumption.

(A5) The logarithmic norm bound u from (A4) is nonpositive. Hence we now
restrict ourselves to dissipative problems. This is not essential; results obtained for
v <= 0 can be extended to the case v > 0 by inserting (1- ru)- for the bound 1 any
time the stability inequality (Z,)- =< 1 is used.

4.2. Stability and linear interpolation. In this section we will prove a general
stability result for the multilevel adaptive grid method (3.3) that is similar to the
stability result (2.8) for the implicit Euler method applied without adaption.

THEOREM 4.2. Let u <= 0 according to (AS), and suppose that linear interpolation is
used. Then, for all r > 0 and all n >= 1,

(4.10) II ZII -< 1, k= 1,..., l,
k

(4.11) II ZII--< IIr7ll, k= 1,..., 1,
j=l

n--I(4.12) 11eTII--< lie,
k=l
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Proof. Inequality (4.12) is a trivial consequence of (4.10) and (4.11). Let us first
prove (4.10). This is done by induction with respect to k. Suppose IIGZ-II--< 1. From
(4.7) it follows that

(4.13) GTII IIXT, GT,-, + rll II(zT,-1)-’QTll--< QTl[,

where QT (Ik D)Pk-lkG-I + DT,Rtk.
Consider the ith row of this operator. Suppose (D)ii 1. Then

(4.14) I(QT),I--E I(R,),I 1,

by definition of the restriction operator Rk. Next suppose (DT), =0. Then

(4.15)

by virtue of the induction hypothesis and the norm

(4.16) IlPk_lkll 1

of the linear interpolation operator Pk-lk. Combining (4.14) and (4.15) gives
and inequality (4.10) now follows from (4.13). The induction proof is finished if we
can prove that G’ =< 1. This follows immediately from the observation that G]’ F’
(Z)-lRll

There remains to prove (4.11). We have 1167,11--< IIrZII. It then follows from (4.8)that

(4.17) Z xZ c--1 + rZII,
so that we are finished if we can prove that IIxzII 1. This is trivial due to (4.16) and

III-DZII 1. t3
The inequality (4.12) is the counterpart of the inequality (2.8). We may conclude

from Theorem 4.2 that when implicit Euler is stable and we interpolate linearly, our
multilevel adaptive grid method (3.3) retains stability of implicit Euler through the
bound 67 II--< 1.

4.3. Stability and higher-order interpolation. A drawback of linear interpolation
is its limited accuracy. In a genuine application, it might well be preferable to use
higher-order interpolants (in [13] we successfully used fourth-order Lagrangian inter-
polation). Unfortunately, in this case we must have IIP-,II> 1, so that we are not
able to prove the results of Theorem 4.2 when following the above method of proof.
If P-II > 1, then it is possible to prove (a constrained form of) stability by introducing
an additional condition that underlies the intention of interpolating exclusively in low
error regions. Unfortunately, this condition turns out to be of no direct practical use
and is omitted here. On the other hand, numerical evidence suggests very strongly that
those higher-order interpolants do not cause genuine stability problems in real applica-
tion. We believe we owe this to the fact that the method interpolates in low error
regions, so that, loosely speaking, this condition is satisfied implicitly.

5. Error analysis. We will present a detailed examination of the local error. From
this we deduce the refinement condition which henceforth underlies the refinement
strategy. This condition enables us to control the contribution of spatial interpolation
errors in favour of spatial discretization errors. Due to this condition, we can prove a
convergence result as if we are working on a single fixed grid. Specifically, it will be
shown that the usual convergence behaviour applies and that the accuracy obtained
is comparable to the accuracy obtained on the finest grid if this grid would be used
without any adaptation.
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5.1. The local level error. Let Uk(t) Sk denote the pointwise restriction of the
true solution u(x, y, t) to tOk. Consider (4.1). By replacing all -values by associated
Uk-Values, the local perturbation r becomes the local level error at grid level k. For
convenience, we will denote this error also by r"

--1rk Uk Dk[RlkU +rFk(tn, U)]--(Ik Dk)[Pk-lkUk-l+ b],
(5.1)

n=l,2,..., k=l,...,l,
where Uk Uk(t,) and Po, Uo, b are auxiliary and put to zero; rk contains the following
local error components, the local spatial error induced by the finite-difference approxi-
mation, the local temporal error of the implicit Euler method, and the interpolation
error. We first discuss these different components. They are defined in the standard
way by

d
ak(t) =--Z Uk(t)-- Fk(t, Uk(t))

at
(spatial discretization error),

d
(5.3) fl(t)- u(t)- u(t-’)-r-t u(t) (temporal error),

(5.4) 3k(t) Uk( t) Pk_lkglk_l( t) bk( t) (interpolation error).

The grid function bk(t) in (5.4) has the same meaning as b in (3.5). In the following,
we assume without loss of generality that hx,k hy,k-- hk. In view of assumptions (A2)
and (A3) in 2, we have

(5.5) (t) (h), h-0,

with order constants determined by higher-order spatial derivatives of u and by PDE
operator quantities. Likewise, (A2) implies ilk(t)= ’2Ck where Ck =-1/2d2uk/dt2 evalu-
ated at a time t+(K-1)r, 0-<K-<I. If u is a C3-function in t, then

1 d2

(5.6) fl(t) =- " --u(t)+(’3), r-O.

Let q denote the accuracy order of the (Lagrangian) interpolation. Then

(5.7) (t) (h), k= ,..., l,

and here the order constants again depend exclusively on higher spatial derivatives of
u, assuming sufficient ditterentiability. If linear interpolation is used, then assumption
(A2) implies q 2 and second-order spatial derivatives determine the constants.- ,-1 for k 1 1, we can deriveNow, using the relation Uk RlkUl
(5.8) r=D(’a+fl)+(Ik-D)3,, n=l,2,..., k=l,...,l.

Note, by definition of D,, that D,(’a+fl,) is the restriction of the usual local
discretization error ra + fl to the integration domain of the grid tog, while (Ik-
represents the restriction ofthe interpolation error 2’ to the complement ofthis domain.

5.2. A crude global error bound. Denote the global discretization error by e
u-U and suppose e =0. For any choice of D the consistency results (5.5)-(5.8)
imply

(5.9) r=(zh2k)+(r2)+ ’(h).

If we now suppose linear interpolation and assumption (A5), then application of (4.12)
yields

(5.10) IleTII--< IleT-’ll + Ils II--< IIsll +’.. + IIS II, n 1, 2,...,
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where IlS ) + (z2) + (7(hl). Here the coarsest mesh width occurs due to simply
adding all normed local level errors in (4.15), including IlrTll. Following standard
practice, we thus obtain at any fixed time point t, m- the global error bound

h2

(5.11) IleTll <- c/ C=h= / C,
where h h and C1, C2, and C3 are positive constants independent of step size and
mesh sizes.

The first two terms are due to the temporal integration and spatial discretization.
They will vanish if mesh sizes and step size tend to zero independently of each other,
thus reflecting the unconditional convergence of the method when applied without
adaptation. On the other hand, if no relation is imposed between - and h, then the
third term can grow unboundedly as z, h--> 0. This term is due to the interpolation.
Hence, even though we have stability and consistency, this result shows that uncondi-
tional convergence cannot be hoped for. Fortunately, this conclusion is not as bad as
it looks. By not specifying the matrices D and, subsequently, by adding norms of the
local level errors, we have simply supposed arbitrary integration domains at all levels
of refinement. This must lead to a crude error bound like (5.11). In application, the
computations should be organized in such a way that the interpolation only takes place
in low error regions so that the interpolation error is virtually absent. This poses the
task of setting up a precise error analysis and the design of a local refinement strategy
aimed at a suitable selection of the matrices D.

5.3. Local and global errors. According to (4.6), the global error e satisfies the
recurrence relation

(5.12) ek Gke?-1+ Ok, n 1, 2, k 1, ,1,

where is the local error defined by recursion (cf. (4.8), (4.5))

rl
(5.13)

t/,, (Z;’)-’
k=2,.. /.I Xkl rk,,,_ + (z)-’

The operators G, X, and Z are supposed to be redefined (replace all -values by
associated u-values). Note that is essentially different from the local level error
r. While r is associated with the single kth level, is associated with all levels up
to this kth level according to (5.13). This recursion governs the propagation of each
local level error when introducing higher and higher levels. Elaborating, it gives, for
k=l,...,l,

(5.14) 0 (J X)(Z)-lr.j=l \i=k

Next we split tp into its temporal and spatial part denoted by, respectively, O.t and

(5.15) Ok + bk, k 1, I,k,t

and it follows from (5.8) that O.t and , are given, respectively, by

(5.16) t/,,,= ((I XT)(Z)-IDfl,
j=l i=k

(5.17’ d/,= (’XT)(Z,-[’rD.a+(I-D)y].
j=l \i=k
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Let us first examine O,t. Since fl does not depend on mesh sizes, we have

fl RikflT. Substitution into (5.16) then yields

j=l i=k

and we see that this operator is just the amplification operator G featured in (5.12);
see the recursion (4.7). In conclusion, O.t satisfies

=Gkfll, k= l,...,l.(5.19) ,
We next examine @,. Using the definition of X given in (4.5), we rewrite

(5.17) as

O, (Z)-l(Ik D)Pk-,k H X
j=l i=k-1

(5.20) +(Z)-’[Da+(Ik-D)y]
=(Z)-’[Da+(Ik-D)p], k= 1,..., l,

where

(5.21) P=Y+Pk- k=2, l,lkOk-l,s,
and p--0. In (5.20) the spatial local discretization error DkO/. k committed on the
integration domain of grid (.Ok is separated from the spatial local error part (Ik- D)p:
defined outside this domain. Hence, p collects all spatial error contributions defined
on the grids toj (1 _-<j _-< k 1), including discretization error a and interpolation error
YT, together with y on tOg. This separation enables us to formulate a refinement
condition which ensures that when a new grid level is introduced, the spatial local
accuracy outside its integration domain will be smaller than or equal to the spatial
accuracy on the integration domain itself. This distribution of local space errors is
desirable, as we never return to grid points lying outside a current integration domain.

The refinement condition constrains the matrices D, and is taken to be

1
(5.22) II(Z)-’.DII>=-II(Z)-’(I-D)PII, n=l,2,..., k=2,...,l,

C

where c > 0 is a constant specified in 6. If (5.22) is true, then all errors @,s satisfy

(5.23)  LII-<(1 +
and combining (5.12) with (5.15), (5.19) enables us to present the global error inequality

n--1Ilell =< IIGII lie, / IIG#711 +(1 +
(5.24)

n= 1, 2,..., k= 1,...,/.

The importance of the refinement condition (5.22) is reflected by the fact that in
(5.24) the interpolation error contribution has been removed. This is in agreement with
our goal of developing a local refinement strategy that generates refined subgrids such
that the accuracy obtained on the final finest grid is comparable to the accuracy obtained
if this finest grid would be used without adaptation. We will elaborate on condition
(5.22) in 6. Note that it suffices to consider (5.22) only for k l, since it suffices to
consider (5.23) and (5.24) for k I.

5.4. Convergence and linear interpolation. Assuming linear interpolation and
assumption (A5), as in 5.2, (5.24) can be rewritten as

n--1(5.25) Ilell<-Ile, II+ll#ll+(l+c)llll, n=l,2,..., k=l,...,l.
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Hence, following the same derivation as carried out for (5.11), for the highest level
the global error bound

(5.26) IleTII <-- fir+ C2(1 + c)h
results where C1 and C2 are positive constants independent of step size and mesh sizes.
This bound is unconditional in the sense that it assumes no relation between step size
and mesh sizes and, according to our goal, the smallest mesh width h occurs. We have
recovered an error bound similar to the standard error bound for implicit Euler when
applied on a single grid.

5.5. Convergence and higher-order interpolation. As pointed out in 4.3, for the
case of higher-order Lagrangian interpolants, a powerful stability result like that of
Theorem 4.2 is not available. However, assuming that higher-order interpolation in
low error regions does not severely damage stability, as is strongly supported by our
practical experience, it is natural to impose the refinement condition (5.22) also in the
case of higher-order interpolation. Note that in the derivation of (5.22) no a priori
choice was made for the interpolants.

6. The refinement condition.
6.1. Determining the integration domains. Condition (5.22) first needs to be elabor-

ated into a workable form before it can be implemented for determining the integration
domains. To begin with, we rewrite the error p as

(6.1)
Pk "Yk 4r Pk-lk X (ZT)-IT"D;a;

j=l i=k-1

+ P-, rI x7 (Z;)-l(/j Dj )yj,
j=2 i=k-1

2<=k<=l.

Next, we rewrite the first sum as

Pk-lk k-1 -1 k-1
j=l i=k-1

(6.2) + Pk-lk H x7 (Z;)-I(/j-
j=2 i=k-1

P_ l(Zj_l)-lrDj_la_l,
and substitute this expression into (6.1). It then follows that p can be written as

(6.3) Pk Ak + Pk-lk X (Z )- (-D )A, k=2,...,l,
j=2 i=k-1

where

(6.4) Aj .}t; %- pj_lj(Zj_l)-l,rU;_lOlj_l, j 2,..., I.

The error function , contains the interpolation error at level j and the prolongation
of the spatial discretization error of level j 1 to level j. The derivation now rests upon
monitoring the error (Z,)-l(Ik--D)pT, occurring in (5.22) through monitoring all
errors (/-D)A, j-< k, occurring in (6.3). The idea is to select the matrices D such
that the error functions (/ D’)Aj’ become sufficiently small. This makes sense because
if C3 and Ca are stability constants such that

(6.5) II(Zj’)-lll C3, H X C4,
i=k-1
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then

(6.6) II(z)-’(I-D)p]]<-C3(l+llP_lII(k-2)c3c4) max II(j-Dy)XYlI.
2<_j<_k

Hence, if for k- 2,..., l, the matrices D, are selected such that

(6.7) C3(1 /llPk-kll(k-2)C3C4) _<=xk It(Ij-Dy)AYlI<-clI(ZZ)-’DZ,ZII,

then the refinement condition (5.22) is satisfied.
In general, the stability constants C3 and C4 are unknown. However, if the

dissipativity assumption (A5) is satisfied, then the constant C3 1. Fuhermore, if we
use linear interpolation, then (4.16) applies and C4 also can be set equal to one, so
that (6.7) simplifies to

C
(6.8) I1( D;)Aj k"l II(zz)-’rDall, k 2,... ,1.

If assumption (A5) does not hold or if higher-order interpolation is used, then C3 and
C4 may be larger than one, but not by a considerable amount. C3 shall generally be
of moderate size in view of the excellent stability behaviour of implicit Euler. Our
practical experience with fouh-order Lagrangian interpolation is that higher-order
interpolation is unlikely to yield instability problems, thus indicating that IIxZII, and
hence C4, are also of moderate size. That is why we proceed with (6.8) and also use
it in situations where (A5) may be violated and/or higher-order interpolation is used.

In application, it suffices to impose (5.22) for k only, so that (6.8) can be
replaced by

C
(6.9) akalmax I1(I D)All II(ZT)-DT, II,

In order to satisfy this condition, estimates of X have to be computed. Therefore, to
create an extra safety margin, we replace (6.9) by the slightly more conservative
condition

C
(6.10) II(Ik DT,){II <---- II(ZT)-’rD, , II, k 2,..., I,

where, componentwise, ’, is defined as

(6.11) (),=I(,),I+I(Pk-,(Z-,)-’D-,-,),I.
Condition (6.10) will determine the integration domain of tok. Let fl[ be this

integration domain and recall that when a node belongs to fl, the corresponding
diagonal entry of D is equal to one and zero otherwise. Suppose that the maximal
level number and c(1-1)-lll(ZT)-l’rDTa’]] are known and that a solution at ’-1,
k =< l, has just been computed. Prior to the integration step on level k, our task is then
to determine fl. That is, we must define D such that (6.10) is satisfied and in such
a way that the area of tl 7 is as small as possible. The actual selection of tl 7 is carried
out by a flagging procedure that scans level-k grid points. A point is flagged if, using
appropriate estimates,

C
(6.12) (’k), > --]-II(/’)-ID;’II.
Hence, for such a point the corresponding diagonal entry (D,), 1, and for nonflagged
points we define (D,), 0. Thus the refinement condition (6.10) is satisfied.
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In conclusion, the solution at a node of grid tOk is interpolated only if a correspond-
ing component of ’ is smaller than the maximum of the spatial discretization error
at the finest grid multiplied with "rc(l-1) -1. Otherwise, integration is carried out at
this node. No doubt this imposes a severe restriction on the size of the interpolation
errors. On the other hand, this restriction is natural because when going to a higher
level within the current time step, we never return to a grid point where the solution
has been interpolated, which means that the interpolation error will be carried along
to the next time step. The fact that we do.not return is a direct consequence of the
nesting property of the integration domains, which we will discuss next.

6.2. Restricted interpolation and the nesting property. We now introduce the nesting
property of the integration domains. Recall that this property, being hidden in the
definition of the matrices D, has played no role in the foregoing analysis. We stipulate
that in application the nesting is enforced by the flagging procedure; in other words,
this procedure scans only level-k points lying within the previous integration domain
fl-l. A direct consequence is that, unlike (3.5), the interpolation is carried out only
for level-k points within f-l. Here we will justify the deviation due to this restricted
interpolation. We will argue that the restricted interpolation is in fact allowed by the
inequality (6.10), where interpolation over the whole of tOk is still assumed.

Consider the error (Zk_1)-1.7.Dk_l Ol k-l, contained in ’ This spatial error is defined
at level k-1 and, by definition of D_I, has zero components outside f/,-1. Hence,
all its prolongated components are taken into account in the flagging procedure for
determining f,. For the interpolation error ,,, which lives on the whole of (.Ok (grid
expansion), the situation is different. However, restricted interpolation is allowed if
for all level-k points outside ,-1, the interpolation error satisfies

C
(6.13) ](Yk),l--<--]I(Z)-IT"DI l
because then points outside -1 will not be flagged if the interpolation step (3.5)
would be carried out on the whole of tOk. In other words, if (6.13) holds outside
then the integration domains found with the restricted interpolation over f-i are
equal to the domains found if the interpolation would be carried out on the whole of
tOk, which is in accordance with the method description (3.3a, b).

The following argument shows that inequality (6.13) is very plausible with the
restricted interpolation procedure. First we recall that f’ coincides with the entire
physical domain. Hence for k 2 there is no restricted interpolation, so that for all
level-2 points outside f, inequality (6.13) is trivially satisfied. Next consider the case
k 3. Now the interpolation is restricted to level-3 points within f. Since for all
level-2 points outside f inequality (6.13) is satisfied, we are justified in supposing
that this is also true for all level-3 points outside f, in view of the consistency of the
interpolation (level-3 interpolation errors are smaller than level-2 errors). Further, by
construction of I, (6.10) is satisfied for all level-3 points within and outside f,
and so is (6.16). In conclusion, we may suppose that (6.13) is satisfied for all level-3
points outside f when using the restricted interpolation for k 3. For k 4 and so
on this argument can be repeated.

6.3. Implementation aspects. On top of the flagging procedure implementing
(6.12), a safety measure has been built. Any node for which (6.12) is true is flagged
together with its eight neighbours. Next, to create an extra buffer, all sides of cells
with at least one flagged corner node are bisected. This means that a buffer zone of
two mesh widths is used around any intolerable node. Near boundaries, physical and
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internal ones, the buffering differs slightly. Although in theory this buffering could be
omitted, in practice it is wise to create a buffer zone around intolerable nodes because
the estimation of higher spatial derivatives contained in a T and /7 is prone to
inaccuracies. After the flagging procedure, a cluster algorithm groups all flagged nodes
together to form the newly defined integration domain.

The parameter in (6.12) must be specified. In view of result (5.25), c should be
taken small so that the spatial accuracy obtained is indeed nearly equal to the spatial
accuracy obtained without adaptation. In fact, the smaller c is, the more points will
be flagged and hence the safer the local refinement will be (c =0 implies global
refinement). On the other hand, when c is too large, it can occur that space.errors are
large and refinement is necessary but no nodes are flagged because (6.12) is satisfied
at every node. Hence, c is available as a tuning parameter. In the experiments in 7
we have simply put c 1.

Estimates of spatial interpolation and discretization errors are required. For
2=< k=< we must estimate the interpolation error 3’ and the prolongated spatial
discretization error Pk_lk(Z_l)-lD_lOt_l Further, an estimate of the spatial dis-
cretization error (Z’;)-D’;a’; committed at the final/th level must be available at all
lower levels. Because we use local uniform grids, the estimation of these errors can
be realized cheaply and easily. Consider the error a 7 (cf. (5.2)) and let p be the order
of consistency (in this paper p 2). The estimation we apply is based on the use of a
second spatial discretization operator F of a higher-order/. After some elementary
calculations we obtain the approximation

(6.14) a= ffk(tn, Uk(ln))--Fk(tn, Uk(tn)

as an asymptoticall,y correct estimator for a ,. The benefit of using~ uniform grids now
lies in the fact that F is easily constructed. At internal nodes our F provides fourth-order
accuracy (standard symmetrical differences), while at nodes adjacent to physical or
internal boundaries third-order accuracy is realized (standard one-sided differences).
The benefit of using uniform grids is also reflected in the estimation for the error /
(cf. (5.4)). So far we have implemented Lagrangian interpolation of second (linear)
and fourth order. For the second-order interpolation we need to estimate spatial
derivatives Uxx, etc., while in the fourth-order case spatial derivatives like Uxx appear.
For both cases the estimation is straightforward.

We emphasise that, in spite of its simplicity, linear interpolation may become
disadvantageous due to the low order of accuracy. Inspection of the various terms in
(6.12) suggests a comparison between the following order relations:

(6.15a)

(6.15b)

(6.15c)

(6.15d)

"r(Pk_k(Z,_,)-’D,_,a,_l), 7(’h_,),

-(zT)-DT o, T (,rh),

(y,)i 6(h), second-order Lagrangian (linear),

(y,)i 6(h), fourth-order Lagrangian.

In the discretization terms the step size is contained. Consequently, it is the interpola-
tion error that may govern the refinement if - is very small, and particularly so when
the interpolation is linear. The comparison is clearly in favour of the fourth-order
interpolation.

To estimate the right-hand side term [[(Z’;)-D’;a’;II of (6.12) for 2=< k=< l-1, we
exploit the asymptotics. Since the mesh width of level k is half that of level k / 1, we
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thus invoke

(6.16) II(ZT)-’DT,711- 2-"’-"II(ZT,)-197,,7,II, l>- k + l,

for k 1, 2, In theory it suffices to do this only for k 1, but since for larger values
of k this estimation will become more and more accurate, it is done for every k.

Finally, we will make a few remarks about the approximations (6.14) and (6.16).
Our method, like every other adaptive grid method, is designed to solve PDEs with
steep solutions. Yet (6.14) and (6.16) underlie asymptotics, which means that they are
only accurate if the solution is sufficiently smooth on the grid in use. This constitutes
a problem for LUGR methods, because these methods estimate errors on coarse grids.
Nevertheless, if in practice the estimated error is not that accurate, it might still give
a good indication of where the spatial error is large and where it is not and, specifically,
the estimated error might still be in the same order of magnitude as the exact error,
in which case the implemented refinement strategy based upon (6.14) will still work.
In our experience so far, this is indeed the case. We believe this is due to the fact that
estimation (6.16) is carried out for finer and finer subgrids with an increasing accuracy
which partly remedies the problem. However, if solutions become very steep, it might
be necessary to improve the implementation of the refinement condition (5.22).

7. Numerical example. This section is devoted to an illustration of the foregoing
error analysis. Our goal here is to numerically illustrate that by imposing the refinement
condition, the usual order behaviour is recovered. At the same time, the spatial accuracy
obtained is comparable to the spatial accuracy on the finest grid if this grid would be
used without adaptation.

7.1. The issue of imllieitness. We use the implicit Euler method for time integra-
tion. In connection with implicitness, two points are worth mentioning. The first is
that at any time step refinement takes place at different levels, resulting in a different
Jacobian per level whose order usually varies. This impedes the profitable use of old
Jacobians (like in sophisticated stiff ODE solvers), unless it is decided not to adapt
grids at every time step, but instead per prescribed number of steps. We consider this
as part of an overall strategy that can easily be placed on top of the existing one. We
adapt grids at every time step since our main aim with the experiments is to illustrate
the convergence analysis together with the refinement strategy. However, when dealing
with real applications, it is most likely to be more advantageous to omit adaptation at
every time step, just for efficiency reasons. The second point is that the Jacobians do
not possess a regular band structure, since the integration domains II , normally have
an irregular shape. Unlike the first, this point is intrinsic to the local refinement method.
In the experiments reported here, the Harwell sparse matrix solver MA28 has been
used. This solver is well suited to coping with the structure we meet, but is rather time
consuming for the present application. It is likely that standard iterative methods can
be applied at lower costs.

7.2. The example lroblem. The problem is hypothetical and due to [1]. The
equation is the linear parabolic equation

(7.1) ut=Uxx+Uyy+f(x,y, t), 0<x,y<l, t>0,

and the initial function, the Dirichlet boundary conditions, and the sourcef are selected
so that the exact solution is

(7.2) u(x, y, t) exp [-80((x r(t))2 + (y s(t))z)],
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where r( t) 1/4[2 + sin (Trt)] and s(t)=1/4[2+cos (Trt)]. This solution is a cone that is
initially centered at (1/2, ) and that symmetrically rotates around (1/2, 1/2) in a clockwise
direction with a constant speed. We have used this problem to subdue our refinement
method to a convergence test. Observe that the semidiscrete version of this problem
satisfies the dissipativity assumption (A5).

7.3. Convergence experiments. We have carried out two identical convergence
experiments. In the first, linear interpolation was used and in the second, fourth-order
Lagrangian was used. In both the solution is computed four times over the interval
0 =< t_<-2, using a uniform 10 x 10 base grid and a constant time step size r. In the first
computation 1, in the second 2, and so on. Since per computation the smallest
mesh width is halved, - is simultaneously decreased by 22 in view of the first order of
implicit Euler. Hence, in line with our analysis, per computation the maximal global
error should also decrease by 22

Table 7.1 shows the maxima of global errors restricted to the finest integration
domain in use. This table also contains the maxima of the errors for the corresponding
grid used without adaptation. The table clearly reveals the expected order behaviour.
The errors of the 4 runs are about a factor four smaller than the corresponding
errors of the 3 runs. Note that there is hardly a difference between the corresponding
errors, showing that, as anticipated by our strategy, the choice of interpolant has no
notable influence on the error. We emphasise that, in spite of the relatively large values
for -, the spatial error dominates the global errors shown in this table. For example,
using ’=0.125 instead of r=0.5 in the 2 run, the same global errors are found
(they deviate in the third or fourth decimal digit). In other words, conclusions on the
spatial error behaviour induced by the local refinement algorithm can be drawn from
this table. These results convincingly show, for the current example problem, that the
use of the refinement condition ensures that the spatial accuracy obtained is very much
comparable to the spatial accuracy on the finest grid if this grid is used without any
adaptation. Finally we note that the choice c 1 apparently has no influence on the
error. We owe this to the fact that the refinement condition has been derived from
error bounds and is thus conservative.

The use of the two different interpolants is expressed in the slightly different
integration domains shown in Figs. 7.1 and 7.2. As expected, at the higher levels linear

TABLE 7.1
Maxima of global errors restricted to the finest domain. Comparison with errors on a standard uniform grid.

No. of Single
r levels Interpolation grid 0.50 1.00 1.50 2.00

2.00000 10 10 0.16447

0.50000 2 linear 0.03876 0.03890 0.03891 0.03891
fourth order 0.03929 0.03945 0.03946 0.03946

20 x 20 0.03865 0.03881 0.03882 0.03882

0.12500 3 linear 0.01369 0.01369 0.01369 0.01369
fourth order 0.01376 0.01376 0.01376 0.01376

40 40 0.01389 0.01389 0.01389 0.01389

0.03125 4 linear 0.00340 0.00340 0.00340 0.00340
fourth order 0.00359 0.00359 0.00359 0.00359

80 x 80 0.00347 0.00347 0.00347 0.00347
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=0.5 =1.0

=2.0

FIG. 7.1. Linear interpolation. Integration domains for the 4 run at four different times. The size of the
integration domains decreases only slowly with the number of levels. This is due to the fact that the cone is not

very steep. At the end time, 2.0, the number of nodes amounts to 121,425, 813, and 1917, respectively.

interpolation gives rise to somewhat larger domains, showing that linear interpolation
is more expensive. As a rule, fourth-order interpolation is to be preferred, as it leads
to smaller domains. Note that for both interpolants the moving domains accurately
reflect the symmetric rotation of the cone, which once again nicely illustrates the
reliability of the implemented refinement condition with the various estimators.

8. Final remarks and future plans. In our future research we plan to pay more
attention to time-stepping efficiency. Using the refinement strategy of this paper as a
starting point, we plan to examine the application of methods possessing a higher
order in time. Natural candidates belong to the class of Runge-Kutta methods. It
should be stressed, though, that fully implicit methods can only be of serious advantage
if the numerical algebra issue can be satisfactorily solved. In this connection splitting
methods of the ADI and LOD type (see [9]) may therefore provide an attractive
alternative to fully implicit ones, although they are usually less accurate in time.
Another point of serious practical concern is to apply methods not only using an a
priori chosen number of levels, but to also have the possibility to vary the number of
levels. This might be useful for the computation of solutions that, for example, steepen
in time, like the combustion problem in [13]. For such problems, the application of a
variable number of levels should be combined with the use of variable temporal step
sizes. Preferably, the complete adaptation should then be monitored by estimators of
temporal and spatial errors in such a way that there is a balance between the two
which aims at minimizing the waste of computing time.
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FIG. 7.2. Fourth-order interpolation. Integration domains for the 4 run at four different times. At the

end time, 2.0, the number of nodes amounts to 121,425, 813, and 1361, respectively.
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VECTOR-SUPERCOMPUTER EXPERIMENTS WITH THE PRIMAL AFFINE
LINEAR PROGRAMMING SCALING ALGORITHM*

K. O. KORTANEK"

Abstract. The vector-supercomputer CRAY series has provided significant speed and significant digits
accuracy for solving difficult, large-scale, and ill-conditioned linear programming problems with the linear
programming (LP) primal scaling algorithm of Dikin [Soviet Math. Dokl., 8 (1967), pp. 674-675]. Ranging
from fully dense Chebyshev approximation-type matrices to highly sparse, relatively small, band-widths
matrices generated from continuum mechanics problems, numerical results are presented that indicate good
stability and objective function value accuracy. In a significant number of these experiments, a substantial
speed-up in CPU time for obtaining good objective function accuracy has been obtained over a very stable
implementation of the simplex method, termed LINOP. The companion QR-based scaling implementation,
SHP, was applied to these dense problems, where high accuracy levels are required.

A conjugate gradient-based implementation, termed HYBY, was applied to a discretized plane strain
plasticity problem for ill-conditioned problems having up to 7700 equations in as many as 9000 variables.
The FORTRAN code includes an effective stability enhancement over the original affine scaling algorithm.
The sparse LP matrix generator for these problems is available from the author (kort@icaen.uiowa.edu) or
from Professor E. Christiansen in Odense, Denmark (edc@imada.ou.dk).

Key words, linear programming, affine scaling algorithm, QR decomposition, conjugate gradient method,
semi-infinite programming problems

AMS(MOS) subject classifications. 65D15, 65F10, 65K05, 73E20, 90C05

1. Introduction. LP approximations to semi-infinite programs. Generally speaking,
difficult to solve linear programs arise when linear semi-infinite programs are approxi-
mated using finite discretizations. Regardless of the kind of discretization used, one
usually obtains a finite linear inequality subsystem of the original infinite one, which
is potentially ill conditioned.

Building on the work of Gustafson [18] and Gustafson and Kortanek 19], an LP
approximation was taken as Phase I in the semi-infinite programming codes of
Fahlander [12]. In her codes, Phase I provides a starting solution for the necessary
optimality conditions appearing in the form of a nonlinear system of equations. In yet
another, more recent, direction a discretization method of Hettich [21] relies exclusively
on discretizations, but in a new way that permits a substantial reduction in the number
of inequalities in the finite linear subsystem.

Until now these linear programs have generally been solved by simplex method
implementations which strive to achieve stability and high accuracy. For example, a
rather recent stable simplex method code has been developed based on Georg and
Hettich 15], and it has been tested on some difficult two-sided approximation problems
and on some vibrating membrane problems.

Recently, another computational approach for linear programming has arisen,
based on the interior point LP methods of Dikin [11] and Karmarkar [27]. In this
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This research was supported in part by National Science Foundation grant ECS-85-00940 and Office of
Naval Research grant N00014-85-K-0198 at Carnegie-Mellon University and National Science Foundation
grant ECS-86-96087 at the University of Iowa. Portions of this paper were presented at the First ICIAM
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paper the Dikin algorithm, termed the LP affine scaling algorithm, is tested on some
discretized semi-infinite programming problems. Two classes of problems are studied
that for different reasons can be considered large scale.

The first class consists of problems that owe their size to either single-precision
or double-precision, fully dense, constraint matrices. These problems are principally
two-sided approximation problems (also termed Chebyshev or Lo-norm approximation
problems). Within this class we investigate the following problems: (a) Chebyshev
approximation oftwo variable transcendental functions by polynomials in two variables
(see Hettich [21] and Hettich and Zencke [26]); (b) complex variable Chebyshev
approximation arising in antenna beam-forming problems (see Streit and Nuttall [36]
and Streit [34], [35]); and (c) Chebyshev approximation problems that arise in comput-
ing eigenvalues of a vibrating membrane (see Hettich [22] and Hettich, Haaren, Ries,
and Still [24]).

The second class of problems stems from computing limit collapse loads in a
plastic plane strain problem, as studied in engineering continuum mechanics, and the
reader is referred to Christiansen and Kortanek [9], 10] for model details and numerical
results. Basically, a linear program is obtained from two different kinds of discretiz-
ations: (i) possibly different finite element approximations for the strain and stress
forces of the problem, and (ii) an outer linear approximation of the unbounded convex
yield set of the stresses.

All computational experiments reported here were performed on CRAY supercom-
puters: first on a CRAY 1 at AT&T’s Murray Hill, NJ, facility, in the spring of 1986,
and then on a CRAYX-MP/48 at the University of Illinois’s Urbana-Champaign
Supercomputer Center during 1987 and 1988.

These results are given in 4 and 5. But first, in the next section, a proof of the
affine scaling algorithm’s asymptotic linear convergence rate is given under the rather
mild assumptions of Kortanek and Shi [28]. This section also contains Hettich’s
suggestion for a stability improvement, which has been found to be essential for the
plasticity application.

Section 3 describes the characteristics of the FORTRAN codes used in the
numerical experiments.

2. The primal LP afline scaling algorithm and a convergence analysis. Consider a
standard form of an LP problem"

(I)
Let c be an n-vector, b an m-vector, and A a full-rank m x n matrix,
none of whose columns is zero.

(1) Find Vl min { c 7"x x R", Ax b, x >- 0}.

It is natural to assume that the matrix A has the opposite sign property because
it may be readily imposed without loss of generality using classical LP regularization
procedures. The opposite sign property is equivalent to the constraint set of (1) being
spanned by its extreme points (a characterization that also holds in infinite dimensions).

2.1. The primal atline scaling algorithm (Dikin [111).

Step O.

Step 1.

Step 2.

Let x( be an (I)-feasible point, satisfying xl> 0, for 1,..., n. Let
a be a scalar 0 < a < 1 and set the iteration count k to 0.
Let ’k-- DkC, Ak ADk, where Dk diag (x(k)). Set y(k)= (AkA)-lAkk
and Cpk gk yk.
Test: ifc 0, then continue to Step 3, else stop with optimal xk for
(I) and yk optimal for dual LP of (I).
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Step 3.
Step 4.

Let (1/Yk.) max, c Set )= ykCCpk.
Set x(k/= x(k- aDkCpk, k:= k+ 1, and return to Step 1.

In Step 1, C(pk) is the orthogonal projection of tYk onto the null space of k, where
y(k) is also the unique solution of the least squares minimization (where only the
two-norm is used in this paper)

(2) min [16k fi.yll 2.
yR

For an explanation and geometric motivation of this algorithm, the reader may consult
Strang [33, pp. 683-686], where the algorithm is referred to as the "rescaling algorithm."
In addition, one may consult Bazaraa, Jarvis, and Sherali [3, pp. 412-418] for a
discussion of the "affine scaling variant of Karmarkar’s algorithm."

Various elementary properties of the algorithm have appeared in an expanding
literature. For definiteness, we state the following lemma from Kortanek and Shi [28].

LEMMA 1. Assume that the algorithm does not terminate. Then
(a) ykllCCpkll >--__1 for each k;
(b) ec)= IIc)ll = for each k;
(c) limk rllc)ll 0; and
(d) limk COpk)= 0.
Sufficient conditions for convergence usually require some form of primal or dual

nondegeneracy assumption. Among the weakest of such conditions are those indepen-
dently derived in Sherali, Sharpness, and Kim [32, p. 407] and Kortanek and Shi [28,
Thm. 2, p. 52]. Theorem in the latter reference can be used to establish an asymptotic
linear convergence rate of the algorithm under a weakened nondegeneracy assumption.

THEOREM 1 (see [28]). Define a set ofcoordinate positions by So {illirnk xk)> 0}.
Assume that the column subset {A ]j So} has rank m. Then any limit point of {x(k)}k
solves (I), and any {y(k)}k convergences to an optimal solution ofthe dualprogram of (I).

The related convergence rate result is now the following.
THEOREM 2. Assume that not every feasible point of (I) is optimal Then under the

assumptions of Theorem 1 and a nonterminating sequence {x(k)} k--1, the following
inequality holds for sufficiently large k:

Proof. Let 2 be a limit pt,int of {x(k)}. By Theorem 1, 2 is a solution to (I), limk y(k)
exists (say 37), and 37 solves the dual problem, i.e., TAJ >-- q,j 1,..., n, and cT 37Tb.
From the definition of the projection C(pk), we have

Cj y(k)TAJ ,,..(k)/,.(k)
=,p/j for j= 1, 2,..., n.

Hence, by Lemma l(d) and the definition of So in Theorem 1, it follows that

y TAi-- C for each So.
Now So is contained in the set To:={jlq-TAJ=O}, which cannot equal

{ 1, 2,..., n} because otherwise every (I)-feasible point is optimal. Hence we can rewrite
AX(k)-- b as EjT AJxk)-t-jTo AJxk)-- b, yielding

E .TAJxJk+ 2 .TAJxJk= fi Tb.
je To j: To

With appropriate substitutions this becomes

(3) CjxJk+ , =T Aj..k T2.y ,"-1 .&j --C
je To j: To
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It also follows that for sufficiently large k,

(4) cj--y(k)TA;>1/2(C;--.gTA;) for all j To.
This motivates adding ;To qX)k) to both sides of (3) and rearranging in order to obtain

(5) c;x)-cr= E (c;-yrA;)x).
j=l j To

Combining (4) with (3) gives

(6) cTx()--cT<2 (c;--y()TA;)xJk).
j To

Applying the classical inequality

abi a b aibi > O,
i=1 i=1

yields

(c;--y(k)rA;)xJ)<-_ff-ff IIc  )ll
jg To

which combines with (5) to yield

C ’x(k)_ c Tx <
T,.,(k) 2Step 4 of the algorithm and the fact that ,k,P IIc(pk)II (Lemma l(b)) yields

Because of nontermination, crx(’)-cr> 0 for each k, and hence we conclude that
for suciently large k,

T- c%k)cx(+’) c x rll<1-(7)
cx c x 2T-

Remark 1. The proof has similarities and has benefitted from the proof in Barnes
[1]. A related convergence result was obtained by Ferris and Philpott [13, p. 275] in
a more general context.

Remark 2. Since r[[c%l[ for each k, (7) establishes that the asymptotic
convergence rate is linear. Empirically easy to observe, one might obtain insight on
the speed of convergence by observing rllcll, but we have not done this in a
systematic way.

2.2. Obtaining an initial point (Phase I calibration procedure). Let be a positive
number, and let M be the n x n diagonal matrix with along the diagonal. Let e

o =(e, 1). For k=0,1 2, apply justdenote the n-vector of all ones and set s, s,+
one iteration of the primal affine scaling algorithm to

min,Sn

(b-AMs)
subject to AMs+ s,+ b

Sn+l

and s, s,+ 0,

and delivering the nextbeginning with the exactly feasible initial solution s

+ Terminate when s is below a specified positive tolerance. Manyiterate s+ s,+
people have had extensive computational experience with this procedure, beginning
with Cavalier and Soyster [5].
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In our experiments, we did no additional stability checks on the accuracy of the
projection in Step 1 of the algorithm for Phase I.

Typically, setting x() =s(k) for relatively small numbers of iterations k gave a
sufficiently accurate interior point starting solution for application of the algorithm to
the original LP problem. Typically, once a starting solution x is available, application
of the algorithm is then termed "Phase II." In our experience, Phase II definitely
requires checking whether the projection C(pk) lies in the null space of , for each k,
as described in 3.

2.3. A stability enhancement. Although the projection C(p) of Step converges to
zero, each vector, t? and fi,kry), employed in the difference expression of Step 1 may
be relatively large.

During his visit to Carnegie-Mellon University in spring 1986, Hettich suggested
another least squares problem to replace (2) in an attempt to "shorten" each of the
vectors used in the difference expression, namely:

(8) min [l(k)-,’yll 2,
yR

where (k) t?k _fi.yCk-1). Thus, at the current iteration k, the vector of Step 1 is
replaced by (k), which depends on the previous solution y(k-1). The solution to (8),
denoted y(k), becomes
(9) Y() (kff)-1k(ak Y-)) Y)-Y-).
Under the conditions of Theorem 1, it follows that ) and y) both converge to 0 as
k increases. Finally, observe that the projection in (8) is c itself, i.e.,

) rT (k)
AkY ak fy(k-,)_ fy(k)+ fy(k-)

a fy() c()
While we cannot generally say that the original vectors ak and fy(k) are large

enough to cause stability problems in computing ck), (8) permits the expression of
c as a difference of two vectors, each converging to zero.

For implementation purposes, the following modification of (8) is employed:

(10) min Ila ’)- fy il
y#eR

where yk) denotes the optimal solution at stage k, beginning with yO)=y(O)=
gT, (k-l)(o)-oo as the initialization, and where a)= ak--kY0

The solution yk) to (10) is then
T, (k y(k) (k-l)y)= (f)-’(a-. -)) -y,

and thus, unlike the solution to (8), yk) here becomes a telescoping series. Again, (10)
yields a projection onto the null space of k, and analogous to (8), it is also c)"

e y
e-()=

The enhancement was employed only in the sparse matrix implementation of the
primal ane algorithm, which is described in the next section.

3. Features of the FORTRAN codes: SHP, LINOP, HYBY. LINOP is a simplex
method implementation based on Georg and Hettich [15], while SHP and HYBY are
implementations of the primal ane scaling algorithm of 2.1. All codes are written
in FORTN 77.
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3.1. SliP. SHP was written by Miao Gen Shi of Tsinghua University for highly
dense problems requiring a very high level of accuracy. The solution to the least squares
problem is accomplished by a Householder transformation-based QR decomposition
of the matrix/ implemented with LINPACK subroutines

,= Q(k)R(k), where Q(k) is an n x m matrix, Q(k)TQ(k)=/,
and

R(k) is right upper triangular m x m.

As is well known, one can dispense with the R(k) factor in computing the projection,
i.e.,

c)= (I- Qk)Qk)r)?k.
In SHP the relative accuracy is denoted by EP. From Lemma 1 (b) we know ideally

that CCp IIc ll = (ignoring k sub- and superscripts). Because of round-off error, the
relative error RS is not zero, where

RS Ic -IIc I1=1/II c .
RS provides a measure of stability loss and is used as one of the termination criteria.
Iterations continue as long as RS is below a stability parameter choice, usually 1.00
or 0.10, i.e., the position of C(pk is acceptable, unless the norm of the projection is
sufficiently small, in which case the algorithm is also terminated.

As an additional termination check on the accuracy of the projection, we typically
provide IlAx(’- bl[ in the oo- or two-norm.

We shall use the common FORTRAN edit descriptors e or d to record various
constants in single or double precision. Thus, for example, e 6 1 .e 6 1 .d 6 10-6.

For CRAY double-precision runs the choice of EP ranges from d-17 to d-21
(machine accuracy d-28). For single-precision runs EP ranges from e-12 to e-13
(machine accuracy e- 14). The uniform choice of a in Step 0 of the algorithm is 0.999
for both phases, which could be termed an attempt at taking "long steps" in the descent
directions. Smaller a leads to more iterations, with about the same accuracy.

3.2. LINOP. Full details of this FORTRAN code appear in "the package LINOP"
by Hettich and collaborators. Georg and Hettich [15] have shown that the most stable
simplex method implementation occurs when the orthogonal Q-matrix is retained and
itself updated through successive iterations. See also Hettich and Zencke [25].

In LINOP the relative accuracy is denoted by EPS, where, for example, EPS
1.e- 14 means that single-precision numbers are accurate up to 14 decimal places. EPS
determines when a number should be set to 0, or when a QR factorization is inaccurate.
EPS is also used to detect a nearly singular basis matrix. The code outputs error
indications when any of these states are encountered.

Both LINOP and SHP were compiled on CRAY compilers available at Murray
Hill, NJ, and at Urbana-Champaign, IL, which provide for a certain amount of
automatic vectorization. But no other specific vectorization coding techniques were
used in these basically serially written FORTRAN codes. Important possibilities for
speed-up obtained by removing inhibitors to vectorization are reported in Zenios and
Mulvey [42].

Because both of these codes retain the orthogonal factors in the matrix decomposi-
tions, comparisons between their performances should show them to be equal. While
LINOP has a self-correcting Q-updating procedure and SHP does not, one might still
expect similar performance in CPU time because of the many more simplex iterations
needed, in contrast to the greatly reduced number of iterations of the scaling algorithm.
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This has been confirmed in numerical experiments for classes ofChebyshev approxima-
tions problems.

3.3. HYBY. In early 1986, Kortanek wrote a FORTRAN code for a sparse
implementation of the algorithm using the classical conjugate gradient algorithm for
solving (10); see [20, Algorithm 4]. Two clear advantages of this approach are" (1) Ak
can be stored in its sparse form, never having to compute k, and hence saving on
storage; and (2) one can use the current y(k), the solution to (10), for an initial,
advanced start in the next iteration’s least squares problem (10).

Analogous to various sparse matrix packages (for example, Paige and Saunders
[30]), we use three arrays for the storage of. Array JMA lists the nonzero elements
of fi, row by row. Array IM indicates the column number of each entry in JMA.
Finally, array MM gives the number of nonzero entries in each row of.

The matrix Ak is preconditioned using a diagonal matrix with entries formed from
the two-norm of the rows of Ak. Other more effective preconditioners related to a
Cholesky factorization of fik[ are discussed, for example, in Georg and Liu [16].

HYBY employs the same stability check and stopping rules that SHP does.
Typically, for single-precision CRAY runs, a cut-off for the norm of the residuals for
the inner loop conjugate gradient iterations is taken to be about 1.e- 13. Relaxing this
criterion gives projections that do not lie sufficiently within the null space of Ak. HYBY
is clearly less accurate than SHP, and so we always include a post-optimality check
of the minimum of the "reduced costs," i.e.,

ATy(klj =1 n},(11) min{c-
ideally nonnegative, where A is the jth column of A. At this point we simply omit
post-duality checking in SHP because of its rather high accuracy.

Our experience on CRAY machines is that running in double precision can result
in increases in CPU time by a factor of at least 10. Therefore, it is essential to run
HYBY in single precision when applied to large-scale LP problems.

We describe next the results of some numerical experiments.

4. Numerical experiments on vector-supercomputers.
4.1. Two-sided approximation by polynomials in two dimensions: SHP and LINOP

with double precision. Historically, the task of solving finite LP approximations to
infinite problems set in a continuum led to the development of LP codes, such as
LINOP [15], having a high degree of accuracy when double precision is used.

A typical two-sided approximation problem can be viewed as a semi-infinite
program and further discretized.

(A) Given (continuous) functions f(x), u(x),..., u,(x) defined on a set S in Re

/)p inf Y.+I
y ,...,Yn,Yn

s.t. yu(x)-f(x) -y,,+<=O for all xS.
i=1

Removing the absolute value signs leads to the equivalent problem

ve inf Y,,+I

s.t. yiui(x 4-Yn+l >--f(x),
i=1

yu(x) + y,,+ >- -f(x) for all x S.
i=1

compute
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The approximation problem to be solved will be obtained by discretizing the set
S, i.e., selecting a finite subset T of S, and then constructing the dual to the above
minimization program"

(B) sup , f(x)A+(x) -Z f(x)A-(x)
X+(x), A-(x)

A-(x)s.t.
u. x)h+(x) E u. x

0

and all A+(x), A-(x)->0, and where "x" denotes "xT."
Typically one can use a linear independence argument, which depends on proper-

ties of the ui-functions and the mesh of the grid S to show that the constraint matrix
in (B) has full row rank. It clearly has the opposite sign property because of the last
equation. Observe that the constraint matrix is (n + 1) by 2 * (# T), and that an interior
point feasible solution is immediate; namely, assign 1/(2, (# T)) to each variable in
(B) where "#" means "the number of members of." Thus, applying SHP to (B) does
not require a Phase I procedure. In the following problems, the full rank assumption
holds for sufficiently fine uniform grids. For the first two experiments, note that if the
polynomial has degree d, then the number of equations in (B) is 0.5(d+ 2)(d+ 1)+ 1,
as Tables 1 and 3 illustrate. In each case, the two-dimensional grids are simply uniform
ones based on Cartesian products of respective one-dimensional grids.

TABLE
CRAY X-MP/48 double-precision runs on LP(B) for approximating the function

xy" machine precision 1.d-28.

LINOP:
Problem size Simplex algorithm Scaling

CPU algorithm CPU
d m n Phase Phase II sec. Phase II sec.

5 22 288 136 41 7.5 11 9.8
6 29 288 249 63 17.4 11 15.7
7 37 288 451 82 38.9 12 26.0
7 37 338 488 102 47.6 11 28.0
7 37 392 457 98 49.4 12 35.1
7 37 450 516 130 62.5 14 45.8

TABLE 2
Comparisons of objective function values for the runs of Table 1.

LINOP:
Problem size (m, n) Simplex algorithm Scaling algorithm

22,288 .1498601e-3 .1498411e-3
29,288 .1137433e-4 .1136960e-4
37,288 .9638871e-6 .9638175e-6
37,338 .9598364e-6 .9594715e-6
37,392 .9570501e-6 .9567180e-6
37,450 .9688830e-6 .9688692e-6
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TABLE 3
CRAYX-MP/48 double precision runs on LP(B) for approximating the function

log (x + y) sin y: machine precision 1.d- 28.

LINOP:
Problem size Simplex algorithm Scaling

CPU algorithm CPU
d m n Phase Phase II sec. Phase II sec.

5 22 288 107 57 7.0 15 12.6
6 29 288 237 124 19.9 15 20.5
7 37 288 422 163 43.1 13 27.9
7 37 338 444 196 51.8 14 34.4
7 37 392 435 216 58.0 15 42.7
7 37 450 508 207 69.6 16 51.6

In these experiments we test the codes SHP and LINOP on the dual problem (B)
and provide results on the number of iterations, CPU time, and objective function
values. In general, no further comparisons were made regarding primal or dual optimal
solutions to (B) delivered by each code, but objective function value comparisons are
given in Tables 2 and 4.

4.1.1. Experiment 1. Approximate xy by
d

i=o j=o

on the square 1, 2] x 1, 2].
For the six problems counted in the order of increasing matrix size, the scaling

precisions EP paired with the norms IIAx’- bll are, respectively, (d- 19, 0.44e- 15),
(d- 19, 0.44e- 15), (d- 19, 0.77e- 15), (d-21, 0.41e- 15), (d- 21, 0.11e- 14), (d-23,
0.23e- 13). For LINOP the relative accuracy was chosen between d- 19 and d-21.

For the 37 x288 problem the two-norm of the difference of the dual vectors
delivered by LINOP and SHP was about 0.90d-5. Dual vector components ranged
from -0.96e-6 to 1.40 with most less than 1 in absolute value.

4.1.2. Experiment 2. Approximate log (x + y) sin x by
d ., aijxJy ’-j

i=o j=o

on the rectangle [e, 1] x [1, 2.5], where e 1.d-5. One could have also chosen e 0
if desired.

TABLE 4
Comparisons of objective function values for the runs on Table 3.

LINOP:
Problem size (m, n) Simplex algorithm Scaling algorithm

22,288 .15657066e-3 .1565698e-3
29,288 .3833631e-4 .3833208e-4
37,288 .9714904e- 5 .9711184e-5
37,338 .9892332e-5 .9888688e-5
37,392 .9852445e-5 .9850761e-5
37,450 .9780506e-5 .9780050e-5
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The experience on accuracy was similar to Experiment 1, except slightly more
stable. For the scaling runs, EP was d-19 for all but the largest run, where it was
d-21. The maximum norm IIAx(k)-bllo ranged from .lle-14 to .44e-15.

4.2. Two-sided approximations for computing membrane eigenvalues: SHP and
LINOP. We present next some numerical experiments on some two-sided approxima-
tion problems which arise in Hettich’s parametric programming approach for comput-
ing eigenvalues of the problem Au Au in a region R with u -0 on its boundary (see
Hettich [22], Hettich, Haaren, Ries, and Still [24], and Hettich and Zencke [26]). In
these experiments, for instance, R is an ellipse, and the LP problems are fully dense
and rather ill conditioned. The LP preprocessors were written by Hettich and his
colleagues. The computer runs were made in the spring of 1986 on AT&T’s CRAY 1
at the Murray Hill, NJ, facility. Solution times were not recorded, merely iteration
counts, and we tested SHP’s Phase I procedure; see Table 5.

4.2.1. Experiment 3. In each problem the objective function values (OFVs) agreed
up to seven figures. For the first two problems, the correct optimal bases were indicated
by the scaling method with solution-component accuracy of three figures. For the third
problem, a support set of 36 variables was indicated that had 32 variables in common
with the 35-point support set returned by the simplex method. There is therefore strong
reason to believe that the scaling method has indicated a nonextreme point optimal
solution, having seven-digit OFV accuracy.

4.3. Complex function approximation for antenna array processing. Recent work
in complex function approximation and its applications have appeared in Glashoff
and Roleff [17]; Streit and Nuttall [36], [37]; Streit [34], [35]; and Watson [41] (see
also Barrodale and Phillips [2]). We now present a prototype problem.

TABLE 5
CRAY double-precision solutions to selected membrane eigenvalueproblems (1986). Number ofiterations

and some precision statistics.

Problem size

Number Number LINOP:
of of

equations variables Phase Phase II EPS

Scaling algorithm

Phase Phase II IlAx-bll EP

20 100 43 24 d- 19 2 17 0.35e- 19 d-21
30 400 93 313 d- 19 2 20 0.39e- 15 d-21
35 500 147 758 d- 19 2 37 0.22e- 14 d-22

Let A denote the jth column of an n x m complex matrix A and letf be a complex
m-vector, having components f. The unconstrained L complex approximation prob-
lem is then

(12) (CI) min max Iz%-f lzC l<_jm

where the vector of unknown z is taken to be a row vector, and "[. [" is the complex
absolute value.

A linearization of the nonlinear problem (CI) is based on the fact that

(13) Ix/iyl- max (xcosO+ysin O).
O=<O<2,n
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In order to obtain the tightest approximation based upon (13), a set of angles is selected
according to

(14) Ol=r(l-1)/p, 1= 1,2,...,2p,

where p => 2. We say that the number ofphase-shifted values in an approximation based
on (13) is 2p. The integer p is thereby only half of them. Using this approximation
problem, (CI) becomes

(CIp) min max (zA-f)o,,
zC lj<=m

l<--_l<=2p

where

(zTAj --f)o, (zTAj _f)R COS 0 + (zTA; _f)I sin Ol

zR(A COS OI+A] sin Ol)+Z’(A sin O-A] cos 01)

-(f sin Ol +f] sin 0), a real quantity,

and where "R" and "I" denote real and imaginary pas of a complex quantity.
Because of the choice of the Ol’S in (14), we see that

zra, -)o+, zTAj --)(+o,, -(zra, -)o,.
Therefore, we may rewrite (CIp) as an ordinary, two-sided, real approximation similar
to the problems in 4.1"

(15) (CIp)= min max
(zr,zI)cR2n ljm

llp

where the absolute value taken in (15) is just the real absolute value function.
As before, the primal LP problem associated with (15) will have 2n + 1 variables

and m(2p) linear inequalities. The dual LP problem, therefore, has 2n + 1 equations
in 2pm variables. The current form of SHP will require taking (-1) times its objective
function since SHP is a minimizer. Typically, for example, M could be 101 or 501.
Typical numbers of full phase angle shifts yielding interesting problems could begin
with 4, but recently Streit [34] has considered a class of problems with 1024 angle shifts.

A slight modification of the Streit and Nuttall [36] matrix generator, termed
ZMAINS, generates the data for the following problem; see Streit [35].

In this application, a basis function is again of the form exp (ikx) over the interval
[Uo,2-Uo], where k is a positive integer and where Uo=0.0538117. The function to
be approximated is f(x)= exp (i49x). However, not all of the integers k from 1 to 48
are included in the list of basis functions. Some integer indices are to be omitted,
specifically those in {7, 17, 21, 29}.

The experiments were conducted for approximating f(x) by using various subsets
of the full set of basis functions determined as follows.

Specify an integer N, 7 < N< 48. Define {ki}’i=1 to be {1,2,...,N}\{7,17,
21, 29}, ordered according to 1 <kl <k2<"" "<kt. Setting NDEL= #{1, 2,..., N}f3
{7, 17,21,29} yields t= N-NDEL. For example, if N=48 and M= 501, then A is a
complex matrix having 44 rows and 501 columns. If, in addition, there are 2p phase
angle shifts, then the LP dual problem associated with (CIp) of (15) has 2mp variables
in (2(N NDEL) + 1) equations.
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The experiments reported below were done in single precision, which on the
CRAY X-MP/48 gives approximately 14 digits. The decision on accuracy was based
on the large, fully dense matrices generated for this problem. The numerical results
are presented in Tables 6 and 7, where the initial start of 4.1 was used for SHP.

It is our experience that EPS-- 1.e- 12 is not sufficiently accurate for LINOP, and
the small EPs of Table 6 are needed.

There is a loss of right-hand side accuracy with SHP compared to the approxima-
tion problems of 4.1 and 4.2. [lAx(k)- b[[ ranges over (integer) (10-6) for the first
five problems and (integer) (10-5) for the last three (and largest problems).

5. Computing the collapse state in material plastic limit analysis. During the last
five years Christiansen and Kortanek have been applying sparse implementations of
Dikin’s [11] algorithm to a difficult class of LP problems arising in plastic collapse
analysis. An earlier version ofthis manuscript contained preliminary results; see Beasley
[4], which used the HYBY implementation of 3. These results were improved using
finer discretizations in Christiansen and Kortanek [9]. In 1989, they replaced the
classical Hestenes and Stiefel conjugate gradient implementation with the highly
accurate Paige and Saunders [30] least squares algorithm, and many variations of a
two-dimensional plane strain problem were tested. In all of these experiments over all
this time, Christiansen and Kortanek found that the stability enhancement of 2 was
essential.

TABLE 6
CRAY X-MP/48 single precision complex approximation of a problem in Streit and Nuttall [36].

Problem Simplex LINOP
size method iterations Scaling algorithm

N M 2P Phase Phase II Time EPS Phase II Time EP

23 101 16 484 779 86.8 e- 14 18 17.4 e 12
24 101 16 617 566 86.0 e -14 17 18.1 e- 12
24 201 16 611 699 174.0 e 14 19 25.0 e- 12
25 101 16 602 1186 132.9 e- 15 19 19.9 e- 12
25 201 16 612 1140 239.1 e-15 22 27.7 e- 12
25 301 16 598 1350 384.0 e-15 22 42.0 e- 12
26 301 16 687 713 293.8 e-15 20 42.8 e- 12
27 301 16 804 839 354.2 e- 16 22 44.5 e- 13

TABLE 7
Comparisons of objective function values for the runs of Table 6.

Problem size (m, n) Simplex algorithm Scaling algorithm

41,1616 .9991863 .9991917
43,1616 .9991208 .9991729
43,3216 .9997221 .9997448
45,1616 .9991228 .9991854
45,3216 .9996893 .9997271
45,4816 .9998010 .9998146
47,4816 .9996448 .9997786
49,4816 .9994667 .9997870
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The LP problems are constructed from a FORTRAN matrix generator that is easy
to use. We give a description below so that others may also test their LP codes and
compare their results with what we have obtained with the LP primal affine scaling
algorithm.

The LP model has been put into the standard form (1) with the help of some
slack variables based upon a discretization of the following plastic Collapse problem.
Consider a cube of a plastic material. In the y-x plane, make thin symmetric cuts of
the distance to the center. Subject the cube to a uniform tensile force in the x-direction
at the two surfaces given by x 1 and x =-1 (see Fig. 1) and increase this tensile
force until the material collapses due to excessive interior stresses. The details are
explained in Christiansen and Kortanek [9].

FIG.

The program takes as input the text file INDATA containing only one integer N,
which must be a multiple of 3.1/N is the element size in the finite element discretization.
Varying N through values 3, 6, 9,... will generate LP problems of increasing size. The
outputs from the program are the data for LP (1) in sparse matrix form given in the
three files discussed in 3.3.

This test problem has a structure that is typical for problems in mechanics, but
different from other LP test problems. The equality Ax I contains information on
both the discrete equilibrium equation of the solid and on the inequalities (including
slack variables) expressing the bounds on the stresses in the material.

It must be emphasized that not only the optimal value, but also primal and dual
optimal vectors are important parts of the solution. There is evidence to the fact that
at least the primal solution (representing the collapse stresses in the material) is not
unique. In our experience Simplex codes cannot solve this problem as well as the LP
primal affine scaling algorithm.

For large N the recent results obtained in Christiansen and Kortanek [10] were
obtained using a modified version of the matrix generator. As it turned out, many of
the linear constraints had positive slacks in the optimal solution obtained with the
scaling algorithm. These constraints were eliminated and only checked a posteriori for
the solution. This modification has not been possible when using Simplex codes.
Insisting on extreme points apparently will introduce more active constraints "than
necessary," when the optimal solution is nonunique. This modified set-up program is
available upon request. Also available is a post-processor, which will extract fields for
stresses and plastic flow from the primal and dual solutions and produce plots on a
postscript printer.
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6. Conclusions. All of the linear programs tested in this paper were constructed
from discretizations of linear optimizations set in a continuum. Only the LP primal
affine algorithm was tested on these problems during the five-year period beginning
in 1985. An enormous amount of algorithmic development has occurred during this
period, and a state-of-the-art survey on computer implementations was presented by
Professor David Shanno at the SIAM National Meeting in Chicago in July, 1990.

In the numerical experiments reported in this paper, good convergence of objective
function values was obtained within 20 Phase II iterations of the scaling algorithm.
Whenever a Phase I routine was done, usually not more than three or four iterations
were required. There were 30 computer runs reported in these experiments, on problems
which can be considered large scale. Twenty-three of these were on fully dense
Chebyshev approximatior problems that are ill conditioned and require a large amount
of storage. While the stable LP code LINOP provides the most accurate solutions, the
scaling code SHP provides good approximations to the objective function values with
significant speed-up in CPU time. For the membrane problem, there were additional
checks on the accuracy of the optimal solutions themselves, and the results were
favorable. In one membrane problem run, SHP indicated the presence of alternate
optima.

No case was found where one code (LINOP or SHP) failed and the other did
not. Typically, when a failure did occur, then ill-conditioning was experienced in SHP,
while in LINOP an error message indicated that the QR factorization was inaccurate
or that a nearly singular basis matrix had been detected. For the complex approximation
problems, there was significant objective function value sensitivity to the choice of the
relative precision parameters, EPS for LINOP and EP for SHP.

It is rather surprising that the large-scale results on these Chebyshev problems
are "images" of earlier results obtained by solving much smaller Chebyshev approxima-
tion problems using PC equipment as well as an IBM 3083 mainframe at Carnegie-
Mellon University. The number of Phase II iterations for these smaller problems were
reported at the M.I.T. Mathematical Programming Symposium in August, 1985. They
are quite consistent with the findings of the 23 experiments reported here.

Due in part to the immediate, interior point starting solution to the two-sided
Chebyshev approximation problem, it can safely be asserted that the scaling algorithm
returns a very good approximation to the objective function value at a significant
speed-up over the simplex method.

Equally exciting are the results from applying HYBY to the highly sparse LP
problem generated by the plane strain plastic limit analysis problem. The LP formula-
tion is known to be highly degenerate with alternate optima. Over 15 years ago,
Christiansen found that this was a difficult problem to solve because the extreme point
solution delivered by a simplex method implementation depended upon the computer
and simplex code used. It was therefore difficult to make inferences about the collapse
fields of the true material whose extremal principal is formulated over a continuum.

Rather than presenting model details, we have referred the reader to Christiansen
and Kortanek [9], [10] and made reference to the LP matrix generator, which the
reader may obtain from either author. We have found the "stability enhancement" to
be essential for these plasticity approximations, but perhaps readers and users may go
directly to their own implementations of interior point methods to test their results
against ours. We expect CPU speed-ups of at least a factor of 10 from using recently
developed interior point methods. More essential for the understanding of material
collapse, in our opinion, are the collapse fields themselves, which will require both
primal and dual optimal linear programming solutions for particular discretizations.
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Abstract. In this paper, a novel numerical algorithm is described for computing the scattering frequencies
(also called resonances, resonance poles, or poles of the scattering matrix) of a bounded, cylindrically
symmetric potential with compact support in l3. The potential can be time independent, or it can depend
periodically on time. The algorithm is based on a characterization of the scattering frequencies as the
exponents in the long-time asymptotic expansion of the solution of the initial value problem for the
time-dependent scalar wave equation perturbed by the potential. It uses a discretization of the initial value
problem for the time-dependent wave equation perturbed by the potential combined with a procedure for
extracting the exponents from the computed solution. A number ofnumerical computations are also presented
to document the performance and reliability of the algorithm.

Key words, scattering frequencies, perturbed wave equation, potential, spectral method, least squares
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1. Introduction. Scattering frequencies (SFs), also called resonances, resonance
poles, or poles of the scattering matrix, form a discrete set of complex constants which
occur in many scattering problems. Important examples include acoustic wave scatter-
ing by a bounded potential or in the exterior of a bounded obstacle, and electromagnetic
wave scattering in the exterior of a dielectric or conducting body. In each of these
problems, the SFs characterize the local rates of decay of a reflected wave, and thereby
contain information about the scatterer (potential, obstacle, dielectric, conducting
body). This fact is used by engineers and physicists to try to recover properties of a
(usually unknown) scatterer from the SFs. See 1 ], [2], 5], [9], 13 ], and 14] for details.

Unfortunately, in each of the stated scattering problems, the precise relationship
between a scatterer and its scattering frequencies is not completely understood. Further-
more, SFs can be explicitly determined in very few problems. In this paper, we develop
a novel numerical algorithm for computing SFs. Our ultimate goal is to use the results
of the calculations to help unravel the true relationship between a scatterer and its
scattering frequencies (see [18] and [28]).

In this paper, we first consider scattering by a real-valued, compactly supported,
time-independent potential q(x) defined for x R3. We assume throughout this paper
that q(x)GL(R3) and vanishes for r=[xl2> R with R<. (L(3) denotes the set
of essentially bounded functions; l" 12 denotes the Euclidean norm.) Then we consider
the case when a potential depends periodically on time.

The scattering frequencies of q(x) can be characterized in several equivalent ways.
See [28, 4] for a short summary and [13] for a detailed explanation. We will state
the two characterizations that are appropriate for our discussion.
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The usual definition of a scattering frequency is a complex number o" for which
there is a function p(x) (not identically zero), called a scattering eigenfunction, such that

(1.1) -Ap(x) + q(x)p(x) o’2p(x),

(1.2) p(x) --> exp (-icrr)/r as r Ix[2--> .
Condition (1.2) is the classical outgoing radiation condition. This definition character-
izes cr as a kind of eigenvalue. However, tr is not a true eigenvalue because p(x) is
not square integrable when Im {tr} > 0.

To formulate the second characterization of the SFs, we consider the initial value
problem

(1.3) u,t-Au+q(x)u=O for XER3, t>0,

(1.4) u(x, 0)=f(x), ut(x, O)= g(x),

where f(x) and g(x) have compact support. It can be shown (see [13] and [15])
that if

E(u(x’O))=IR((g(x))2-F(fxi)2)dx<’3
i=1

then for each fixed x E R3, the solution of (1.3), (1.4) has a near-field expansion given
by

(1.5) u(x, t) Z cjpj(x) _i.t
e as t,

j=l

which is valid in the local energy norm. The constants cj depend on the initial data,
the functions p(x) depend only on the potential and spatial location x (except in the
case of multiple % when powers of may also occur), and the complex constants
the scattering frequencies, depend on the potential, but they are independent of the
initial data and spatial location x. In fact, the functions p(x) that appear in (1.5) are
the solutions of (1.1), (1.2) with o-= %.

A number of mathematical results have been proved about the SFs of a bounded
compactly supported potential q(x). In this introduction we state only those results
that are relevant to our discussion.

For general (real) potentials q(x), it is known that there are, at most, a countable
number of complex SFs % that are symmetric with respect to the imaginary axis and
satisfy Im {cry}--> +oo as j-->oo (see [13], [16], and [20]). Consequently, we can order
the SFs by the relation Im {crj}-< Im {%/1}. (The SFs %, j 1,..., N are called the
first N leading SFs.)

More precise information is available for radially symmetric potentials q(r) with

r-Ixl=, Let (r, 0, ) denote the usual spherical coordinates of a point in 3. Look for
solutions of (1.3) with the form

u(x, t)= u(r, O, dp, t)= e"th(r) YT(O, q),

where Ye"(0, q) is a spherical harmonic of order I, l= 0, 1, 2,..., and ml <= I. Then
h( r) satisfies

d2h(r) 2 dh(r) ( 1(/+1))(1.6) dr r dr
q(r)+ r2 h(r)=cr2h(r),

h(r)->exp (-icrr)/r as r->.
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Newton (see [19] or [20, Chap. 12]) shows that the resonances (SFs) of q(r) are
precisely the values trt.j, 0, 1, 2,... ,j 1, 2,..., such that (1.6) has a nontrivial
solution h(r)= ht.j(r) when tr=tr.. The SFs tro., j= 1,2,... are called the radial
scattering frequencies of q(r), while the remaining SFs of q(r) are called nonradial
scattering frequencies.

Despite the extensive work by mathematicians and physicists on the SFs of a
potential, the properties of SFs are not completely understood. Since scattering frequen-
cies can be explicitly determined only for very special potentials, it is important to
develop reliable numerical algorithms to compute them.

There are several ways to numerically compute the SFs of a given potential. One
method consists of discretizing the elliptic equation (1.1) with an appropriate boundary
condition at the edge of a truncated domain. This procedure is discussed and applied
in [6], [7], [22], and [23]. These authors are primarily concerned with long-range
potentials which depend on the relative distances between several interacting particles.
The methods in these papers have not been applied to potentials that have a nonradial
spatial dependence, and they cannot be used when the potential depends periodically
on time. A second method consists of rewriting (1.1), (1.2) as an appropriate integral
equation and approximating the integral equation. Unfortunately, like the first pro-
cedure, this method cannot be used for potentials which depend periodically on time.
A third method is based on the characterization of the SFs as the exponents in the
long-time asymptotic expansion (1.5) of the solution of the initial value problem for
(1.3). In a previous paper with Strauss [28], we used this characterization of the SFs
to compute a finite number of leading radial SFs of some time-independent and
periodically oscillating radially symmetric potentials. In this paper, we show how to
modify the numerical algorithm in [28] in order to compute some nonradial SFs of a
radially symmetric potential, and some SFs of potentials with cylindrical symmetry.
The modified algorithm can be used to compute SFs for time-independent potentials
and potentials that depend periodically on time.

Our numerical algorithm for computing the SFs of a potential consists of several
steps. First, we choose a spatial location x and estimate a finite time to(x), such that
the asymptotic expansion (1.5) approximates the solution of (1.3), (1.4) for >- to(x).
A formula for to(x) based on the range of influence of the initial data is discussed
in 2.

In the second step, we solve the initial value problem (1.3), (1.4) using any
convenient (but nontrivial) initial data with compact support. The numerical procedure
can be any appropriate method such as a finite difference, Galerkin, or pseudospectral
method. The main constraint on the numerical method is that it must produce an
extremely accurate solution so that the SFs can be computed from the numerical
solution. In 3 we present a pseudospectral method for solving problem (1.3), (1.4)
when the potential is cylindrically symmetric. In 4 we discuss appropriate choices
for the initial data (1.4), and in 5 we explain the need for an extremely accurate
numerical solution of problem (1.3), (1.4).

In the third step of our algorithm, we calculate the exponents in (1.5) from the
numerical solution of (1.3), (1.4) evaluated at location x and at equally spaced times.
To explain this procedure, set k to(x) + kA T, IIk U(X,, to(x) + kA T) for k
1, 2,..., and z exp (itrAT), j- 1, 2, Then the asymptotic expansion (1.5)
approximates the exact solution and takes the form

Uk aj(z) k for k=0, 1,2,...,
j=l
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where the a’s are constants defined by a cp(x) exp (io)t(x)). Therefore, in step 3
we calculate the z’s from the Uk’S. Of course, only a finite number of z’s can be
calculated. We have already discussed this delicate problem in [17], [26], and [27].
Our method implements a modified and improved version of a classical method due
to Prony [21], which reduces the problem of computing the z’s from the Uk’S to solving
overdetermined systems of linear equations (by least squares) and then finding roots
of polynomials. In 5 we discuss our version of Prony’s method and the need for a
highly accurate numerical solution of (1.3), (1.4).

In the last step of our algorithm, we check the accuracy of the results by repeating
steps 1-3 using different sampling locations x with the same initial data. Since the
mathematical theory of SFs shows that they are independent of the sampling location,
the computed SFs should repeat when steps 1-3 are applied at different sampling
locations.

In 6 we present some numerical results that demonstrate the accuracy and
reliability of our algorithm for computing nonradial SFs of time-independent radial
potentials and potentials with cylindrical symmetry. We also consider potentials that
depend periodically on time.

In 7 we summarize the conclusions of our work and list other important scattering
problems where our algorithm can be used.

Notation. The cylindrical coordinates (/9, 0, z) of a point (x, y, z) R are defined
by

x=pcos0, y=psin0, z=z.

The spherical coordinates (r, 0, q) of a point (x, y, z) R3 are defined by

x= r sin q cos 0, y=rsinqsin0, z=rcosq.

2. Choice of to(x). It might seem difficult (if not impossible) to use the characteriz-
ation of the SFs as the exponents in (1.5) to compute them. This characterization
requires a long-time computation with a potentially large accumulation of roundoff
and truncation errors which would destroy the accuracy of the computations. In [28]
we presented an estimate for t(x), the approximate time when (1.5) is valid at location
x, when the potential q(x) in (1.3) is radially symmetric. The argument in [28], based
on Huyghen’s principle for the wave equation in three dimensions, also applies when
the potential is not radially symmetric.

If q(x)=O for all xR3, the solution of (1.3), (1.4) propagates along the charac-
teristics of the wave equation emanating from the initial data. Furthermore, if the
supports of f(x) and g(x) are contained in a ball centered at the origin with finite
radius R, then Huyghen’s principle implies that for any x E3, the solution of (1.3),
(1.4) satisfies u(x, t)= 0 for => Ix[2 + R. Therefore, location x feels all of the influence
of the initial data in the finite time interval [0, [xl_ + R].

If q(x) O, then the solution of (1.3), (1.4) still propagates along the characteristics
of the wave equation emanating from the initial data. Therefore, location x feels the
direct influence of the initial data in the finite time interval 0<= <= Ixl2+ R, and the
residual influence of the initial data when > Ix12 + R. Consequently, we choose too(x)
Ixl=/ R. This choice is reasonable from the point of view of theory, and actual
calculations on problems with exact solutions support this choice.

3. Numerical approximations of the perturbed wave equation. In this section we
describe a pseudospectral method to approximate the initial value problem (1.3), (1.4)
when the potential q and the initial data are cylindrically symmetric. Before discussing
the numerical method we make some important remarks.
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Remark 1. We are able to determine a finite time t(x) where (1.5) is approximately
valid, so we only need to solve the initial value problem (1.3), (1.4) for a finite time
interval [0, T] with T < o to compute the SFs from the numerical solution.

Remark 2. Let B(O,R)={xE,3: ]xl2<=R}. If the potential q(x) and the initial
data f(x) and g(x) have their supports contained in B(O,R) with R <o, then
Huyghen’s principle implies that the solution of (1.3), (1.4) satisfies u(x, t)=O for

Ixl--> R / t. Therefore, if we set D {(x, t): Ixl--< R / T and 0 <- -< T}, then the initial
value problem (1.3), (1.4) can be equivalently rewritten as the initial boundary value
problem

(3.1)

(3.2)

(3.3)

Utt- AU + q(x)u 0, for (x, t) E D,

u(x, 0)=f(x), u,(x, o)= g(x),

u(x, t)=-o for lxI- R / T, O<-_ t<-_ r.
This reformulation is used to reduce the amount of storage required to implement the
numerical methods, and to suggest appropriate basis functions for the pseudospectral
method.

Remark 3. Our numerical algorithm can be used to compute SFs of potentials
q(x) with x R3. However, due to computer storage limitations, we consider only the
case when the potential and the initial data have cylindrical symmetry, that is, q
q(p, z),f=f(p, z), and g g(p, z). Under this assumption the solution u of (3.1)-(3.3)
is independent of 0, i.e., u u(p, z, t), and satisfies

Utt uoo +- uo + uzz + q(o, z)u 0
(3.4)

for 0<t=< T, O<-p<=R+ T=a, Izl<_-a,
(3.5) u(p, z, O)=f(p, z), tit(O, z, O)= g(p, z),

(3.6) up(0, z, t) 0 (regularity condition),

(3.7) u(p,z,t)=O for 19=a, z=+a, and 0=<t=<T.

We first tried to discretize problem (3.4)-(3.7) by finite difference methods in three
different ways. A straightforward approximation of (3.4) using central difference
quotients does not work due to the coordinate singularity at r 0. We tried to modify
this scheme by using a special averaging formula at the origin in the manner described
by Strikwerda [30, pp. 386-387]. This method also did not produce an accurate solution.
Finally, we approximated problem (3.4)-(3.7) using an idea due to Lapidus [29]. The
idea is to solve the three-dimensional wave equation in Cartesian coordinates (to avoid
the 1/r singularity) on an appropriate subset of grid points using the standard central
difference approximation, and then to use the imposed symmetry and an interpolation
procedure to generate an approximation to u(p, O, t) at the other necessary grid points.
This method produced reasonable results (see [26]) but the results were not as accurate
as the ones obtained using the pseudospectral collocation method, which we will
describe. Furthermore, this finite-difference procedure required a significantly longer
CPU time to solve (3.4)-(3.7) than the pseudospectral method.

To discretize problem (3.4)-(3.7) by the pseudospectral method [10] or [25], we
approximate u(p, z, t) by

N M

(3.8) UN.l(p, z, t)= E Y bi(t)Jo(A,p/a) sin (Trj(z+a)/2a),
i=1 j=l
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where Jo(x) is the Bessel function of order zero, a R + T, and hi, 1,..., N + 1 are
the first (N + 1) zeros of Jo(dX), which are arranged in increasing order so that hi+l > hi,
i= 1,..., N. We use the Bessel functions Jo(hip/a) in the p-direction in order to
eliminate the coordinate singularity at p =0 in (3.4), and to make the numerical
approximation UN.4(P, Z, t) vanish at the boundary p=a. We use the functions
sin(Trj(z+a)/2a) in the z-direction because the exact solution of (3.4) satisfies
u (p, +/- a, t) 0 for < T. Furthermore,

dPtl(p, :t:a, t) dp

Ozp
-0 forp=0,1,2,.., and xpsin(x) x:+/-j=0 forp even,

so the choice of basis functions preserve some additional properties of the exact
solution.

We use the collocation points given by

(3.9) pk-’aAk/AN+l, k=l,...,N and zl=a(21/(M+l)-l), l=l,...,M.

The collocation points Zl, 1,..., M are equally spaced in the z-direction and, since

hk =(k-)r, k= 1,..., the collocation points Pk, k= 1,..., N are nearly equally
spaced in the p-direction. These facts permit us to use an explicit scheme with a
reasonable time step when we discretize (3.4) in time (see (3.20)).

Equations for the unknowns bij(t) are determined by substituting (3.8) into (3.4),
evaluating the resulting expression at each collocation point (Pk, Zl), and using the
definition of Jo(x). This process yields the system of ordinary differential equations

(3.10), - bij(t)+ bij(t)(hi/a)2/ bij(t)(j/2a)2/ bij(t)q(pk, Zl)
i:l j=l

XJo(hihk/hS+)sin(jlcr/(M+l))=O fork=l,...,N and l=l,...,M.

System (3.10) can be rewritten in a concise way by introducing appropriate
matrices. Set

UN4( t) (UNM(Pk, Z,, t))NM,

(o(,//)),

s4 x/21(M + 1) (sin (jhr/(M + 1)))44,

B(t)=(bij(t))N, AN =diag ((hi/a)2,..., (AN/a)2),
EM =diag ((r/2a)2,..., (Mr/2a)2),

VNM(t) (q(Pk, Zl) UNM(Pk, ZI, t))NxM,
then JN is symmetric, SM is orthogonal, i.e., S S4 S4, and UNM (t) JNB(t) S4.
Furthermore, if JN is invertible (see Remark 4), then

B(t) jl UNM(t)S J UNM( t)SM,

and (3.14) can be rewritten as

d2

(3.11) dt
UN(t)= --(JNANJ UN^4(t)/ UN^4(t)S^4E^4S^4+ Vs,(t))

=F(UN(t)).

The initial conditions for (3.11), obtained from (3.5), are given by

dU,(O)
(3.12) UN(0) (f(Pk, Zl))NxM and (g(Pk, Zl))NM.

dt
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Remark 4. We have been unable to prove that Jv is invertible for all values of
N. However, we have numerically computed the eigenvalues and the condition numbers
for J for N_-< 200. In all cases, we have found that J is invertible, and that the
condition number K IlJ,llllJ-’ll<AN + B, where a <0.6, A and B < 10, and II" II
denotes the matrix norm subordinate to the usual Euclidean norm.

We approximate the second-order initial value problem (3.11), (3.12) by the stable
variant of Stoermer’s rule introduced by Henrici [12] combined with two steps of
active Richardson extrapolation. An excellent discussion of this method is presented
in [8]. Specifically, let h > 0 denote a time step, let denote the numerical approxima-
tion of vm(nh), and set Ak k+_ k. The stable variant of Stoermer’s rule is defined
by

h ),(3.13) Ao h b4(0)+ F(v4(0)) v4(0)+ A0,

(3.14) Ak Ak_ -F h2F(/.k), /k+l /k q_ Ak, k 1,..., 1-1,

_
h !(3.15t w’= +- F( 1.

(W is an approximation of bNM(lh).) Gragg [11] showed that if the solution of (3.11)
is sufficiently smooth in time, then

" VN4(nh)+ h2c2 q- h4c4q-O(h6), n=l,...,l,

where c2 and c4 are constants. So Stoermer’s rule is second-order accurate in time and
two steps of active Richardson extrapolation can be applied at each step to obtain a
sixth-order accurate approximation of vw4(nh), n 1,..., P, in time.

To complete our discussion of the pseudospectral method, we first derive a
sufficient condition for the stability of the pseudospectral method and then discuss the
rate of convergence of the method.

We only need to determine conditions under which method (3.13)-(3.15) is
stable because the stable variant of Stoermer’s rule combined with two steps of
Richardson extrapolation is also stable under the stability condition derived for
method (3.13)-(3.15).

Equation (3.14) can be rewritten as

(3.16) k+l--2k+k-l--h2F(k)=o, k=l,...,/-1.

The potential q L(3), so we can set VN4(t)=O in (3.11) to determine a
sufficient condition for stability. If V(t)= O, then (3.16) becomes

(3.17) JN(k+l --2k + k-l d- h2(Ark + k,M))SM --’0,

where Bk is the N x M matrix satisfying k= jcksa.
SM is invertible and J is invertible by assumption, so (3.17) implies that

(3.18) ;k+l_2k +k-+ hE(Ac/k +/kE) =0.

Equation (3.18) constitutes a set of NM decoupled equations for the entries /ij
given by

(i)+’-2(0) +(0)-l+ h2 + (0) =0,

i=l,...,N, j=I,...,M.
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A straightforward calculation shows that [//j[ <= 1 for all and j if and only if

h2 + -a <_-4.

This inequality leads to the stability condition

(3.19) h_-<
2a

x/(a)2 + ((MTr)/2)2

We note that the right side of (3.19) is easily estimated. Use the well-known
asymptotic result As (N-)rr as N-+oo to get the estimated stability condition

(3.20) h _-<
2a

-4(N-)2+(M/2)
We now present a result pertaining to the rate of convergence of the proposed

pseudospectral method. In the theorem presented below, we prove that the approximate
functions uv.l(p, z, t) defined by (3.8) converge to a Coo solution ofproblem (3.4)-(3.7)
with infinite-order accuracy provided that the coefficients bib(t) are the exact Fourier-
Bessel coefficients. We believe that the solution of the semi-discrete pseudospectral
collocation procedure defined by (3.11) and (3.12) also converges to a C solution of
problem (3.4)-(3.7) with infinite-orderaccuracy; unfortunately, we have been unable
to prove this. However, for the calculations that we perform in 6, this result is not
very important. In most of these calculations we consider potentials that are piecewise
smooth. In such cases, the solution of problem (3.4)-(3.7) is not Coo.

THEOREM. Let f(p, z)6 Coo([0, 1], [0, 2rr]) be a function that satisfies
(i) f(-p, z)=f(p, z),
(ii) Of/Op(O, z) O,
(iii) oJf(1, z)/Op 0 forj O, 1, 2,..., and
(iv) (OJf/OzJ)(p, O)=O=(OJf/oz)(p, 2er) forj=O, 1,2,....

Then the approximation

N M

arv,4(p, z)= E cijJo(aip) sin (rrjz)
i=1 j=l

with

ci rrj(a,)
f(p, O)Jo(a,p) sin (jO)p dp dO

converges to f(p, z) in the L2 norm (with weight p) with infinite order of accuracy.
Proof Mimic the argument in Gottlieb and Orszag [10, pp. 29-33] with respect

to p and then z. The stated conditions permit unlimited integration by parts for c in
each variable, so the conclusion is justified.

4. Choice of initial data. To implement our algorithm for computing the SFs of
a potential q(x) we need to specify initial data (3.5). According to the mathematical
theory in 13], the asymptotic expansion (1.5) is valid for any initial data with compact
support and finite energy. So, in principle, any reasonable compactly supported initial
data can be used in our algorithm to approximate SFs. In our computations we made
special choices for the initial data motivated by some simple theoretical considerations.
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We first consider the case when the potential q(x) is radially symmetric, i.e.,
q(x) q(r) q(Ixl_). The basic theoretical results about SFs presented in the introduc-
tion show that the SFs of a radial potential depend on the order of the spherical
harmonic Y’(0, o), but not on the index m. Furthermore, for each value of l, each
SF trl, corresponds to a scattering eigenfunction with the form hl,(r, O, )=
hl.(r) YI(O, o) hl,( r) St(, ). These results suggest that we should use initial data with
the form

(4.1) u(x, O)= hl(r)Sl(O), u,(x, O)= h2(r)St(o), /=0,...,

where hi(r) and h2(r) are smooth, compactly supported functions, in order to compute
the SFs tr,, j 0, 1,..., for each value of/. In the computations reported in 6, we
used cylindrically symmetric initial data with the form (4.1) with the specific values

105r(0.3-r) for r=/p+z2<-_0.3,
u(p, z, 0)

0 for r-> 0.3,
(4.2)

r(0.3- r)So() r(0.3- r) for r_-<0.3,
ut(p, z, 0)

0 for r => 0.3,

to approximate a finite number of leading radial SFs ro.j, j 1, 2,...,

105r(O.3-r)z for r=x/p2+z2<=0.3,
u(p, z, 0)

0 for r=>0.3,
(4.3)

r(O.3-r)z for r-<0.3,
ut(p, z, 0)

0 for r => 0.3,

to approximate a finite number of leading SFs trl., j 1, 2,..., and

105(0.3-r)(3z-r) for r=x/p+z2<=0.3,
u(p, z, 0)

0 for r >= 0.3,
(4.4)

) for r<=0.3,
u,(p, z, 0)=

0 for r->0.3,

to approximate a finite number of leading SFs r2,, j 1, 2,....
In the second case where the potential is not radially symmetric, there is no

decomposition of the SFs according to the spherical harmonics SI(). However, we
have found that if we use initial data with the form (4.1), then we obtain interesting
results about the SFs (see 6). This choice for the initial data is just one out of
numerous choices that can be made to compute SFs of nonradial potentials with our
algorithm.

5. The computation of the scattering frequencies from the numerical solution. We
have thoroughly discussed the important and delicate problem of computing scattering
frequencies from a time series in [17], [26], [27], and [28]. Consequently, we only
show how to formulate our problem so that we can use the numerical procedure
discussed in these papers.

First, assume that the exact solution u(x, t) of problem (1.3), (1.4) is known. By
the discussion in 2, for each fixed x R3,

N

(5.1) u(x, t) , qp(x) e%’ + eN(x, t) for >- to(X),
j=l

where eN(x, t) =0(elm’N’)o0 as No.
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Fix the spatial location x and set t=t,=too(x)+nAT, u"=u(x,t,), dj=
cjpj(x) exp (io)too(x)), zj= eiAT, and ev ere(x, t,). Then (5.1) becomes

N

(5.2) u" Y d(z)" + e, n =0, 1,...,
j=l

where ev --> 0 as n--> c with N fixed or as N--> c with n fixed. (The positive constant
AT is called the Prony sample rate.)

Now let v" be the numerical solution at location x for time t,. If v" is computed
by a stable and consistent numerical method, then

U V E n, rl 0,

for some error E" and (5.2) becomes
N

(5.3) v" Y d(z) +e+ E", n =0,
j=l

Equation (5.3) shows that the numerical solution of problem (1.3), (1.4) contains a
finite number of poles z, plus an error term (e 7v + E "). If the error is sufficiently small,
then v" contains only a finite number of poles, which we can compute by applying
the version of Prony’s method presented in [17] until a subset of poles repeats in
successive trials.

6. Reliability of the computational method. In this section we present some compu-
tational results about the SFs of bounded, cylindrically symmetric potentials with
compact support in 3. We consider a piecewise constant radially symmetric potential
for which we can explicitly determine the SFs. We use this example to document the
performance and reliability of our algorithm.

The primary check of the reliability of our numerical algorithm is to look for
repetitions of the scattering frequencies as various parameters are changed. In par-
ticular, assuming that the numerical solution is sufficiently accurate, we change (i) the
presumed number p of poles and (ii) the sample locations. By a sample location, we
mean the fixed spatial point x, the time series sample rate A T, and the starting time
t(x). A calculation is considered accurate insofar as its repeats under a variety of
choices (i) and (ii). In general, we have found that SFs start to repeat in successive
trials only when the smallest singular value of the Prony data matrices (defined in
17]) has the same order as the numerical error in solving the wave equation. Further-
more, fewer than p SFs repeat when we assume that the solution contains p poles. See
17] for details.

In the first example, we consider the radially symmetric potential defined by

(6.1) q(r)=6 for 0 <_- r _-< 0.3, q(r)=0 for r>0.3.

The results in 19], quoted in the introduction to this paper, show that the SFs of q(r)
form a doubly indexed sequence trl., 0, 1,..., j 1, 2, It is easily established
[26] that each SF trl, is a root of the nonlinear equation

Ki+,/(O.3A)Ii+l/2(0.3fl) [3
x(6.2) I+/2(0.3fl)-A K+/2(O.3A)’

where denotes the derivative, A itr,;,/3 x/A 2 +6, and I+1/2, Kl/l/2 are the modified
Bessel functions defined by

KI+I/2(Z) ZI+I/2( Z) I( e---)
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and

It+l/2(z) zt+’/z( -z) t(sinhz Z)
In Table 6.1 we list the actual leading SFs ordered by Im {eft.j}-< Im {Yt.j+l} for each
value of I. (These results were obtained by using Muller’s method [3] with error
tolerances 10-1.)

We approximate the SFs of (6.1) by using the pseudospectral method combined
with Prony’s method. We use initial data (4.2)-(4.4) to compute approximations of
o-t.j, 0, 1, 2, respectively. The parameters for the pseudospectral method are h 0.01,
N=39, M=79, a 1.426 for l=0; a--1.433 for l= 1; and a 1.434 for 1=2. The
Prony sample rate is AT =0.02 and the sampling location is (p, z)= (pl, z44), where
pl and z44 are collocation points defined by (3.9). For each value of l, the SFs repeated
in successive trials in the Prony algorithm when we assumed that the numerical solution
at the sampling location contained 28, 29, and 30 SFs. The SFs repeated in successive
trials with at least four significant digits, so we have reported all results with four
digits. (All computations in this paper were done in single precision on the Cray 2 at
the University of Minnesota and the Cray X/MP at the NSF Supercomputer Center
in Pittsburgh.) The numerical approximations of the SFs of potential (6.1) are listed
in Table 6.2.

Table 6.2 shows that for l=0, our algorithm with the pseudospectral method
computes six pairs of leading SFs with two to three significant digits of accuracy; for

1, the algorithm computes the leading SF with four significant digits of accuracy
and the next four pairs of leading SFs with two to three significant digits of accuracy;
and for 2, the algorithm computes the leading pair of SFs with one significant digit
of accuracy and the next five pairs of leading SFs with one to two significant digits of
accuracy.

TABLE 6.1
Exact scattering frequencies.

0"0, O" ,j O’2,j

+8.273 + 7.100i 8.580i +4.923 + 10.83
+19.55+9.521i +13.19+ 8.701i +17.69 + 9.899i
+30.35+ 10.87i +24.53+ 10.33i +29.23+ 11.04i
+41.02+ 11.82i +35.39+ 11.42i +40.20+ 11.92i
+51.62 + 12.55i +46.09+ 12.23i +50.97 + 12.63
+62.18+ 13.15i +56.71 + 12.89i +61.65+ 13.21

TABLE 6.2
SFs ofpotential (6.1) computed by the spectral method.

0"0, t7" ,j O’2,j

+8.277 + 7.108i 8.580i +4.703 + 10.20i
+19.55 +9.540i +13.20+ 8.724i +17.58 +9.946i
+30.35 + 10.89i +24.55 + 10.26i +29.20+ 11.11
+41.05+ 11.79i +35.68+ 11.41i +40.26+ 12.37i
+51.75 + 12.62i +46.04+ 12.59i +50.48 + 12.74i
+62.52 + 13.39i +60.31 + 13.09
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Remark 5. In all calculations in this paper that used the pseudospectral method
combined with the Prony algorithm, the parameters for the pseudospectral method,
the Prony sample rate, and the sampling location are always the same ones used for
potential (6.1). In all cases, the SFs repeated in successive trials in the Prony algorithm
with at least four significant digits when we assumed that the numerical solution at
the sampling location contained 28, 29, and 30 SFs.

For each potential we carried out a numerical convergence study by increasing
the number of basis elements, reducing the time step, and changing the sampling
location. When the number ofbasis functions was increased beyond N 39 and M 79,
and the time step reduced below h 0.01, the accuracy of the computed SFs at a given
sampling location did not improve. When the sampling location was changed for a
computed solution using N-> 39, M-> 79, and h-<_ 0.01, the SFs changed (in absolute
value) by an amount =<10-3

Now we discuss the numerical computation of the SFs for the potentials which
depend periodically on time. We present an extension of the theory of SFs in this case
(the main reference is [5]) and show that our algorithm for computing SFs applies in
this case.

Let q(x, t) be a bounded function that vanishes for Ixl=> R, and is periodic in
time with period P, so that q(x, + P)= q(x, t) for all x, t. Consider the equation

(6.3) utt-Au+q(x, t)u=O, X([]3, t>O,

with initial conditions (1.4). If the initial data has compact support, then under
reasonable conditions, it can be shown that for each fixed x

(6.4) u(x, t) E cjpj(x, t) ei as t o.
j=l

(The asymptotic expansion is valid in the local energy norm.) The constants cj depend
on the initial data; the functions pj(x, t) depend on the potential q(x, t) and the spatial
location x and are periodic with period P, so that pj(x, + P)= pj(x, t) (except in the
case of multiple % when powers of may also occur); and the complex constants %,
the scattering frequencies, depend on the potential, but are independent of the initial
data or spatial location. Since any integer multiple of ,, where , 27r/P is the frequency
of the potential, can be freely added to a scattering frequency tr to get another one,
we normalize the SFs by requiring that 0 =< Re (o’) < ,.

The following facts about SFs have been proved: (i) There are at most a countable
number of SFs % and Im {%} + as j o [4]. (ii) Each SF depends continuously
on q in the uniform (L) norm [4].

Our numerical algorithm for computing SFs of oscillatory potentials is identical
to the one used for stationary potentials, except that some discussion about the Prony
sample rate AT is needed. We have two practical possibilities:

(1) AT is an integer multiple of the period P. In this case p(x, t(x)+ kAT)=
p(x, to(x)), and our algorithm for computing SFs is identical to the one used for
stationary potentials.

(2) AT= P/m where m is an integer. In this case, Prony’s method samples m
data points per period, and we are able to see SFs of the form tr a + ifl, -a + ifl,
v + a + ifl, v a + i, where v 27r/P. See [28, 5] for a thorough discussion about

this choice of sample rate.
It is well known [14] that the SFs of time-independent compactly supported

potentials that are positive satisfy Im {orj} > 0 for all j- 1, 2,..., that is, all terms in
(6.4) decay in time as increases. However, it was conjectured in [24] (without proof
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or any numerical computations) that there exists a positive, oscillatory potential which
has a growing mode, that is, Im {trj} < 0 for at least one SF trj in (6.4). We now present
some computational results to corroborate this claim.

Consider the cylindrically symmetric potential

500, 0.4R(l+0.9sin(toTrt))<=p and r=v/p2+z2<-R=0.3,
(6.5) q(la, z, t)=

0, otherwise.

We used the pseudospectral method described in 3 with Prony sample rate A T 0.02
to compute the leading radial SF tro,1 of potential (6.5), excited by initial data (4.2),
for a finite number of frequencies satisfying 0-<_ to <-_ 100. The results are listed in Table
6.3. The computations clearly show that potential (6.5) has a growing mode for several
different frequencies. In fact, the numerical results in Table 6.3 suggest much more.
They also suggest that the frequencies can be grouped into disjoint intervals with the
property that the imaginary part of the leading radial SF changes sign as the frequency
crosses the boundary of an interval.

TABLE 6.3
Leading radial SFs for potential (6.5) with different frequencies.

Frequency Leading radial SF tro, Frequency Leading radial SF tro,

5.0 16.2 + 0.59i 14.5 21.1 0.40i

8.5 16.3 +0.75i 15.0 20.3+ 1.60i
9.0 14.1-0.7i 15.5 19.3 + 1.07i
9.5 14.9 3.0i 16.0 18.9 + 0.5

11.5 18.0- 3.58i 16.5 18.9 + 0.27i
11.7 18.5 3.47i 17.5 18.6 + 0.27i
12.5 19.6 3.1i 20.0 17.6 + 0.51
13.0 20.5 2.61 25.0 17.8 + 0.53
14.0 20.5-1.13i 50, 100 17.8 +0.53i

More computational results are presented in [18]. These results are used to
conjecture relationships between a potential and its SFs.

7. Conclusions and applications to other problems. In this paper we have presented
a novel time-dependent computational algorithm for computing the scattering frequen-
cies of a bounded compactly supported potential. Important points regarding the
choice of t(x), the initial data, the numerical method for solving the perturbed wave
equation 1.3), and various sources of error have been discussed. A number of computa-
tions have been performed which demonstrate that our computational algorithm is
capable of computing a number of leading pairs of SFs for a cylindrically symmetric
potential with one to four (usually two) significant digits of accuracy. In particular,
the computations reported here indicate that for radial potentials, our algorithm,
combined with the pseudospectral method, computes for each spherical harmonic
index l, five to six pairs of leading SFs with one to four significant digits of accuracy.
For nonradial cylindrically symmetric potentials and initial data corresponding to each
spherical harmonic, our algorithm, combined with the pseudospectral method, com-
putes four to five pairs of leading SFs. These SFs repeat correctly to four significant
digits when we alter the sampling location x and repeat the same calculation. Therefore
on the basis of the radial potential results, we believe that these approximate SFs are
accurate to one to four (probably two) significant digits of accuracy.
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We have used our computational algorithm for computing SFs to present several
interesting conjectures about the relationship between a potential and its SFs [18].

Our computational algorithm can be used to compute SFs in a number of other
important scattering problems. It is known that under reasonable mathematical condi-
tions, an asymptotic expansion with the form (1.5) or (6.4) holds in the following
situations:

(i) Acoustic scattering in the exterior of a stationary or periodically vibrating
obstacle [5], [13].

(ii) Electromagnetic scattering in the exterior of a stationary or periodically
vibrating perfect conductor or dielectric [5], [13].

We have already performed some computations on these other problems, which
will be reported in the future.
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Abstract. A new and detailed analysis of the basic Uzawa algorithm for decoupling of the pressure
and the velocity in the steady and unsteady Stokes operator is presented. The paper focuses on the following
new aspects: explicit construction of the Uzawa pressure-operator spectrum for a semiperiodic model
problem; general relationship of the convergence rate of the Uzawa procedure to classical inf-sup discretiz-
ation analysis; and application of the method to high-order variational discretization.
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1. Introduction. The Stokes equations describe the motion of incompressible
viscous fluid flow at very low Reynolds numbers. However, the need to have efficient
Stokes solvers is not only limited to inertia free flows, but is also of great importance
when solving numerically the full time-dependent Navier-Stokes equations. For moder-
ate Reynolds numbers the nonlinear convective term is often treated explicitly, while
the linear (Stokes) part is treated implicitly. In order for this semi-implicit approach
to be attractive, efficient unsteady Stokes solvers are required.

Numerous approaches have been proposed for solving the algebraic system of
equations resulting from discretization of the steady and unsteady Stokes equations.
One approach is to solve the momentum and continuity equations directly in coupled
form (e.g., Yamaguchi, Chang, and Brown [45] and Bathe and Dong [4]). This direct
approach is general and robust; however, it can be inefficient and memory intensive
for large, three-dimensional problems, in particular, for high-order methods. A second
approach is to replace the discrete continuity equations with a Poisson equation for
the pressure (e.g., Chorin [15], Temam [41], Glowinski and Pironneau [23], Kleiser
and Schumann [27], Kim and Moin [26], and Orszag, Israeli, and Deville [35]). This
approach decouples the momentum and continuity except on the domain boundary;
however, it may require a rediscretization of the continuous problem, and boundary
conditions must be supplied for the pressure.

A third approach, which we study more closely in this paper, is to apply a global
nested iterative decoupling procedure for the pressure and the velocity. This scheme
is an extension of the classical Uzawa algorithm (see Arrow, Hurwicz, and Uzawa 1 ],
Chorin [15], Temam [41], Glowinski [22], and Girault and Raviart [21] for more basic
concepts; see Cahouet and Chabard [13], Maday, Patera, and R0nquist [30], Fischer,
ROnquist, Dewey, and Patera [19], Bristeau, Glowinski, and Periaux [12], Maday and
Patera [31], and Cahouet and Chabard [14] for more recent advances). The Uzawa

Received by the editors September 25, 1990; accepted for publication (in revised form) March 19,
1992. This work was supported by the Office of Naval Research and Defense Advanced Research Projects
Agency contract N00014-89oJ-1610, by Office of Naval Research contract N000114-88-K-0188, by National
Science Foundation grant ASC-8806925, by Department of Energy Office of Energy Sciences grant DE-AS03-
76ER-72012, Applied Mathematical Sciences (KC-07-01-01), and by Nektonics Research Corporation.

" Universit6 de Paris XII, Laboratoire d’Analyse Num6rique de l’Universit6 Pierre et Marie Curie,
Paris, France.

California Institute of Technology, Applied Mathematics, 217-50, Pasadena, California 91125.
Massachusetts Institute of Technology, Room 3-264, 77 Massachusetts Avenue, Cambridge,

Massachusetts 02139.
Present address, Nektonics, 875 Main St., Cambridge, Massachusetts 02139.

310



ITERATIVE STOKES SOLVERS 311

approach has several attractive features: It is more efficient in terms of computational
complexity and memory requirement than a direct approach; it requires no pressure
boundary conditions and no rediscretization of the original problem, and hence the
convergence proofs for the original problem directly apply. In essence, by using a
block Gaussian elimination procedure, this algorithm decouples the original saddle
problem into two positive-semidefinite symmetric forms, one for the pressure and one
for the velocity. Thus standard iterative procedures such as preconditioned conjugate
gradient iteration and multigrid techniques can readily be applied.

In this paper we give a new and detailed analysis of the basic Uzawa algorithm.
The paper focuses on the following new aspects: the explicit construction of the Uzawa
pressure-operator spectrum for a particular case; the general relationship of the conver-
gence rate of the Uzawa procedure to classical inf-sup discretization analysis 11], [3],
and application of the method to high-order variational discretization. The outline of
this paper is as follows. We start in 2 by reviewing the basic discretization of the
steady and unsteady Stokes equations based on the equivalent variational forms. In
3.1 we review the Uzawa method for the steady Stokes problem, and in 3.2 we

consider the full Fourier case. In 3.3 we proceed by presenting a new continuous
analysis for a semiperiodic model problem. The analytical results regarding the good
conditioning of the steady Stokes pressure operator are then verified numerically for
optimal high-order spectral element discretizations. In 3.4 we discuss how these
results extend to multidimensional spectral element discretizations, and present
examples of steady Stokes problems solved by a nested preconditioned conjugate
gradient/multigrid iteration scheme. Last, in 4 we analyze the Uzawa algorithm in
the context of solving the unsteady Stokes equations.

2. The Stokes problems.
2.1. Steady Stokes. In this section we consider the steady Stokes problem in d

space dimensions" Find a velocity u and a pressure p in a domain 1" d such that

(1) -/Au+Vp f in 1",

(2) -V.u=0 in 1",

subject to homogeneous Dirichlet velocity boundary conditions on the domain boun-
dary

(3) u =0 on 012.

Here f is the prescribed force and/z is the viscosity. As mentioned in the Introduction,
the solution to the Stokes problem (1), (2) is of interest, not only in its own right, but
also in that it constitutes the major building block in many Navier-Stokes solvers. In
this ease, f can be viewed as an augmented force which includes the explicitly treated
nonlinear convective contributions.

The equivalent variational formulation of (1), (2) is: Find (u, p) in X x M such that

(4) /(Vu, Vw)- (p, V" w)= (f, w) Vw X,

(5) -(V’u, q) 0 ’q M,

where the proper spaces for u and p such that (4), (5) is well posed are [11], [21]

(6) X (1"),

(7) M (f) 2(1") f"l { 2(1"); fa 4 dO 0}
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Here (f/) is the space of all functions that are square integrable over f/with zero
average, while () is the space of all functions that are square integrable, whose
derivatives are also square integrable over fl, and which satisfy the homogeneous
boundary conditions (3).

Here we shall consider numerical approximations to the Stokes problem based
on the variational form (4), (5)" Find (Uh, ph)E (Xh, Mh) such that

(8) ((Vu,,, Vw)),,-(p,,, V.w),, =((f,w)),, VwX,,,

(9) --(V’Uh, q)h =0 VqE Mh,

where for each value of the parameter h, Xh c X and Mh M are compatible subspaces
of X and M (see [11], [3], [21], and [9]) that approach X and M as the discretization
parameter h goes to zero. In (8), (9) (’,’)h and ((’,’))h denote evaluation of the
continuous inner product (.,.) by Gauss numerical quadrature (note, however, that
the (’,’)h and ((.,.))h may be different).

Choosing appropriate (compatible) discrete spaces Xh and Mh with associated
bases, we arrive at a set of algebraic equations given in matrix form as

(10) /_A_u,- _Dfp _Bf, i= 1,..., d,

(11) -D_iu_i O,

where _A is the discrete Laplace operator, _B is the mass matrix, D_=(_DI,..., _Dff)
is the discrete gradient operator, and the underscore refers to basis coefficients. In
(10), (11), we assume that the homogeneous boundary conditions are imposed by
eliminating appropriate rows and columns. Note that in the limit as the discretization
parameter h:>O, (Xh, Mh):>(X, M), and (10), (11) applies even for the continuous
case.

2.2. Unsteady Stokes. The unsteady Stokes equations are given by

au
(12) -/xAu+Vp+pm= f ini),

at

(13)

with boundary and initial conditions

(14) u=O

(15) u(x, 0) g(x)

-V.u=O in,

on

in

Here all variables are defined as in the steady case with representing time, and/9 the
density of the fluid. Although there are physical problems in which the unsteady Stokes
equations are relevant, the unsteady problem is primarily of interest with regard to its
role in unsteady Navier-Stokes calculations.

We proceed directly to the time discretization of (12), (13) by an implicit Euler
backward method (readily extended to Crank-Nicolson)

U
n+l
U

(16) -/zAu"+ + Vp+ + p f+,
At

(17) -V’u"+ =0,

in which (u", p") represents an approximation of (u(x, nat), p(x, nat)), and At is the
time step.
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The spatial discretization of (16), (17) follows the same procedure as for the steady
case. At each time step we search for a discrete solution (u,+1, p,+l) in the finite-
dimensional (compatible) subspaces Xh c X and Mh M, and we arrive at a set of
algebraic equations to be solved for the nodal values un+l_ (_[,/n+ll _U dn-t-i) and p"+l,

(18) tx-AYi+I-DfP’+I+PB-
_/./+1 Ui =-Bf7+1 i=1,.., d,At

(19) --_Di +1 ---0.

We note that for any discretization (18), (19) for which _A is positive-definite symmetric,
(18), (19) is unconditionally stable (f=0),

n+l(20) IIo. <llu,llo. ,
,+1 and p"+l,as can be readily demonstrated by multiplying (18) and (19) by _ui

respectively. In (20) 11. [IO, h denotes the discrete 2-norm, II llo. - ((v, o))Y=.
3. Steady Stokes solvers.
3.1. The Uzawa algorithm. The classical Uzawa scheme originates from economic

theory as a saddle-point approach to solving constrained optimization problems (see
Arrow, Hurwicz, and Uzawa [1]). Following Brezzi [11] and Girault and Raviart [21],
the Stokes problem (4), (5) can be formulated as the following equivalent saddle-point
problem: Find a pair (u, p) X x M such that

(21) (u,q)<-(u,p)<-(v,p) tvX, VqM,

where the quadratic Lagrangian functional ff:X x M-> is defined by

/x (Vv, Vv) (f, v) (q, V" v).(22) (v, q)=
The constraint in the Stokes problem is the incompressibility condition, while pressure
plays the role of the Lagrange multiplier. In the case of finding a numerical approxima-
tion to the Stokes problem (1)-(3), the equivalence between the discrete formulation
(8), (9) and a finite-dimensional saddle-point problem is now readily seen: Find
(Uh, Ph) E Xh x Mh such that

(23) -h(Uh, q)<--Wh(Uh, Ph)<--Wh(V, ph) VVEXh, VqMh,

where the quadratic Lagrangan functional Wh:Xh X Mh-> is defined by

(24) ffh(V, q)=-((Vv, VV))h ((f, V))h--(q, V "V)h.

In terms of finding the nodal values u_ and p in (10), (11), the classical Uzawa
approach to solving the min-max problem (23) is characterized by the following gradient
method [41]"

(25) /z_A_u’+1= _Dfp + _Bf, i= 1,..., d;

(26) "_Bp"+ "_Bpm a _Du_ ’+ l.

Here m is the iteration counter, a is a positive iteration parameter, and is the
mass matrix associated with the bilinear form (b, ’)h for all b, , Mh. In (25) we
minimize h(V, p’) for all v Xh, while in (26) we try to maximize h(U’, q) for all
q Mh. For sufficiently small a, the two-level iteration scheme (25), (26) converges to
the solution of (10), (11).
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As is the case for many gradient algorithms, the Uzawa procedure in the form
(25), (26) converges very slowly, especially for large multidimensional problems. The
convergence rate can be improved by considering augmented Lagrangian methods
(Fortin and Glowinski[20]), or multigrid schemes (Verfurth [44] and Maitre, Musy,
and Nigon [34]). However, replacing (25), (26) by conjugate gradient iteration can
also accelerate the convergence significantly to give very good results. For details in
the finite-element context, we refer to Glowinski [22] and Girault and Raviart [21].
In the following we shall demonstrate, both in terms of continuous analysis and
numerical examples, that the latter approach is very attractive in terms of conditioning,
computational complexity, and parallelism.

We begin with a decoupling of the original saddle problem (10), (11) into two
positive (semi)definite symmetric forms, one for the velocity and one for the pressure.
First, for each of the velocity components _ui from the momentum equations (10), we
formally solve

(27) _ui _A-1 _Ofp + _A-_Bf, i= 1,..., d.

We then insert (27) into the continuity equation (11) to arrive at

(28) 0 _D,_u, _D,_A-’ _Drp _D,_A- _Bf.

Thus the discrete saddle problem (10), (11) can be replaced with the discretely
equivalent statement

(29) _A_u, _Dfp _Bf,

(30) _Sp _Di_A-1 _Bf,
where the discrete pressure operator

(31)
is a positive-semidefinite symmetric matrix. Hence, the saddle problem (10), (11) can
be solved by first maximizing gh(Uh, q) for all q e Mh (see (30)), and then minimizing
-h(V, ph) for all VeXh (see (29)).

We now make several comments regarding the system (29), (30). First, we note
that the equation set (29), (30) does not correspond to a rediscretization of the
continuous problem, that is, (29), (30) is equivalent to (10), (11). This implies that the
theoretical error estimates derived for (8), (9) directly apply (in the case of spectral
element discretizations, we refer to Maday and Patera [31] and Maday, Patera, and
lnquist [30]). Second, since the system matrices _S and _A are symmetric positive
(semi)definite, standard elliptic solvers such as conjugate gradient iteration or multigrid
techniques can readily be applied. The system (29), (30) is solved by first solving (30)
for the pressure p and then solving (29) for the velocity _ui, 1,..., d with p known.
Third, the pressure-operator _S is completely full due to the embedded inverse _A-1,
and thus clearly necessitates an iterative approach.

Heuristically we expect the continuous pressure-operator s to be close to the
identity operator I and therefore to be well conditioned. To see this, we formally apply
the Uzawa decoupling procedure to the continuous equations (1), (2) and neglect
boundary conditions

(32)
In the discrete case we do not expect _S to be close to the identity matrix _/, but rather
the variational equivalent of the identity operator, the mass matrix . Hence, we expect
that

(33) _/-’ _S _/,
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suggesting that we can invert _S efficiently by conjugate gradient iteration, using the
mass matrix _B as a preconditioner. Note here the importance of the proper choice of
bases and numerical.quadratures in order to define a matrix _/3 that is easy to invert,
that is, in order for _B to be diagonal.

The preconditioned conjugate gradient iteration (outer iteration) for the .system
(30) takes the form [24], [21],

Po; _to _D,_A-I_Bf + _Spo; Oo _-1_0; 0-- -/0;

@r_r
(34) a.,

t+l_m+l
i//m+l --1 _rm+l, bm= T P + =-rm+, + b 49

where m refers to the iteration number, _r,, is the residual, b,, is the search direction,
_B is the preconditioner, , is a vector associated with the preconditioning, and am
and b,, are scalars.

The inner iteration is associated with the evaluation of the matrix-vector product
_&b in the outer conjugate gradient iteration. From the definition of _S in (31) this
evaluation can be performed as follows"

(35) y,=_D.r, cb i=l,..., d,

(36) _A_z, y, i= 1,..., d,

(37) _Sq _D,.

We see that for general discretizations, each matrix-vector product evaluation requires
d standard elliptic Laplacian solves in ga. In order for this approach to be efficient
for large multidimensional problems, the discrete Laplace operator _A must be inverted
by a fast solver, such as a good preconditioned conjugate gradient solver. In summary,
the pressure is computed from (30) by effecting the nested inner/outer iteration
procedure (34)-(37).

If the condition number of the matrix _/J-I_S is order unity, we see that the above
algorithm requires only order-d elliptic solves, and hence represents an ideal decoupling
of the Stokes problem. We also note that the residual _r in the outer conjugate gradient
iteration (34) is precisely the discrete divergence -_Di_ui. This is a useful result, as it
allows for direct control of the discrete divergence when specifying the tolerance for
the outer iteration. (The proper choice of tolerances in any nested iterative procedure
is an important issue, and will be addressed separately in a future paper.)

We now make some general remarks regarding the relation between the inf-sup
condition due to Babuska [3] and Brezzi [11], and the accuracy and efficiency by
which the pressure can be computed. The necessary and sufficient condition for
well-posedness of the saddle problem (8), (9) can be written as: there exists a real
jh > 0 such that for all q e Mh, there exists v e Xh,

(38)
(q, V’V)h

where 11" IIO.h is the discrete 2-norm associated with the pressure mesh (Mh),

(39) Ilq[I o,h (q, q)h q r_ q,

and l" i,h is the discrete seminorm associated with the velocity mesh (Xh),

(40) ’,h ((VVi, VV/))h
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In (34) we suggest solving (30) by conjugate gradient iteration, using _B
as a preconditioner. To estimate the efficiency of this approach it is of interest to
determine the condition number K

s of the matrix -I_S. For general discretizations it
can be shown that the inf-sup parameter flh is closely related to the minimum eigenvalue
of the pressure-operator _S (see Appendix A)

s(41) fl Amin,

where sAmi is the minimum eigenvalue of _S with respect to the mass matrix ,
\s

(42) /min min9 b 7"b"
It can also be shown (see Appendix A) that the maximum eigenvalue of _S with respect
to , Asmax, is of order unity, implying that the condition number K

s is given as
s

s Amax C
(43) K s’min
where C is a constant of order unity. Thus the number of outer conjugate gradient
iterations scales like 1/flh [24]. If flh is of order unity, the outer iteration" (34) converges
in order-one iterations.

The inf-sup parameter flh also affects the accuracy by which the pressure can be
computed; in fact, it can be shown that the error in the pressure Ph is inversely
proportional to flh, [11], [21], [10],

(44) P Ph Iio N ohinf M,, P qh Iio +""

where the dots indicate error terms originating from the velocity and forcing terms.
However, the velocity remains unaffected by the inf-sup parameter

(45) I1 c \(,hinfXh.o v I1 +""),
where

(46) Xh,o-" {h E XhI(V’Vh, qh)h =O Vqh E Mh},

thereby proving that the error in velocity is of the same size as the best fit by discrete
divergence-flee functions. Even though, in some cases, the presence of weakly spurious
modes gives rise to poor approximation by Xh,o, in many interesting cases we have

(47) inf IIU--VhI[1--inf Ilu--vlll
X Vh Xh,o

[9], [10], [5], [39], [25].
For reasons of accuracy and efficiency we can now see that it is of great importance

that flh be independent of the mesh parameter h. In most finite-element applications
the inf-sup parameter is resolution-independent as long as the discrete spaces are
compatible. However, in spectral methods this is not the case, and weakly spurious
modes [42] are observed. These modes are responsible for an inf-sup parameter flh
that depends on the mesh parameter h- l/N, where N is the polynomial degree
chosen for the approximation. For example, in the pure spectral case when Xh and
Mh consist of all polynomials of degree -<N, and all (strong) spurious modes for the
pressure are eliminated [9], there still exist weakly spurious modes responsible for an
inf-sup parameter flh---(h)---(N-1) [7], [43]. This has led to the construction of
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alternative methods based on staggered meshes in order to avoid strong spurious modes
and to minimize the effects of weakly spurious modes. We refer to Bernardi and Maday
[6], and 3.3 and 3.4 for a description of such methods.

The Uzawa algorithm is well known as an efficient way of solving the algebraic
system of equations (10), (11) resulting from (low-order) finite-element discretization
of the steady Stokes problem (1)-(3). The adaptation of the method to the spectral
case is rather new, as described in Maday, Patera, and Retnquist [30], Streett, Hussaini,
and Maday [40], Azarez, Labrosse, and Vandeven [2], and Lequ6r6 [29]. In the
following we investigate in detail the conditioning of the steady Stokes pressure
operator; in particular we shall look at the full Fourier case, a semiperiodic model
problem (both continuous and spectral element case), and the multidimensional spec-
tral element case.

3.2. Full Fourier case. We start by first considering the simple case of Fourier
discretization in d, in which we choose the approximation spaces Xh and Mh to be

(48) Xh M3h,

(49) Mh span {e’’’, Ikl < C, Vj 1,..., d}

where k (k, k2, k3) is the wave vector, x (x, x2, x3) f, and Y" is the maximum
wave number in each spatial direction. Reality is imposed by conjugate symmetry. For
this Fourier discretization it is clear that

(50) _B:=> 1,

(51) D_ =C, kj,
d

(52) _A-k=- E kjk,
j=l

from which it follows that _S =_/independent of ’’. For the Fourier case the Uzawa
algorithm is perfectly conditioned, as might be expected; see Maday and Quarteroni
[33] for a numerical analysis of this spatial discretization.

3.3. Semiperiodic case.
3.3.1. Continuous case. Next, we turn to the analysis of the semiperiodic problem.

This problem includes boundaries, and is thus much more instructive than the full
Fourier case, yet it is sufficiently simple to allow for a complete analysis. The semi-
periodic model problem corresponds to the domain f ]-1, l[x]0, 2zr[, with (x, y)
denoting a point in f. The semiperiodic boundary conditions we consider are

(53) Vy ]0, 27r[, u(-1, y) u(1, y) O,

(54) Vx 1, 1[, u(x, 0) u(x, 2zr),

and the associated spaces are

(55) X {v (f)[v satisfies (53)-(54)},

(56) M o2(f),
where is defined in (7).

We now write the velocity, the pressure, and the data as a Fourier series in the
periodic y-direction,

(57) u(x, y)= Y ilk(x) e iky,
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(58) p(x,y)= 2 k(x) e’ky,
k=

(59) f(x, y) E ik(x) e’kY,

and use the orthogonality of the Fourier modes to reduce the steady Stokes problem
to a series of decoupled (continuous) problems: Find k= (ak, k) and/3k in X M
such that

(60) u,, =/3+f,

(61) ^k kk ikk + k,)

Ak(62) u, + ikk O,

where

(63) (A),

(64) h/= (A),

A ]- 1, 1[, subscript x denotes differentiation with respect to x, k (fk, k), and we
consider wave numbers k # 0.

From (60)-(62) we now readily derive the following expression for the continuous
pressure operator s k acting on any/3k associated with wave number k in the periodic
y-direction

(65) sk(fik) 0 0
’) fik(x’) dx’,-x G(x, x’) -Ox’ k2G(x’ x

where G(x, x’) is the Green’s function for the second-order problem"

(66) Gx-kG=3(x-x’),

(67) G(-1, x’)= G(1, x’)=0.

The solution to (66), (67) can be expressed in closed form as

-1
(68) G(x, x’)= sinh k(1 +x<) sinh k(1 x>),

k sinh 2k

where

(69) x< x forx<x,
x’ for x > x,

x’ forx<x,
(70) x

x for x > x’.

To find the condition number of S k, we analyze the spectrum of the following
Fredholm integral equation

(71) ((X, Xt),(Xt) dxt-- is/(x),
-1
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where the kernel q3 follows from (65) as

(72) qd(x, x’)=xx G(x, x’)-Ox’ k2G(x’ x

Substituting the expression (68) for the Green’s function into (72), the solution to (71)
can be found by inspection (see Appendix B). The entire spectrum of s k is given as

1 k
(73) A(k)

2 sinh2k

1 k
(74) A(k) =- sinh 2k’

(75) (k)= 1, />2,

with only one nonunity eigenvalue for each boundary. The fact that there are only two
nonunity A’s is related to the fact that for the Stokes problem, the pressure and velocity
are only coupled at boundaries. (This can also be seen by taking the divergence of the
momentum equation, which yields Ap V. f in , but indeterminacy at the boundaries.
The proper boundary conditions are, in fact, V.u 0.)

For a given wave number k, the condition number of s k is given by

(76) (k)=
2 sinh2k

Since the spectrum (73)-(75) is clustered with only three distinct eigenvalues, the outer
conjugate gradient iteration in the pressure solver will converge in three iterations
independent of the condition number (k). However, this result is only useful for
semiperiodic discretizations; for truly multidimensional problems we must consider
the condition number for all admissible k. In paicular, if we allw wave numbers in
the range 1 N k < k, we find that

4.46,(77)
sinh2

which does not depend on kmax, and hence will not depend on the number of discrete
degrees of freedom in the system.

3.3.2. Spectral element discretization. The above continuous analysis suggests that
even in the presence of wall, the spectrum of the discrete pressure operator $ with
respect to the mass matrix is clustered near unity, with a condition number that
should be largely independent of the discretization parameter h. Here we are primarily
interested in spectral element discretizations, corresponding to spaces Xh and Mh
consisting of piecewise high-order polynomials [36], [31], [37].

In order to construct the discrete pressure operator $, the decoupled (continuous)
equations (60)-(62) for each Fourier mode k are discretized using spectral elements
in the nonperiodic x-direction. The discretization procedure stas by breaking up the
domain A ]- 1, 1[ into K equal elements

K

(78) A= U a.
k=l

We then choose the subspaces to be

(79) h u,r (a),
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(80) M h/n 9_:,r (A),

where

(81) 9.,: (A) {(I) :(A); (I)[A .(Ak)},

and n(Ak) denotes the space of all polynomials of degree less than or equal to n
with respect to x. The discretization parameter h is thus characterized by two numbers,
the number of elements K, and the polynomial degree within each element N. In the
following, we shall use the notation h =(K, N). We refer to Maday, Patera, and
Retnquist [30] and Bernardi, Maday, and M6tivet [10] for a justification of the choice
of discrete spaces.

The velocity and pressure are now expressed in terms of high-order Lagrangian
interpolant bases through the Gauss-Lobatto and Gauss points, respectively [31 ]. This
choice of bases results in minimal interelemental couplings, while still preserving the
required C-continuity of the velocity across elemental boundaries. The inner products
in (8), (9) are evaluated using Gauss numerical quadrature [16], Gauss-Legendre for
(’, )h, and Gauss-Lobatto-Legendre for ((., ))h. Choosing appropriate test functions,
we arrive at a set of algebraic equations ofthe form (10), (11), which are then decoupled
into the form (29), (30). Note that for Legendre spectral element discretizations, the
quadrature poin,ts are the same as the collocation points, resulting in diagonal mass
matrices _B and _B associated with the staggered mesh. This fact makes the precondition-
ing in (34) trivial.

We now proceed with the investigation of the conditioning of the discrete pressure
operator resulting from spectral element discretization of the semiperiodic model
problem. In Maday, Patera, and Relnquist [30], it is shown that the inf-sup parameter
jh (k) associated with a particular wave number k is independent of the discretization
h (K, N); see also [42] for another proof of this point. As long as the condition
number K

s is of order unity, this result is optimal with regard to both the accuracy of
the discrete pressure and the efficiency by which the pressure can be computed. We
now present numerical results demonstrating the good conditioning of the precondi-
tioned pressure matrix _/--18 for the semiperiodic problem; in what follows, A(k),
s

K (k) will refer to the spectrum and conditioning of -1_S for a particular wave number
k. The calculation of the eigenvalues is based on EISPACK routines.

We begin by plotting in Fig. 1 the A/S(k) for the spectral element discretization
h (K, N) (4, 7) and wave number k 1. The agreement with the continuous operator
spectrum is seen to be virtually exact. In Fig. 2 we again plot A/S(k) with h (K, N)=
(4, 7), but now for a wave number k 12. The low modes of the system are again in
good agreement with the continuous spectrum. However, at this large value of k, the
discrete system can no longer resolve exactly the higher modes, resulting in a cluster

sof eigenvalues at A.--- 1.2. If we investigate the spectrum for k 12, but now using a
discretization h=(K, N)=(4, 14), we see in Fig. 3 that the cluster of numerical
eigenvalues has almost disappeared due to the higher spatial resolution in x.

In Fig. 4 we plot K
s and K as a function of k for the spectral element and

continuous operators, respectively. For small and moderate k the two curves coincide;
however, as k the resolution becomes too low and the two curves diverge. For
finer resolutions (e.g., larger N) the spectral element and the theoretical results agree
over a larger range of wave numbers, as expected from Figs. 2 and 3. For large wave
numbers k, the condition number KS(k) for the spectral element discretization is larger
than the value predicted by the continuous analysis, however, the value is still of order
unity, as required for fast convergence of the outer iteration.
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FIG. 1. A plot of the spectrum A/S(k) of the preconditioned steady Stokes pressure matrix "_B-L_S, where _S
is the pressure matrix given in (31) and "_B is the mass matrix defined on the Gauss pressure mesh. The spectrum
(&) corresponds to a spectral element discretization (K =4, N 7) for a wave number k 1; the agreement
with the continuous operator spectrum A of (73)-(75) (O) is very good.

3.4. Multidimensional spectral element case. Before we present any numerical
results, we make some general remarks regarding iterative solvers. First, one major
reason for using iterative solvers is to avoid the severe memory requirements associated
with direct methods, especially for large multidimensional problems. The computa-
tional complexity associated with an iterative solver is essentially determined by two
factors: the convergence rate of the method, and the operation count for a typical
matrix-vector product evaluation. In this section we focus mostly on the conditioning
of the Uzawa operator _S, which is directly related to the convergence rate of the outer
pressure iteration (34). However, we should point out that in the context of high-order
methods, fast matrix-vector product evaluations are typically effected by a combination
of tensor-product forms and vectorization.

The spectral element discretization procedure for the general multidimensional
case is essentially a tensor-product extension of the (one-dimensional) procedure
described in 3.3. In summary, the key points are the use of variational projection
operators, piecewise high-order polynomial subspaces, and tensor-product bases and
quadratures, resulting in minimal interelemental couplings and efficient matrix-vector
product evaluations.

We consider now the Uzawa decoupling procedure (29), (30) as applied to
multidimensional spectral element approximations. As discussed earlier, the pressure
p is first computed from (30) by effecting a nested inner/outer iteration procedure,
while (29) is solved for the velocity _ui, 1,..., d, with known pressure p. The number
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FIG. 2. A plot of the spectrum AS(k) of the preconditioned pressure matrix _B-IS_. The spectrum (&)
corresponds to a spectral element discretization (K 4, N 7) for a wave number k 12; for this large value

of k the discrete system can no longer resolve the higher continuous modes (0).

of outer conjugate gradient iterations in (34) critically depends on the condition number
K s, which we now investigate for multidimensional problems with Dirichlet velocity
boundary conditions.

In order to find the condition number K s, we must compute the minimum and
maximum eigenvalues of the matrix _S with respect to the mass matrix . Since we
never form any global system matrix explicitly, standard routines for calculating
eigenvalues cannot be used. Instead, we compute the maximum eigenvalue s/max using
the ordinary power method [24], which involves the evaluation of matrix-vector
products of the form _Sb. To compute the minimum eigenvalue s/min we use the inverse
power method [24], which requires inverting the matrix _S for each iteration. Note that
in order to do this inversion, we use the inner/outer iteration procedure described in
(34)-(37).

We start by considering the solution to the steady Stokes equations (1), (2) on a
square domain 12 ]-1, 1[2 with homogeneous Dirichlet velocity boundary conditions
(3). Using a spectral element discretization with one single element, i.e., K 1, we
compute the minimum eigenvalue s/min of the discrete steady Stokes pressure-operator
_S for different values of the polynomial degree N. As we can see from Fig. 5, s/min
decreases as N increases, implying that the flh in (41) is no longer independent of the
discretization h (K, N). This is, in fact, numerical evidence of the presence of weak
spurious modes [42]. Theoretically [8], the results indicate that h-.-6(N-/2) as
N-, and hence the number of outer conjugate gradient iterations would, at worst,
scale like N/2. Note that the numerical results of Fig. 5 show that the theoretical
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FIG. 3. A plot of the spectrum A(k) of the preconditioned pressure matrix -1_S. The spectrum (&)
corresponds to a spectral element discretization (K 4, N- 14) for a wave number k 12; due to the higher
spatial resolution the agreement of the discrete spectrum with the continuous operator spectrum (0) is improved.

result is pessimistic for the low values of N of interest in the spectral element context.
Next, to see the effect of breaking up the domain [l into several subdomains, we
compare in Fig. 6 the minimum eigenvalue s

Ami when using one single spectral element
K 1, and when using K -4 and K 16 equal spectral elements. The results clearly
show that flh is very insensitive to K, especially for larger N.

In Appendix A it is shown that the maximum eigenvalue sAmax is bounded from
above, and that this bound is of order unity. To demonstrate numerically that this is
indeed the case, in Fig. 7 we plot sAmax for different values of the polynomial degree
N. The results show that the maximum eigenvalue is insensitive to the number of
elements K and to asymptotes to a value below two, as N increases. In practice, the
polynomial degree N is typically taken to be of order ten, suggesting that the outer
pressure iteration will converge in order-one iterations. Our experience from solving
a large variety of two-dimensional and three-dimensional problems is that about ten
outer iterations suffice in most cases. We refer to Maday, Patera, and Rnquist [32]
for theoretical proofs of the previous numerical evidence.

We now consider a two-dimensional steady Stokes test problem where precondi-
tioned conjugate gradient iteration in the outer pressure iteration is combined with
spectral element multigrid for the inner Laplacian solves. The test problem is creeping
flow in a "wedge," but with the tip of the wedge removed. The spectral element
discretization (K =40, N-8) is shown in Fig. 8(a), and the solution in the form of
streamlines is shown in Fig. 8(b). In this test problem, we have removed the tip of the
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FIG. 4. A comparison between the condition number uS(k) of the spectral element operator "_B-_S (&) and
the condition number r,S(k) of the continuous operator s in (65) (solid line), as a function of Fourier wave
number k. The spectral element discretization K 4, N O) is used. For small and moderate k the two curves
coincide. However, as k=,o the two results diverge due to the finite resolution of the spectral element mesh.

wedge in order to be able to break up the computational domain into spectral elements
with aspect ratio approximately equal to unity (see Fig. 8(a)). As discussed in Retnquist
[37], the convergence rate of the spectral element multigrid algorithm deteriorates as
the aspect ratio of the elements becomes much different from unity. For this particular
steady Stokes test problem the total speedup was about 2.5 using multigrid with J 4
meshes instead of preconditioned conjugate gradient iteration for the inner Laplacian
solves (timings on a CRAY-XMP). Note that due to the more inefficient vectorization
of the matrix-vector products on the coarser meshes (j 1, 2, and 3) compared to the
finest mesh (j 4), the computational cost on the coarser meshes (j #-J) cannot be
neglected.

Next, we consider the Uzawa decoupling procedure as applied to a three-
dimensional steady Stokes problem (1), (2) in a domain defined by Xl ]0, 2F[, x2
]-1, 1[, x3 ]-1, 1[, where F can be interpreted as the aspect ratio of the system. The
prescribed force f is such that the exact solution is given by u=(ul, u2, u3)-
((1 x)(1 x), 0, 0) and p sin 7rxl/F" cos 7rx2" cos 7rx3. For large three-dimensional
problems it is a nontrivial task to compute the eigenvalues of the pressure operator _S,
and we therefore instead produce convergence histories from which appropriate condi-
tion numbers can be inferred. In particular, we shall plot the residual ][_rllo.h (essentially
the root mean square of the divergence) as a function of the number of iterations m
in the outer conjugate gradient iteration (34).
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FIG. 5. A log-log plot of the minimum eigenvalue sAmi of the discrete Stokes operator -_S as a function
of the polynomial degree N (A, N odd; O, N even). The steady Stokes equations are solved on a square
domain fl ]- 1, 1[ with homogeneous Dirichlet velocity boundary conditions using K spectral elements.
For low values of N, AminS N-0"29, implying that flh N-’5. For larger values of N, Amins N-0"62, implying
that flh N-’3. Theoretically Bernardi and Maday [8]), flh should at worst scale like N-/2, suggesting that
the theoretical result is somewhat pessimistic for low values of N.

In Fig. 9 we plot [[_rllo.h as a function of m for an aspect ratio r 1 and for spectral
element discretizations corresponding to K 8, N- 7 and 10. The initial convergence
rate is almost independent of N, however, the asymptotic convergence rate does appear
to be a weak function of N, in good agreement with the above discussion. In Fig. 10
we repeat the numerical experiment of Fig. 9, but now keeping the discretization
parameter h (K, N) (8, 10) fixed while varying the aspect ratio F. The convergence
rate is somewhat lower for F-3 as compared to F 1, however, the effect is small.
These results demonstrate that the good conditioning of the quasi-two-dimensional
(semiperiodic) model problem does, indeed, extend to multidimensional problems.

To show the potential of the Uzawa algorithm we present results from a large
three-dimensional problem with a complicated geometry. The problem we consider is
solving the steady Stokes equations (1), (2) in a spiral-grooved bearing with 16 grooves.
Although periodicity conditions could have been exploited, the full three-dimensional
problem was discretized using 312,000 degrees of freedom. The set of algebraic
equations (29), (30) was then solved on a 64-processor Intel Hypercube in about 16
minutes (160 MFLOPS). The convergence history for the outer pressure iteration (34)
is plotted in Fig. 11. We see that the discrete divergence is reduced by three orders of
magnitude in about 30 outer iterations. Thus we have demonstrated that the Uzawa
algorithm works well for large realistic problems, and can successfully be implemented
on a parallel computer. For a more detailed discussion of the parallel aspects of the
algorithm, we refer to Fischer and Patera 18].
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FIG. 6. A plot of the minimum eigenvalue sAmin of the discrete Stokes operator -_S, as a function of the
polynomial degree N. The steady Stokes equations are solved on a square domain f 1, 1[ with homogeneous
Dirichlet velocity boundary conditions using K (0), K =4 (A), and K 16 (1) spectral elements.

4. Unsteady Stokes solvers. In 2.2 we derived a set of algebraic equations (18),
(19) resulting from a spectral element discretization of the implicitly treated unsteady
Stokes problem (12)-(15). In order to compute the nodal values u_ n/l and p,+l, a
classical Uzawa scheme can again be constructed, but now with the discrete Laplace
operator _A in (25) replaced by the discrete Helmholtz operator

(82) H= _A+ P--P- B.
At-

As in the steady case, the simple gradient method can be accelerated by using conjugate
gradient iteration. However, in the unsteady case we must generally consider precon-
ditioners other than the mass matrix _B [28], [19], [38], [37], [14].

For reasons of efficiency and rigor (no rediscretization), our approach to solving
the system (18), (19) will again be based on a global iterative technique. Proceeding
in the same fashion as for the steady Stokes case, we arrive at the following decoupled
system equivalent to the saddle problem (18), (19)

n+l Dp.+(83) _H_ui +g’,

(84) S_tp n+l -_Din_ -l gT,

where

(85) St= oin_ -loTi

i=l,...,d,
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FIG. 7. A plot of the maximum eigenvalue sXma of the discrete Stokes operator -lS_ as a function of the
polynomial degree N. The steady Stokes equations are solved on a square domain 1) 1, 1[ with homogeneous
Dirichlet velocity boundary conditions using K (0), K =4 (/), and K 16 (.) spectral elements.

() ()

FIG. 8. Creepingflow in a "wedge" where the tip of the wedge is removed. The imposed velocity boundary
conditions are nonslip conditions on the two side walls and at the bottom, with a unit horizontal velocity imposed
on the top side; (a) shows the spectral element diseretization (K =40, N 8), while (b) shows the solution in

form of streamlines.

is the unsteady Stokes pressure-operator analogous to the steady operator _S defined
in (31), and

(86) _g, _u, i=l,...,d

represent the inhomogeneities associated with an implicit Euler backward time integra-
tion procedure. The advantages of the formulation (83), (84) are similar to those for
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FIG. 9. A plot of the residual [l_rllo, (the root-mean-square of the divergence) from (34) as a function of
the number of outer conjugate gradient iterations m when solving the three-dimensional steady Stokes problem
with solution u=[(1 -x)(1 -x23), 0, 0], p=sin rxl/F’cos rx2"cos rx3 on the domain f ]0, 2Fix]- 1,
x 1, with F 1. The domain is broken up into K 8 equal spectral elements, with convergence histories

shown for N 7 (A) and N 10 (U]). The convergence rate decreases slightly with increasing N.

the steady problem; it represents a complete, general, velocity-pressure decoupling
that is discretely equivalent to the original discretization (18), (19). First, we solve (84)
for the pressure, and then (83) is solved for each velocity component _u’/1 with p"/l
known.

As for the steady Stokes problem the matrix St is completely full, and therefore
solving (84) requires an iterative approach. Unfortunately, whereas the steady pressure-
operator _S is naturally well conditioned (-_S is close to the identity), the same is
not true for _St. For large time steps we can express _St as

(87)

and it is thus well conditioned. However, for small time steps, _St goes to the pseudo-
Laplacian _E,

(88) a o _s, A__t _,
p

where

(89) E_ O,B_-’_D
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FIG. 10. A plot of the residual II_rllo, (the root-mean-square of the divergence) from (34) as a function
ofthe number ofouter conjugate gradient iterations m when solving the three-dimensional steady Stokes problem
with solution u=[(1-x)(1-x3), 0, 0], p =sin rxl/F.sin 7rxE’cos 7rx on the domain ]- 1, l[x]- 1,
l[x]0, 2F[ with F= ((C)) and F=3 (A). Both domains are broken up into K =8 equal spectral elements,
each of order N 10. The convergence rate decreases slightly as the aspect ratio F increases.

is poorly conditioned. The matrix _E is, in fact, the discrete consistent Poisson-operator
resulting from spectral element discretization of the explicitly treated unsteady Stokes
problem (12)-(15). The algorithm described for the steady case therefore needs to be
modified.

Earlier spectral element solvers used a two-level Richardson inner/outer iteration
scheme to solve the discrete unsteady Stokes and Navier-Stokes equations [38], [31].
Computational tests indicate that the approach of Cahouet and Chabard 13] is simpler
and more efficient, and we shall therefore precondition the unsteady pressure-operator
_St directly. The preconditioner proposed is [14]

which can be motivated by analyzing the two limits of very small and very large time
steps. In both of these cases we expect _P-I_St to be close to the identity operator. As
discussed in Cahouet and Chabard [14], the particular choice (90) as a preconditioner
for _St can perhaps be better motivated by considering the Fourier discretization (48),
(49) in d.

4.1. Multidimensional spectral element case. Our approach to inverting the
unsteady pressure-operator is the same as for the steady case, namely, a nested global
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FIG. 11. A plot of the residual II_rll0,h (the root-mean-square of the divergence) from (34) as a function
ofthe number ofouter conjugate gradient iterations m when solving the three-dimensional steady Stokes equations
in a spiral-grooved bearing with 16 grooves. The 312,000 degrees-of-freedom problem was solved on a 64-processor
lntel hypercube iPSC/2-VX in about 16 minutes at an average speed of 160 MFLOPS.

inner/outer iterative procedure based on preconditioned conjugate gradient iteration
for the outer iteration, and spectral element multigrid for the inversion of the discrete
Helmholtz operator _H. We note that the structure in the solution procedure, is similar
to the steady case, however, the computational complexity associated with the precon-
ditioning in the outer iteration is very different. For the steady case the inversion of
the diagonal mass matrix _B is trivial, whereas the unsteady case requires the inversion
of the pseudo-Laplacian _E. If we count the inversion of the _E-matrix as one standard
elliptic solve, each iteration in the outer conjugate gradient iteration takes d + 1 standard
elliptic solves, as compared to d for the steady case. If the condition number of the
matrix p--l_s is order unity, we see that computing the pressure again requires only
order-d elliptic solves. Once the pressure is known, another d elliptic solves is required
to compute the velocity.

We now make some remarks regarding the _E-matrix, which is essentially a
second-order operator with Neumann-like (pressure) boundary conditions. Our
experience from numerical simulations has been that inverting _E requires more iter-
ations than inverting the standard Laplace operator _A or Helmholtz operator _H with
Dirichlet (velocity) boundary conditions. The slower convergence rate is probably due
to the mixed 2_1 spaces in the construction of the _E-matrix. The staggered mesh
also makes it more difficult to construct a proper multigrid algorithm. To this end,
standard conjugate gradient iteration has been used to invert _E, although a multigrid
approach is in preparation.
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To demonstrate the effect of the preconditioner _P in (90), we monitor the residual
]]_r ]]O.h in the outer pressure iteration during the first time step when solving a (simulated)
buoyancy-driven flow in a two-dimensional square cavity. We plot in Fig. 12 the
convergence history for three different time steps. The larger time step At 1 is of the
order of the time it takes to reach steady state, and _St is therefore close to _S (/z 1).
As expected from the steady Stokes case, we see that about ten outer iterations suffice
for convergence. The smaller time step At 10-4, however, is much smaller than a
typical time scale in the system, and _St is close to the pseudo-Laplacian _E. In fact,
the time step is small enough for an explicit time-stepping procedure to be stable, and
we see that convergence is reached in order-one iterations. In the limit as the time step
Ate0 the unsteady pressure-operator becomes perfectly preconditioned, and the
steady Stokes convergence rate represents an upper bound for how fast the outer
pressure iteration converges.

For comparison, we repeat in Fig. 13 the experiment of Fig. 12, but now using
the preconditioner from the steady Stokes case, that is, _P _B. As expected, as long as
_St is close to _S, the convergence rate is almost identical to the previous case. However,
as the time step becomes smaller and _St becomes closer to _E, the steady Stokes
preconditioner does a poor job. In conclusion, the preconditioner (90) is an excellent
preconditioner for all time steps.

We close this section by remarking that the Uzawa algorithm can readily be
extended to solve the full Navier-Stokes equations by treating the nonlinear convective

I0
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A E] 0

C3 0

E]
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10
0 6 10 12 1 16 18 20

m
FIG. 12. A plot of the residual Ilrllo, (the root-mean-square of the divergence) as a function of the number

of outer conjugate gradient iterations m when solving for the first time step of a (simulated) buoyancy-driven
flow in a square cavity. The plot shows the convergence history when using _P defined in (90) as a preconditioner
for the unsteady pressure operator S_tfor three different time steps At 10-4 (A), At 10-a (El), and At 1, (0).
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FIG. 13. A plot of the residual II_llo, (the root-mean-square of the divergence) as a function of the number
of outer conjugate gradient iterations m when solving for the first time step of a (simulated) buoyancy-driven
flow in a square cavity. The plot shows the convergence history when using "_B as a preconditionerfor the unsteady
pressure-operator _St for three different time steps At 10-4 (/), At= 10-2 (F-l), and At= 1, (C)).

term explicitly. This approach has been used with success in the context of spectral
element discretizations [17].

Appendix A. This appendix deals with relations between the condition number
ofthe algebraic system that arises from the Uzawa algorithm and the various parameters
of the discretization, in particular, the inf-sup condition, but also other constants
related to the exactness of the integration formulae. To this purpose, let us recall that
we have set

(A.1) ah(Uh, Vh)=((VUh, VVh))h,

and introduce the following constants

(,)
(A.2) sup

(,)
(A.3) c1= inf

a (v, v)
(A.4) a= inf

Let us first bound the maximum eigenvalue ASm of the matrix _S with respect to the
mass matrix B.
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To this purpose, let us first consider the discrete Laplace operator defined by
Uh Ag if

(A.5) ah(Uh.,, V,) ((g,, V,))h, VV Xh.

Let us now consider the operator div, transposed by the divergence operator with
respect to the (.,)h-Scalar product, i.e.,

((divTp, V))h=(p, diVV)h, /pMh, VVXh.

LEMMA A.1. For any p in 2(f), we have

Cl[[A’(div) TP 1[1 --l[ Pl[0.

Proofi This result is simply derived by taking v= Al(div)Tp in (A.5) with g=
div7"p, and applying the Cauchy-Schwarz inequality.

It is important to note that with these definitions, the operator div (A) divr is
symmetric and that _S represents its matrix in the basis of the Lagrange interpolants.
Due to the symmetry, the extreme eigenvalues are related to the upper and lower
norms of the images of elements of Mh as follows:

S(A.6) (’max) sup ([div (A) divr]p, P)h, (P, P)h 1
pcM

and

(A.7) sAmin)--- inf ([div(A1) divr]p,p)h, (P,P)h 1.
pcM

Note that these eigenvalues are also those of the matrix _S with respect to the mass
matrix . From (A.2), (A.3), and Lemma A.1, it is an easy matter to check that

s

sLet us now consider/min. We want to get the relationship between this eigenvalue and
the inf-sup condition constant flh given by

(p, div v) h
inf sup /2,((Vv,, Vv,))

(p,p)h=l.

Let p be given in Mh with (p, P)h--1. As noted by Vandeven [42, V, Th6orme
II.1], the elements u* that realize the supremum related to the inf-sup condition, i.e.,

(p, div V)h (p, div U*)h
(A.8) sup /2 ,/2,((Vv,, Vv,)) ((Vu,*,

are colinear to the element * of Xh, solution of the problem

(A.9) fi* A divrp.
Since the proof of the fact is very short and simple, let us repeat it here. From (A.9)
we have

(p, div V)h ((Vfi*, Vv,))h
((Vv,, ((Vv,,
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The Cauchy-Schwarz inequality then gives the inequality

(p, div V)h /2,
((Vv,,

with the equality if and only if fi* and v are colinear. This leads from (A.9) to

(A.10) sup
(p, div )h 1 /2 1)((Vv,,Vvi))lh/2=(divT"p,(A )divT"p) =([div(A divT"]p,p)lh/2,

vEX

so that the inf-sup condition satisfies

(A.11) flh inf ([div (A1) divT]p, p) h/2, (P, P)h 1.
pE Mh

Now recalling (A.7), we have

Finally, the condition number K
s is then bounded by Clflh/aCl.2

Appendix B. We consider here the solution to the eigenvalue problem (71)"

(B.1) ’=
--1 dx’

where the Green’s function G(x, x’) is given in closed form in (68).
To reduce the integral equation (B.1) to the form of a standard eigenvalue problem,

we integrate the term involving the derivative of X by parts,

10G dX dx,
OG - OG 1/ G

10X dx’ ox --1 X -10XOXt
Here the integral is broken up into two parts due to the jump discontinuity in the
derivatives of G,

(B.3)
OG

(x, x+) _O___G (x, x-) 1.
OX’ OX’

Using (B.2) and (B.3), we can write (B.2) as

(B.4) X(x)- + G X(X’) dx’= AX(x)
--1 OXOXt

which is a homogeneous Fredholm integral equation of the second kind.
Using the explicit form of G from (68) and evaluating the derivatives, we obtain

"1 k
-lksinh2k{Cshk(l+x<)coshk(1-x

(B.5) +sinh k(1 +x<) sinh k(1-x<)}X(x’) dx’

(A- 1)X(x).

Using the definitions ofx and x> in (69), (70), (B.5) reduces to the following symmetric
eigenvalue problem"

-k I. cosh k(x + x’)x(x’) dx’ (A 1)X(x).(B.6)
sinh 2k

_
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Expanding the kernel in (B.6) we arrive at

(B.7) sinh 2k
cosh kx

-1

cosh kx’x(x’) dx’ +sinh kx sinh kx’x(x’) dx’

=(A-1)X(X).

By inspection, it is clear that there are two solutions to (B.7) given by

1 k
(B.8) xe cosh kx, e

2 sinh 2k’

1 k
(B.9) X sinh kx, h =-+

2 sinh 2k’

where superscripts e and o denote even and odd, respectively. In addition, there exists
an infinite set of eigenfunctions X corresponding to h 1, satisfying

(B.10) cosh kx’x(x’) dx’= sinh kx’x(x’) dx’= O.
--1

For example, we can choose X odd such that

(B.11) fl-1
or X even such that

(B.12) fl-1

cosh kx’x(x’) dx’ 0,

sinh kx’x(x’) dx’ O.

There are many ways to do this, which explains why the spectrum is clustered around
unity.
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EXPLICIT RUNGE-KUTTA PAIRS WITH ONE MORE DERIVATIVE
EVALUATION THAN THE MINIMUM*

P. W. SHARP AND E. SMART

Abstract. Existing classes of (4,5), (5,6), and (6,7) pairs use the minimum number of derivative
evaluations per step. This ensures that the cost of each step is minimized. However, the cost per unit
step is not necessarily minimized because it may be possible to take larger steps if an extra evaluation
is used. The change in efficiency when one extra evaluation per step is used is investigated for classes
of (4,5), (5,6), and (6,7) pairs with the minimum number of evaluations. The aim is to show that
using an extra evaluation does not necessarily increase the cost per unit step, and that in some cases
the cost may decrease.

The paper begins with the derivation of the new classes. Then the new and existing classes are
compared using standard functions of the free parameters. Following this, numerical comparisons of
representative pairs from the new and existing classes are presented. The new (4,5) and (5,6) pairs
are found to be more efficient and just as reliable as the existing (4,5) and (5,6) pairs. For the (6,7)
pairs, there is little difference in efficiency and reliability.

Key words, ordinary differential equations, explicit Runge-Kutta pairs, extra stage

AMS(MOS) subject classification. 65L05

1. Introduction. Many classes of explicit Runge-Kutta pairs have been derived
for the nonstiff initial value problem

e

where f :l 1n - 1n.
Existing pairs up to order (6,7) use the minimum number of derivative evaluations

per step. This choice ensures that the cost of each step is minimized. However, the
cost per unit step is not necessarily minimized, because it may be possible to take
larger steps if an extra evaluation is used on each step. This situation arises with the
(7,8) pairs of Verner [8]. While 12-stage pairs exist, Verner found 13-stage pairs more
efficient.

Verner’s result raises interesting questions about (4,5), (5,6), and (6,7) pairs. How
is the efficiency of the pairs affected when an extra evaluation is used? Can the pairs
be made more efficient, as for the (7,8) pairs?

For classes of efficient (4,5), (5,6), and (6,7) pairs, we investigate the effect of
adding one derivative evaluation. The pairs generate order p and order p- 1 approx-
imations yi+l, i+1, to y(xi+), i 0,..., according to

j--1 j--1

where

fj-- f xi+cjh, yi+hajkfk
k--1

j--1,...,s.
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We assume that the solution is advanced using the higher-order (the order p) approx-
imation because most pairs are implemented in this mode. We also assume, as is done
for most pairs, that

i-1

(1.2) ci Z aij i 2. 8.

j-1

The performance of a pair of nonstiff problems depends primarily on the trunca-
tion coefficients of the two formulae in the pair. This observation suggests we could
analyze the truncation coefficients to measure the changes in performance when a
stage is added. The analysis is readily performed for very low-order pairs. But the
analysis is difficult for (4,5), (5,6), and (6,7) pairs because the truncation coefficients
depend on the free parameters of the class in a complicated way. Fortunately, even
though very low-order pairs are used infrequently, analysis of their truncation coeffi-
cients gives insight into the possible changes for higher-order pairs. Hence, to motivate
our work, we perform a simple analysis for three- and four-stage (2,3) pairs.

The order conditions for an s-stage third-order formula are

bi A.., aijcj(1.3) bi- 1, bc- 2’ bc -, g
i--1 i--2 i--2 i--3 j--2

A third-order formula is found by solving (1.2) and (1.3). The order conditions for the
embedded second-order formula are the first two equations of (1.3) with bi replaced
by i. These two equations are satisfied by taking i, i 3,..., s, as free parameters
and solving for 1 and b2. To simplify the analysis, we take c8 1.

For s 3, we take c2 as a free parameter. The principal truncation coefficients
of the third-order formula are tl (1 2c2)/72, t2 1/24, t3 -3tl, and t4 -t2.
The minimum possible value for the maximum of the magnitude of the truncation
coefficients is 1/24. The minimum is attained for 0 <_ c2 _< 1.

For s 4, we take c2, c3, ca2, ca3, and ba as free parameters. As might be
expected, since four-stage fourth-order formulae exist, the principal truncation coef-
ficients for s 4 can be made arbitrarily small. This does not mean the four-stage
pairs can be arbitrarily more efficient than the three-stage pairs, because the fifth- and
higher-order terms in the error expansion must be considered. However, the four-stage
pairs can be significantly more efficient. To illustrate this, we solve the orbit problem
D5 in DETEST (Enright and Pryce [2]), using a three-stage and a four-stage pair.
The coefficients of the pairs are given in the Appendix. The pairs are implemented
as described in 4. We use local error tolerances of 10-i, i 2, 3, 4, 5. The results are
summarized in Fig. 1. The four-stage pair uses fewer functions than the three-stage
pair to achieve the same end-point global error.

In 2 we give the derivation of the pairs. Then in 3 we investigate the new classes
using standard functions of the free parameters. We also present a representative pair
from each class. In 4 we summarize numerical comparisons of the representative
pairs from the new and existing classes. Finally, in 5 we briefly summarize our work
and possible extensions to it.

2. Derivation.

2.1. (4,5) pairs. Most classes of (4,5) pairs use six stages. One exception is
the seven-stage class of Dormand and Prince [1]. However, the seventh stage in this
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FIG. 1. Number of derivative evaluations against the logarithm of the end-point global error

or the three- and four-stage (2,3) pairs.

class is reused as the first stage on the next step. Hence, the number of derivative
evaluations performed on all accepted steps, except the first, is the same as for six-
stage pairs. Pairs that reuse the last stage are often called FSAL (first same as last)
pairs.

The numerical testing of Dormand and Prince [1] suggests that representative
pairs from their FSAL class are more efficient than representative pairs from other
(4,5) classes. Hence our (4,5) pairs are derived from the FSAL class. Our pairs are
seven-stage non-FSAL.

We make the simplifying assumptions

k+l i-1
C Z k i 3, 7, k 1 2,(2.1) C(i, k) =_
k + 1 aijcj ...,

j--2

and

7

(2.2) R(j) =- biaij bj(1 cj), j 1,..., 7.
i=j+l

The simplifying assumptions imply c7 1, b2 0, and/2 0.
The independent order conditions are then

7
1

k 0, ,4,(2.3) bick k + 1’
i--1

7

(2.4) ick k + 1’ k 0,..., 3,
i--1
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7

E bcia2 O,
i=3

7

E ia,2 O.
i=3

These equations and the simplifying assumptions are solved as follows:
Take b7 as a free parameter and solve (2.3) for bi, i 1, 3,..., 6.
Solve C(3, 1), C(3, 2) for a32 and c2, and C(4, 1), C(4, 2) for a42 and aa3.
Take a52 as a free parameter and solve C(5, 1), C(5, 2) for a53 and a54.
Using c7 1 and R(2), (2.5) can be rewritten as

6

E bi (1 ci)ai2 0.
i=3

Solve this for a62 and then (2.5) for a72.
Take a65 as a free parameter and solve C(6, 1) and C(6, 2) for a63 and a6a.
Solve R(6) for a76 and R(5) for a75.
Solve C(7, 1) and C(7, 2) for a73 and aTa.
Solve (1.2) for ail, i 2,..., 7.
Take 7 as a free parameter and solve (2.4) and (2.6) for i, i= 1, 3, 4, 5, 6.

The remaining simplifying assumptions are automatically satisfied. The deriva-
tion gives a class of seven-stage (4,5) pairs with c3, ca, c5, c6, a52, a65, 7, and b7 as
free parameters.

2.2. (5,6) pairs. Most classes of (5,6) pairs use eight stages. However, recently,
several investigators (see Verner [9], for example) derived similar classes of nine-stage
(5,6) FSAL pairs. The numerical testing of these investigators suggests that repre-
sentative pairs from the new classes are more efficient than representative pairs from
eight-stage classes. Hence we derive our (5,6) pairs from the FSAL class. Our pairs
are ten-stage FSAL.

We make the simplifying assumptions C(i, 1), i 3,..., 9, C(i, 2), i 4,..., 9,
R(j), j 1,..., 9, ai2 O, 4,..., 9, 3 O, b3 O, and b9 0.

The simplifying assumptions imply co 1, b2 0, and 2 0.
The independent order conditions are then

9
1

k 0, ,5,+i--1

10
1

k 0, ,4,(2.8) E icki k + 1’
i=1

9

(2.9) E bicia3 O,
i=4
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(2.10)
10

Ea3 --0
i=4

9 i--1
1

i=4 j--2

10 i--1
1

(2.12)
i=4 j=2

These equations and the simplifying assumptions are solved as follows:
Take b4 as a free parameter and solve (2.7) for bx, bi, 5,..., 9.
Solve C(3, 1) for a32, C(4, 1), C(4, 2) for aa3 and c3, and C(5, 1), C(5, 2) for a53

and a54.
Take a65 as a free parameter and solve C(6, 1), C(6, 2) for a63 and a6a.
Take a75 and a76 as free parameters and solve C(7, 1), C(7, 2) for a73 and aTa.
Using c9 1 and R(2), (2.9) can be rewritten as

8

E bi(1 ci)ai3 O.
i=4

Solve this for a83.
Rewrite (2.11) as

8
1Ebi(ci 1)qi3 120’

i--4

i--1 3where qi3 ’]j=2 aijc. Solve this for q83.
7 3Take as7 as a free parameter and solve C(8, 1), C(8, 2), qs3 ’j=2 as.ici for

a84, a85, and a86.
Solve R(j), j 3,...,8 for ag, j 3,...,8.
Set cx0 1, a0j bj, j 1,...,9.
Solve (1.2) for ai, i 2,..., 9.
Take 8 as a free parameter, and solve (2.8), (2.10), and (2.12) for , i,

4, 5, 6, 7, 9, and 0.
2.3. (6,7) pairs. Few numerical comparisons of (6,7) pairs have been made.

Hence it is difficult to decide, using the efficiency of representative pairs, which class
of pairs to base our pairs on. Instead, we use the most general class of pairs, which is
that derived by Verner [8].

Verner derives his pairs by satisfying a set of conditions which ensure that a
pair has the required order. The central idea of the derivation is to specify a vector
of stage orders for the seventh-order formula. Once this is done, the seventh-order
formula is found by solving recurrences and systems of linear equations. The sixth-
order formula is then found by adding a stage and solving a recurrence and a system
of linear equations. The details of the derivation are given in Verner [8]. Here, we
discuss the selection of the vector of stage orders.
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The seventh-order formula in Verner’s (6,7) pairs uses the first nine stages. The
vector of stage orders for the formula is

--[7,1,2,3,3,3,3,3,3].

The seventh-order formula of our pairs uses the first ten stages, which means that one
component must be added to . There are two restrictions on the component: it must
be less than three, and it must be added between the first and fourth component of .
Even with these restrictions the value and position of the component is not unique.
We experimented with two choices and decided upon

=[7,1,1,2,3,3,3,3,3,31.

3. Selection. In this section, we summarize the selection of representative pairs
from the new classes. The selection uses standard functions of the free parameters.
Only a brief description of the functions is given here. See Prince and Dormand [5]
or Shampine [6] for a more detailed description.

(i) The truncation coefficients in the higher-order formula should be small or close
to their minimum value to make the pair efficient. We define the size of the truncation
coefficients as

1/2

(ii) The ratio

should be small. This helps to ensure that the local error estimate behaves like Chp.
This in turn helps to ensure that the number of rejected steps is small.

(iii) The coefficients of the pair should not be large in magnitude to ensure that
the roundoff error is insignificant (except possibly near limiting precision). We denote
the maximum of the magnitude of the coefficients by Rmax. It is difficult to decide
upon a suitable value for Rmax, because a small bound can prevent the selection of an
efficient and reliable pair. After some numerical experiments, we chose Rmax 20.

(iv) The region of absolute stability for the order p formula should be large. We
measure the size, denoted by Rstab, along the negative real axis.

3.1. (4,5) pairs. As we might expect from the existence of seven-stage sixth-
order formulae, the principal truncation coefficients of the fifth-order formula can
be zero. This means we cannot search for an efficient pair by minimizing T6. We
minimize T6 subject to T7 < kT6, k > 0. There is no obvious value for k. We found
k 4 led to useful pairs. For values of the free parameters that satisfy the above
requirement, the ratio Rpt is usually between 1 and 1.5, and Rmax is less than ten.

A representative seven-stage pair has c3 8/35, ca 9/20, c5 2/3, c6 7/9,
a52 -7/20, a65 9/25, b7 3/40, and 7 9/125, for which T6 7.1 10-5,
T7 1.8 x 10-4, Rpt 1.1, Rstab -3.9, and Rma 0.86.

2 ]Tp+ tp+1 ,j

L=
where Np+I is the number of order conditions of order p / 1, and tp+l,j is the jth
truncation coefficient of order p + 1. Small truncation coefficients will also lead to
small errors in the local error estimate.
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3.2. (5,6) pairs. In a similar way to the (4,5) pairs, T8 can be made arbitrarily
small. A representative pair has c2 1/18, c4 1/6, c5 89/200, c6 19/39,
c7 74/95, cs 8/9, ass 8/61, az5 -43/21, a76 s3/33, as7 13/23,
b4 16/61, and 8 0, for which T7 3.2 10-6, T8 2.4 10-5, Rpt 1.0,
Rstab -4.5, and Rmax- 13.3.

3.3. (6,7) pairs. Adding one stage does not lead to a large reduction in the
size of the truncation coefficients for the seventh-order formula. We find that Ts can
be made approximately three times smaller. A representative l 1-stage pair is given
by c2 1/50, C3 27/125, ca 41/100, c5 57/100, c6 43/100, cs 18/25,
c9 5/6, ha2 0, and a61 -31/200, for which T8 1.3 x 10-5, T9 3.6 x 10-5,
Rpt 1.9, Rstab -3.8, and Rmax- 9.4.

4. Numerical comparisons. In this section, we summarize numerical compar-
isons of existing (4,5), (5,6), and (6,7) pairs with the pairs from the previous section.
To help ensure fair comparisons, we have sought to use existing pairs that are efficient.
This requirement presents little difficulty for (4,5) and (5,6) pairs. We use the (4,5)
FSAL pair of Dormand and Prince [1] and the (5,6) FSAL pair of Verner [9]. The
difficulty comes with the (6,7) pairs, because existing (6,7) pairs are either inefficient
or unreliable. The (6,7) pair given in Verner [8] is for illustrative purposes only and
is inefficient. The (6,7) pair of Fehlberg [3] has an unreliable local error estimate.
To overcome these difficulties, we selected, using the criteria of 3, a pair from the
ten-stage (6,7) class of Verner [8]. The values for the free parameters are c2 1/5,
ca 17/40, c5 2/25, c7 7/9, and cs 5/6. The remaining coefficients are found
using Theorems 3 and 4 of Verner [8].

We use the test problems A1,...,Ah, B1,...,B5, D1,...,D5, El,...,E5 from DE-
TEST (Enright and Pryce [2]). The problems are integrated in their scaled form and
we refer to them as problems 1-20. We omit the C set of problems because the set
contains mildly stiff problems.

The pairs are implemented in a similar way to the pair in DVERK (Hull, Enright,
and Jackson [4]). After an accepted step, x and y are updated and a new stepsize is
selected according to the formula

min (ahold, i3(TOL/est)l/Phold, hmax },
where a > 1, is a safety factor, TOL is the local error tolerance, est is the weighted
norm of the local error estimate, hmax is the maximum stepsize allowed, and hold is
the previous stepsize. If the step is rejected, a new stepsize is calculated in one of
two ways, depending on the number of consecutive rejected steps (denoted by nr). If
nr _< mopt where mopt 0, the new stepsize is calculated as

max(o-lhold,(TOL/est)l/Phold, hmin},
where hmin is the minimum stepsize. For n > mopt, the new stepsize is the maximum
of hmin and a-1 hold. We use a maximum norm with absolute weights, a 2, 0.9,
hmax 5, hmin 10-8, and mopt 1. For each pair and test problem we use
tolerances of 10-i, i 2,..., 10.

We begin with comparisons of the efficiency. The comparisons are based on
the normalized efficiency statistics printed by DETEST. The package calculates the
statistics, for a given problem and pair, by first assuming a relationship of the form

global error CTOLE,
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where the global error is either the end point or maximum global error. The exponent
E and the constant of proportionality C depend on the method and the problem.
After the global error is found for several tolerances, values for E and C are found in
a least squares sense. The values are then used to estimate the number of derivative
evaluations required to achieve an expected accuracy (global error). The number
of derivative evaluations is estimated for a range of expected accuracies to give the
normalized efficiency statistics.

Once the statistics have been obtained, we take the pairs two at a time and form
the intersection of the values of the expected accuracy for each problem. For these
values, we take the estimated number of derivative evaluations and divide the larger
value by the smaller value to give an efficiency ratio. We then form the efficiency
gain by subtracting 1 from the ratio. If the second pair of the two pairs uses fewer
evaluations, we multiply the gain by -1. Finally, we multiply the gains by 100, round
the result to the nearest integer, and enter the numbers on a graph of the expected
accuracy against the problem number. Efficiency gains of magnitude greater than
98 are entered as 99 (with the appropriate sign). See Sharp [7] for a more detailed
discussion of efficiency gains.

Figures 2, 3, and 4 contain the efficiency gains for the new (4,5), (5,6), and
(6,7) pairs against the existing pairs of the same order. Figures 5 and 6 contain the
efficiency gains for the new (4,5) and (5,6) pairs against the new (6,7) pair. Table 1
contains the average of the efficiency gains for each problem in Figs. 2-6. The end
point global error is used in the normalized statistics.

The new (4,5) pair is often significantly more efficient than the Dormand and
Price (4,5) FSAL pair. The average gain in efficiency over all 20 problems and 9
tolerances is approximately 35 percent. The new (5,6) pair is often more efficient
than Verner’s (5,6) FSAL pair. But, the gain in efficiency is not as significant as for
the (4,5) pair. The two (6,7) pairs are of comparable efficiency. The new (6,7) pair
is significantly more efficient than the new (4,5) pair, but of comparable efficiency to
the new (5,6) pair.
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FIG. 2. Efficiency gains for the Dormand and Prince (4,5) pair against the new (4,5) pair.

One measure of the reliability of a pair is the accuracy of the local error estimate.
Table 2 contains, for each problem and pair, the maximum of the norm of the local
error on accepted steps divided by the tolerance (TOL). For example, the first entry
for the Dormand and Price (4,5) pair is 0.6. This means, for problem one, that the
norm of the local error on accepted steps for all nine tolerances was never greater
than 0.6TOL.
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FIG. 3. Eciency gains for Verner (5,6) pair against the new (5,6) pair.
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FIG. 4. Eciency gains for Verner (6,7) pair against the new (6,7) pair.
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FIG. 5. Eciency gains for the new (4,5) pair against the new (6,7) pair.
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FIG. 6. Efficiency gains for the new (5,6) pair against the new (6,7) pair.
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TABLE 1
The average of the eciency gains in Figs. 2-6.

(4,5)/(4,5) 1-41-71 15-53-37
(5,6)/(5,6) -6 4-49 9-1
(6,7)/(6,7) ]-I0 11 0 2 2
(4,5)/(6,7) [-38-36-30-54-18
(5,6)/(6,7) 6 6-30-13-4

-40-25-51-31-30
-9 5 -2-17-25
2 -2 -8-21 10

-35 12 -66 -62 -51
1 16 6-46-14

-43 -44-27-21-7
-4-12 0 2 6

-20 0 17 8 6
-52-23-23-18 3
4 1 -5 -3 8

-44-46-92 -10 10
6 3-46 12-14
1-10 7 -1-18

-58 -41-71-27 -8
5 0-16 7-17

TABLE 2
The maximum of the norm o] the local error on accepted steps, divided by TOL.

DP(4,5)
new (4,5)

v(5,6)
new (5,6)

V(6,7)
new (6,7)

0.67.93.52.00.7
0.6 0.81.11.01.0

1.12.03.41.40.8
1.2 0.41.01.0 0.5

0.5 0.91.10.9 0.6
0.5 0.71.10.9 0.8

5.70.61.412.46.2
9.3 0.8 0.9 1.81.3

6.73.80.8 3.72.2
1.0 0.8 0.9 1.01.0

1.10.7 0.8 1.1 1.0
1.6 0.5 0.8 1.01.0

9.5 118.6 6.8 2.3
0.91.01.51.6 2.4

2.55.35.09.88.5
1.01.01.01.01.1

0.91.01.01.01.2
1.12.8 2.31.01.6

1.3 26 13 0.9 0.9
1.11.31.2 1.0 0.9

1.4 4.13.01.3 0.9
0.71.01.01.01.0

0.81.2’1.0 0’.91.0
0.81.21.0 0.91.0

If the local error estimate is accurate, the maximum norm should be no larger
than TOL. (Because of the conservative nature of the stepsize selection, the maximum
norm may be smaller than TOL.)

The new (4,5) and (5,6) pairs have a significantly more accurate local error esti-
mate than the existing (4,5) and (5,6) pairs. However, there is little difference between
the reliability of the two (6,7) pairs.

5. Discussion. We derived classes of (4,5), (5,6), and (6,7) explicit Runge-Kutta
pairs that use one more derivative evaluation per step than existing classes. We also
tested representative pairs from the new and existing classes. We found the new (4,5)
and (5,6) pairs were more efficient and just as reliable as the existing (4,5) and (5,6)
pairs. The new and existing (6,7) pairs were of comparable efficiency and reliability.

Besides increasing the number of classes of suitable pairs for implementation
in general-purpose software, our results have several possible implications. Because
of the similarities between Runge-Kutta pairs and Nystrhm pairs for the general
second-order initial-value problem, our conclusions may hold for Nystrhm pairs. For
instance, an eight-stage (5,6) Nystrhm pair is easily obtained by applying a simple
transformation to the coefficients of an eight-stage (5,6) Runge-Kutta pair. Hence
it may be possible to improve the efficiency of the (5,6) Nystrhm pairs by adding a
stage.

If interpolants for the new classes require no more extra stages than those for
existing classes, then the relative cost of forming the interpolant will be less. In this
case, the cost of generating dense output and using defect control will be less. We are
currently investigating interpolants for the new classes.

Appendix. The appendix contains the coefficients of the three- and four-stage
(2,3) pairs used to produce the numerical results of 1.
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TABLE A.1
Tableau for the three-stage (2, 3) pair.

-1 2

1/2 01/2
30

TABLE A.2
Tableau for the four-stage (2, 3) pair.

387 762
625 625

3
5 5 5

2

8 5
90 15 18 5
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SUPERPARALLEL FFTS*

HANS MUNTHE-KAASi

Abstract. Fast Fourier transform (FFT) algorithms for single instruction multiple data (SIMD)
machines are developed which simultaneously solve any combination of FFTs of different sizes and
even different spatial dimensionalities. The only restrictions are that all the periods must be powers
of two and that the initial data must satisfy some alignment requirements with the address space
in the computer. The degree of parallelism is equal to the sum of the sizes of all the subproblems
and the (parallel) solution time is proportional to log2(m), where m is the number of points in the
largest subsystem. It is shown that the task of unscrambling the data can be both executed and
scheduled efficiently in parallel. Finally, implementations on the MasPar computer are described.
The codes can be quickly and easily employed in solving complicated problems, and the interface for
the routines may therefore be interesting for sequential FFT codes as well.

Key words. FFT, parallel computing, SIMD computers, superparallel algorithms

AMS(MOS) subject classifications. 65T20, 65Y05, 65Y10

1. Introduction. Fast Fourier transforms (FFTs) constitute one of the most
important classes of algorithms in scientific computations. Several papers deal with
the problems of implementing FFTs on vector and multiprocessor systems; see [1],
[26], and [27]. Various aspects of mapping FFT algorithms to Boolean cubes are
discussed, for example, in [11] and [23].

In this paper we are concerned with the effective implementation of FFTs on
massively parallel computer systems. Primarily, we have in mind fine-grained paral-
lel machines of the single instruction multiple data (SIMD) stream type, often also
called data parallel computers. SIMD machines are now commercially available with
a number of processors ranging from a few thousand to almost a hundred thousand.
Increasingly, we are faced with the luxury of having "too many processors."

Suppose that we wish to solve a mathematical problem of some characteristic size
n (n is, e.g., the number of points in a grid, the number of pixels in an image, or
some other size indicator). Parallel algorithms for solving the problem can typically
be grouped into three main categories.

1. p << n. The number of processors is much smaller than the size of the problem.
This is a typical situation for implementations on coarse-grained parallel systems with
a moderate number of processors.

2. p n. The number of processors matches the size of the problem. This is
not as common in practice; it mainly occurs for benchmark model problems or for
special-purpose machines built for a specific task.

3. p >> n. The number of processors is much larger than the size of the problem.
This problem class is becoming increasingly important as the number of processors
grows, and is our concern in this paper.

As the maximum number of processors that can possibly be employed in solving
a given problem is limited by (some function of) n, it is not likely that problem class
3 has efficient algorithms in the case where only a single instance of the problem is
to be solved. On the other hand, it is often the case that we want to simultaneously
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solve multiple occurrences of the same (or closely related) problems. Parkinson [22]
uses the term superparallel algorithms to denote algorithms that in a SIMD fashion
can solve multiple instances of similar problems (of possibly different sizes), with a
degree of parallelism that is on the order of the sum of the sizes of all the subprob-
lems. Superparallel algorithms are immensely important for the efficient utilization
of massively parallel $IMD machines, as they in a sense make the SIMD machine
behave as a MIMD (multiple instruction multiple data) stream machine, solving dif-
ferent problems simultaneously. Compared to a parallel scheduling of different jobs
on a MIMD computer, superparallel algorithms have several advantages, since they
require no load balancing or synchronizations.

Before we describe the superparallel FFT algorithms in detail, we will briefly ad-
dress the main differences between sequential and data parallel programming, since
this is a key issue for understanding the fundamental ideas. In a sequential program-
ming style, the geometry information of a problem is typically controlled through the
instruction stream (i.e., through the program code). For instance, in grid problems
the size of the problem usually appears in the range of some looping variables. Data
parallel programming [8], on the other hand, seeks to define geometries through the
data streams. For example, grid problems are defined by mapping the grid onto the
processors, and boundary effects are taken into account by modifying the data set
near the boundary points. Since SIMD machines have many data streams, but only
one instruction stream, defining the geometries through the data stream is the only
way of obtaining superparallel algorithms.

Superparallel algorithms were previously known for problems such as the solution
of linear tridiagonal equation systems and linear recurrences [22]. Superparallel FFT
algorithms have, on the other hand, not been known. The reason for this is probably
that it is less obvious how to define the geometries of FFTs through the data stream.
Parkinson [22] writes: "[For the FFT algorithm], there does not appear to be a
variable which would allow us to easily extend the algorithm to have the Super Parallel
property."

In the following sections we will demonstrate that such a variable exists, and
construct superparallel FFT algorithms. It came as a pleasant surprise that in many
ways the corresponding codes are both simpler to program and simpler to use than
their sequential counterparts.

2. The superparallel FFT.

2.1. Background and fundamental ideas. Given an n-periodic vector

+ n) p 0, 1,...,n- 1,

the domain of this vector may be identified with the n-cyclic group Zn, i.e., the
integers 0, 1,..., n- 1 under addition modulo n.

The Fourier transform on Z, is defined as

or equivalently, in matrix form,

E x(q). e2ipq/n,

where Fn is the Fourier matrix of order n

(1) (Fn)p,q e27r’pq/n.
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The domain of & is the dual group , which is isomorphic to G. Or, in simpler
language, & is also an n-periodic vector, and there is a natural 1-1 correspondence
between the elements of & and the elements of x.

Now given a general finite Abel group G, it can always be written as a direct
product of cyclic groups

z_(R)z_.(R)... (R)z (R)Zo.

can be identified with the set of all integer k-tuples

(lk-l,lk-2,... ,/0); 0 _< li < ni- 1,

under addition modulo (nk-l,nk-2,... ,no). One can simply think of G as being a
k-dimensional grid, periodic of period n{ in the direction i. The Fourier transform on

G is given by

&(P) E x(q) e2i<p’q>/n

qG

where (p, q) is the bilinear pairing

(P, q) P-q-

nk-1

Pt:-2qt:- Piql Poqo+ +...+
nk-2 n rio

The transform can equivalently be written in matrix form

(F=_, (R)F=_.(R)... (R)F=o) x,

where Fn is given by (1) and (R) denotes the matrix tensor product^(see, e.g., [7] for
its definition and properties). The domain of & is the dual group , which again is
isomorphic to the original group G.

In the rest of the paper we make the assumption that all periods ni are powers of
two. It is our aim to develop superparallel FFTs that can simultaneously handle any
collection of FFTs of (possibly) different sizes and different number of dimensions k,
the only restriction being that all the periods are powers of two. Our approach is
based on Cooley-Tukey FFTs [6].

The idea behind the radix-2 Cooley-Tukey FFT is an attempt to factor the group
Zn in a direct product of binary groups Z2. But since Zn and Z2(R)Z,/2 are in general
nonisomorphic groups, we cannot factor the matrix Fn as F2(R)Fn/2. The closest we
can get to a factorization of this kind is the following formula (described in 2.2):

P’Fn (I2(R)Fn/2)’T’(F2(R)In/2),
where P is a permutation matrix, called the scrambling matrix. Ik are identity ma-
trices of order k, and T is a diagonal matrix containing the so-called twiddle factors.

Since (I2(R)Fn/2)" (F2(R)I/2) (F2(R)Fn/2) is the FFT on the group Z2(R)Zn/2,
we observe that apart from the twiddle factors T, and the scrambling matrix P, the
FFTs on Zn and Z2(R)Z,/2 are identical. We can continue to factor out binary groups
and arrive at an equivalency between the FFT on

and on the d-dimensional binary group
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where d log2(nk_l "nk-2" "no), the only differences between the two transforms
being the values of the twiddle factors and the scrambling of the results.

Thus, since all the geometric information about the transforms is contained in the
twiddle/actors (and in the scrambling o.f the results), it is possible to code the geometric
information o FFTs in the data stream instead o in the instruction stream. This is
the basis for the development o.f superparallel FFTs.

2.2. The basic algorithm. To give a precise meaning to the splitting for-
mula (2), we must define a matching between the elements of different groups. This
is done through the bit representation of the elements of a group, defined by stacking
together the binary representation of each component of the group element.

For example, suppose we want to identify the elements of a group Zs(R)Za(R)Z4
with the elements of the group 2 Z2(R)Z4(R)Z4(R)Z4. An element, say g (5, 1, 2) E
G, has the bit representation (1, 0, 1, 0, 1, 1, 0). (Note that the second component is
represented by the two bits 0, 1 since two bits are required to represent all numbers in

Z4.) This element is identified with the element (1, 1, 1, 2) E G2, which has the same
bit representation.

Thus the bit representation identifies a group element in { with an element of the
binary group

with the same cardinality as G.
The binary representation will be the most used component-wise representation

of a group element, so from now on, unless otherwise stated, (gk-, gk-2, go) refers
to the bit representation of a group element g.

The perfect shujfle permutation of the elements in a cyclic group Zn is given by
the transformation

a(g) r((gk-l, gk-2, ,gO)) (gk-2, gk-3, go, gk-1),

i.e., a cyclic rotation towards the left of its bit representation. The perfect shuffle
permutation of a vector defined on a group Z, is defined as the matrix Sn acting by

(3) S=.x(q) x(a(q)).

Note 1. Permutation matrices defined in this way multiply together in a way
opposite to what one may first think: if 7 and 7r2 are two permutations of the
domain, and if the corresponding permutation matrices P and P2 are defined as in
(3), we obtain

P2"PI"X(q) Plx(r2(q)) x(7loT2(q)),

where o denotes function composition.
The Cooley-Tukey splitting of the FFT matrix is then given by the following

lemma.
LEMMA 2.1. Let Sn be the perfect shuffle. Then the Fourier matrix Fn can be

factored as

S,.F, (I(R)F/).T.(F2(R)I/),
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where Tn, the twiddle matrix, is diagonal.
according to

Tn acts on vectors in Z2(R)Znl2

0))T.((a,a0)) :.o/ .((a,a0))

for all g E 6, where (gl,g0) denotes the components of gEZ2(R)Zn/2.
Proof. This is checked by a straightforward computation. For a survey of similar

results, see, e.g., [24]. [3

The Cooley-Tukey FFT algorithm applies this formula recursively. Starting with
a matrix Fn, we first multiply from the left by Sn, then by I2(R)Sn/2, Ia(R)Sn/a, and so
on down to I/a(R)Sa. This gives the complete binary factorization of F:

(4)
(I/4(R)$4) x (lnls(R)S8)... (I(R)SI).S x

(z(R)F) (z(R) [T (F(R))])... ((R) [Tz (F(R)Z)])
T, (F2(R)I,/2).

A multiplication of a vector by I2(R)F2(R)I2 is called a butterfly operation, and
multiplication by I2(R)T(R)I2 a twiddle operation. The right-hand side in (4) is thus
a series of butterfly and twiddle operations.

Let as denote the perfect shuffle of the right-most bits, i.e.,

al(g) (gk-l, gk-2, gl, gl-2, g-3, go, gt-1).

Since (I,/2,(R)S2,)’x(g) x(ai(g)), we find that

(In/4(R)S4).(In/8(R)S8) (I2(R)Sn/2)’Sn" x(g) X((Tk_lOtTk_2o’’" off2(g))
((0, a, , -)).

Thus, as is well known, the results appear in bit-reversed order.
In the following we will describe how (4) is turned into a superparallel algorithm.

This is best explained through pseudocodes.
The instruction stream of the superparallel FFT routine tells all the processors

that they should compute the matrix-vector product as in the right-hand side of (4).
It is, however, left to each processor to decide whether it should participate in each
butterfly and twiddle operation, or if it should rest idle instead. Each processor must
also decide which values it should use for the twiddle factors. By these decisions, (4)
can be tuned to produce any matrix product of the form

(5)

where ni are powers of two. We will see later that it is very useful to be able to
include identity matrices in the product as well.

When the superparallel FFT routine is initially called, each processor must, of
course, know which product it wants to compute, and this information must be con-
sistent. For example, if a processor wants to participate in a butterfly operation, then
its corresponding neighbor must want the same.

The type of matrix product each processor wants to compute is stored locally in
an active_list containing active groups, i.e., a list of beginning bits and end bits for
each term Fn in (5).
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Example 1. Suppose the address space of the computer is 12 bits. If a processor
wants to participate in the product

then it creates the following list, containing two active groups

active_list
(2, O)

indicating that F24 affects bits 8 to 5 and F2s affects bits 2 to 0. (It is most natural
to start from the left since the reduction starts with the left-most bit first.)

See 3 for some practical examples.
Given the active list of each processor, the pseudocode in Algorithm 1 describes

the main part of the algorithm. First, we present some preliminaries.
1. We assume that there are 2k processors in the network and altogether 2k data

points. Initially, each processor stores the data point x(g), where g (gk-1,..., go)
is the binary address of the processor. In 2.3 we discuss the case where there are
more data points.

2. The symbol denotes exclusive or (xor), i.e.,

0@0 0,
0@1-1,
1@0-1,

1@1-0.

3. The if’s in the pseudocode denote parallel if’s. That is, the processors that
do not fulfill the condition in the test are masked as inactive and wait idle until the
others are finished.

4. The final answers appear in bit-reversed order within each active group, e.g.,
in Example 1, processor (gll,gl0,... ,go) will end up with the answer

(6)

ALGORITHM i.
# Basic version of superparallel FFT code
for i k-1,0,-i # loop over all bits from left to right

if (i 6 active_group) then
# next line contains the interprocessor communication
$mp :---- x((gk-1, gi+l, gi 1, gi-l, go))

(g O) then
x :-- x + trap

else

x := tmp- x
tw := twiddle_factor (i, active_group, g)
X :--WSX

endif
endif

endfor

The algorithm takes O(p) parallel steps, where p is the number of bits that are ac-
tive for some of the processors. For example, if the algorithm computes a collection
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of equally sized transforms, p is given as the log2 of the number of points in each
transform.

From Lemma 2.1 we find that the twiddle factors are computed in the following
ways.

ALGORITHM 2.
# Computation of twiddle factors
function twiddle_factor(i active_roupg)

ra :---- position_of_r+/-ghtmost_bit_in_active_Eroup
# The right-hand side below is the binary representation of a
real number
0 O.gi-lgi-2... gra

tW :---- e2r0vf:-I

return(tw)
endfunction

It is amazin that such a simple code can simultaneously handle any collection
of different-sized FFTs, even of different dimensionalities! The pseudocode is even
simpler than the standard one-dimensional radix-2 FFT for a sequential computer.
The simplicity of the code results from the inherent natural parallelism contained in
the FFT.

2.3. Doublin the speed with bitswaps. The basic code has two flaws that
should be corrected. First of. all, it assumes that the total number of data points
exactly matches the number of processors. The code must also be able to handle the
case where more data points are available. For certain machines (e.., the Connection
Machine) the user is free to configure the number ofiprocessors, i.e., the machine
can, in a transparent way, pretend that it has more processors than it physically has.
This is done in microcode. For other machines (e.., the MasPar), the mappin of
multiple points to a single processor is taken care of by either a hih-level language
compiler or, explicitly, by the programmer. We shall see that in the latter case it is
possible to correct the second major drawback of the basic code, which is its efficiency.

Suppose the basic code is used to compute one large one-dimensional FFT, i.e.,
all the processors have a single active set coverin all the address bits. First, all the
processors swap one number with another processor; afterwards half of the processors
compute a sum (while the rest are idle); and finally the second half of the processors
compute a difference and perform the twiddle multiplication (while the first half is
idle). Thus in a large part of the code, half of the machine is doin nothing.

Now assume that we have at least twice as many data points as processors. The
way to handle this is to introduce some extra bits which refer to different locations
in the memory of each processor. For example, if there are four times as many data
points as processors, each processor stores four numbers and we et two extra address
bits, which we call memory bits. Hereafter, we assume that the left-most bit is always
a memory bit. The location of the other memory bits is of no importance, and, to
simplify the exposition, we forget the rest of the memory bits and assume that we
have exactly twice as many data points as we have processors. We define a bitswap
permutation as a swapping of the left-most bit with another bit

Bi’x((gk-1, gi, )) x((gi, gk-1, )).

Note that B is its own inverse. The bitswap can be performed by the following
pseudocode.
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ALGORITHM 3.
# Computation of x :---- B.x
function bitswap(i, z)

if (g_l g) hen
((-,..., ,...)):= ((_ ,... , * ,...))

endif
endfunction

Note that the condition is true for exactly one of the two numbers in each pro-
cessor, thus every processor is active and swaps exactly one number with another
processor. The bitswap transfers all the "action" from bit i to the left-most bit by:

(7) 1,/2,@ IT2,- (F2(R)I2,-)] Bi’2 "(F2(R)In/2)’B,
where

2’ B’(I,/2’(R)T2’ "Bi

is a diagonal matrix of order n. Equation (7) can be substituted into (4). After
some consideration, one realizes that the left-most bitswap in each substituted term
commutes with everything to the left of it, and can be pulled out to the left and
multiplied over to the other side of the equation. This gives the following "bitswap
version" of (4):

(8)
B.B1. Bk-’(In/a(R)Sa)’(In/s(R)Ss) (I2(R)Sn/2)’Sn’Fn

".[’2 F2(R)In/2 BO 4 F2(R)In/2 B1. n/2 F2(R)In/2
X Bk-2.n.(F2(R)I/2).B-

where 2 and Bk- are identity matrices included to make the formula more sym-
metric.

In the basic variant of the algorithm, the data points were shuffled locally, i.e.,
they were only permuted to other processors with the same active_list as the processor
where they started. In the bitswap version of the algorithm, data points are shuffled
more globally, to processors that initially contained a different active_list. This means
that in order to compute twiddle factors correctly, the active_list must also be bit-
swapped. Furthermore, if any processor wants to do a bitswap, we must force all
processors to participate, even if they are not inside an active group. This is to
ensure that the bitswaps define permutations of the data set. We use the word "all"
to emphasize that no processor is allowed to be idle, and the word "any" to test if a
parallel logical expression is true for at least one processor. This leads to the bitswap
variant of the superparallel FFT.

ALGORITHM 4.
# Bitswap version of superparallel FFT code
for i- k-1,0,-I # loop over all bits from left to right

if any (iq active_group) then
all

bitswap(i, x)
bitswap(i,active_list)

end all
endif
if (q active_group) then, := ((0, _.,...))
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x((O, g_:,...)) := tmp + x((1, g-2,...))
x((1, g-2,...)) := tP x((1, g-2,...))
tw := twiddle_factor (i, active_group,g)
z((l, g-2,.- .)) := tw * z((l, g-2,...))

endi
endor

Note that the function twiddle_factor is the same as in the basic version of the algo-
rithm.

In the computational part, this code computes two points in the same time that
it takes the basic version to compute one point. If we neglect the bitswap of the
active_list, each processor swaps one number for each i. Since each processor is com-
puting twice as many numbers as in the basic version, we have also reduced the
communication time by a factor of two. In practice, the code is divided into two
parts, a symbolic preprocessing stage where the twiddle fctors re computed, and a
numerical phase where the actual transforms are done. In many situations the same
geometries are used for many different transforms. Then the symbolic computation
can be done once, and the cost of bitswapping the active_list and computing tw can be
neglected. Thus, on a SIMD machine, the bitswap version o.f the superparallel FFT
is twice as fast as the basic version.

The main drawback of the bitswap version is the more complicated scrambling of
the results. As we shall see in 4, the bitswap version leaves the data in a much more
disordered state than the basic version. For many applications, it is not necessary
to unscramble the data. It suffices to know the identities of the results in each pro-
cessor, and this is straightforward to compute. In other applications it is, however,
desirable to unscramble the results. As we shall see in 4, efficient algorithms exist
for unscrambling the results of both the basic and the bitswap version.

3. Defining problems and checking consistency. Formally, the only restric-
tion of the possible active_lists is that if a processor wants to participate in a multipli-
cation by F2, then its partner should want to do the same. However, this requirement
alone allows some rather pathological cases, such as a two-dimensional field of num-
bers where every column wants to first do an FFT in the y-direction, but only the
first column wants to afterwards do a transform in the x-direction as well. We cannot
see any practical use for such a possibility. For debugging, it is useful to have the pos-
sibility of checking the activelists for inconsistencies of this kind. In such situations,
the unscrambling algorithms in the next section will give unpredictable results. We
therefore want stricter rules for the possible active_lists. The following rule is general
enough to allow all possible interesting transforms.

DEFINITION 1 (consistent active_lists). Given a point with active_list al, the set
of bits not in any of the active groups is called inactive. The collection of all the
active_lists is consistent if all points with the same values in the inactive bits also
share the same active_list al.

It is a straightforward matter to check for consistency in this sense: simply mimic
the FFT code, but instead of performing the butterfly and twiddle multiplications,
check whether or not the active_lists of the neighbors are equal.

DEFINITION 2. A group of points sharing the same active_list and the same values
for the inactive bits is called an FFT chunk. The values of the inactive bits define the
site of the chunk.

The number of points in a chunk is given as 2k, where k is the total number of
active bits (bits inside the active groups).
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We will now see some examples showing that the active_lists can easily be set up
to solve rather complicated problems.

Example 2. Given a two-dimensional field of 512 x 256 points, suppose we want
to divide the field into 8 8 square tiles, each of size 64 32, and perform two-
dimensional FFTs on each tile. This is simply done by giving each point the active
list

and calling the FFT routine.

(13,8) }active_list
(4, O)

This example also easily extends to the case where the domain is divided into
rectangles of different sizes (as long as the sizes are powers of 2). For example, if we
want to merge two tiles neighboring each other in the x-direction into one tile, we
simply modify the active lists of these points to

active_list
(5, 0)

Example 3. Suppose we have a 64 x 64 x 64 three-dimensional grid and we want
to do an FFT on each two-dimensional y- z plane. This is a practical problem arising
from using spectral methods to simulate flow between plates. This problem is defined
by giving each point the active list

active_list
(11, 6)

Compared to the more standard approach (for sequential computers) of solving
these problems by looping over the independent FFTs, calling one-dimensional FFTs,
transposing the data, looping and calling one-dimensional FFTs again, and finally
transposing the matrix again, it is amazing how easily the superparallel FFT can be
called to solve relatively complicated problems.

Now suppose we have a collection of different-sized problems, and that we are free
to choose their initial positions as we like. We will show that it is always possible to
solve these problems in an address space of size the smallest power of 2 larger than or
equal to the sum of the sizes of all the subproblems. If there are no geometric relations
between the different chunks, it is natural to store each chunk in a contiguous part of
the address space. We are, however, not always allowed to pack the different chunks
tightly together. Since the lowest address in a chunk is obtained by setting all the
active bits to 0, the following .alignment requirement must be satisfied.

LEMMA 3.1 (memory alignment). An FFT chunk, with a total of k active bits,
stored contiguously in the address space, must start in a memory location dividing 2k,
i.e., the right-most k bits are zero.

If the alignment requirement is fulfilled, then the address succeeding the chunk
must also divide 2k. We conclude with the following theorem.

THEOREM 3.2. If different-sized chunks are ordered in decreasing order according
to their size, they can be stacked together contiguously with no interleave in the address
space.

COROLLARY 3.3. Less than 50 percent of the address space is wasted due to the
memory alignment requirement.



SUPERPARALLEL FFTS 359

Proof. The memory space needed is the smallest power of 2 containing all sub-
problems. D

Example 4. Suppose we have three one-dimensional FFTs of lengths 2, 4, and 8.
Then we need four bits to define the problems:

chunk 1:
site q3 0
active_list { (2, O) }

chunk 2:
site q3 1; q2 0
active_list { (I,0) }

chunk 3:
site q3 1; q2 1;
active_list {(0,0)}

ql --0

The two points (1, 1, 1, 0) and (1, 1, 1, 1) are left unused.

4. Unscrambling the results. For many applications it is not necessary to un-
scramble the results. A call to an FFT is often followed with a call to an inverse FFT,
and in between, the Fourier coefficients are often just multiplied by some diagonal
matrix. If one has a pair of transforms, the FFT from ordered to scrambled, and the
inverse working backwards from scrambled to unscrambled, then all one usually needs
to know is the identities of each Fourier coefficient. After performing the (symbolic)
FFT, this can easily be computed in parallel by computing backwards, using the in-
formation contained in the activelists of the results and the information about which
bits have been bitswapped.

Example 5. In a point (g11,glo,... ,go) the active_list is as in example (1) after
the FFT (with bitswaps). Without bitswaps the point would contain the result as
in (6). Suppose all bits have been swapped in the FFT; then the point contains the
number

B:-I"" B’B’&((g, go, gg, gh, g6, gT, gs, g4, g3, go, gl, g2))
c((g2, gll, glo, gg, gb, g6, gT, gs, g4, g3, go, gi)).

Note that a sequence of bitswaps produces an inverse perfect shuffle.
There are also, however, many applications where it is necessary to obtain the

the results in unscrambled order (see, e.g., [3] and [16]). In this section we will derive
efficient unscrambling algorithms. To study permutation algorithms it is necessary
to assume a model for the computer interconnection network. A particularly useful
network is the Bene network [2], [13], [19]. This is one of the simplest networks
capable of performing any permutation of 2k objects. A permutation algorithm for a
Bene network can easily be transformed into efficient permutation algorithms for a
variety of different networks (see the comments below, and for more details, [17]).

A (masked) bit-exchange permutation of bit i is given by

x((qk_, q:_, qi, qo)) "- x((q:_, q:_, qi X, qo)),

where x(q) E {0, 1} is a Boolean function. We require this to be a permutation. This
is equivalent to the condition

x((qk-, q:-2, q, qo)) x((q-., q:-2, q * 1,..., qo)),
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i.e., X is a function independent of the value of bit qi. The Bene network on 2k data
points performs a series of 2k- 1 bit exchanges, where the bits are exchanged in the
fixed order

qk-l, qk-2, q, qo, ql, qk-2, qk-l.

By choosing the functions Xi (i.e., setting the switches in the network) in the right
manner, it is known that the Bene network can perform any permutation of its 2k

inputs. The major problem is the computation of the functions Xi. This is called the
B-setting problem. Given a B-setting for a permutation, it is straightforward to solve
permutation problems for a variety of different interconnection topologies (see [17] for
details).

The "many points per processor problem." Given a network with p -24 pro-
cessors, d < k, where there are 2m, m k- d, data points per processor, suppose we
know how to perform a general permutation of data spread by one point per proces-
sor. For example, on the MasPar the cheapest way to perform one-point-per-processor
permutations is to call a "router" routine (black box permutation algorithm). The
problem is: How few router calls are necessary to perform a given permutation of the
complete data set? If the address bits are ordered so that the left-most m bits are
memory bits, we see that the sequence of exchanges

qk-1, qk-m

only involves a local reordering of the data. The sequence

qk-m-l ql qo ql , qk-m-1

can be collapsed into one permutation and performed by 2m calls to the router (one
for each memory location). Finally the sequence

qk-m qk-1

is again only a local reordering. Thus a B-setting provides us with an algorithm that
can perform a general permutation by only 2m router calls. For many permutations
it is impossible to do this with fewer calls.

Shuffle-exchange networks [25] can directly perform the same permutations as a
Bene network, by running it forward k steps and backward k- 1 steps. Alternatively,
the B-settings can be transformed into algorithms for performing the permutation in
3k- 1 forward steps [19], or by a somewhat more complex algorithm, in 3k-3 forward
steps [9].

Butterfly and omega networks are equivalent to k forward loops in a shuffle-
exchange network. Thus the comments above apply to computers based on these
networks.

Hypercubes are extensions of Bene networks, where any of the k bits can be
exchanged in each step. Thus a hypercube network can emulate a Bene network
simply by exchanging the bits in a fixed order. This will, however, only use one out
of the possible k wires extending from each processor in each step. The main problem
is how to efficiently use the full bandwidth of the network. In the case of 2m points
per processor, the technique above splits the permutation task into 2m independent
tasks. The full bandwidth of the network can be utilized by running k of these tasks
in parallel over different wires. This can be done by cyclically shifting the order
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of the bits in each independent permutation, i.e., k different permutations axe done
simultaneously by exchanging the bits in the following order:

Task 0:

Task 1-

Task 2:

Task k- 1:

qk-1 qk-2 ql qo ql qk-1

qk-2 qk-3 qo qk-1 qo qk-2

qk-3 qk-4 qk-1 qk-2 qk-1 qk-3

qo qk- q2 q q2 qo

If there is only one point per processor, this technique may be used, provided that
each point is associated with so much data that it can be split into k different parts.
Each part can then be permuted on a different set of wires.

Two-dimensional mesh-connected computers. There are several ways to emulate
a Bene network on a two-dimensional mesh. These schemes involve O(N/2) time for
performing permutations. See [12] for special tricks related to the MasPar hardware.

Multistage crossbar networks, where each crossbar performs a general permuta-
tion of 28 wires, can be programmed by collapsing s consecutive bit exchanges into
general permutations of 28 points. For example, the hardware underlying the MasPar
"router" construct is a three-stage crossbar. A B-setting of a permutation can, in
principle, be used to increase the speed of this kind of hardware. However, we have
not tried this approach for the MasPar, since there is no high-level language access
to programming the router hardware.

Let N 2k. The best known algorithms for solving the general B-setting prob-
lem takes O(Nlog(N)) time on a sequential computer, O(N1/2) time on a mesh-
connected parallel computer with N1/2x N/2 processors, O(klog3(N)) time on a
hypercube-connected computer with O(Nl+l/k) processors where 1 _< k _< log(N),
and O(log2(N)) time on an N-processor shared-memory computer [19]. Thus, unless
the FFTs are to be performed many times with the same geometries, the general
B-setting algorithms will be too expensive compared to the time of running the nu-
merical parts of the FFTs. The high cost of the general B-setting algorithms has
led to a search for classes of permutations that can be B-set efficiently on a parallel
computer (i.e., where solving the B-setting problem takes no more time than actually
performing the permutation). See [17], [13], [19], and [10] for fast B-setting algorithms.
Unscrambling the results of the basic superparallel FFT (Algorithm 1) belongs to the
classes of permutations that can be solved by the algorithms in these papers. For the
more difficult problem of unscrambling the results of the bitswap version (Algorithm
4) these algorithms will generally fail, and a new algorithm is needed.

Before attacking this general unscrambling problem, we study two simpler prob-
lems:

1. Finding B-settings for unscrambling the results of the basic version of the
superparallel FFT.

2. Finding B-settings for a product of bitswap permutations.
We define the shorthand notation

qi :- qi @ X

to denote the permutation

x((...,qi,...)) x((...,qi + X,...)).
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A commonly used basic permutation is the xor of two different bits

qi :- qi @ qj.

As long as i j, this defines a permutation. (When i j it is not a permutation,
since qi qi 0--two different numbers are collapsed into a single memory address.)

Let i denote the original values of the bits. A bit reversal, e.g.,

x((q3, q2, q1, qo)) -* x((qo, qi, q2, q3)),

can be performed by the following B-setting:

ALGORITHM 5. UNSCRAMBLING BIT-REVERSED DATA (example with four bits).

Note that when there is an odd number of bits, there will be a bit in the middle
that is left unchanged. This algorithm extends readily to the more general case where
several active groups are to be bit reversed. Even the situation where there are several
different FFT chunks with different active groups to be bit reversed can be handled by
this method, since each chunk is to be unscrambled within its own site, and since the
above method only modifies the active bits of each chunk, i.e., there is no interference
between different chunks. Thus this process solves the unscrambling problem for the
basic algorithm.

Now to the problem of finding a B-setting for a product of bitswaps: For simplicity,
we assume that all the bits are to be bit-swapped. (If some of the bits should not be
bit-swapped, we simply ignore them and proceed as below.)

As noted in Example 5, a product of bitswaps amounts to doing an inverse perfect
shuffle. Let

then

k-1

@ @ @qo ql qk- 1;

i=0

k-1

i=0

is a permutation. By performing this permutation yclically, one obtains the perfect
shuffle.
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ALGORITHM 6. PERFECT SHUFFLE PERMUTATION.
k-1

qk- :-- i=o
k-1

qk-2 :-- ii=0
k-1

qk-3 :-- [i=O

k-X
qi i=o q

k-2 k-1q i=o (l @ (=o q qk-1
k-3 k-1

qJ := (=o qi ..... qJ+

q := i=o qi q2
k-1qo := =0 q ql

on return only qk-1 needs correction
k-1

qk- := (=0 q 0
Now we are prepared to study the general problem of unscrambling the results

of the bitswap version of the superparallel FFT. The permutation to be performed is
a product of a local bit reversal of each active group (performed differently for each
chunk), and a global inverse perfect shuffle of all the chunks. In a given chunk, there
are some bits that can be exchanged without changing the site of the chunk. There
are other bits that are more critical, since modifying them will change the site of the
chunk. We call these bits site defining. A modification of the site-defining bits must
be coordinated with all the other chunks where the bits are site defining. Note that
the site-defining bits may change during the course of the algorithm. At some stage
even a linear combination of all the bits in a chunk may be site defining.

Consider an example where the address space consists of five bits. Given a chunk
with qa 1, q0 0, and active group (3, 1), Table 1 shows the site-defining bits
during an inverse perfect shuffle.

TABLE 1

Step Permutation Site (after permutation)

0 none q4 1; qo --0
1 q4 :: o qi i=o qi 1; qo --0

2 q3 :-- :J=o q{ ,4 q3 1; qo 0

3 q2 := ,,,P,_ 0 qi 3 q3 1; qo 0

4 ql :: =0 qi 2 q3 1; qo 0

5 q0 := =:=0 qi ql q3 1; ai=0 qi 0

6 q4 :=
i=o qi qo q3 1; q4 0

Steps 1, 2, 5, and 6 are critical, and since they change the site, they must be
coordinated with the other chunks. Let the motion defined in (9) be denoted the
collective motion. The idea of the unscrambling algorithm is to force all the chunks
to follow the collective motion when they are in a critical section. Outside critical
sections we impose a local motion within a chunk in such a manner that the active
groups finally become bit reversed.

There is a critical section two bits long when entering an active group (the last
bit outside, and the first bit inside, the active group), and one two bits long when
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exiting (the two bits succeeding the active group). Thus the movement in the two
bits following the active group is forced according to the collective motion. The main
problem is to arrange the local movement in the active group such that the two
succeeding bits come out correctly when they participate in the collective motion.

The following algorithm solves this problem; thus it solves the problem of un-
scrambling the bitswap version of the superparallel FFT. For proof of correctness of
this algorithm, see [15].

ALGORITHM 7. UNSCRAMBLING OF BITSWAP FFT RESULTS (local motion pass-
ing an active group (r, s)). The chunk wants to perform the motion:

(..., qr+l, qr, q-l,...,..., qs, qs-,...,...)

(...,..., q+, q, q+,..., q-, q, q-l,...)

1. The bits qr+, q, q,- and qs-2 are critical sections. They follow the collective
motion:

k-1

qj := qi.
i----0

2. The bits qr-1, qr-2,..., q8 are to be bit reversed. This is done as in Algorithm
5, with the following modifications:

On the way "down," the bits qr-1 and q8 are exchanged according to:

k-1
qr-1 :-- ii=O qi @ qs,

k-1qs :-- =0 q @ qr-1.

On return, the bits q, and q-I are corrected to their final values ac-
cording to:

Pq "= (i=8_ qi where p L(r + 1,
qr-1 :- qr-1 qs-1.

The computation of B-settings for the unscrambling of bitswap FFT results takes
O(p) parallel steps, where p is the number of bits that are active for some of the
processors.

We illustrate the algorithm with an example.
Example 6. r 9; s 2. The symmetry point is p 5. The motion of this chunk

passing the active group is done as:

k-1
q9 :-- i=0 q 0

k-1qs := =0 q @ q2 2 9
q7 := q7 q3 3 7
q6 := q6 @ q4

q5 :-- q5 q5

qa := qt @ q6

q3 :-- q3 ( qT’
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k-1
q2 := (i=o qiqs =qs@q6@qTq9

k-1
ql := i=O q q9

k-1qo "= i=O q q

on return the bits are corrected

q2 := qx q2 q3 q4 q8

q6 := q6 qa qa
q7 := q7 q3 3
qs := qs q =2

In this example r- s is an odd integer, and the bit q5 is left invariant. When
r- s is even the algorithm is similar, but without an invariant bit in the middle.

5. Implementations on MasPar. MasPar is a SIMD machine with up to
16,384 processors arranged in a two-dimensional array, with toroidal wraparound on
the edges. The machine used in this study is a 64 x 128 8192-processor machine
at the University of Bergen, Norway. There are essentially three different ways of
permuting a data set spread by one element per processor:

1. The xnet. This is a mechanism for sending the data set a given distance
d in one of the eight directions: north, northwest, west, and so on. There are no
restrictions on the distance d. This mechanism is very fast for short distances, but
the time grows proportionally with d; thus long xnets are costly.

2. Piped xnet. This is a fast version of xnet, where the time is (almost) indepen-
dent on d. It can, however, only be used for sparse data sets, where all the processors
between the senders and the receivers are idle. It is very useful for computations of
inner products and log sums, but not for our FFTs.

3. The router. This is a general (black box) construct for performing arbitrary
permutations of the data set (spread by one element per processor). The underlying
hardware is a three-stage crossbar switch. The time for a router call depends on the
permutation, but is comparable to an xnet of the longest distance (64). For general
permutations it is definitely the cheapest mechanism.

A more detailed general description of the MasPar MP-1 computer can be found
in [4], [5], and [20].

The MasPar implementation of the superparallel FFTs is based on the bitswap
version of the algorithm. For more details on its use and performance, see [18]. The
code is divided into three parts: a symbolic preprocessing phase, the actual transform
phase, and the scrambling/unscrambling phase. The symbolic phase computes the
twiddle factors and schedules the unscrambling of the results. If the user only wants
the results in scrambled order, it computes the necessary pointers for referencing
the Fourier coefficients. The symbolic phase needs to be called only once for each
configuration of geometries, and the same data is used both for the forward and the
inverse FFTs.

In Table 2, we show the elapsed time for various combinations of transforms
having combined lengths of 16,384 and 262,144, using 32-bit arithmetic. For simplic-
ity, all transforms have the same length, but we emphasize that any combination of
transforms can be processed. These timings exclude the time for the symbolic pre-
processing. The present version of the symbolic part of the code is not optimized,
and uses between 5 and 10 times as much time as the actual transforms. There is,
however, substantial room for improvement of this part of the code.
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TABLE 2
Time in milliseconds and computational speed for FFT algorithm (8192-processor MP-1).

Length #Transforms

Tot. no. of points: 16384
8 2048
64 256
512 32
8192 2
16384 1

Tot. no. of points: 262144
8 32768

8192 32
262144 1

Time (ms) Mflops
without unscrambling

1.1 229
2.5 198
4.0 185
5.4 199
6.1 187

Time (ms) Mflops
with unscrambling

2.2 108
3.5 139
5.4 137
7.2 147
8.1 141

14.5 270
84 203
124 191

33.8 117
105 162
175 135

The speed of transforms without unscrambling is, to a moderate degree, depen-
dent on the geometries; when a lot of small transforms are processed, the communi-
cation distances are shorter and the speed somewhat higher than for long transforms.
The cost of the unscrambling is dominated by the cost of calling the router. This
is done once for every set of 8192 points, and takes between 0.5 and 1 millisecond
per call (with some special tricks employed to increase the speed). Thus the cost of
unscrambling grows linearly in N. This explains the phenomenon that, whereas short
transforms are faster than long without unscrambling, long transforms are faster than
short with unscrambling.
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NUMERICAL EXPERIENCE WITH A CLASS OF ALGORITHMS
FOR NONLINEAR OPTIMIZATION USING INEXACT FUNCTION

AND GRADIENT INFORMATION*

RICHARD G. CARTERt
Abstract. For optimization problems associated with engineering design, parameter estima-

tion, image reconstruction, and other optimization/simulation applications, low accuracy function
and gradient values are frequently much less expensive to obtain than high accuracy values. The
computational performance of trust region methods for nonlinear optimization is investigated for
cases when high accuracy evaluations are unavailable or prohibitively expensive, and earlier theoret-
ical predictions that such methods are convergent even with relative gradient errors of 0.5 or more is
confirmed. The proper choice of the amount of accuracy to use in function and gradient evaluations
can result in orders-of-magnitude savings in computational cost.

Key words, unconstrained optimization, trust region methods, inexact function evaluations,
inexact gradients, variable-accuracy simulations
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1. Introduction. Consider the nonlinear optimization problem

minimize f(x),

where the function f has gradient Vf, with Vf assumed to be Lipschitz continuous.
We are concerned with numerically solving this problem when function and gradient
values are not known exactly.

Problems of this nature frequently occur in engineering design, parameter estima-
tion, and many other situations. Consider, for example, the design of a heat sink for
transferring excess heat away from an electronic component. Given the geometry of
the sink (expressed, perhaps, as the spacing, thickness, and length of each cooling fin)
and the heat flux from the component, we can mathematically model the temperature
distribution in the sink and the surrounding medium by a system of partial differ-
ential equations (PDEs). If we wish to find the design geometry that minimizes the
time-averaged temperature of the component, we must numerically solve this system
of PDEs at each iteration of the optimization algorithm to determine an approximate
value for the objective function f. Furthermore, a value for the gradient of f must be
computed at each iteration through directly solving a different system of PDEs (sen-
sitivity or adjoint equations [18]), through successively perturbing each component of
x and recomputing f to obtain a finite difference approximation, or through apply-
ing an automatic differentiation package to the computations used to approximate f.
Clearly, exact function and gradient values are not attainable for such a problem, and
the computational expense of any approximation at a given iteration increases very
rapidly as the required accuracy is increased. Let h be the discretization mesh size
selected and md the number of spatial dimensions in the PDE, so that the number of
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elements in the discretization is given by k O((1/h)md). If the order of the solution
method is given by error O(hm), and the computational expense for the linear
algebra associated with the problem is CPU O(km), we have

(2) CPV/iteration O (error-)
for mdm/mo. Although this estimate is admittedly crude, it seems to hold
for many applications and indicates that computational expense per iteration can
rise extremely rapidly as more accurate solutions are required. In our example, if a
two-dimensional model of the sink is being used with a direct linear algebra solver
and an O(h2) solution method, we would have md 2, m 3, m0 2; hence
would be 3 and a thousand-fold increase in computational time would be needed

to increase the accuracy of any given approximation by one digit. Methods using
iterative linear algebra solvers and problems involving systems of ordinary differential
equations (ODEs) rather than PDEs tend to be more benign with much smaller values
of/ (1/4 to 0 for most ODE applications), but computational expense still increases
geometrically with accuracy. Similar results often hold for stochastic, particle-based
simulation methods.

Since low accuracy function and gradient evaluations can be orders of magnitude
less expensive than high accuracy evaluations, it behooves us to consider optimization
algorithms that do not require the maximum possible accuracy at each iteration. Trust
region methods are a natural candidate for investigation because of their reputation for
robustness and efficiency. A number of authors have established global convergence
results for trust region methods using inexact gradients [13], [4], [19], and inexact
function evaluations have also been treated [3]. In this paper, we investigate the
numerical behavior of the algorithms presented in [4] and [3] in order to answer the
following questions.

1. How much error can we allow in our evaluations before the algorithm fails?
Does this level agree with theoretical predictions?

2. The performance of the algorithm will certainly decrease when less accurate
evaluations are used. How fast does performance degrade and how problem-dependent
is the rate of degradation?

3. How does this lessened performance balance with the greatly decreased com-
putational cost associated with less accurate evaluations?

4. How well do the techniques suggested in [3] for estimating and controlling
gradient error work in practice?
The remainder of this paper is organized as follows.

In 2, we present the trust region algorithm and review the conditions on per-
missible levels of error established in [3]. These conditions depend on some of the
parameters of the trust region method but are remarkably relaxed: typically, relative
errors in the gradient of 0.5 or more are permissible. In 3, we examine the perfor-
mance of the algorithm on the set of standard test problems from Mor, Garbow,
and Hillstrom [14] when synthetically generated errors are added to the gradients at
each iteration. Our results confirm the theoretical predictions for the algorithm, and
we note that the number of iterations required by the algorithm tends to increase
exponentially with the relative error induced in the gradient. When balanced against
(2), however, we find that allowing low accuracy evaluations is still attractive. In
4, we examine the performance of the algorithm on a multidimensional numerical
integration problem in order to confirm our results without resorting to synthetically
induced errors or invoking (2). Both direct and Monte Carlo variable-accuracy in-
tegration techniques are demonstrated in this example. In 5 we solve a parameter
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identification problem found in the literature and verify a technique for estimating
and controlling error when the gradient is approximated by finite differences. Section
6 summarizes our results.

2. Trust region algorithms and permissible error in function and gra-
dient evaluations. The class of trust region methods we consider for solving (1)
each generate a sequence of iterates{xk } by approximately solving a sequence of con-
strained quadratic model problems. Each local quadratic model is of the form

(3) k (Xk + 8) fk T gs T 1/2sTSks
where f is an approximation to f(xk), gk is an approximation to the gradient Vf(xk),
and the symmetric matrix Bk E nxn is an approximation to the Hessian matrix
V2f(xk). At each iteration, we take xk+l Xk + Sk, where sk is an approximate
solution to the trust region subproblem

(4) minimizek(xk + s) subject to IIDII Ak,

The positive scalar Ak is known as the trust radius, and the nonsingular matrix

Dk N is the scaling or preconditioning matrix (often taken to be a fixed diagonal
matrix). At each iteration, Ak is adjusted so that the ball IIDk skl] <_ Ak represents
the region over which we expect (3) to adequately model the function f.

A number of techniques are available for computing an approximate solution to
(4). An excellent survey of the main classes of these methods can be found in [13].
In most of our computations, we chose to use an optimal locally constrained (OLC)
technique [7]. Similarly, a number of techniques can be used to generate the Hessian
approximation {Bk}, but we selected the popular BFGS secant update

(5) Bk+ Bk + (gk+l gk) (gk+l gk)T BksksB[
(gk+l gk)Tsk 8Bksk

provided that

(gk+l gk)TSk
_

10-6(gk+1 gk)T(gk+ gk),

and Bk+l Bk otherwise. Since gk is only an approximation to Vf(Xk), [4] and [3]
suggest that upper bounds of the form

or

(8) T T
gk Bkgk <_ cgk g

be directly enforced for some appropriately large c.
using the replacement operation

This could be easily done by

(9) { cl}Bk "= min 1,11Bkll Bk

at each iteration. Although bounds such as (7) and (8) are needed to establish con-
vergence results, in practice we found (9) unnecessary.
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A simple version demonstrating the salient features of the trust region approach
is as follows.

ALGORITHM 1. An implementation of the trust region method.
Let the constants 0 < }1 < r/2 < }3 1 be prespecified. Select an initial guess
x0 E N and an initial trust radius Zio. Compute f0 and go, and compute or initialize
B0.

For k 0, 1,... until "convergence" do:
(a) Determine an approximate solution sk to problem (4).
(b) Calculate the predicted function reduction

(10) predk(sk T-g s 1/2sBs
and the computed function reduction

(11) credk(Sk) fk fk+.
If necessary, recompute fk+ and/or fk to greater accuracy.

(c) Compute the ratio

credk(Sk)(12) Pk pred(s)"

(d) If p < , then the step is unacceptable. Set Ak := 0Ak and return to (a).
(e) If Yl _< Pk < r]2, then set Ak+ 1/2Ak,

Else if r]3 < Pk <_ (2- r/3), then set Ak+l 2Ak,
Else set

(f) Set xk+ xk + Sk, compute gk+l, and compute or update Bk+l.
End loop
End algorithm

Typical values for the step acceptance/trust radius update parameters are r]l
0.00l, 2 0.1, and 3 0.75. Note that no step is accepted unless Pk

_
r/l, and

that the trust radius is never reduced unless Pk

_
/2. Further note that gk is only

computed once per major iteration.
Two conditions are required of the approximate function values. Define

(13) aredk(sk) f(x)- f(xk / Sk).

We then require

(14) laredk(sk) credk(sk)l <_ I’, predk(sk)

and

(15) laredk(sk)- credk(sk)l <_ I,2 Icredk(sk)l

for some constants I, and f,2. A stronger variation of these conditions that is
typically more practical is

(16) + < predk(sk)

and

(7) If+ f(x+)l / f(x)I _< Cf,u Icred(s)l.
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Assuming error estimates are available for Ilk- .f(xk)l, [3] suggests that (16) and (17)
be enforced by using the following procedure in place of step (b) of Algorithm 1.

PROCEDURE 2.
Let a (0, 1) be prespecified. Given Xk, Sk, k, and an estimate for Ilk f(xk)l, do
the following.

(a) Calculate predk(sk and emax CLpredk(s).
(b) If necessary, recompute fk to greater accuracy so that Ilk- f(Xk)l <_ C emax.
(c) Compute f+ so that Ifk+ f(Xk+l)l

_
(1 -c)emax.

(d) Compute credk(sk). If (17) is satisfied, then exit procedure, else reduce emax
and return to (b).

End procedure

The permissible level of error in the gradient evaluations can be characterized in
two different ways. The preferable condition is

(18) IIDlekll < g
]]D-Igkll

for some constant a, with

(19) ek gk Vf(x).

Under appropriate assumptions on f and (Dk}, (18) leads to the strong global conver-
gence result limk_ Ilgkll- limk--.o IIVf(xk)ll -0 [4, Whms. 3.3 and 4.1], [3, Whm.
3.4]. The weaker convergence result liminfk_ ]]gkl] 0 can be obtained [3, Tam.
3.3] using the condition

(20) (D-lek)T (D-gk) < g.
(D;gk)T (D;lgk)

If each scaling matrix Dk is taken to be the identity, (18) and (20) become simply

I1  11
and

Finally, we must specify the allowed values for the error bounds I,1,I,2, and
These values are given by the inequalities

(23) g -- f,1 < 1 Y2

and

(24) 0 _< I,2 < 1,

with Ca _> 0 and , _> 0. These limits are remarkably generous. If r]2 (the parameter
controlling trust radius reduction) is 0.1, we could select , 0.05, ,2 0.99, and

Ca 0.8--less than one significant bit of accuracy in the components of the gradient
approximation.
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3. Algorithm performance on Mor-Garbow-Hillstrom test problems
with synthetically induced errors. The Mor-Garbow-Hillstrom test set [14] con-
tains eighteen"typical" optimization problems. These problems are all algebraically
defined, and thus function and gradient values are both inexpensive to compute and
available to high accuracy. In order to test the effects of gradient error, we synthet-
ically induced a random error into each gradient computed. More specifically, we
computed a vector w with each component selected from a uniform distribution on
[-1,1] and then set gk Vf(xk) + ek with

(25)

where m is the smallest positive integer for which (21) is satisfied. For our first set of
tests no errors were induced in the computation of function values.

For our optimization code, we used an implementation of the Dennis-Schnabel
routines [5] using an "optimal locally constrained" step computation procedure (see [5,
pp. 134-139] for details). The model Hessians Bk were computed using the standard
BFGS procedure (5) with the normal test to ensure positive definiteness (6). We
emphasize that no special techniques were used to account for gradient error when
computing Bk, nor were safeguards such as (7), (8), or (9) enforced. The value for
/2 in the optimization code was 0.1, so that the theory in [4] and [3] suggests an
upper limit of 0.9 for Cg. The constants yl and v/3 were selected to be 0.001 and 0.8,
respectively. The Dennis-Schnabel "relative gradient" stopping criterion was used:

](Vf(Xk)) max((xk)i, 1}1 <_ _1/3m(26) max
i<i<n max{Ifk], l }

(where em is machine epsilon and (y)i denotes the ith component of a vector y). The
"true" gradient is used in (26) rather than the approximate gradient gk to eliminate
the possibility that ek might also affect the convergence tests in our trials. A fairly
stringent x convergence test was also used:

(27) IIkllo _2/3m
where (k)i------I(s)l/max{(x), 1}.

A run was also flagged as a failure if more than eight subiterations were attempted
at any iteration without finding an acceptable new iterate.

For each problem in the test set, we considered 20 different values of g ranging
from 0.0 to 0.95. For each value of , we ran the algorithm with a number of
different initializations for the random number generator used to compute ek values,
and tabulated the minimum, median, and maximum number of iterations required to
converge to a local minimizer. 1 In all, over 5000 test cases were run on a network of
SUN 3/50 workstations in FORTRAN 77 double precision.

For the majority of our problems, the failure test was rarely triggered until error
levels reached 80 percent, and did not become prevalent until error levels reached 90
percent.2 This corresponds well with the value predicted by theory.

Figures 1-5 show plots of our results for selected problems. Let K(a) denote
the number of iterations required for convergence (using stopping criterion (26) and
(27)) as a function of relative gradient error. The vertical axis in each plot represents

Depending on the computational expense associated with a problem and the observed variability
of results, between 5 and 100 test cases were run for each value of

2 An exception was the Beale function, which began to trigger the failure test at 50 percent error.
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the natural log of K(g), while the three traces in each plot represent the observed
minimum, median, and maximum values.
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FIG. 1. Number o] iterations versus g for the Watson test ]unction.

Figures 1-3 are typical of most of our test cases, in which performance degrades
exponentially:

(28) K(g) K(O)exp(bg),

with observed decay coefficients b ranging from roughly 2 to 6 for the various problems.
Figures 4 and 5 represent anomalous cases where ln(g(g)) has significant variation
from linearity at small and large values of Cg.

Although the exponential performance degradation given by (28) is a telling argu-
ment against using low accuracy gradients if high accuracy evaluations are obtainable
without greatly increased computational expense, low accuracy evaluations are still
attractive in cases where the computational expense increases rapidly with increasing
accuracy. Suppose, for instance, that

(29) CPU/iteration .. c2-l

for some constants C2 and 1. The total computational expense for solving a given
problem will then be proportional to lK(a). Figures 6-10 show the predicted
total computational cost of the median curves for K(a) in Figs. 1-5 for the values, 1, and 2 (with each curve normalized so that the minimum value is 1.0).

Note that each curve of total computational cost increases very rapidly as Ca 0
or Ca 1, and has a relatively large, flat minima. This behavior holds for both the
"typical" cases (Figs. 6-8) and the anomalous cases (Figs. 9 and 10). Interestingly,
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FIG. 2. Number of iterations versus a for the Brown and Dennis test function.
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FIG. 3. Number of iterations versus a for the extended Powell singular test function.
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combining the idealizations (28) and (29) into

(30) CPU g(O)c2;texp(bCg)
yields the theoretical "best" value

q
Using the observed "typical" value b- 4 yields the rule-of-thumbchoice

(32) q ,
which worked quite well for all of our test problems.

For values of 6 < 0.75, the x convergence test (27) was rarely triggered. As Cg
approached 1 -/2, an increasing ratio of the trials terminated on (27) rather than
the relative gradient test (26). These "solutions" are somewhat suspect, so iteration
count data in the preceding figures at the highest error levels (0.75 up) should be
considered an underestimate.

A number of variations on these numerical tests were also tried. Rather than
(29), we also considered the idealization

(33) CPU/iteration c2- + c3,

where c3 represents a fixed "overhead" cost per iteration. For moderate values of c3,
the character of the overall computational cost behavior remained unchanged. Errors
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in function values were also considered with Cg fixed at 0.1. The algorithm proved to be
quite insensitive to these errors for f,1 < 0.5. Indeed, the algorithm works in practice
even if f,1 > 1 provided the average value of laredk(sk) -credk(sk)l / predk(s is
sufficiently less than 1- Y2- Cg. As pointed out in [3], this is a very reasonable result
since function values are only used to update the trust radii, and a mistake at any
given iteration will not cause the algorithm to fail.

4. Algorithm performance on problems involving numerical integra-
tion in several dimensions. The test problems of the previous section are well
known and widely used by optimization researchers and software developers, and be-
cause they are algebraically defined, we were able to run an enormous number of test
cases to examine the ranges of possible behavior in the presence of errors. It should
be remembered, however, that our interpretation of these results rests both on the
character of the synthetic noise added to each gradient evaluation and on idealization
(29). In order to verify our results, we also tested our algorithm on several other
problems.

Let (y)i denote the ith component of a vector y, and define

(34) hi(t)= exp (-i= (t--A) and h2(t,x)=cos(-).
Our problem is to find x to match the surfaces h and h2 over the box
(t)i _< 1, i 1,..., n} in the least squares sense. That is, we wish to minimize

(35) f(x) f (h2(t, x) h (t))2dt.

The components of the gradient of f are simply

=1 - dr.

For the purpose of demonstration, we will assume that n is small and calculate f and
Vf separately by numerical integrations using (a) a recursive Simpson’s rule with
uniform mesh,3 and (b) a simple stochastic scheme. The starting point x [1 1...1]T
is used in all of our runs, which were executed on an IBM RS-6000 in double precision
FORTRAN 77.

In practice, values for f (and similarly the components of Vf) can be computed to
any desired accuracy by successively decreasing the stepsize h in Simpson’s rule. For
instance, halving the stepsize for sufficiently small h will result in decreasing the error

h/2by a factor of roughly 16. Thus we can approximate Ifhk f(Xk)l by Ilkh Jk and

Jk --f(Xk)l by Ilk --k I/2a where fk is our computation for f(xk) using stepsize
h. More specifically, for a given commanded accuracy e, and two trial stepsizes hk
and hk-1, we compute our next trial h by

0.9e
(37) hk+l- if_ f_

3 In practice one would of course consider more sophisticated schemes such as Gaussian quadrature
or adaptive stepsize methods (or simply solve the problem analytically), but for demonstration we
selected the simplest possibility.
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(and safeguarding hk+l such that 1/2hk <_ hk+l _< hk). This simple rule works very
well in practice for target error levels less than 0.1. Typically, the rule results in
successively halving h until the estimated error is within an order of magnitude of the
target error e, and then selecting an "almost optimal" h in [1/2hk, hk]. For n > 2, the
total computational cost is little greater than the expense of evaluating f with the
final h. We considered n 2, n 3, and n 4. As n increases, the curve describing
computational expense as a function of accuracy becomes increasingly hostile: CPU
per f evaluation is O(e-n/4).

For comparison, we first attempted to solve this problem naively requiring fixed
absolute accuracy in f (and fixed relative accuracy in the components of g) of six
digits, with n 4. Using the same code as in the previous section and terminating
when the predicted reduction became less than the specified accuracy in f, we reduced
f from 0.71484 to 0.0263596 using 11,004 seconds of CPU time (just over three hours).
Using seven digits gave the same function reduction in 16,619 seconds. In contrast, if
we solved the same problem using a fixed accuracy of g 0.1 in the components of
g and computing f values via Procedure 2 (with a 0.5, I,1 0.4, and /,2 0.99),
we were able to solve the problem to the same accuracy in only 59 secondsmmore
than 200 times faster.

Clearly, a dramatic difference in computational expense can be expected in cases
where computational expenses rise rapidly with increasing accuracy requirements.
Much less dramatic effects are to be expected when the rise of computational costs is
not so steep. Table 1 shows our results for a variety of values of n.

TABLE 1
Expense of solving (35) for different gradient accuracies. Function and gradient values approx-

imated separately by recursive Simpson’s rule.

n-2
Commanded Final’ ’CPU

gradient f time
accuracy value (sec)
.1000000 .02734732 .67
.0500000 .02734732 .75
.0200000 .02734732 .64
.0100000 .02734732 .69
.0050000 .02734732 .57
.0020000 .02734732 .58
.0010000 .02734732 .59
.0005000 .02734732 .61
.0002000 .02734732 .74
.0001000 .02734732 .77
.0000100 .02734732 .88
.0000010 .02734732 1.12
.0000001 .02734732 1.27

n--3 n--4
Final CPU
f time

value (see)
.02840882 32
.02840882 41
.02840882 48
.02840882 43
.02840882 53
.02840882 56
.02840882 48
.02840882 67
.02840882 70
.02840882 71
.02840882 77
.02840882 108
.02840882 134

Final CPU
f time

value (sec)
.02635958 59
.02635958 201
.02635958 250
.02635957 2347
.02635957 3560
.02635957 4185
.02635957 3745
.02635957 5200
.02635957 4370
.02635957 4458
.02635957 7694
.02635957 10433
.02635957 12716

If n is not small, stochastic integration techniques are, of course, preferable to
recursive integration rules, since accuracy increases proportionally to the square root
of the number of sample points independent of n: CPU per f evaluation is O(e-2). We
considered the simplest possible stochastic integration scheme: for a given x, compute
a sequence of h and h2 values at a sequence of points (t } uniformly distributed over, take the mean of ((h2(ti, x)-h(ti))2}, 1,... ,j to be the jth approximation to
the integral, and estimate the error in our approximation by three standard deviations
of the mean of ((h2(ti, x)- h(ti))2}. The components of g areJ’computed by a similar
integration. Our results are presented in Table 2.

The final row of Table 2 represents the maximum accuracy attempted for this
approach; this run was terminated prematurely due to excessive time requirements
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(greater than 200 hours on the RS-6000). Note that the final function reduction
attained for Cg .002 is actually less than that attained using Cg .2, yet Ca .002
uses almost 3812 times as much CPU time--truly a compelling argument for using
the minimal sufficient accuracy on problems where costs rise this fast with increased
commanded accuracy.

TABLE 2
Expense of solving (35) for different gradient accuracies. Function and gradient values approx-

imated separately by Monte Carlo integration.

Commanded
gradient
accuracy

n--4
CPU

Final f time
value (sec)

500 .03130167 98
200 .02969897 168
100 .02664009 2139
050 .02717885 31466
010 .02986443 37559
005 .03036428 68837
002 .03060412 640425
001 <.03049246 >723550

5. Algorithm performance on a parameter identification problem. Our
final example is a parameter identification problem from [11] and [12]. Consider
the accidental release of the radioactive gas tritium into an enclosure surrounding
a nuclear reactor. The tritium will react with water vapor in the containment to
produce other tritium-based species via

(38) T2 + H20 -- HT / HTO,and some of the HTO may be adsorped into the surface of the containment. This
adsorped tritium species represents a significant cleanup problem.

Given the reaction rate constant in (38) and the adsorption and release rates of
HTO on the surfaces of the containment, the physical problem can be modeled by a
system of four coupled, initial-value ODEs:

(39) Y’(t; x) h(t, Y(t; x)), Y(0; x) Y0,

with the components Y !l 13 ._ 14 being species concentrations. Unfortunately,
the rate constants are not directly measurable. Maroni, Land, and Minkoff performed
an experiment in which a known amount of tritium was introduced into a small
enclosure and the total tritium concentration (Y)I + (Y)2 + (Y)3 was measured at m
discrete time points. The rate constants (x)l, (x)2, and (x)3 can then be estimated by
minimizing f N4 _+ N with

1

__
(Y)j(ti, x) Oi + (x)4 /(Oi)2,(40) /(x)

where Oi is the observed experimental concentration

(41) Oi Yl (ti) / Y2(ti) / Y3(ti),

and (x)a is an additional variable representing an unknown experimental bias in the
instrument for measuring (41).
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Equation (40) is a classical inverse problem. Note that each function evaluation
for a given iterate xk involves the numerical solution of four coupled ODEs. Gradient
values can be computed via finite differences, or by the numerical solution of a larger
system of coupled ODEs derived using the sensitivity [12] or adjoint equations (see,
for instance, [18]). Although the latter techniques are usually preferable in practice,
we used the more difficult approach of estimating gk by finite differences so that we
could investigate techniques suggested in [3] for estimating and controlling gradient
error.

Our numerical experiments with (40) were designed as follows. In order to ap-
proximate f at a given point xk, (39) was solved using ODEPACK [8], which uses
an adaptive solution technique. An important feature of ODEPACK is that it allows
a desired level of accuracy (either absolute or relative) to be prespecified for each
component of Y. In order to achieve an accuracy of, say,ek in f(xk), we specified a
desired accuracy of ck-lk in each component of Y, where ck-1 was the amount of
accuracy lost due to cancellation in evaluating (40) at the last iteration. This simple
procedure worked remarkably well: the actual error in fk was typically in the range
[1/10k, 2k] in our preliminary tests of this technique.

Each gradient was initially approximated by a central difference formula using
2n extra function evaluations, where each function evaluation was computed with a
specified desired relative accuracy of k. Denote this approximation Yk. We then
computed a more accurate estimate of the directional derivative of f in the direction

k (or (DDk)-k if the scaling matrix is not the identity) suggested in [3], using
the formula

1
(42) dk

Each function evaluation in (42) w computed with a specified desired relative accu-
racy of k/10. The perturbation lenh 5k w taken to be

a value expected to perturb twthirds of the accurate digits of f. Using (19) and
(42), then estimate the error term in (22) vi

T- Vf(xk)Tyk(44) ek gk 1- 1
gkgk YYk IlYkll 2

If this error w larger than the desired gradient error ]eve] Cg, then k w decreed
before the next iteration; if it w significantly larger, then k w immediately de-
crewed and k w recomputed. (In practice, this seldom occurred except at the first
gradient computation.) Figure 11 shows the agreement between actual and requested
gradient error. Even with the simple procedures used to adjust k, the error estimate
given by (42) and (44) allows us to control, with reonab]e certainty, the level of
accuracy in k"

The approximation k can be further improved at no additional cost by setting

dk<45) gk
II k 2 gk
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FIG. 11. Actual versus commanded error in the gradient for the tritium parameter estimation
problem.

so that

egk
1-

Vf(Xk)T-k

Figure 12 shows the CPU time required to achieve a given level of accuracy using
(45) in addition to the previously discussed procedure for adjusting Ek. We see that
computational expense increases geometrically as accuracy increases.4

Given these methods of evaluating fk and gk to some specified accuracy, we
recorded the computational time required to solve (40) for a number of different
values of (g, and for the following three cases.

1. Each fk value was computed to high relative accuracy (10-s), and each gk

value was computed as previously described including the correction (45).
2. Each fk was computed to high relative accuracy (10-s), and each gk was

computed as described previously but without doing correction (45).
3. Each fk was computed using Procedure 2 with (f,1 0.1 and (f,2 0.99, and

each gk value was computed as previously described including correction (45).

4 The idealized cost profile (29) yields a very close fit to this plot if is taken to be it60 However,
tests with different values of xk showed that with better empirical form this problem is

CPU/gradient evaluation c2 llg II- t/.

Nonetheless, the rule-of-thumb choice (32) with 60 proved to be close to the optimal selection in
our numerical tests.
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FIG. 12. Solution time required for one gradient evaluation in tritium parameter identification
problem.

A somewhat different implementation of the trust region method was used rather
than the Dennis-Schnabel code used in the last section. First, we included nonnega-
tivity constraints on the first three components of x to be consistent with the physics
of the problem. This was done by replacing the ellipsoidal trust region in (4) with
the rectangular trust region llDsll _< Ak, and by using a quadratic programming
code at each iteration to exactly solve the trust region subproblem subject to the
nonnegativity constraints on x. Second, we used the Hessian safeguarding techniques
proposed in [2] in addition to the standard BFGS update (5).5 Third, we used a
simplified stopping criterion for comparison purposes. Each test case was terminated
when fk f* <_ Y6(fo f*), where f* was the optimal value of f.

We remark that the convergence theory developed in [4] and [3] does not apply to
algorithms that use nonellipsoidal trust regions or impose constraints on the variables;
it is therefore interesting to investigate whether this modified implementation still
performs well in practice in the presence of gradient errors.

Figure 13 shows the results of our tests.
Case 1 was tested for 15 different values of g. Note that the total computational

time required is less than 8000 seconds for Cg 0.015, but rises to almost 16,000
and 24,000 seconds for g 1.5 x 10-5 and 0.25, respectively. Fewer data
were collected for cases 2 and 3, but note that the correction (45) appears to make

TB T5 This safeguarding procedure monitors the quantity gk kgk/gk gk and compares it to the maxi-
mum observed problem curvature. If the quantity appears too large, Bk is "corrected" by performing
a supplemental BFGS update involving one extra gradient evaluation at the point xk + se, with
se -egk for some small e.
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FIG. 13. Solution time for numerical optimization of the tritium parameter identification problem.

little difference to the algorithm when egk/g[gk is small. On the other hand, using
Procedure 2 rather than computing each fk to a fixed accuracy of 10-s resulted in a
moderately faster algorithm.

In addition to the above three cases, a number of other numerical tests were made.
Rather than keeping g fixed throughout the algorithm, we tried setting

(47) k+l={ 1/10 if k=0
g max{gk/2, 10-5} otherwise,

or conversely,

(48) k-t-1 { 10-5 if k 0
g min{2gk 1/10} otherwise.

The idea behind (47) is to try to obtain the fast local convergence properties of the
BFGS method when accurate gradients are available, while the idea behind (48) is to
avoid highly accurate gradient approximations near the solution where they are likely
to be most expensive. Interestingly, both of these approaches performed similarly,
requiring 8887 and 10,647 seconds, respectively.

eT TAlthough the correction (45) appears to be of little use when k gk/gk gk is already
small, it does appear to be useful in preventing the algorithm from failing due to
occasionally encountering highly inaccurate gradient evaluations. In tests where an
extremely large synthetic error (g 1) was added to the gradient approximation
every p iterations, the algorithm was much more robust when (45) was used (although
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the algorithm still had problems involving convergence to a point with gk 0 and
Vf(xk) 0, as predicted in [3]). In a similar vein, the gradient accuracy test given
by (42) and (44) should be useful in verifying the accuracy of analytically derived
gradients.

6. Summary. We have examined the numerical behavior of trust region algo-
rithms for nonlinear optimization when function and gradient values are not computed
exactly. This class of algorithms has proven remarkably robust, and can be success-
fully implemented even with very large errors in the function and gradient evaluations.

In a large number of tests using standard test problems with synthetically in-
duced gradient errors, we observed that the algorithm performance, as measured by
the number of iterations required for convergence, tends to degrade exponentially
as the relative gradient error increases. This is a telling argument for using accurate
evaluations provided they can be obtained at reasonable expense. For many optimiza-
tion/simulation problems, however, the computational expense of these evaluations
rises sharply with increasing accuracy, and low accuracy evaluations are again attrac-
tive. A good choice for the amount of relative gradient error allowed in the algorithm
can result in orders-of-magnitude savings in computational cost. If (29) holds, then
the choice g 1/4 was nearly optimal for all of our test problems.

Using a parameter estimation problem based on the numerical solution of a sys-
tem of ODEs, we tested a technique for estimating and controlling the amount of
error in a gradient approximation. This technique was very successful when used in
conjunction with the "user-specified accuracy" feature in the numerical differential
equation solver ODEPACK. Actual computational costs for various values of relative
gradient error were examined to confirm the behavior observed in the test problems
with synthetically induced errors.
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A MULTIRESOLUTION METHOD
FOR DISTRIBUTED PARAMETER ESTIMATION*

JUN LIUt
Abstract. A multiresolution method for distributed parameter estimation (or inverse problems)

is studied numerically. The identification of the coefficient of an elliptic equation in one dimension
is considered as our model problem. First, multiscale bases are used to analyze the degree of ill-
posedness of the inverse problem. Second, based on some numerical results, it is shown that the
method of scale-by-scale multiresolution yields robust and fast convergence. Finally, it is shown
how the method gives a natural regularization approach which is complementary to Tikhonov’s
regularization.

Key words, identification, distributed parameter, multiresolution, Haar basis, BFGS optimiza-
tion
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1. Introduction. Inverse problems are usually considered difficult problems.
One essential question is how to obtain a stable solution rapidly. The idea of mul-
tiscale representation has suggested various parallel and iterative algorithms. For
example, multigrid methods have been widely used for solving partial differential
equations (direct problems) [4], [5] in order to accelerate the convergence. However,
this idea has seldom been used until now for inverse problems (lack of theory). Re-
cently, some approximation frameworks have been developed for inverse problems [2]
and wavelet theory (multiscale bases) has appeared [14], [13]. This allows the idea
of multiresolution to be used for inverse problems with little modification from the
classical optimization methods.

We take as our model a simple elliptic problem that is well known as being non-
linear and ill posed. A number of studies of this problem have already been done (for
example, [12]). In this paper, we first analyze the inverse problem using the Haar
basis (a multiscale basis). We remark that the objective function is more "ill.posed"
(or nonlinear) with respect to the coefficients corresponding to the finer scales, but it
is less sensitive with respect to these coefficients. Then we investigate numerically the
behavior of a BFGS optimization routine in the IMSL library [11] when the unknown
parameter is represented in the usual local basis, and in the Haar basis. This leads
us to propose a multiresolution, or scale-by-scale, optimization method to solve the
parameter estimation problem. This method turns out to be very robust (convergence
is obtained for any initialization of the optimization algorithm) and efficient (a good
solution is obtained with a very small number of iterations). The multiresolution
method allows us to perform, for the problem under consideration, a global optimiza-
tion with a local optimizer. Moreover a method of rescaling of the variables and the
objective function for each optimization run can be easily performed to accelerate
the convergence. Finally we give regularization methods that are complementary to
Tikhonov’s regularization. This paper emphasizes some numerical results and does
not give a global convergence proof.
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2. A simple model inverse problem. We consider the following elliptic equa-
tion:

(1)
d

a(x) f(x) x e (0, 1)
dx dx

with the Dirichlet boundary condition

() u(O) u(1) O,

where f(x) e L2(0, I) is known.
The direct problem is:

(DP) let Qad be the convex set {a(x) 0 <_ m <_ a(x) _< M ,x e (0, 1)} C L2(0, 1);
given a(x) e Qad, we solve for u(x) in (1), (2), where ad denotes admissible.

This problem is very simple, as (1), (2) have a unique solution u(x) denoted by
(I)(a). The application (I) is continuous from Qad equipped with the L2-norm into
H)(O, 1) c L2(O, 1).

The inverse problem is:
(IP) given a distributed observation z(x) e L2(0, 1) of u(x), we minimize the

objective function (output least squares error)

(3) J(a) IIO(a) zll 2 (u(x) z(x))2dx

over a E Qad.
The problem is a typical ill-posed nonlinear problem. There are two types of

"ill-posedness." First, a(x)cannot be determined by (1)on the set {xlux(x -0} so
that there is no uniqueness for the solution if measure({xlux(x 0}) > 0. Second,
from homogenization theory [3], we remark that there is a sequence an(x) which is not
convergent in n2, but still the sequence un(x) O(an(x)) is convergent in H (0, 1),
so that the solution is not stable.

Remark. We can easily obtain an analytical solution of (1), (2):

d x

_j0
x

(4) u(x) f b(y)F(y) Yfo b(y)dy
b(y)F(y)dy

with
y

(5) b(x) a(x)-1 F(y) f(s)ds

This analytical solution will be used in 3.2.
For the numerical solution of (IP), we shall consider the following discretized

problem (IPhH):

with

Minimize Jh(aH) Y (Uh Zh)2

where Uh and aH are the discretizations of u(x) and a(x), respectively (h i/n and
H l/N); Uh is a piecewise linear function which consists of the n- 1 values of Uh

(7) Ah(aH)Uh fh,
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at the nodes x ih, i 1,..., n- 1; and aH is a piecewise constant function which
consists of the N values of aH on intervals ](i- 1)H, iH[, i 1, 2,..., N.

Remark. For well-posedness of the discrete problem (IPhH), the condition h < H
is necessary. When H h, we have N 1/H numbers to be estimated, but only
N- 1 observation numbers.

3. Using multiscale bases to analyze the inverse problem.

3.1. Multiscale bases. Multiscale bases have been known for a very long time.
The first one that appeared in the literature was the Haar basis, presented at the
beginning of this century. They were, however, relatively little used for numerical
computations, until the general interest in wavelets developed in the early 1980s.
Presented first as a challenge to Fourier analysis, wavelets quickly turned out to be
a systematic way of constructing multiscale bases of function spaces. The use of
these multiscale bases is now being widely investigated for the resolution of partial
differential equations (direct problem). We show in this paper that they can be a
very valuable (and simple) tool for the resolution of the inverse problem stated in

2. Because the parameter a(x) that we are looking for is required only to be in
L2(0, 1), we shall use the simplest multiscale basis, namely the Haar basis. Of course,
in inverse problems where the unknown parameter is more regular, we must resort to
more sophisticated wavelet bases.

Let Z be the set of integers, using the characteristic function

i, xe (0, i),(x)=
O, otherwise.

The ruth scale approximation of a general function a(x) is represented by

(S) am(x) Za(2mx i),
i6Z

where an is the mean value of a(x) over the interval [i/2m, (i -4- 1)/2m].
The corresponding multiscale basis is the Haar basis, made of the functions

(x) (2Jx- i) for all i, j 6 Z, which are constructed from the following mother
wavelet function:

--1, X 6 (0, 1/2),
(X)= +1, Xe(1/2,1),

0, otherwise.

The , i,j Z form a complete orthogonal basis of L2(R), which is multiscale in
the sense that the mth scale approximation am(x) is simply obtained by setting to
zero all coefficients of with j > m in the expansion of the function

ez,jez

on the basis.
Remark. For the space L2(0, 1) and a fixed mth scale approximation, we have

two equivalent orthogonal bases: the characteristic basis made of {(2mx- i + 1)1
1,... ,2m} and the Ham: basis made of {(2x- i+ 1)1 j 0,... ,m- 1,i 1,... ,2}
and of the constant function (x)= (x)= 1 over t0,l.
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3.2. Curvature analysis. A geometrical theory for general nonlinear least-
squares problems [7] shows that the velocity and the curvature along curves of the
solution space which are images by & of segments in Qad are important to measure
the "degree of ill-posedness" of the inverse problem in the output least-squares for-
mulation. In the limiting case, the curvature is equal to zero for a linear problem.

In this section, we suppose that f(x) 1. Algebraic computation systems (Mac-
syma, Maple, etc.) allow us to calculate the velocity and the curvature along the
curve &(a + ta) at t 0 in the directions of the basis functions

o,

5a(x)=
-1, xq(t-h,t),
1, x (t, t + h),
O, x(t+h, 1),

for the exact mapping O, i.e., without any approximation to the solution u(x) of (1)
and (2).

For the velocity Y and the curvature g in the direction 5a(x) at a(x) 1, we
obtain the following formulae:

(10) V2 h3(18Ohs2 + 5h + 30h3 + 40s2"24h2)
60

(11)

K2 =-480(1230hT-600hS-940h6 + 317h5-40h4 + 1800hTs2-400s4

-3000h6s2 -+- 7200h4s4 + 2640has2 + 480h2s4 -t- 240h2s2
32 34 5-1480h s -8400h s -330h s2 + 7200hs6 + 1600hs4-4800s6)

(180hs2 + 5h + 30h3 + 40s2-24h2)-3h-,
where s t

From these formulae, we have

2h3s2
(12) V2 K6h-2 as h-0.

3

We conclude that the objective function is more nonlinear with respect to the coef-
ficients of the finer scales, but is less sensitive with respect to these coefficients. For
illustration, we plot the curves log(V) and log(1 + K2) at five different scales in Fig.
1 (bottom).

Remark. In the same way, for the characteristic basis we have

(13) V2 h2(h3 + 30h2s2-20hs2 + 10s2 + 120s4)
120

(14) K2 4800h3s2(lOhs2 -4- 2h-12s2 1-h2)
(h3 A- 30h2s2-20hs2 A- lOs2 -f- 120s4)3’

(15) V2 h2s2 (1 + 12s2) K2 4.8h3

12 s4(1 + 12s2)2
as h-+0



MULTIRESOLUTION METHOD FOR PARAMETER ESTIMATION 393

normalized Haar basis normalized Haar basis

t t i-24. h=1/32 !!-2 I- h=1/lo -I
I h=118 j- 0 F h=/

-8 16

14

-1 =l/g

-14 h=l/2 0

-16 "’l’’’’ "’l’’’l’"
0.1 0.2 0.3 0.4 0.5 0.60.T 0.8 0.9 0.10.2 0.3 0.4 0.5 0.60.T 0.8 0.9

Haar basis

h=1/32-2 h=l/16
h=l/8-4
h=l/4

-6 h=l/2 O

o10

-12

-14

-16

0.10. 0. OA O.g 0. 0.7 0. 0.9

Haar basis

24
h=1/32

22 h=1/16
h=1/820 h=l/4

18 /--h...

16

14

12

6t "’,"’,’ i’",’" 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 1. Left: log(V2) and right: log(1 + K2) at different scales.

in the direction of the basis function

a() 1,
0,

where s t 2"
Remark. If we take b(x) a(x)- as the parameter to be estimated, we do not get

the same result. The curvature K in the direction b(x) at b(x) 1 is the following:

9600h2(5-24h + 60s2 + 30h2-90hs2)(16) g2

(5h + 40s2-24h2 + 180hs2 + 30h3)3

x e (0, t- hi2),
x e (t- hi2, t + hi2),
x e (t + hi2, 1),

(17) K2 3h2(1 + 12s2)
4s6

as h 0,

where s t- 1/2 and

0, x e (0, t h),

5b(x)
-1, x e (t h, t),
1, x (t, t + h),
O, x(t+h, 1).

It is not surprising that the values of K in (12), (15), and (17) are very different.
Equation (12) shows that singularity directions for K - o correspond to h --. 0 and
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from (15) and (17), singularity directions for K oo correspond to h --, 0 and s h.
These two kinds of singularity directions correspond exactly to the two kinds of ill-
posedness mentioned in 2, which can also be recovered by the singularity directions
for V -- 0 from (12). So the inverse problem is not only insensitive but also very
nonlinear for the singularity directions.

4. Multiscale parametrization multiresolution, and regularization. In
this section we investigate various strategies for the practical computation of aH by
minimization of the objective function Jh. In all runs we have used the subroutine
BCONF of the IMSL library based on the BFGS algorithm [11]. The only initializa-
tions required in this subroutine are the initial guess of the unknown parameter. The
other parameters are given by default values (the initialization of the Hessian is an
identity matrix).

Our investigations concerned first the behavior of the BFGS algorithm for various
initializations and various parametrizations of aH associated to different bases of R32"

the characteristic (or local) basis (4.1) and multiscale bases (4.2). In many cases,
parametrization in the usual Hemr basis will prove to yield much better convergence
of the BFGS algorithm than the usual local basis.

Our analysis of this phenomenon will lead us to experiment with a multiresolution
(scale-by-scale) optimization approach in 4.3, which turns out to be very robust and
yields the fastest convergence. Finally, we show in 4.4 how multiscale parametrization
and multiresolution can be efficiently combined with a regularization approach in order
to stabilize the estimation of aH with noisy data.

Here we summarize the data common to all runs: the elliptic equation (1), (2)
(with right-hand side f(x) :1) was discretized using a finite difference scheme with a
mesh size h 1/32, and the parameter aH was also discretized with H 1/32 (hence
we are faced with the estimation of 32 unknown parameters).

The data Zh (exact in 4.1, 4.2, and 4.3 and noisy in 4.4) were generated using
the above finite difference scheme and the following "true parameter"

1, x e (0, 1/5),
ae(x) 10, xe(1/5,2/3),

50, x e (2/3,1).

Note that aue is quite strongly heterogeneous! Because of the Dirichlet boundary
condition, Zh consisted of only 31 numbers representing the solution u(x) at x
hi2, 3h/2,..., 63h/2. Hence the problem of the estimation of aH from Zh was clearly
undetermined!

Two initializations were used, corresponding to ait 1 and ait 10. The
first initial guess is "poor" (underestimated), and the second one is "good" (in the
range of the values of aue). The corresponding initial values of Jh are 215 and
0.84, respectively. Optimization runs using the local basis were made with the bound
constraint of 0.1 _< ag

_
100 (except one run in 4.2), and optimization runs using

the multiscale basis or using the multiresolution method were performed without any
constraint.

4.1. The BFGS algorithm and the local basis. The traditional method is
to perform one optimization run to simultaneously estimate 32 numbers represent-
ing the value of aH on each interval. If we use the subroutine BCONF in this way,
we obtain the result shown at the bottom left of Fig. 2 after 1000 iterations with
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FIG. 2. The comparison of the final results of minimization for different initializations (bottom
ainit 1, top ainit 10) and for different parametrizations of the unknown parameter (left: local
basis, right: Haar basis). The bound constraint [0.1,100] was used with the local basis and no
constraint was used with Haar basis.

initialization ait 1. The algorithm is not convergent and the final relative objective
function (i.e., the ratio of the final value of Jh to the initial value of Jh: Jl
Jh(amP)/Jh(ait)) is equal to 3.0 10-a. If we choose the better initialization

ait 10, we obtain the result shown at the top left of Fig. 2. We have recovered
the "true" parameter aue, but the rate of convergence is slow. To understand in
more detail the behavior of the algorithm on the problem, we plot the evolution of
the relative errors for parameters at different scales in L2 during the procedure of
optimization in Figs. 3 and 4. The result coincides with the analysis in 3. The
coefficients of finer scales do not converge toward the "true" coefficients at all when
the "bad" initialization ait 1 is used.

4.2. The BFGS algorithm and multiscale bases. We tested the influence of
the representation of aH on the Haar basis (orthogonal) as in (9), on the normalized
naar basis (orthonormal), and on the local basis (orthonormal) when a minimization
without constraints was performed for the three bases. Note that quasi-Newton algo-
rithms are expected to produce the same sequence of iterates when an orthonormal
change of basis is performed on the unknown parameter and when the Hessian is
initialized with an identity matrix in both cases. Hence one expects that using the
local basis or the normalized Haar basis will not influence the behavior of the BFGS
algorithm. This is what we observe in Fig. 5. However, the decrease of the objective
function is slightly better with the normalized Haar basis for the two initializations

ait 1 and ait 10.
Then we used the usual Haar basis for the representation of the unknown pa-

rameter all. As we already noted in [8], the convergence of the BFGS algorithm was
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FIG. 3. The evolution of relative errors on different scales for parameter a(x) in L2 during
the optimization with the local basis, ainit 1 and bound constraint [0.1,100].
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much better with this basis for the two initializations ait 1 and ait 10 (Fig.
5). We now try to give an explanation for this phenomenon. We note first that
in the Haar basis, the L2-norm of the basis function is decreasing when the scale
index is increasing. Hence replacing the local or normalized Haar basis by the Hair
basis amounts to performing a rescaling of the unknown parameter depending on
the scale level: the sensitivity to an unknown is decreased proportionally to its scale
index (this is apparent by comparing the top and bottom of the left part of Fig. 1).
Surprisingly at first glance, this rescaling goes in the opposite direction of what would
be required to try to "spherize" the objective function Jh around its minimum: the
discrepancy in sensitivity in all basis directions is much larger with the Haar basis
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(bottom left of Fig. 1) than with the normalized Haar basis (top left of Fig. 1)! Here
"spherizing" means the scaling of the diag(V2Jh(a)). Numerical experimentation
with an "overnormalized" Haar basis (for which all scales had approximately the
same sensitivity) did not produce any enhancement of the convergence.

The explanation may come from the nonlinear effects. As we already mentioned in
3.2, the nonlinearity is increasing with scale index, hence "spherizing" the objective
function, which boosts up the sensitivity of fine (high-index) scales, and also boosts
up the nonlinear effects associated with these fine scales, so that the "convergence
domain" around the exact solution becomes extremely small, and the quasi-Newton
method is not able to find its way to the global minimum once the initial guess is
not too good. Conversely, "despherizing" the objective function, i.e., diminishing the
sensitivity of fine (high-index) scales (which is performed by using the Hair basis), also
lowers the influence of the strong nonlinearities associated with fine-scale coefficients:
at the beginning, the objective function seems to depend almost entirely on the low
scales having low nonlinear coefficients. It is only after these low-scale coefficients
have been approximately set that the influence of the finer-scale coefficients becomes
apparent. This is confirmed in Figs. 6 and 7, where the evolution of the relative errors
on aH is plotted for each scale against the iteration index. On Fig. 6 for example, we
see that coefficients associated to scales 1 and 2 begin to adjust only after iteration
20, when the scale zero (mean value) coefficient has been approximated to 10 percent.
Similarly, until iteration 150, the BFGS algorithm, does not touch the coefficient of
the finer scales (third, fourth, and fifth), and hence performs an optimization in the
four-dimensional space associated with scales 0, 1, and 2! Furthermore, we see that
the coefficients of the finest (fifth) scale really begin to adjust only after iteration 340,
where the error on all coarser scales becomes less than 10 percent!

This behavior strongly suggests trying to optimize the objective function succes-
sively on spaces of increasing dimension associated with finer and finer scales. This is
the subject of the next section.

4.3. Multiresolution algorithms. As we have seen above, the nonlinear effects
are increasing when finer scales are added, and the size of the corresponding "domain
of convergence" of the quasi-Newton method is decreasing. It is hence natural to solve
first the optimization problem on a small number of (coarser) scales, which is likely
to yield the global minimum as the nonlinear effects are small, and to use this point
as initial guess for an optimization run including finer scales. The hope is that the
initial guess from the coarser optimization will be inside the "convergence domain" of
the new, more nonlinear problem. This is the basis of the multiresolution algorithm.

Another argument comes from estimates of approximation error. In the solution of
the partial differential equation (direct problem), we have the following error estimate

(18) IlUh ull <_ gh‘.

This error estimate is usually considered as essential for the full multigrid methods
(nested algorithms) [5]. For inverse problems, an approximation theory has also been
developed recently for elliptic problems in some special cases [2], [10] under the con-
dition h H, which gives (for nonnoisy data) a similar estimate:

(19) IlaH a[[ <_ K2H.
This also suggests using a nested algorithm for our inverse problem.
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FIG. 9. The parameter obtained at the end of each step (scale level) of the multiresolution
method without noise.

The multiresolution algorithm is as follows. We solve first the optimization
problem with scale zero (one unknown), and the result is used as initial value for
an optimization run with scale one (two unknowns), etc. For each optimization
run, we use a rescaling method to get better convergence. The rescaling method
is to reformulate the optimization problem MinJ(a) with initial value a (suppose
0 .... 1ITa 0, for all i) as Mini(b) J(b.a)/J(a) with the initial value b [1, 1,

where b’a [bl al, b2a,...IT. The Hessian matrix is initialized as an identity matrix.
This algorithm can be implemented using either the local basis or the Haar basis.

The advantage of the local basis is that it allows an easy implementation of the
bound constraint, but our numerical experiments show that with the multiresolution
algorithm, the solution does not tend to hit the constraints. The multiscale basis
allows us to easily perform multigrid patterns such as V, W cycles [5]. But the
inverse problem does not have the same behavior as the direct problem and until now
we have not found any need to use such patterns.

We illustrate in Figs. 8, 9, and 10 the behavior of the local basis implementation
of the multiresolution algorithm. Figure 8 shows that multiresolution achieves an
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FIG. 10. The evolution of relative errors on different scales for parameter a(x) in L2 during
the optimization with ainit 1 and bound constraint [0.1 100] using multiresolution.

excellent fit (the final objective function 10-l) in only 120 iterations, and clearly
beats (mono)resolution with either the local or the Haar basis (compare, also, with
Fig. 5). The rescaling for each optimization has the effect of reducing the number of
iterations from 380 to 120 (by a factor of 3!) on the example considered. Figure 9
shows the parameter obtained at the end of each of the six optimization runs (scales
0, 1, 2, 3, 4, and 5), and Fig. 10 shows the evolution of the relative error in the
parameter associated with each scale.

4.4. Multiscale bases, multiresolution, and regularization. When the data
are noisy, the error estimate becomes [1], [9]

(20) ]laH all <_ gldist(z, (Qad))H-s + K2H.

So aH may be far from a when H is sufficiently small. To stabilize the solution of
an inverse problem, the classical method is to use Tikhonov’s regularization [15], for
example, replacing the objective function J(a) by

da(x) 2

(21) Jl(a) J(a) + o
dx

This function, of course, can be efficiently minimized using the multiresolution algo-
rithm of 4.3. The numerical results corresponding to ( 10-6Jh(ait) and5 percent
noisy data are shown in Fig. 11. We see that a stabilization is achieved at the price
of a less accurate fit to the true parameter values.
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The use of the multiscale basis and/or the multiresolution algorithm leads natu-
rally to two other types of regularization.

If we use a multiscale basis, we can express the smoothness of a function by the
decay of the coefficient in the expansion. So we can replace J(a) by (cf. [8])

(22) J2(a) JCa)4- o:i :-()2.

Hence the regularization is obtained by limiting the amplitude of the small-scale
oscillations of aH (compare with the usual regularization (21), where all scales are

affected!). We refer to [8] for numerical results for this approach.
With the procedure of multiresolution, a very simple type of regularization (corre-

sponding to the limit case of (22) with cU 0, j 0,..., m, and cj o, j > m) can
be performed simply by stopping at a reasonable scale m during the multiresolution
procedure. Different regularizations can be obtained using different multiscale bases.
For example, it is interesting to use some regular multiscale basis as in Meyer [14].
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Figures 12 and 13 show the parameters obtained at different scales for 1 percent
noise and for 5 percent noise, respectively. As the noise increases, the oscillation
increases also, hence we should stop the optimization procedure at an adequate scale
to regularize the solution. For example, we can stop at the fourth scale (16 numbers)
for 1 percent noise and at the third scale (eight numbers) for 5 percent. We remark
that the solutions up to the third scale are the same with 5 percent noise or without
noise (Figs. 9, 12, and 13).

5. Conclusion. We have numerically studied the use of a multiresolution ap-
proach for the inverse problem in a one-dimensional elliptic equation. It has been
shown that the methodology of multiresolution is well suited to solving this ill-posed
nonlinear problem. The advantages of this method are:

The final solution is independent of the choice of the initial parameters;
Some local minima can be avoided;
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FIG. 13. The parameter obtained at the end of each step (scale level) of the multiresolution
method applied to the unregularized problem and data with 5 percent noise.

Very fast convergence is achieved for the numerical examples considered; and
It leads naturally to the use of new types of regularizations which are likely

to perturb the coarse-scale components of the optimal solution less.
The methodology proposed in this paper is very general. It has also been used for

the identification of the conductivity coefficient in a parabolic equation [8], and for
the identification of the relative permeabilities and capillary pressure [6]. However,
many theoretical problems are still open. We believe that this method will also prove
to be powerful for more complicated inverse problems.
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A PARALLEL IMPLEMENTATION OF AN
ITERATIVE SUBSTRUCTURING ALGORITHM
FOR PROBLEMS IN THREE DIMENSIONS*

BARRY F. SMITHt
Abstract. Numerical results from a parallel implementation of a class of iterative substructur-

ing algorithms are reported. The algorithms are for solving self-adjoint elliptic partial differential
equations in three dimensions. Results are given for several variants of the algorithm. In the first
variant, exact interior solvers are used; in the second, one multigrid V-cycle is used to solve the in-
terior problems approximately. The results are compared with theoretical behavior of the algorithm
reported in previous work. A numerical experiment involving the equations of linear elasticity is also
included.

Key words, domain decomposition, finite elements, iterative substructuring, parallel computing
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1. Introduction. Much of the work on domain decomposition algorithms has
focused on the abstract analysis of the algorithms, with less discussion of implemen-
tation issues and few nontrivial numerical results. This paper focuses on the parallel
implementation of several iterative substructuring algorithms for elliptic partial dif-
ferential equations in three dimensions. Full analysis of some of the algorithms, using
standard domain decomposition techniques, can be found in Smith [21] and Dryja,
Smith, and Widlund [12]. The underlying algorithm was first introduced in Smith

Iterative substructuring algorithms are domain decomposition algorithms in which
nonoverlapping subdomains are used. A preconditioned conjugate gradient method is
used to solve the linear system obtained by a finite element discretization of the partial
differential equation. The preconditioner is obtained by separately solving linear sys-
tems associated with the interiors of the subdomains, the faces between subdomains,
and a coarse grid system that provides global coupling between the subdomains.

There is a fundamental difference in the nature of finite element solutions of ellip-
tic problems in two and three dimensions. The formulation of the coarse grid system
that works well in two dimensions results in poor convergence in three dimensions;
see Smith [21]. Hence, new analysis and numerical experiments must be carried out
for problems in three dimensions. Earlier theoretical work on the subject that has
strongly influenced our work can be found in Bramble, Pasciak, and Schatz [5], Dryja
[11], Dryja and Widlund [13], Mandel [20], and Smith [21]. For a modern treatment of
iterative substructuring algorithms in three dimensions, see Dryja, Smith, and Wid-
lund [12]. Other large-scale experimental work in domain decomposition is described
in Bjcrstad and Hvidsten [1], Bj0rstad, Moe, and Skogen [2], Keyes and Gropp [16],
[17], De aoeck [9], De Roeck and Le Wallec [10], Le Wallec, De Roeck, and Vidrascu
[18], and Mandel [19].

Any good iterative substructuring algorithm with exact interior solvers can be
reformulated to use approximate interior solvers. This approach has been analyzed
with some success in Bhrgers [4] and Haase, Langer, and Meyer [15]. In this paper we
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1992. This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, contract W-31-109-Eng-38.
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(bsmithmcs. anl. gov).

406



A PARALLEL ITERATIVE SUBSTRUCTURING ALGORITHM 407

report on experiments in which both approximate and exact interior solvers are used.
We use multigrid for the approximate interior solver in our experiments.

This paper is organized as follows. In 2 we introduce the algorithm using matrix
notation. In 3 we discuss the implementation of the algorithm on distributed-memory
machines. In 4, we present numerical results for some piecewise constant coefficient
problems. In 5, we present an example from linear elasticity. In 6, we discuss
future work, which will focus on the application of the algorithms to more difficult
multicomponent elliptic partial differential equations.

2. Matrix form of preconditioner. Consider a scalar, second-order, self-
adjoint, Hi-coercive, bilinear form an(u, v) on c R3, and impose a homogeneous
Dirichlet boundary condition on F0 c 0 and a Neumann boundary condition on
0D \ F0. We assume that the underlying elliptic operator has no zero-order terms.
Let Ho() be the subspace of functions in U (D) that vanish on F0. The variational
problem is to find u E Ho (D) such that

an(u, v)= (f, v)

We triangulate the domain fl using the usual rules for finite element triangula-
tions. Let vh(12) C Hrlo (12) be the space of continuous, piecewise linear functions on
the triangulation that vanish on F0. In addition, for the construction of the precon-
ditioner, we assume that the set of elements is partitioned into disjoint substructures
fli. Let H be the characteristic diameter of the substructures; that is, assume that
there exist constants and C independent of h and H such that for all substructures,
cH <_ diam(i) _< CH. In the experiments reported here, the substructures are always
logically brick-shaped, but this is not necessary for the algorithm.

The discrete problem is to find uh vh(gt) such that

(1) an(uh, vh) (f vh) Vvh e uh(n).

If uh is expanded in the standard nodal basis uh -,k ukCk, the variational problem
(1) can be written as the linear system

K_u= f.

In previous work [21], we constructed preconditioners for this system that involve
separately solving linear systems associated with the interiors of the subdomains, the
faces shared by pairs of subdomains, and a system associated with the remaining
degrees of freedom. The application of our preconditioner results in a convergence
rate that is independent of the number of subdomains and is independent of jumps
in the coefficients of the partial differential equation between subdomains.

We partition the unknown coefficients into those associated with the interiors of
the subdomains, Ul, those associated with the faces shared by exactly two subdomains,
UF, and those shared by more than two subdomains (the wirebasket), uW. We use

--B to denote the vector of coefficients (UF, UW). In addition, we let u_(i) represent the
coefficients associated with the closure of subdomain i. The stiffness matrix K can
be written in block form as

KF KFF KFW
TKIW Kw gww
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The Schur complement after we eliminate the interior unknowns is given by

SFF SFW ) I KFF
K ( KIF KIW

We express the inverse of the stiffness matrix in partially factored form as

I

0

0

-K1KIF -K1Kiw I 0 0 K-i-I 0

o o o
0 I 0 0 I 0 0

0

0

I 0 0 I 0 0

0 I 0 T -1-KIFKII I 0

0-S;tvS I T -1-KIwKH 0 I

The matrix FF represents that part of the Schur complement, after the interior
nodes have been eliminated, that is associated with the coupling between the nodes
on the faces of the subdomains. 5ww is the Schur complement associated with the
wirebasket once the unknowns of.the interior and the faces have been eliminated. We
do not explicitly form these matrices; instead, the preconditioner is constructed by
replacing various blocks with more computationally attractive matrices. We note that
K)I, -ISFF, SSFW, and S,w may be replaced.

The KII is a block diagonal matrix with a block for each subdomain interior.
For K we use either a sparse factorization (in particular, the Yale Sparse Matrix
Package, which uses the minimum-degree algorithm to reorder to reduce fill-in) or at
least one multigrid V-cycle to approximate the action of the inverse. In the latter
case, the approximate inverse can be written as k (I- M,)K. M, is the
symmetric error iteration matrix for v multigrid V-cycles, and p(M,) < 1. We note
that there is considerable freedom in choosing the multigrid solver and the number
of V-cycles. When exact interior solvers are used, we can eliminate the unknowns uI
initially and iterate on only Us, using one solver involving KII per iteration. Once
--B is known, we can backsolve for uI. If an approximate solver is used for the interior,
then two interior solvers are needed per iteration, and all of the variables are present
in the iterative process.

We replace the Schur complement FF with a block diagonal matrix with one
block for each face. Let fF be the generic substitution. Several candidates exist for
the matrix blocks. They are all derived by extending earlier results for problems in
two dimensions. Unfortunately, no one substitution exists that is appropriate for all
situations. Each has its own advantages and disadvantages in terms of computational
expense and convergence properties. See 5 for an example where the need for a face
preconditioner is avoided.

1. We can explicitly use the blocks from the Schur complement. The advantage
of this approach is that the block is automatically well adapted for each differential
equation. Unfortunately, it is very expensive to calculate the blocks, except for small
subdomains. This method is probably practical only for extremely ill conditioned
problems where no good substitutes exist.



A PARALLEL ITERATIVE SUBSTRUCTURING ALGORITHM 409

2. We can use a suitable scaling of the J operator. The J operator is the square
root of the two-dimensional discrete Laplacian on a regular, rectangular mesh. See
Bramble, Pasciak, and Schatz [5] for a discussion of why this leads to good results.
It has been shown that J is spectrally equivalent to the explicit block of the Schur
complement. It is computationally cheap to apply the action of j-1 to a vector.
It does not, however, adapt to the particular partial differential equation and for
anisotropic problems can have very poor convergence properties.

3. For constant-coefficient elliptic partial differential equations on rectangular
subdomains with a uniform finite difference mesh, we can exactly diagonalize the
Schur complement associated with a face, using fast sine transforms. For two dimen-
sions, Chan and Hou [6] have proposed the use of this fast spectral decomposition
to approximate the actual Schur complement. This approach could be extended to
three dimensions. Again, as with the J operator, this requires that we use a regular,
rectangular mesh on brick-shaped subdomains.

4. We could use a multilevel preconditioner. This is an extension to three di-
mensions of the hierarchical Schur complement preconditioner considered in Smith
and Widlund [23]; see also Haase, Langer, and Meyer [15]. This is not a spectrally
equivalent preconditioner, but is nearly so. Like the J operator, it does not adapt to
the particular partial differential equation.

5. Another approach is to use the tangential component of the original operator
restricted to that face. It can be obtained easily and adapts reasonably well to the
partial differential equation. This approach is taken in Chan and Keyes [7] and Keyes
and Gropp [17]. It does not perform well, however, when the components of the
operator that are normal to the face dominate.

6. The method of probing (see Chan and Keyes [7] and Chan and Mathew [8])
could be used to calculate diagonal or band diagonal approximations to the Schur
complement on each face. This approach also does not result in a spectrally equivalent
preconditioner; at best, the condition number grows like (H/h) x/2.

We observe that the operator S,FSFw maps values from the boundaries of the
faces to the faces. It is known that the most important property of the mapping is
that it maps a constant value on the boundary of the face onto the face as the same
constant. We use a simple mapping that preserves this property. We map the average
of the unknowns on the boundary of the face onto the face; see Smith [21] for the
underlying theory. Let TT denote this mapping. More sophisticated interpolation
schemes are also possible and may be needed for more difficult problems.

For Sww inspired by Mandel [20], we use the matrix defined by the following
minimization problem:

minZmin hi(H/h),(U_w(,) ff(,) Z(i),TT,) "(U-w(i) (i) z(i)) ufw.u__ ()

(i) and 5i is a function of H/hThe z(i) is a vector of all ones of the same dimension as -w,
given below. We let Gww denote the matrix defined by the minimization given above.
For nontrivial problems, a diagonal (or block diagonal) matrix that is adapted to the
particular partial differential equation may be substituted in place of the identity
matrix in the above formula. A simpler choice for this part of the preconditioner
would be the block diagonal part of the original stiffness matrix associated with the
wirebasket. This choice, however, results in a preconditioned system whose condition
number grows faster than C/H2, while the former choice results in a condition number
bounded by C(1 + log.(H/h))2; see Smith [21].
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We write the generic form of the inverse of the preconditioner as

0 I 0 0 I-TT 0

0 0 I 0 0 I 0 0

0

0

I 0 0 I 0 0

0 I 0 T "-1-glFgli I 0

0 -T I T 1-KiwKII 0 I

We consider five specific preconditioners in the first set of numerical studies. The
first involves diagonal preconditioning of the original stiffness matrix. We denote the
preconditioner by D. The second and third preconditioners both use exact interior
solvers. The first version involves solving the wirebasket problem with the technique
introduced above and in Smith [21]. We can express this preconditioner as

Bcl= I G,w(T I)+ 0

In the second version, we solve the wirebasket problem using a diagonal matrix

B= 10 D,Iw( 0 I)+ 0 (I 0 ).
The 1 wo preconditioners use approximate solvers on he interior subproblems.

-1 (I -IKI)( 0 ) ( I O)BGa= 0 I 0 B -K,5 I

0 I 0 BD T --1-KIBKII I

For the piecewise constant coefficient problems considered in this paper, we use
a multiple of the J operator as our face preconditioner. For our model problems, this
approach works almost as well as the computationally more expensive explicit Schur
complement.

3. Implementation issues. We have implemented the algorithm on a distrib-
uted-memory machine in which each processor has its own local memory and can
communicate, either directly or indirectly, with all other processors by using explicit
message passing. The specific architecture is the Intel iPSC/860. These machines
have from 8 to 128 Intel i860 processors, each of which is capable of sustained rates
of more than 4 megaflops with compiled Fortran or C. The peak performance for
hand-coded assembler is somewhat higher. Each processor has between 8 and 16
megabytes of local memory. The Intel iPSC/860 machine has a hypercube connection
between the nodes. For messages greater than 100 bytes in length, the startup time
for nearest neighbor nodes is roughly 150 microseconds, while the peak transfer rate
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is 2.5 megabytes per second. These results were obtained experimentally by Bokhari

Communication time on these machines is slow compared to the floating-point
speed. Hence, data locality and the minimization of communication are vital.

The particular implementation of our algorithm is closely related to the work of
Keyes and Gropp [16] for problems in two dimensions. Keyes and Gropp subdivide the
domain into rectangular tiles. Each tile is then discretized by using a regular mesh.
This is a very natural approach combining flexibility of the domain with regular
subdomains and the possibility of local uniform mesh refinement.

The three-dimensional domain is partitioned into brick-shaped subdomains, each
of which is assigned a uniform finite element or finite difference mesh. To simplify
the coding, we require that adjacent subdomains share an entire face, entire edge, or
vertex; see Fig. 1. This requirement is necessary for our implementation, but not for
the underlying mathematical algorithms.

Unacceptable partition Acceptable partition

FIG. 1. Unacceptable and acceptable partitions of a domain.

Each processor is assigned one or more subdomains. The information pertaining
to the interior of the subdomain is uniquely owned by that processor and is not
directly available to any other processor. Each face, edge, or vertex is jointly owned
by several subdomains and hence potentially by several processors. Because of this
joint ownership, whenever a change is made to the part of the solution associated
with a face, edge, or vertex of one subdomain, this information must be conveyed to
the other joint owners by using explicit message passing. We refer to this process as
merging of partial data. For each face, edge, and vertex, we designate one of the joint
owners as the main owner and the others as auxiliary owners.

Essentially three types of communication between processors are required when
the preconditioned conjugate gradient method is used to solve the linear system.
The first is multiplication by the stiffness matrix. After the calculation of the local
contribution to the matrix multiplication, the parts of the product vector that are
shared by two or more processors must be merged. This merging of partial results
can be performed in several ways. At this time a naive approach is used. The partial
sums on each face, edge, and vertex are accumulated by the main owner and then sent
out to the joint owners. For large problems, when using the full preconditioner, we
find that less than five percent of the time is spent doing communication related to the
matrix multiplication. With diagonal preconditioning, the matrix multiply dominates
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the entire solution time. Hence, optimizing the communication in the matrix multiply
becomes important.

The application of the preconditioner is the most expensive operation in terms of
communication. The principal reason is that the preconditioner is designed to provide
for global communication of information in each step of the iteration process. When
less communication is provided, more iterations are needed, although at a lower cost
per iteration. With simple diagonal preconditioning, for instance, no cross-processor
communication is needed. This fact suggests that for many well-conditioned problems
diagonal scaling is the optimal approach for parallel computing systems of the type
considered in this paper.

We list below the steps currently used in the application of the preconditioner

B1. The steps in braces are the additional steps needed when approximate interior
solvers are used.

1. {Approximate solvers on interior problems.}
2. {Merge results.}
3. Interpolate face averages onto the edges.
4. Merge results.
5. Calculate an average on the wirebasket for each subdomain, and send this to

the coarse solver.
6. Solve the face problems and coarse problem simultaneously.
7. Interpolate the coarse solution to the wirebasket.
8. Merge results.
9. {Approximate solvers on interior problems.)
The conjugate gradient method requires several inner products per iteration.

When possible, we use a direct call to a low-level implementation of a cross-processor
inner product.

4. Experimental results for piecewise constant coefficient problems. In
this section we report on experiments with scalar elliptic problems with piecewise
constant coefficients. The reason for examining such problems is threefold: we can
compare the well-developed theory with the numerical results, we can obtain a lower
bound on how well the algorithm will perform for more difficult problems, and we can
resolve questions about the optimal scaling of different parts of the preconditioner.

The total solution time depends on the number of iterations needed and the aver-
age amount of time needed per iteration. Information useful for comparing different
algorithms is provided by the number of iterations needed to obtain a fixed accuracy
of the solution. The square root of the condition number of the preconditioned system
gives a bound on the number of iterations needed.

4.1. On the local bounds. In this algorithm, as with most iterative substruc-
turing algorithms (see Dryja, Smith, and Widlund [12]), it is possible to bound the
condition number of the preconditioned matrix by bounds obtained locally, that is,

max
min ci

where the ci and Ci satisfy

c,u(’)rB()u_(’) < u(’)r S(’)u_(’) _< Cu(’)rB()u_()
We wish to determine how close the local bounds are to the actual condition numbers
as a function of the number of subdomains. We have performed two sets of experi-
ments, one using the exact blocks of the Schur complement, and the other using the
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J operator as the face preconditioner. In both this and the following section, the
domains are unit cubes. In all of the experiments we use the Lanczos algorithm to
calculate the extreme eigenvalues from which we calculate the condition numbers. We
make two observations from Table 1:

The condition numbers when using either the explicit Schur complement or the
J operator are virtually identical for the Laplace operator.

The bounds obtained from the local analysis quite closely predict the condition
numbers even for a relatively small number of subdomains.

The positions in the table denoted by a dash are cases for which experiments were
not carried out because of time or memory constraints.

TABLE 1
Condition numbers and local bounds.

H/h
4
5
6
7
8
9
10
16
20

Explicit $chur complement

Local Number of subdomains
bound 27 64 125 216

9.66 8.33 8.77 8.82 9.22
11.18 9.57 10.28 10.20 10.68
12.40 10.87 11.52 11.43
14.04 11.83 12.63
15.86 12.83 14.05
17.59 13.62
19.23

J operator

Local Number of subdomains
bound 27 64 125 216

10.25 8.72 9.41 9.35 9.92
12.10 9.86 10.78 10.61 11.30
13.64 11.05 12.07 11.85 12.89
15.07 11.96 13.56 13.30 14.51
16.31 12.87 15.00 14.70 16.06
17.54 13.63 16.37
19.26 14.38 17.67 17.61 18.91

21.12 24.20 24.16 25.98
24.15 27.88 27.78 29.83

4.2. On the scaling of the coarse problem. We can express the precondi-
tioned problem when using exact interior solvers as

BI=
I

Glw (
0

The mathematical analysis of the algorithm (see Smith [21] and Dryja, Smith, and
Widlund [12]) tells us that asymptotically, for large H/h, we should scale Gww by a
factor 5i(U/h) C(1 + log(t.r/h)). The analysis gives no information, however, about
the selection of the constant C rior whether the scaling is important for relatively small
values of H/h. We shall refer to the case with (H/h) 1 as the natural scaling. In
our experiments, we determine for each mesh size the optimal scaling 5i(H/h) using a
simple bisection method and compare the condition number with that obtained using
the natural scaling. The results are presented in Table 2.

A related question is whether, in the construction of Gww (see (2)), we should
scale the diagonal elements for the nodes associated with the vertices of the subdo-
mains differently from those nodes associated with the edges. The most natural choice
is to scale the former elements by 1/2, since those nodes are contained in exactly twice
as many subdomains. We refer to the resulting choice as a weighted Gww. We make
the following conclusions from Table 2:

For the range of computationally practical meshes on the subdomains (i.e.,
H/h <_ 32), the natural scaling is only trivially worse than the optimal scaling.

Using the weighted Gww results in only a trivial improvement in the condition
number.
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TABLE 2
Natural versus optimal scaling o coarse problem: condition numbers.

G(i) Scaling H/h

4 8 12 16 20 24 28 32
Natural Natural 9.4 15.0 20.1 24.2 27.9 31.1 33.9 36.5

Optimal 8.8 14.0 19.3 23.8 27.6 30.9 33.9 36.5

Weighted Natural 14.2 19.3 23.6 27.2
Optimal 13.6 18.8 23.3 27.1

4.3. The growth of the condition numbers. Mathematical analysis predicts
the growth in the condition number as a function of the mesh refinement H/h, and the
number of subdomains, but it does not give good estimates of the actual numerical
values. Our results are given in Tables 3 and 4. For the preconditioner labeled BGA
we have used one multigrid V-cycle to solve the subdomain problems approximately.
The difference in the condition number between using one multigrid V-cycle, two
multigrid V-cycles, and an exact interior solver is very small. Similar results have
previously been noted by Bbrgers [4] and Haase, Langer, and Meyer [15] for problems
in two dimensions but they have not yet been fully explained theoretically.

TABLE 3
Growth in condition numbers for 64 subdomains (H- 1/4).

H/h Unknowns K S B1S B-1GAg BDIs BIAg
4
8
12
16
20
24
28
32

3,375
29,791

103,823
250,047
493,039
857,375

1,367,631
2,048,383

103 53.8 9.4 9.4 67.6 67.7
414 122 15.0 15.0 107 107
933 192 20.1 20.1 131 133
1,656 261 24.2 24.4 150 152
2,593 331 27.9 28.1 165 166
3,734 401 31.1 31.3
5,083 33.9 34.2
6,640 36.5 36.9

Observed growth (l/h)2 1/(Hh) (1 + log(H/h))2 (l/H2)(1 + log(H/h))2

TABLE 4
Growth in condition numbers for 216 subdomains (H 1/6).

H/h Unknowns K S B1S B-GAg BD1S BIAg
4
8
12
16
20

12,167
103,823
357,911
857,375

1,685,159

232 119 9.9 9.9 155 149
933 269 16.1 16.1 230 232
2,099 421 21.5 21.5 281 283
3,734 573 26.0 26.1 318 321
5,835 726 29.8 30.0 336 350

Observed growth (l/h)2 1/(Hh) (1 -{- log(H/h))2 (1/H2)(1 -{- log(H/h))2

4.4. A comparison with a Bramble, Pasciak, and Schatz algorithm.
Since our basic algorithm is similar to one of the important algorithms introduced by
Bramble, Pasciak, and Schatz [5], we have reproduced the experiments reported in
their paper using the preconditioner B1. The first set of experiments is for a unit
cube divided into eight subcubes. The stiffness matrix is derived from the usual finite
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difference discretization for the Laplace operator. The second problem is for a unit
cube divided into 27 subcubes with a different constant coefficient on each subcube;
see [5] for the values used. We see from Tables 5 and 6 that for this class of problem,
the two preconditioners produce similar condition numbers. We note that these are
relatively small problems and that diagonal scaling also works well.

TABLE 5
Comparison with BPS IV: Laplacian operator.

H/h
4
8
16

Condition number
Diagonal BPS BIs

25.3 13.9 10.3
103 17.7 12.9
414 23 18.4

Unknowns

343
3,375
29,791

TABLE 6
Comparison with BPS IV: coecients with jumps.

H/h
Condition number

Diagonal BPS BIs
63.4 14.1 9.0
265.4 18.3 14.5

Unknowns

1,331
12,167

4.5. Timings. We next present timing results on a 32-node Intel iPSC/860 hy-
percube for a set of intentionally simple examples. We consider three problems. The
first two problems are on the unit cube; the third is .on a more complicated region
depicted in Fig. 2. The unit cube is uniformly divided into subcubes ijk. In the
third problem we use 244 subdomains which are not cubes; their aspect ratios are
4:5:20.

PROBLEM 1. Find uh such that

ijk jkijk(Vuh, Vvh) fvh vh E vh.

The boundary conditions are given by uh 0 on 0. The coefficients eijk are constant
on each subdomain and have large jumps between neighboring subdomains. Specifi-
cally, ejk sin2(16z)(elsin(au) + e15(1-)) + 1, where (x, y, z) is the center of ijk.
The right-hand side is given by f(x, y, z) ze sin(y).

PROBLEM 2. Find uh such that

(Vuh, Vvh) fVh vh E Vh.

The solution uh is constrained to be zero on one face of the cube and is free on the
rest of the boundary. The right-hand side is the same as in Problem 1.

PROBLEM 3. This problem is the same as in Problem 2 except that the domain
is as depicted in Fig. 2. The solution uh is fixed on the bottom of the object and free
on the rest of the object’s boundary.

All the results are for one multigrid V-cycle sweep as an approximate solver for
the interior problems, that is, two sweeps per subdomain per iteration. This choice
was made because additional multigrid sweeps did not result in a decrease in the
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//

FIG. 2. Domain ]or Problem 3.

number of outer iterations. The times needed when exact interior solvers are used
(i.e., with B1S) are much higher than those for the approximate solver. In addition,
we cannot run the large problems when using exact interior solvers, as the sparse
factors take a large percentage of the available space. For instance, for Problem 2
with 64 subdomains, the largest problem we could solve using the sparse interior
solver was with a mesh of H/h 16, while with multigrid we could solve problems
with meshes up to H/h 32. This fact suggests that for well-behaved problems like
the Poisson problem, exact interior solvers, such as banded or sparse linear system
solvers, are too expensive to be competitive. For more difficult problems, we do not
yet know which approach is superior. We used the ordering routines in the Yale
Sparse Matrix Package to order the unknowns for the sparse interior solvers. The
nested dissection ordering might be a better choice.

The results for Problems 1 and 2 are given in Tables 7 and 8, respectively. We
note that for Problem 2 both diagonal scaling and iterative substructuring without
a coarse problem perform poorer than for Problem 1, while iterative substructuring
performs essentially the same. This is due to the Neumann boundary conditions in
Problem 2. The bounds on the convergence of iterative substructuring algorithms
are independent of the ratio of Neumann boundary conditions to Dirichlet; see the
comment in Smith [21]. On the other hand, the condition number of the original
stiffness matrix deteriorates as one increases the percentage of the boundary with
Neumann conditions.

For Problem 3 (see Table 9), the iteration counts are slightly higher than for
Problem 2. It is well known that increasing aspect ratios cause a decay in the conver-
gence rate of domain decomposition algorithms. In Problem 3 the algorithm with a
diagonal scaling as the wirebasket problem performs poorly; see the column labeled
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BDK in Table 9. This poor performance results because the condition number of the
preconditioned problem grows like 1/H2, so the preconditioner becomes less effective
when a large number of subdomains is used.

TABLE 7
Problem 1 with 64 subdomains (time in seconds).

H/h

16

20

24

Number of
unknowns

29,791

250,047

493,039

857,375

Number of
processors Diagonal B-

Number of iterations 86 19 42
Condition number 221 14.1 62

4 14.1 14.8 23.0
8 8.3 8.8 12.8
16 5.7 5.4 8.0
32 3.9 3.7 5.0

Number of iterations 169 24 49
Condition number 885 23.1 89

4 94.2 85.6 155.1
8 51.7 44.9 80.9
16 31.2 25.9 44.3
32 17.0 14.3 23.2

Number of iterations 212 26 50
Condition number 1,379 26.6 99

8 113.0 109.4 187.7
16 65.2 58.7 98.9
32 34.2 30.4 50.7

Number of iterations 256 28 53
Condition number 1,984 29.5 107

8 193.7 163.5 290.5
16 110.1 86.8 151.9
32 57.4 44.8 77.6

32 2,048,383 Number of iterations 343 30 55
Condition number 3,525 34.0 119

32 153.9 119.3 207.3

4.6. Speed of computational kernels. Most large numerical codes have a
few routines that perform the bulk of the numerical calculations and use most of the
CPU time. We refer to these routines as the computational kernels. The best known
computational kernels are the BLAS and FFT. The computational kernels involve no
communication with other processes and should ideally vectorize and pipeline well.
It is also important that they use the data and instruction caches well. Since the
computational kernels dominate the time of the entire calculation, their optimization
is important. On certain processors, the Intel i860, for example, the replacement of
Fortran or C computational kernels with assembler language kernels can result in large
decreases in the time of the calculation at the expense of a great deal of careful hand-
coding of assembler code. We note that improvement in the speeds of computational
kernels is a local optimization and does not involve communication or parallelization.

The present code is all written with standard Fortran and C computational ker-
nels. We have observed the following floating-point speeds (see Fig. 3):

Dot product: 4.9 million floating-point operations per second (MFLOPS).
Matrix multiply: 7.8 MFLOPS.
DAXPY: 4.8 MFLOPS.
Multigrid solver: 3.4 MFLOPS.
Diagonal preconditioner: 2.7 MFLOPS.



418 BARRY F. SMITH

TABLE 8
Problem 2 with 64 subdomains (time in seconds).

H/h

16

20

24

Number of
unknowns

34,848

270,400

524,880

903,264

Number of
B-1K BIAgprocessors Diagonal GA

Number of iterations 129 17 65
Condition number 4,972 16.9 1,200

4 24.1 16.6 40.7
8 15.5 9.0 22.2
16 8.5 5.5 13.0
32 5.4 3.9 7.5

Number of iterations 262 23 78
Condition number 19,916 27.2 1,644

4 159.8 92.9 261.7
8 86.9 48.2 136.1
16 49.7 26.1 72.2
32 26.6 14.1 37.6

Number of iterations 325 25 83
Condition number 31,121 31.6 1,788

8 168.0 89.9 265.3
16 94.1 48.2 138.4
32 49.8 25.3 71.4

Number of iterations 388 28 89
Condition number 44,817 38.8 1,911

8 304.2 170.3 481.6
16 168.2 89.5 248.5
32 87.6 46.8 129.1

32 2,130,048 Number of iterations 522 32 91
Condition number 79,682 51.0 2,101

32 233.4 130.8 347.8

TABLE 9
Problem 3 with 244 subdomains (time in seconds).

H/h

16

Number of
unknowns

132,792

1,030,512

Number of
B-1Diagonal GAK BAKprocessors

Number of iterations 309 20 152
Condition number 19,657 20.8 4,710

8 143.2 54.9 217.4
16 78.2 35.9 114.9
32 48.3 26.6 66.4

Number of iterations 617 35 179
Condition number 78,486 74.1 6,428

16 427.1 155.1 629.0
32 237.2 88.5 332.1

20 2,000,460 Number of iterations 772 39 187
Condition number 122,582 93.9 6,981

32 453.4 157.5 622.7

Sparse factorization: 3.8 MFLOPS.
Sparse triangular solvers: 4.9 MFLOPS.

These results were obtained from the largest set of problems listed in Table 8. They
do not fit completely in cache.

In the problem with 2,130,048 unknowns listed in Table 8, the per-processor
flop rate for the entire calculation (from distributing the geometric information to the
nodes, to solving the system) was 4.0 MFLOPS for the diagonal preconditioner and 3.1



A PARALLEL ITERATIVE SUBSTRUCTURING ALGORITHM 419

Dot Product
Matrix Multiply

DAXPY
Multigrid Solver
Diagonal Scale

Sparse Factorization
Sparse Solvers
Face Solvers

MFLOPS

FIG. 3. Flop rate in the computational kernels.

MFLOPS for the more sophisticated preconditioner. Yet the diagonal preconditioner
took more than twice as much time. The lower overall flop rate for the sophisticated
preconditioner can be explained by the much lower flop rate of the multigrid solver.

The per-processor flop rate was obtained by taking the total number of floating-
point operations performed on the processor and dividing by the total time the pro-
cessor was in operation, including the time it was communicating with the other
processors. While this number is a useful indicator of how well the processor is being
utilized, it should not be overemphasized. The goal is to minimize total computation
time. The best algorithm is the one that does exactly that, even if its per-processor
flop rate is lower than that for other algorithms.

Setup Geometry
Form RHS,

Setup Matrices,
Local Dot Prod. ,,,

Transfer Dot Prod.
Local Multiply

Transfer Multiply
DAXPY

Diagonal Scaling

0 5 10 15 20 25 30 35

Percentage of total time

FIG. 4. Percentage of time in different states, diagonal preconditioner.

In Figs. 4 and 5, we graph the percentage of total wall-clock time spent in each
portion of the code for the diagonally preconditioned and fully preconditioned prob-
lems. This gives a clear indication of what part of the code can most fruitfully be
optimized. We also graph, in Fig. 6, the percentage of wall-clock time spent in various
parts of the code for Problem 2 when the sparse interior solver is used. This is for
64 subdomains with a mesh of H/h 16, the largest problem we could fit onto 32
processor nodes while using the sparse direct solver to solve the interior problems.
The overall flop rate obtained here was 3.8 MFLOPS.
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FZG. 5. Percentage of time in different states, full preconditioner.
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FIG. 6. Percentage of time in different states, sparse solver.

For the largest problem for which the sparse solver was used, 4.7 percent of the
total computation time was spent on interprocessor communication. When multigrid
was used to solve the interior problems approximately, the communication time in-
creased to 11.7 percent of the total time. With diagonal preconditioning, 26.2 percent
of the time was devoted to interprocessor communication.

5. Domain decomposition for elasticity. In this section we present numerical
results for a minimal overlapping domain decomposition preconditioner applied to
the equations of linear elasticity. The equations of linear elasticity are a self-adjoint
coupled elliptic system that can be written as

E
/ku+ VV.u =f.

1+ 1-2

E is the Young’s modulus, and is the Poisson ratio; both constants depend on
the physical properties of the material being modeled. For our experiments we used
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FIG. 7. Arch domain.

E 1 and 0.3. The stopping criteria was a relative decrease in the 12 norm of
the residual of 10-5

We consider the domain as indicated in Fig. 7 and discretize the problem using
20-node, incomplete quadratic serendipity elements (cf. Zienkiewicz and Taylor [24]).
We divide the domain into six subdomains. Since for the equations of linear elasticity
we do not have a simple face preconditioner like the J operator, we use an overlap
between domains of one mesh width; see Dryja and Widlund [14].

The stiffness matrix for the problem is extremely ill conditioned; for instance, even
for a discretization with fewer than 1000 unknowns, the conjugate gradient method
with diagonal scaling fails to converge even after 5000 iterations. The calculations
given in Table 10 were carried out on a Sun Sparcstation 2. For this experiment we
used exact interior solvers with a nested dissection ordering.

TABLE 10
Arch problem.

Number of Without coarse system With coarse system
unknowns Iterations Condition Iterations Condition

2541 39 607 15 7.6

6. Conclusions and future directions. We believe that our results indicate
that variants of the iterative substructuring approach are viable techniques for the
solution of elliptic partial differential equations in three dimensions on modern distrib-
uted-memory machines. For model problems, the iterative substructuring algorithm
performs better than diagonal scaling, but not by an enormous factor, indeed, not
by enough to justify the extra burden imposed by coding the algorithms. However,
we believe that for nontrivial problems, the difference between the two approaches in
terms of computational time will increase. An example of this is given in 5, where
diagonal scaling does not even converge, but the preconditioned problem requires
fewer than 20 iterations.

We also note that for solving extremely large model problems, it is important
to use approximate solvers for the interior problems. The fill from a band or sparse
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solver begins to dominate the memory usage, making it impossible to solve extremely
large problems. For difficult problems, we may not be able to find an iterative solver
for the interior problems that performs well enough to replace the direct solver, and
this fact might limit the size of the problems that we can solve.

The iterative substructuring algorithm considered here works well on simple,
piecewise, constant coefficient problems. To be useful in practice, it must be adapt-
able to a wide range of multicomponent elliptic partial differential equations. We
therefore plan to focus on adapting each piece of the algorithm to a wide range of
differential equations. The parts of the algorithm that must be generalized are the
face preconditioners, the wirebasket coarse problem, and the interpolation onto the
faces from the wirebasket. In addition, we shall consider other approaches to building
interior iterative solvers, such as incomplete factorizations. Finally, we shall consider
nonsymmetric problems.

Acknowledgments. I thank William Gropp for his excellent advice on the de-
velopment of this implementation of the algorithm. In addition, I thank Olof Widlund
for his comments on an early draft of this paper.

REFERENCES

[1] P. E. BJORSTAD AND A. HVIDSTEN, Iterative methods for substructured elasticity problems in
structural analysis, in First International Symposium on Domain Decomposition Methods
for Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J.
Pdriaux, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1988,
pp. 301-312.

[2] P. E. BJORSTAD, R. MOE, AND M. SKOGEN, Parallel domain decomposition and iterative

refinement algorithms, in Parallel Algorithms for PDEs, Proceedings of the 6th GAMM-
Seminar held in Kiel, Germany, January 19-21, 1990, W. Hackbusch, ed., Vieweg-Verlag,
Braunschweig, Wiesbaden, 1990.

[3] S. BOKHARI, Communication overhead of the Intel iPSC/860 hypercube, ICASE Interim Report
10, ICASE, Hampton, VA, May 1990.

[4] C. BSRGERS, The Neumann-Dirichlet domain decomposition method with inexact solvers on

the subdomains, Numer. Math., 55 (1989), pp. 123-136.
[5] J. H. BRAMBLE, J. E: PASCIAK, AND A. H. SCHATZ, The construction of preconditioners for

elliptic problems by substructuring, IV, Math. Comp., 53 (1989), pp. 1-24.
[6] T. F. CHAN AND T. V. nou, Eigendecomposition of domain decomposition interface operators

for constant coefficient elliptic problems, SIAM J. Sci. Statist. Comput., 12 (1991), pp.
1471-1479.

[7] T. f. CHAN AND D. f. KEYES, Interface preconditioning for domain-decomposed convection-

diffusion operators, Tech. Rep. CAM 89-28, Dept. of Mathematics, University of California,
Los Angeles, CA, 1989.

[8] T. F. CHAN AND T. P. MATHEW, The interface probing technique in domain decomposition,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 212-238.

[9] Y.-H. DE ROECK, A local preconditioner in a domain-decomposed method, Tech. Rep.
TR89/10, Centre Europden de Recherche et de Formation Avancde en Calcul Scientifique,
Toulouse, France, 1989.

[10] Y. DE ROECK AND P. LE TALLEC, Analysis and test of a local domain decomposition pre-
conditioner, in Fourth International Symposium on Domain Decomposition Methods for
Partial Differential Equations, R. Glowinski, Y. Kuznetsov, G. Meurant, J. Pdriaux, and
O. Widlund, eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1991,
pp. 112-128.

[11] M. DRYJA, A method of domain decomposition .for 3-D finite element problems, in First Inter-
national Symposium on Domain Decomposition Methods for Partial Differential Equations,
R. Glowinski, G. H. Golub, G. A. Meurant, and J. Pdriaux, eds., Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1988, pp. 43-61.



A PARALLEL ITERATIVE SUBSTRUCTURING ALGORITHM 423

[12] M. DRYJA, B. F. SMITH, AND O. B. WIDLUND, Schwarz analysis of iterative substructuring
algorithms for problems in three dimensions, Mathematics and Computer Science Division
Preprint MCS-P250-0791, Argonne National Laboratory, Argonne, IL, 1991.

[13] M. DRYJA AND O. n. WIDLUND, Some domain decomposition algorithms for elliptic problems,
in Iterative Methods for Large Linear Systems, Academic Press, San Diego, CA, 1989, pp.
273-291.

[14] M. DIYJA AND O. B. WIDLUND, Domain decomposition algorithms with small overlap, Tech.
Rep., Courant Institute, New York, 1992.

[15] G. HAASE, U. LANGER, AND A. MEYER, A new approach to the Dirichlet domain decomposi-
tion method, Tech. Rep., Technical University of Chemnitz, Chemnitz, Germany, 1990.

[16] D. E. KEYES AND W. D. GtoPP, A comparison of domain decomposition techniques for el-
liptic partial differential equations and their parallel implementation, SIAM J. Sci. Statist.
Comput., 8 (1987), pp. s166-s202.

[17] Domain decomposition techniques for nonsymmetric systems equations: Examples from
computational fluid dynamics, in Domain Decomposition Methods, T. Chan, R. Glowin-
ski, J. Priaux, and O. Widlund, eds:, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1989, pp. 312-339.

[18] P. LE TALLEC, Y.-H. DE ROECK, AND M. VIDRASCU, Domain-decomposition methods ]or
large linearly elliptic three dimensional problems, Tech. Rep. TR/PA/90/20, Centre Eu-
ropen de Recherche et de Formation Avance en Calcul Scientifique, Toulouse, France,
1990.

[19] J. MANDEL, Hierarchical preconditioning and partial orthogonalization ]or the p-version finite
element method, in Third International Symposium on Domain Decomposition Methods
for Partial Differential Equations, T. F. Chan, R. Glowinski, J. Priaux, and O. Widlund,
eds., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990, pp. 141-156.

[20] Two-level domain decomposition preconditioning for the p-version finite element ver-
sion in three dimensions, Internat. J. Numer. Methods Engrg., 29 (1990), pp. 1095-1108.

[21] B. F. SMITH, A domain decomposition algorithm for elliptic problems in three dimensions,
Numer. Math., 60 (1991), pp. 219-234.

[22] , Domain decomposition algorithms for the partial differential equations of linear elastic-
ity, Ph.D. thesis, Courant Institute of Mathematical Sciences, September 1990; also Tech.
Rep. 517, Dept. of Computer Science, Courant Institute, New York, 1990.

[23] B. F. SMITH AND O. B. WIDLUND, A domain decomposition algorithm using a hierarchical
basis, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 1212-1220.

[24] O. C. ZIENKIEWICZ AND R. L. TAYLOR, The Finite Element Method, 4th ed., McGraw-Hill,
London, 1989.



SIAM J. ScI. COMPUT.
Vol. 14, No. 2, pp. 424-445, March 1993

{) 1993 Society for Industrial and Applied Mathematics
010

MODIFIED CHOLESKY FACTORIZATIONS FOR SPARSE
PRECONDITIONERS*
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Abstract. In large-scale unconstrained optimization problems, preconditioned conjugate gradi-

ent techniques are often used to solve the Newton equations approximately. In certain applications,
"natural" sparse preconditioners can be derived from the structure of the problem and can accelerate
convergence significantly. Since these preconditioners are not necessarily positive definite, modified
Gholesky (MC) factorizations can be applied to construct related positive definite precondition-
ers. This paper describes such an adaptation of two MC techniques-GMW (Gill-Murray-Wright)
and SE (Schnabel-Eskow)-in a truncated Newton minimization method. This paper then analyzes
their effects on three interesting test problems of moderate size. The preliminary results suggest
that the two MC algorithms perform quite differently in practice. Trends can be noted for sparse
problems that differ from the dense case. Differences in the size of the modifications and in their
variances throughout the minimization are observed and related to problem structure and minimiza-
tion progress. These differences suggest that, for the minimization method examined, SE may be
advantageous for highly nonlinear functions, while GMW may be more effective for functions that
are well approximated by locally convex quadratic models.

Key words, modified Cholesky factorizations, preconditioned conjugate gradient methods,
sparse preconditioners, truncated Newton minimization
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1. Introduction. In large-scale unconstrained optimization problems, precon-
ditioned conjugate gradient (PCG) techniques are often used to solve the Newton
equations approximately. This approximate solution of the Newton equations pro-
duces a search vector at every step. In this general framework, each iteration involves
minimization of a quadratic model of the objective function F(x), x E Rn, around
the current iterate xk. This approximation along a direction p is given by

F(xk + p) F(xk) + gp + 1/2pTHkp,

where gk and Hk are the gradient vector and Hessian matrix, respectively, of F at
xk. Minimization leads to the Newton system of equations:

(2) Hkp --gk.

The next iterate is defined by xk+l Xk + AkPk, where Pk solves (2) approximately,
and Ak > 0 is determined in a line search algorithm to guarantee sufficient function
decrease [3], [10].

Truncated Newton methods form a subclass of Newton methods that control
the size of the residual of (2)systematically [2], [4], [15]-[18], [21], [22], [24], [26].
For large-scale problems, PCG methods are natural for solving (2). Indeed, with
a good combination of preconditioner and truncation strategy, truncated Newton
methods can exhibit rapid convergence in relation to "nontruncated" analogues and
other unconstrained minimization algorithms [15], [21], [22], [24], [26].
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"Natural" preconditioners arise in many optimization applications from the sepa-
rability of the objective function. For example, in computational chemistry problems,
a sparse preconditioner is suggested by the existence of short-range and long-range
chemical interactions: The "local" energy components, in contrast to the "nonlocal"
terms, are rapid to evaluate, tend to cluster near the diagonal, and are typically large
in magnitude [23], [24]. In mathematical biology problems involving interaction of
elastic structures and fluid dynamics (e.g., models of blood clotting), the local con-
nectivity structure describing the forces also leads to natural sparse preconditioners
[22]. In computational geometry applications involving crystal solidification (as in
formation of ice in water), the energy describing the evolution of the liquid/solid
phase boundary contains a surface term for the interface and a volume integral; the
boundary term leads to a natural preconditioner since it is both sparse and stiff in
comparison to the volume term [1].

When the preconditioner M is not sufficiently positive definite, modified Cholesky
(MC) factorizations can be adapted for the minimization method to construct a re-
lated positive definite sparse preconditioner M. While the idea of indefinite precon-
ditioners may be unconventional for certain applications, we have found this strategy
to work well in practice in applications as mentioned above. In the typical case, the
"natural" preconditioner may be indefinite only in some early Newton iterations; it
becomes positive definite at later iterations [22].

The choice of MC strategy may play a critical role in governing performance in
this context. The Gill-Murray-Wright (GMW) [10] and Schnabel-Eskow (SE) [8],
[25] MC schemes offer two approaches. Both methods augment the original matrix
by a nonnegative diagonal matrix. They differ both in the numerical choices for the
modifications and in the process by which diagonal modifications are applied. Here
we report computational results from truncated Newton minimization involving the
two MC techniques for modifying sparse preconditioners.

In 2 we briefly review the GMW and SE MC algorithms. In 3 we describe the use
of the MC factorizations in our truncated Newton minimization algorithm. Numerical
results are presented and analyzed in 4. We use three problems of moderate size,
two from computational chemistry and one a familiar optimization test problem. We
discuss the results alongside eigenvalue analysis for the corresponding preconditioners
and Hessians. Our observations regarding the performance of the algorithms using the
GMW and SE schemes are summarized in 5. Results suggest various trends of MC
effects for sparse problems that differ from the dense case. Different overall variances
in the size of the modifications are. observed and related to problem structure and
minimization progress.

2. MC factorizations. MC techniques are used to solve linear systems Mz r
for coefficient matrices M that are symmetric but not necessarily positive definite.
They are not intended to solve systems in the usual sense, since the modified system
M. r, with M M, may produce a solution that bears no resemblance to z.
They are appropriate, however, when justification exists for modifying a linear system,
as in Newton-type methods for nonlinear optimization.

MC algorithms begin with a symmetric n n matrix M and produce a factoriza-
tion

(3) LDLT - i + E,

where L is unit lower-triangular, D is a positive diagonal matrix, M is positive defi-
nite, and E is a nonnegative diagonal matrix, at similar cost to a standard Cholesky
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factorization. The MC algorithm of GMW [10] has been used extensively in nonlinear
optimization, exhibiting very good performance. The more recent MC scheme of SE
[25] presents an alternative. Since it is impossible to define the "best" choice of M
for an indefinite system, the two MC algorithms attempt to balance several practical
and theoretical issues. Both attempt to combine the objectives of keeping IIEII small
and producing a well-conditioned M. That is, by balancing the amounts added to the
diagonal at earlier and later iterations of the factorization, the modification strategy
attempts to balance: (1) on one extreme, selecting large modifications that guarantee
positive-definiteness but perturb the original matrix excessively; with (2) on the other
extreme, choosing small, just sufficient additions that may lead to very large modifica-
tions later. In comparison to GMW, the SE procedure has: similar cost (involving an
additional multiple of n2 operations to the standard Cholesky factorization); a lower
a priori upper bound on [[E[Ioo; and, in many instances, a smaller value for IlE[Ioo

The two procedures (without interchanges) are summarized below; see [10], [8],
and [25] for details. The inclusion of interchanges does not alter the upper bounds
on [[El[oo, although it tends to produce better results in practice. Consider a single
step of a row-wise MC factorization without interchanges. At the beginning of step
j, j 1,..., n, final values are in place for the first j 1 elements of D and the first
j- 1 rows of L (see Fig. 1). The space originally occupied by M is overwritten while
performing the factorization, and all subscripted quantities actually refer to locations
in the M array. Here we treat portions of this array as two conceptual matrices: a
diagonal matrix D and an auxiliary matrix C. D is initialized to the diagonal of M;
element j of D may be viewed as a trial value for dj. The matrix C is stored in the
first j- 1 columns of rows j through n. The following calculations are performed
during step j.

1. Compute row j of L:

J J
$

Before step j begins After step j ends

contains final L and D factors

contains the auxiliary quantities of LD

contains updated diagonal elements

FIG. 1. Step j of the MC factorization.
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2. Compute cj (Cj+l,j, cj+25,..., cn,j)T (column j of C):
j-1

csj msj EjkCsk
k--1

s=j+l,...,n.

Calculate the nonnegative quantity 0j from cj:

0j

where the function f varies with the MC algorithm (see below).
3. Use Oj, as specified by the MC algorithm, to compute ej > 0. Set the final

value of dj to

We refer to ej as the modification; when ej > 0, we say that dj has been

modified.
4. Update D:

(8) s cs/dj, s j + 1,..., n.

The details of steps 2-4 above will now be discussed in turn for the two factorizations.

2.1. The GMW factorization. In GMW, the values for ej are chosen so as
to minimize an a priori upper bound on IIEll subject to the condition that positive
definite matrices will not be perturbed (i.e., M positive definite :: E 0). Two
numbers are required to perform the algorithm: em (machine precision) and T, the
smallest acceptable value for any element of D, often v/m or m. Three other
quantities are computed before the factorization begins:

(9) -y m.ax{ Imjl },

(10) max{ {mjsl },
j>s

and the bound

(11) max -y,
max{l, v/n 1}’ era

In step 2, the GMW definition of 0 is

(12) Ile ll rna {Ic,. l}, j + 1,...,n.

In step 3, dj is given by

(13) d max{Id I, T, o/},
which defines ej implicitly.

Note here the following properties: (1) The matrix M must be assembled a priori
so that -y and can be computed. (2) It follows from (13) that dj may be modified
even when it is positive and greater than the lower bound T; this situation arises when
M is not "sufficiently" positive definite. When dj is negative but exceeds both T and

02/fl in magnitude, the final dj is taken as Idjl, which corresponds to a modification

ej 21djl. This result often occurs when M has at least one nonnegligible negative
eigenvalue. (3) The restriction that dj > 02// implies that

(14)
hence the name "bound" for/i/.
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2.2. The SE factorization. In SE, an attempt is made to compute the standard
Cholesky factorization ("Phase 1") but include a special phase test that indicates when
the smallest element of D has become "too small." Once the phase test becomes true
at any step, the SE modification rule is applied at all subsequent steps.

Two quantities must be specified: T1 and T2, typically of order Q-m. The quantity
-y (the largest magnitude of any_ diagonal of M) is defined by (9) as in GMW. At step
j, let drain denote min{,..., dn}. If

(15) drnin < TI")’,

the SE procedure enters Phase 2 and thereafter modifies diagonal elements according
to the following rules. The value of 0j (step 2) is the one-norm of cj"

so that is the current Gerschgorin radius for row j [11]. The modification for ej,
1 _< j _< n- 2, is specified as

(17) max{0,-dj + max{0, T2"}, ej_l }.

For steps n- 1 and n, the SE procedure uses the explicit eigenvalues of the remaining
2 x 2 submatrix. At the end of step n 2, let Ato and hi denote these eigenvalues,
with Ato _< Ahi. Then en-1 and en are both defined as

(18) e,_l en max 0, en-2,-Ato / T2 * max 1 T2

The SE strategy produces a value for IIE]] that is bounded above by the magni-
tude of the most negative lower Gerschgorin bound of the unfactorized matrix when
Phase 2 begins. It also leads to a smaller a priori upper bound for ]]EI] than the
GMW approach [25]. For GMW, the upper bound is roughly n2 times the maximum
element in M, whereas for SE it is roughly 2n times the maximum element in M.

3. MC factorizations in truncated Newton optimization. MC factoriza-
tions are useful in nonlinear optimization for modifying the Hessian or some approx-
imation to it involved in solving the Newton equation (2) for the search direction
p. Recall that truncated Newton methods solve the Newton equations only approx-
imately, usually by some version of the conjugate gradient method. The rationale
for the approximation is that global convergence can be achieved if the search direc-
tion is bounded away from orthogonality to the negative gradient; thus, it is never
"necessary" to solve (2) accurately for global convergence. The size of the residual
rk Hkp -gk is controlled systematically at every step, and asymptotic quadratic
convergence can be achieved if rk is systematically made sufficiently small near the
solution [2].

Truncated Newton methods are generally competitive with other large-scale op-
timization methods only when preconditioning is applied to the Newton equations
[21], [26]. Fortunately, many applications in computational chemistry, geometry, and
meteorology produce sparse preconditioners naturally from the "physics" of the prob-
lem. Often, such a "natural" preconditioner M can be derived from the separability
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of the objective function. It provides an approximation to H but may not be pos-
itive definite. An MC factorization can therefore be applied to produce a modified
preconditioner, M, that is positive definite.

We have adapted a truncated Newton algorithm targeted to sparse but not neces-
sarily structured preconditioners [21], [22]. The linear system involving the precondi-
tioner, Mz r, is solved by a sparse MC procedure based on the Yale Sparse Matrix
Package [5]-[7]. Instead of a vector z M-lr used in standard PCG algorithms, we
obtain the MC solution ()-lr. Our algorithm "TN," as used in the tests reported
here, is described below. (Other variations have been considered; see [21] and [22]
for details.) In this version, we assume that the sparsity structure of the precon-
ditioner remains constant. This is a common situation in computational chemistry
applications, since structure depends on the molecular connectivity, specified a priori.

3.1. Algorithm TNI: Outer loop of the truncated Newton method.
1. Initialization

Set k 0 and evaluate F(xk) and gk.

If [[gk[[

_
10-S max{l, I]xk[[}, where [[. is the standard Euclidean norm, exit

algorithm. Otherwise, continue to step 2.
2. Preparation for sparse MC factorization

Determine the pattern of the preconditioner M. Since the upper triangle
of M is stored in a compressed row format, the pattern is specified by two
integer arrays that serve as row and column pointers [21].
Compute the permutation matrix P that minimizes fill-in (that is, produces
a sparse Cholesky factor L for PMPT, assuming that M is positive definite)
by the minimum-degree reordering algorithm [5]-[7].
Compute the symbolic factorization of M. This involves determining the
sparsity structure of the Cholesky factor L and preparing the corresponding
data structure.
Evaluate the preconditioner and, optionally, the Hessian (Mk and Hk, re-
spectively).

3. (Algorithm TN2) Inner loop
Compute a search vector Pk by solving Hkp --gk
approximately using a PCG method; see below.

4. Line search
Compute a step length A by safeguarded cubic and quadratic interpolation
[3], [14], so that Xk+l xk / Apk will satisfy

(19) TF(xk+l)

_
F(xk) + c Agk Pk,

(20) T Tgk+lPkl-< lgk Pk I,

where ( 10-a and/ 0.9.

The Hessian is used only for the Hessian/vector products, Hd, in each PCG iteration of the
inner loop (see Algorithm TN2). In some situations (e.g., H is sparse and structured), Hd can
be computed without explicit assembly of H. In many large-scale applications, H is dense and
prohibitively expensive to calculate, but Hd can be computed with one additional gradient evaluation
by the finite-difference approximation Hd[g(xk + Ax d)--g(xk)]/Ax where Ax is a suitably chosen
interval, such as Ax 2(1T Ilxkll)/lldll [9], [21]. The user specifies the method of choice for the
calculation of Hd.
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Set xk+l xk 4- ,kpk and k k + 1. (The new function value and gradient
are known after the line search.)

5. Convergence tests
If Ilgkll --< 10-s max(1, Ilxkll}, exit algorithm. Otherwise, continue to step 6.

6. Preparation .for next Newton step
Compute the preconditioner and, optionally, the Hessian (see previous foot-
note 1) at the new point (Mk and Hk, respectively).
Perform a "symmetric reordering" of Mk according to the permutation P.
This only involves internal rearrangement of M.
Go to step 3.

3.2. Algorithm TN2: Inner loop k of the truncated Newton method.
The sequence (i} below represents the PCG vectors used to construct Pk in step 3
of Algorithm TN1. We omit the Newton subscripts k from p, g, H, and M for clarity.
1. Initialization

Set i 0, 15i 0, and ri -g.
Set the parameter r/k controlling the accuracy of the computed search vector:

(21) rlk min{6/k, Ilgll},

where 6 < 1.
2. Preparation for sparse MC factorization

Perform the numerical factorization of (the permuted) M by the chosen MC
scheme. The resulting factors L and D of p-pT pMpT 4- E LDLT
are stored in the same sparse row format used for M. We refer to M as the
"effective preconditioner."
Solve for zi in

(22)

(23)

Mzi ri

by using the Cholesky factors in the system (P-PT)Pz Pr:
Lx Pri, LTy- D-lx, zi=pTy.

Setd=z.
3. Negative curvature test

Compute the matrix-vector product qi Hdi.
oIy

(24) diTqi G (d/Tdi)
(where is a small number such as era/100)
exit inner loop with search direction

zi if i =0,
(25) P=

i else;

else continue to step 4.
4. Truncation test

Update the quantities

, rTz,/d
+ 15 + d,
ri+l ri oqqi.
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(26) IIr/ll-< llgll,

exit inner loop with search direction

(27) p i+1;

else continue to step 5.
5. Continuation of PCG

Compute zi+l as in step 2 (23) by reusing the MC factors of (the permuted)
M so that

(28) Mz+l r+l.

Update the quantities

/ rT+lz+l/rTzi,
di+l Zi+l q-/3d,

i+-i+l.

Go to step 3.

3.3. Remarks on TN. In the negative curvature test of (24), we use the value
10-1. For the truncation test of (26), we use 1 in (21). (For diagnostic

purposes, we also use 10-s in some runs to mimic a nontruncated version.)
Thus the inner PCG loop can terminate if a direction d of negative curvature is
detected, or if the truncation test is satisfied (see steps 3 and 4 above). In the
first case, the resulting search direction (for the outer loop) is --(k)-lgk if this
occurs at the first PCG iteration, or the current PCG iterate, , otherwise. In the
second case, the relative residual of the Newton equations k IIrk[I/l[gkl[ <_ lk < 1
and limk--.osup(k/l[gkl[) < o, which can be used to produce asymptotic quadratic
convergence for the method [2]. Weaker, superlinear convergence can be obtained if
the forcing sequence lk is chosen so that limk_ /k 0 and k _< k < 1 [2], [4].
Although we have found the residual test of (21) and (26) to work very well in practice,
several alternatives have been suggested to produce an affine invariant truncation [4]
or to avoid an excessive number of inner iterations [17], possible, for example, when
[[g[I is small or H is ill conditioned.

Since the sparsity structure of the preconditioner remains constant throughout
minimization, the permutation P is determined at the beginning of the algorithm. A
no-pivoting MC algorithm is used to retain this structure. The symbolic factorization
of M is also performed only once. In each inner loop, one numerical factorization is
performed, whereas in each inner PCG iteration numerical solutions are required to
solve Mz r repeatedly for different right-hand side vectors ((22) for 0 and (28)
for i _> 0).

3.4. MC variations. In addition to the no-pivoting implementation of the MC
factorization, our experience has suggested a variation of the SE formula in (17)
and (18) for choosing the modification ej. This involves omitting: (1) the condition

ej >_ ej-1 in (17), and (2) the explicit eigenvalue strategy for en-1 and en in (18).
While IIEllo may indeed be smaller if the original formulas are used, the special
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treatment of the last two variables may destroy inherent symmetry of the problem;
furthermore, only small improvement on IIEIIo can generally be expected for large-
scale systems. The deletion of the requirement that ej be at least as large as
may be beneficial in our preconditioning context since fewer overall modifications to
M may be involved. Moreover, for very large sparse systems, the rationale behind
the original strategy (that a larger dj may lead to a less negative trial value dj+l and
hence a smaller modification ej+l) may be irrelevant if gy+,i or Cj+l,j is zero (see
(8)). In all our SE MC implementations, we omit the special strategy for determining
e and en-1. We refer to versions "SE(a)" and "SE(b)" as the SE strategies where
the formulas of (17) and

(29) e. max{O,-dj + max(O, ’2q’)), j 1,..., n,

are used, respectively.

4. Numerical experiments. The following numerical examples are intended to
suggest various trends that may occur in practice in our truncated Newton utilization
of the various MC factorizations. Clearly, the special adaptation of MC for TN
restricts any conclusions to the present context. The notion of "optimality" for one
MC strategy versus another is very difficult because the overall effect on minimization
is cumulative; only a thorough investigation on a wide variety of problems can attempt
to address this question. However, our current experience may already prove useful,
and we share it in the hope that further investigations will be motivated.

Three types of objective functions are examined, with variations of size, starting
points, parameters, and preconditioners. The problems are chosen of moderate size to
permit a thorough investigation of the MC segment, including eigenvalue analysis for
H and M at every Newton iteration. Two functions are chosen from computational
chemistry: one describing a typical case of a molecule with few and well-separated,
low-energy conformational regions; and one of a cluster of molecules, for which many
energetically favorable configurations exist. The third is a well-known, unconstrained
minimization test function, sometimes called "trigonometric" [12], [13]; its Hessian is
indefinite at the standard starting point, with many negative and clustered eigenval-
ues, and typically remains indefinite for many iterations. In general, many "standard"
test problems are inappropriate for our comparison since natural, much less indefi-
nite, nondiagonal preconditioners are nontrivial to formulate. For the trigonometric
function, the Hessian is dense, so there is some justification for formulating various
band preconditioners, which are also indefinite (see 4.4).

4.1. Measures of overall performance. Overall performance with the trun-
cated Newton method can be measured by the total number of outer (Newton) itera-
tions, inner (PCG) iterations (i.e., the sum over all Newton steps), and function and
gradient evaluations. These quantities determine the computing time. Since func-
tion and gradient values are evaluated as a pair in the line search, we refer to this
measurement as a function evaluation."

The number of Newton iterations provides information on overall progress. Many
Newton iterations, for example, typically indicate that indefiniteness ofH has been de-
tected, in which case the inner loop is terminated without the satisfaction of the trun-
cation criterion. The number of PCG iterations has been suggested as a good overall
measure of truncated Newton performance [2]. The number of function evaluations--
at least one per Newton step and more if required by the line search to satisfy (19)
and (20)---can be a good indicator of time for large-scale functions if function and
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gradient calculations dominate over the cost involved in Hessian and preconditioner
calculations.2

An important consequence of the truncated Newton approach is that different
algorithmic variations (e.g., truncation parameters, MC strategies) generate a different
sequence of search vectors. This effect can lead to different overall performance. The
effect of different MC procedures on overall minimization in our method will therefore
be indirect and cumulative. While the relation between the MC strategy and the
required number of PCG iterations to solve a given Newton system to completion
is easier to measure, it is of more practical importance to understand the MC effect
on overall minimization progress. This overall consideration is also relevant since in
many large-scale problems, the number of PCG iterations is often limited to a number
<< n due to the high cost of the inner iteration [16]. This implies that different MC
strategies may lead to very different search directions from the same iterate. The
total number of PCG iterations is both a measure of overall progress and a cumulative
indicator of the step-by-step MC effect.

All computations were performed in double precision on a DEC Vax-3600 com-
puter at the Courant Institute of Mathematical Sciences, New York University. Ma-
chine precision is of order 10-1. We refer to the three MC strategies as: GMW (2.1),
SE(a), and SE(b) (2.2 with variations indicated above). The MC tolerance parame-
ters are: T1 7"2 10-5 for SE, and T 10-s max{l, ,} for GMW. This value of
T for GMW is chosen since our typical largest diagonal of M, - in the computational
chemistry problems has a value of O(103) and satisfies f > .

4.2. A nucleic acid component. In "molecular mechanics," a potential energy
function of atomic positions is minimized to predict three-dimensional structures of
biomolecules for a given composition (e.g., base sequence for DNA) [19], [23]. Thus
the independent variables are the Cartesian coordinates of all atoms in the system,
denoted collectively by the vector x. Potential energy surfaces are typically complex,
involving many local minima, maxima, and transition points. Since the energy nat-
urally decomposes into local and nonlocal interactions, the local components (among
atoms in bonded sequences of atom pairs, triplets, and quadruplets) provide a natural
sparse preconditioner which grows linearly in size with n [22]. We have found this
choice of preconditioner ("MpE") to work very well in practice in relation to other
preconditioners and to no-preconditioning versions [22], [24].

Deoxycytidine (dC), is a component of DNA that can be modeled with n 87,
[19], [23]. Well-tested energy parameters are available, and specific local minima for
dC are known experimentally. The energy function F(x) is typically written in terms
of the internal variables (interatomic distances rij, bond lengths bi, bond angles
Oi, and dihedral angles Ti), which are in turn computed from x through geometric
relations [19]. It has the form:

Aij Bij QiQ ]f --:r + + +
rij rij rij JeSs(30) ,es,.

+ K,(cos + (1 + cos
iSBA iSDA m

2 The costs for the Hessian/vector products Hd (see step 3 of Algorithm TN2) and solutions of
Mz r (see (22) and (28)) depend on the problem structure. The finite-difference approximation to
Hd (see footnote 1) will generally provide a time advantage, without sacrifice in performance, if the
"analytic" Hd calculation is considerably more costly than one gradient evaluation. The Mz r
solution depends on the sparsity pattern of M and can be as low as O(n) [21].
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The first component represents the van der Waals (attraction/repulsion) and Coulom-
bic interactions for atom pairs (i,j), i < j, in the nonbonded set SNB. The second and
third energy terms penalize deviations from reference bond lengths (bi) or bond angles
(i) for the bonds and angles in the sets SB and SBA, respectively. The last term
accounts for rotations of two groups of atoms about the bond connecting them and
associates with each such dihedral angle in SDA a periodicity m (typically m 2, 3, 6)
and barrier height Vm. The symbols A, B, Q, S, and K are energy parameters as-
sociated with a particular pair interaction, bond, or angle type (e.g., O-O where O

oxygen). MpE, is assembled from the second derivatives of the bond length, bond
angle, and dihedral angle terms.

Many minimization starting conformations were investigated for dC, and the three
different choices (Xl, X2, X3), examined in Tables 1-4, are representative of different
energies and eigenvalue distributions (see Tables 3 and 4). All Hessians and precondi-
tioners are indefinite at the starting points. Tables 1 and 2 show minimization results
from the three points: in Table 1 with the truncation parameter 5 1 (see (21)), and
in Table 2 with ti 10-s. The total number of Newton iterations, PCG iterations,
and function evaluations required for convergence is given. The minimum, maximum,
and median values for IIEIIoo, computed over all Newton iterations, and the number
of Newton iterations for which IIEIIoo > 0 ("modified iterations") provide the MC
information. Each run from the Xl, X2, and X3 groups produced the minima X6,
Xb, and XT, respectively. Tables 3 and 4 provide eigenvalue information for H and
M at these six points.

TABLE 1
Molecular model 1: Deoxycytidine (dC), n--87 (5- 1.0 in truncation criterion).

(Xl)

(X2)

(xa)

F & GNewton PCG
Run Itns. Itns. Evals.

GMW 15 71 38
SE(a) 17 84 43
SE(b) 16 81 41
GMW 19 79 48
SE(a) 21 79 50
Sn(b) 19 86 46
GMW 13 48 28
Sn(a) 13 49 31
SE(b) 14 57 27

Modi-
[[E[[oo fled

Min. Max. Med. Itns.

1.3E+01 1.3E+01 1.3Eq-01 1
2.4E+00 5.6E+00 4.0E+00 2
5.6E+00 5.6Eq-00 5.6Eq-00 1

1.dEq-01 1.dEq-01 1.4Eq-01 1
7.2Eq-00 7.2Eq-00 7.2Eq-00 1
7.2E+00 7.2Eq-00 7.2Eq-00 1

1.3Eq-01 1.3Eq-01 1.3E-b01 1
6.1Eq-00 7.2Eq-00 6.7Eq-00 2
7.2Eq-00 7.2Eq-00 7.2Eq-00 1

From Table i (5 1), we note that overall convergence to a local minimum is very
rapid: < n/4 outer iterations, < n inner iterations, and n/2 function evaluations.
MpE is modified in only one or two Newton iterations (typically the first and second),
and in those cases ej > 0 only for the last three or four factorization steps (j >_ 83).
The values of []E[[o are larger for GMW than SE, by about a factor of two, but in
both strategies [IE[[o is greater than min by one or tWO orders of magnitude. When
a modification occurs in only one Newton iteration, IIEIIo corresponds to/min of M
at the starting point (Table 3). When two such modifications are made, the recorded
value for [[E[[oo corresponds to a )min of M (at another Newton iteration) that is
slightly smaller in magnitude than ,min at the starting point. (In the second iteration
of Sn(a) for Xl, )min -0.22 versus [[E[Io 2.4; in the second iteration of Sn(a)
for Xa, )min --0.01 versus I]E[[oo 6.1.) Overall, the smaller SE modifications
do not produce a systematic reduction of PCG iterations for the modified iterations.
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TABLE 2
Molecular model 1" Deoxycytidine (dC), n 87 ( 10-8 in truncation criterion).

Newton PCG F & G
Run Itns. Itns. Evals.

Modi-
IIEIIo fled

Min. Max. Med. Itns.

(xl)

(x2)

GMW
SE(a)
SE(b)
GMW
SE()
SE(b)
GMW

(X3) SE(a)
SE(b)

12 207 29
13 230 31
12 191 29

20 299 58
18 278 45
18 287 36

13 189 34
12 156 23
13 177 31

1.3E+01 1.3E+01 1.3E+01 1
5.6E+00 5.6E+00 5.6E+00 1
5.6E+00 5.6E+00 5.6E+00 1

1.4E+01 6,6E+01 4.0E+01 2
7.2E+00 7.2E+00 7.2E+00 1
7.2E+00 7.2E+00 7.2E+00 1

1.3E+01 1.3E+01 1.3E+01 1
4.7E+00 7.2E+00 6.0E+00 2
7.2E+00 7.2E+00 7.2E+00 1

TABLE 3
Eigenvalue information for dC starting points (F(X1) 1.4; F(X2) 1.8 x 103; F(X3)

5.1 x 10a).

Point i1 Amin max #NEG
(Xl) H -I’dE+00 2.9E+03 2

M -3.2E-01 2.8E+03 1

"(X2) n -1.2E+04 1.8E+05 7
M -1.2E-01 2.9E+03 1

(XS) n -8’2E+05 1.1E+07 9
M -1.2E-01 2.8E+03 1

TABLE 4
Eigenvalue information for dC minima (F(XS) -6.8; F(X6) -5.7; F(X7) -5.0).

Point i] min max NEG
(XS) n 7.7E-02 3.0E+03 0

M 3.7E-01 3.0E+03 0

(X6) n 3.8E-02 2.9E+03 0
M 2.6E-01 2.9E+03 0

(XT) H 2.1E-02 3.1E+03 0
M 3.8E-01 3.1E+03 0

Only about one to three PCG iterations per Newton iteration are performed for all
Newton iterations. The differences between the two SE versions are small.

When the truncation parameter is made more strict (5 10-8), Table 2 shows a
large increase in the number of required PCG iterations (a factor of three or more).
This demonstrates the effectiveness of the truncated Newton approach in allowing
larger residuals in many cases. The number of function and gradient evaluations is
usually decreased as well.

Overall, both the GMW and SE strategies perform quite similarly in this example
despite the fact that IIEIIo is systematically greater for GMW than for SE. This sug-
gests that the size of E alone is not a simple factor correlated with better performance
in TN; larger modifications to M may subsequently produce equally effective search
directions. Indeed, in earlier tests, we encountered a case where IIEIl of GMW was
larger by nearly two orders of magnitude than that of SE; yet minimization perfor-
mance of the GMW version was more rapid overall. Although the differences here
are not large, the GMW version appears slightly more efficient in the usual TN context
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of i 1. Between the two SE versions, performance differences are small. Analysis
shows that allowing ej-1 to exceed ej can slightly increase the average modification
per Newton step but may cause fewer elements to be modified. Systematic effects
of this difference cannot be noted here since few nonzero diagonal modifications are
involved, all of which occur in the last few Cholesky factorization steps.

The rapid minimization progress and its insensitivity to the MC strategy may be
attributed to the fact that this optimization problem is straightforward, with distinct
convex conformational regions. In almost all runs, H becomes positive definite after
the first Newton iteration and remains positive definite. MpE is an excellent precon-
ditioner (nonpreconditioned runs required a factor of ten or more PCG iterations [22])
and is positive definite except during one or two Newton iterations. As later results
suggest, this overall performance may be related to the existence of only one isolated
negative eigenvalue for MpE near the starting point; all three MC strategies modify
only few diagonals and are equally successful in our TN context.

4.3. Water clusters. Our second model of water clusters [20] has an energy
function similar to (30) except that the van der Waals term is summed over O-O atom
pairs only, the coulombic interactions are summed over all intermolecular pairs (O-O,
O-H, and H-H), and there is no dihedral angle term (H hydrogen). The physical
picture is entirely different from that of dC, since the interaction among the different
water molecules is long range and the many local minima (close in energy) correspond
to different hydrogen-bonding networks. The complexity of these networks increases
as the cluster size grows. This property produces a Hessian for the water model that
is often indefinite. Furthermore, the same definition of local MPE does not contain
the major energy contributions. The electrostatic potential that leads to formation
of hydrogen bonds is dominant here. However, it is not practical to formulate a
preconditioner from these long-range interactions, especially in the context of large-
scale truncated Newton minimization. In practice, these features are reflected in TN
minimization by frequent termination of the inner loop when a direction of negative
curvature is detected and by nonzero MC modifications at every Newton iteration. In
combination with the difficulty of choosing good starting points (i.e., predicting the
hydrogen bonding patterns a priori), this minimization problem is far more difficult
than dC and requires a large number of iterations and function calls.

In all water runs, the truncation parameter 5 is set to unity and the limiting
number of inner iterations (per outer iteration) is set to n to make the MC comparisons
as fair as possible. Results for a water dimer (n 18) are summarized in Table 5.
Run (A) uses MpE. Run (B), chosen for diagnostic purposes, adds to MpE nonlocal
O-O interactions. This adds an off-diagonal 3 3 block to the block-diagonal MpE
composed of two 9 9 blocks. There is only one minimum for the dimer corresponding
to a linear hydrogen-bonded pair [20].

Run (A) shows convergence in about 40 Newton iterations for all MC versions.
GMW requires a smaller number of inner iterations and function evaluations ( 80
percent) in relation to the SE runs. The size of IIEIIo for GMW is on the order of the
prescribed parameter T of (13), since very small trial diagonalsmO(10-13- 10-2)
appear toward the end of the factorization (j > 15). The SE versions switch to Phase
2 early, producing more diagonal modifications but also avoiding formation of very
small tentative diagonals. Table 6(a) provides an illustration of this behavior.

In contrast, run (B) shows that overall performance of all three MC strategies is
very similar. The mean GMW IIEIIo is now greater by about one order of magnitude
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TABLE 5
Molecular model 2: water dimer, n 18.

Newton PCG F & G
Run Itns. Itns. Evils.

Modi-

IIEII fled
Min. Max. Med. Itns.

(A)
GMW
SE()
SE(b)
GMW

(B) SE(a)
SE(b)

38 244 100
47 322 132
43 296 120
46 294 129’
45 297 127
45 297 134

1.5E-05 1.6E-05 1.6E-05 38
9.5E-01 1.1E-t-03 5.5E+02 47
9.5E-01 1.1E-t-03 5.hE-t-02 43

1.0E+01 6.7E+03 3.4E+03 46
6.0E-t-00 9.2E-t-02 4.6E-t-02 45
1.5E+01 9.2E+02 4.7E+02 45

than SE. Thus, the noted tendency of GMW to begin diagonal modifications at later
factorization steps produces here an overall larger IIEIIo. Table 6(b) illustrates this
behavior in comparison to run (A).

A minimization series of water clusters in increasing sizes was then performed.
These experiments correspond to case (A) of the water dimer, using MpE. Starting
configurations are constructed pseudorandomly in the computational domain [20],
and are thus high in energy and far from optimal structures. The various geomet-
ric possibilities that different cluster sizes can adopt [20], in combination with the
random aspect of choosing the starting points, produce differences in minimization
performance that are not always correlated to the cluster size.

Table 7 shows performance for water clusters of dimensions n 27 to n 576,
and Table 8 provides eigenvalue information for the corresponding starting and final
points (including the water dimer). In the reported runs for each dimension, the
resulting minima are very close in energy although they may not be identical. In such
cases, corresponding eigenvalue information at the final points is very similar for each
group, and the reported values in Table 8 are representative.

In comparison with results for the water dimer, similar behavior in the size of

IIEII can be observed for larger water models, but a new dimension-dependent trend
emerges among the MC versions. While the GMW version appears more efficient for
smaller dimensions in the number of iterations and function evaluations, the SE strat-
egy, in particular SE(b), shows better performance with increasing size. Differences
in the number of PCG iterations, in particular, become large (by factors of two to
more than four) in many cases.

Analysis reveals the following explanation. The Hessian is indefinite at the start-
ing point and remains so for many iterations; thus, the inner loop often ends with
detection of negative curvature. MpE is also indefinite, with approximately n/9
negative eigenvalues (all very close to zero) throughout the run, forcing nonzero mod-
ifications at every Newton iteration. Now, GMW produces IIEII sizes on the order
of the tolerance T (O(10-5)), while the Gerschgorin estimates of SE lead to much
larger modifications (O(103)), similar to the situation illustrated in Table 6(a). The
resulting GMW search directions often produce very slow progress for many itera-
tions, and the number of H’s negative eigenvalues decreases slowly; it is likely that
these directions are close to perpendicular to the gradient. When H becomes positive
definite, the truncation criterion is stricter (see (21)) and many PCG iterations are
then involved. The SE strategy enters positive definite regions of H more quickly and
typically displays more rapid progress thereafter. Version SE(b) performs better than
SE(a) because diagonal modifications are made less often and a smaller number of
PCG iterations generally results.
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TABLE 6 (a)
MC analysis ]or the first Newton iteration of Table 5, run (A).

10
11
12
13
14
15
16
17
18

GMW

-2.1E-13 1.5E-05
3.6E-15 1.5E-05
1.6E+02 0

-5.0E-14 1.5E-05
3.6E-15 1.5E-05

-3.6E-15 1.5E-05
-5.0E-14 1.5E-05

SE(a) SE(b)
dj dj + e d dj + ej

350 1452
1102 2105
266 1368
86 1189

349 1451
71 1173
86 1188

341 1444
70 1172

350 1452
1102 2005
266 837
77 230

288 288
31 62
72 201

209 209
13 13

IIEII 1.5E- 05 IIEIIo- 1103 IIEIIo 1103

TABLE 6 (b)
MC analysis for the tenth Newton iteration of Table 5, run (B).

GMW SE(a) SE(b)
dj d + ej d d + ej d dj T ej

IO

161

181

0.2 0.2
*

13 13
-104 104

83 128
0.3 46
12 58
22 68

-0.5 45

94 169
3 20
12 15
*

-0.6 0.02

IIEII 208 IIEII --46 IIEII 75

Entries leading to zero modifications were not recorded.

Performance with a stricter truncation criterion was very similar since only the
last several iterations (that do not end in detection of negative curvature) are affected,
but for these the allowed residual is already very small. Performance with larger values
of T (the minimum allowable value of each positive diagonal modification), such as
by two to five orders of magnitude, produced somewhat better overall progress for
the GMW runs, but progress is still not competitive with SE. Performance with
smaller T led to some underflow/overflow for the larger dimensions. This suggests
that here ill-conditioned preconditioners M are disadvantageous. For the structure
in these examples, larger tolerances for GMW are an effective way to increase IIEIIo,
whereas in SE, IIEII is larger---even with small T--due to the use of the Gerschgorin
estimates.

Why does the GMW version display faster convergence for smaller dimensions?
The number of negative eigenvalues and percentage of iterations when H is indefinite
seem to play key roles in steering the minimization progress. Table 8 shows that H has
about n/3 negative eigenvalues at the starting point, with a ,min of magnitude 0(10-101) and a )max of 0(103). The number of M’s negative eigenvalues is about n/9, but
they are all very small in magnitude and clustered. Thus, when only a few tentative
diagonals are small (say, one to three), GMW is more efficient in terms of iterations
and function evaluations because its small modifications apparently do not affect the
"quality" of the computed search direction for TN dramatically; as the number of
small tentative diagonals increases and more resulting diagonals have magnitude T,
10-5, we observe slower progress. The SE strategy detects indefiniteness early in
the factorization (Phase 1 is typically false after about ten steps) and modifies the
diagonals more substantially. This appears advantageous as the size and complexity
of the problem increase due to the better conditioning of the preconditioner. In other
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TABLE 7
Molecular model 2: Water clusters.

Newton PCG F & C ]lEIIoo Modified
n Run Itns. Itns. Evals. Min. Max. Med. Itns.

27

36

45

54

72

9O

108

144

180

243

324

576

GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE()
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)
GMW
SE(a)
SE(b)

38 506 67
63 1147 94
68 1053 106
70 1400 114
71 1783 II0
75 1554 128

81 2256 148
99 3606 159
94 2598 162
116 4744 212
116 5554 179
108 3886 158
85 4771 157
64 3155 102
54 1848 89

112 8524 200
85 5804 133
85 4879 154
143 12941 270
101 7573 162
97 6285 174
132 15702 249
118 12217 217
97 8631 163
88 10314 236
47 3816 104
47 2657 107
71 8173 212
56 5828 104
60 4880 137
104 20543 277
53 4450 120
55 4581 123

100 23502 407
66 9040 195
57 7732 139

1.5E-05 6.6E-01 3.3E-01 38
3.3E+02 1.6E+03 1.0E+03 63
5.0E+02 1.5E+03 1.0E+03 68

1.5E-05 1.8E-05 1.7E-05 70
3.9E+02 1.5E+03 9.5E+02 71
3.9E+02 1.6E/03 1.0E+03 75
1.5E-05 1.9E-05 1.7E-05 81
5.4E+02 1.6E+03 1.1E+03 99
9.6E+02 1.5E+03 1.2E+03 94

1.5E-05 1.9E-05 1.7E-05 116
9.9E+02 1.6E+03 1.3E+03 116
1.1E+03 1.6E+03 1.4E+03 108

1.5E-05 1.9E-05 1.7E-05 85
8.0E+02 1.6E+03 1.2E+03 64
8.4E+02 1.6E+03 1.2E+03 54

1.5E-05 1.9E-05 1.7E-05 112
1.0E+03 1.6E+03 1.3E+03 85
1.1E+03 1.6E+03 1.3E+03 85

1.5E-05 1.3E+01 6.4E+00 143
1.2E+03 1.5E+03 1.4E+03 101
1.0E+03 1.7E+03 1.4E+03 97

1.6E-05 2.3E-05 1.9E-05 132
1.2E+03 1.6E+03 1.4E-t-03 118
1.2E+03 1.6E+03 1.4E+03 97

1.5E-05 1.8E-05 1.6E-05 88
1.3E+03 1.6E+03 1.5E+03 47
1.1E+03 1.7E+03 1.4E+03 47
1.4E-05 1.7E-05 1.6E-05 71
1.1E+03 1.6E+03 1.4E+03 56
1.1E+03 1.8E+03 1.5E-F03 60

1.4E-05 1.9E-05 1.7E-05 104
1.2E+03 1.7E+03 1.5E+03 53
1.1E+03 1.7E+03 1.4E+03 55

1.4E-05 1.6E-05 1.5E-05 100
1.3E+03 1.6E+03 1.5E+03 66
1.4E+03 1.7E+03 1.6E+03 57

words, when H is mainly positive definite, GMW does better because M is closer to
H, whereas when H is often indefinite SE does better because M is better conditioned.

4.4. The trigonometric function. A well-known test function for optimiza-
tion, known as "trigonometric," offers a problem structure with many negative eigen-
values of larger magnitudes. This function of variable dimension n is given as [12]

((al) F(x)= n-cos cosx) sin
j=l,...,n i=1

At x0 (l/n,..., l/n)T, H is indefinite. We study four sets of minimization runs
from x0, for n 50, 100, 250, and 1000. For each set, we use the diagonal, tridiagonal,
and pentadiagonal elements of the Hessian to construct preconditioners (denoted as
D, T, and P). The truncation parameter 5 is set to unity, and the limiting number
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TABLE 8
Eigenvalue information for water clusters.

18

27

36

45

54

72

9O

H
M
H
M
H
M
H
M
H
M
H
M
H
M

108 H
M

144 H
M

180 H
M

243 H
M

xo
Amin Amax # NEG

-2.4E+00 2.2E+03 3
-1.6E-13 2.1E+03 1

-4.5E+01 2.3E+03 8
-1.3E-13 2.3E+03 2

-4.5E+01 2.3E+03 11
-1.5E-13 2.3E+03 3

-4.5E+01 2.3E+03 14
-1.5E-13 2.3E+03 4

-5.6E+01 2.3E+03 17
-1.5E-13 2.3E+03 7
-5.6E+01 2.3E+03 23
-1.5E-13 2.3E+03 9

-1.1E+02 2.3E+03 28
-1.5E-13 2.3E+03 12

-7.5E+01 2.3E+03 34
-1.6E-13 2.3E+03 12

-9.6E+01 2.3E+03 45
-1.5E-13 2.3E+03 17
-1.1E+01 2.4E+03 54
-1.7E-13 2.3E+03 24

-1.1E+02 2.4E+03 70
-2.5E- 13 2.3E+03 31

X,

Arnin Amax # NEG
9.8E-02 2.2E+03 0

-1.7E-14 2.2E+03 2
5.4E-02 2.3E+03 0

-1.2E-14 2.2E+03 2
1.5E-02 2.3E+03 0

-2.8E-14 2.2E+03 5
1.9E-04 2.3E+03 0

-2.8E-14 2.2E+03 4
9.6E-03 2.3E+03 0

-2.1E-14 2.2E+03 5
8.9E-03 2.3E+03 0

-3.6E-14 2.2E+03 6
1.2E-03 2.3E+03 0

-2.8E-14 2.2E+03 7
4.1E-03 2.3E+03 0

-2.8E-14 2.2E+03 9
8.3E-03 2.3E+03 0

-3.4E-14 2.2E+03 14
3.3E-03 2.3E+03 0

-3.3E-14 2.2E+03 16
2.6E-03 2.3E+03 0

-2.9E-14 2.2E+03 25

of PCG iterations (per Newton step) is set to ten.3 Typically, the residual is very
small after a small number of PCG iterations, so this PCG limit has only a small
effect. Since the residual is reduced rapidly in the inner loop, a smaller 5 value also
has little effect on performance. Since very similar linear systems are solved at every
step, we expect our MC comparisons to reflect systematic differences at each Newton
step. For all runs, we use a stricter overall minimization termination criterion of
Ilgll//- _< 10-12 max{l, Ilxll}; since IIg(x0)ll is already small, we wanted to ensure
continuation of the minimization until quadratic convergence of Ilgll is observed.

Table 9 shows results for the four sets of runs. Table 10 lists min and /max for
H and for P at both x0 and x, (the solution). The corresponding eigenvalues for D
and T are very similar. (This is probably a consequence of the small magnitudes of
off-diagonals with respect to diagonal elements: typical values of 3’ and are 3’ 2.0
and of O(10-2 10-1).) We note that both H and M have 60 percent of their
eigenvalues negative at x0. A complete spectral analysis shows that all eigenvalues
have magnitudes 0(10-1 10-2), most of them of 0(10-1). For example, for u 100,
the 61 negative eigenvalues of P range between -0.59 and -0.02. All eigenvalues at
x0 for H and M are concentrated in the interval [-1.0, 1.5]. At x,, H and M are
positive definite, with ,min of 0(10-2) and max approximately 3.0 for H and 2.0 for
M.

The runs with preconditioner D show that performance with the GMW strategy
is more rapid for each dimension. The number of "modified" iterations in GMW is
smaller for n > 50 and equal to SE for n 50. The size of IIEII is typically greater
for GMW by a factor of two. This relation is expected since 0 and Idjl > T (see
(13) and (17)). Thus, GMW generally modifies tentative negative diagonals mjj to

3 This limit is imposed to mimic a practical situation where H is dense and the inner iterations
are costly when Hd is computed analytically.
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TABLE 9
Trigonometric function minimization.

Newton PCG F & G IIEIIoo Modified
n M Run Itns. Itns. Evals. Min. Max. Med. Itns.

GMW 15 79 22
50 (D) SE(a) 15 88 41

SE(D) 22 84 38
GMW 22 102 54

50 (W) SE(a) 15 108 20
SE(b) 13 107 18
GMW 30 125 52

50 (P) SE(a) 14 111 38
SE(b) 13 101 17

1.lET00 1.1E+00 1.lET00 1
5.5E-01 5.5E-01 5.5E-01 1
2.1E-03 5.5E-01 2.8E-01 9

3.0E-02 1.5E+00 7.4E-01 14
4.2E-02 6.0E-01 3.2E-01 7
3.7E-02 6.0E-01 3.2E-01 6

8.0E-02 6.1E+00 3.1E+00 22
9.0E-02 6.2E-01 3.5E-01 6
5.7E-02 6.2E-01 3.4E-01 8

GMW 19 65 36
100 (D) SE(a) 47 109 83

SE(b) 30 79 41
GMW 28 114 54

100 (T) SE(a) 15 98 22
Sn(b) 15 107 36
GMW 58 139 92

100 (P) SE(a) 14 100 93
Sn(b) 13 100 21

1.3E-01 1.1E+00 6.3E-01 13
3.0E-03 5.7E-01 2.8E-01 34
6.9E-03 5.7E-01 2.9E-01 15

6.3E-02 1.7E+00 8.7E-01 19
2.0E-02 5.9E-01 3.1E-01 8
2.8E-02 5.9E-01 3.1E-01 7
8.8E-02 7.7E+00 3.9E+00 51
4.4E-02 6.0E-01 3.2E-01 7
2.4E-02 6.0E-01 3.1E-01 6

GMW
250 (D) SE(a)

SE(b)
GMW

250 (T) SE(a)
SE(b)
GMW

250 (P) SE(a)
SE(b)

35 106 91
47 134 71
126 197 183
45 138 88
20 109 54
61 136 100

50 166 106
17 108 40
23 124 56

1.1E-01 1.2E+00 5.8E-01 28
4.3E-02 5.8E-01 2.9E-01 33
3.2E-05 5.8E-01 2.9E-01 115

8.4E-03 1.4E+00 7.2E-01 36
7.1E-02 5.9E-01 3.0E-01 10
6.1E-03 5.9E-01 3.0E-01 52

1.5E-02 7.8E+00 3.9E+00 40
2.0E-02 5.9E-01 3.1E-01 8
2.0E-02 5.9E-01 3.1E-01 11

1000 (D)

1000 (T)

1000 (P)

GMW 55 151 128
SE(a) 150 220 229
SE(b) 223 276 319
GMW 86 206 181
SE(a) 34 95 74
SE(b) 145 184 205
GMW 50 133 126
SE(a) 21 94 60
SE(b) 41 109 61

2.2E-03 1.7E+00 8.3E-01 49
3.1E-05 5.8E-01 2.9E-01 137
2.9E-03 5.8E-01 2.9E-01 215

2.6E-01 1.8E+00 1.0E+00 79
4.5E-03 5.8E-01 2.9E-01 26
4.5E-03 5.8E-01 2.9E-01 140

6.7E-02 1.9E+00 9.9E-01 46
5.9E-03 5.9E-01 3.0E-01 12
5.9E-03 5o9E-01 3.0E-01 33

The symbols (D), (T), and (P) denote diagonal, tridiagonal, and pentadiagonal preconditioners,
respectively.

TABLE 10
Eigenvalue information for the trigonometric function.

n Amin Amax #NEG Ami
50 U -5.7E-01 1.4E+00 30

M -6.0E-01 1.4E+00 31
10(} n -5:8E-01 1.5E+00 60

M -5.9E-01 1.4E/00 61
250 n -5.8E-01 1.5E+00 152

M -5.9E-01 1.5E+00 152
i000 H -5.8E-0i 1.5E+oo 607

M -5.8E-01 1.5E+00 608

X.

Amax #NEG
5’3E-02 2.7E+00 0
6.4E-02 2.2E+00 0

6.3E-02 2.8E+00 0
6.5E-02 2.2E+00 0

4.5E-02 2.8E+00 0
6.3E-02 2.0E+00 0

4.8E-02 2.7E+00 "0
7.6E-02 2.0E+00 0
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Imjj I, and SE produces elements dj of magnitude T. The small diagonals appear to
produce search directions that lead to slower minimization progress (more below).

As off-diagonal elements are added to M, more iterations, function evaluations,
and nonzero modifications can be observed for GMW in comparison to SE. The ratio
of the largest elements in E in GMW versus SE is in the range 2-3 for T and 3-13
for P. Version SE(a) produces the most rapid performance as the size of the problem
increases. Figure 2 illustrates the difference in minimization progress by comparing
/min with IIEIIo for the runs with T and n 250. During the first five Newton itera-
tions, the number of negative eigenvalues of M in the GMW version is reduced slowly
from 152: (152,135,102, 44, 55, 31}. In comparison, the SE(a) and SE(b) sequences of
negative eigenvalues per Newton iteration are (152, 5, 2, 0, 0, 0} and { 152, 5, 4, 0, 0,
respectively. At later iterations, the number of negative eigenvalues in GMW ranges
from zero to 65, while the range for the SE versions is between zero and eight.

-.5

0 10 20 30 40 50 60
NEWTON ITERATION

FIG. 2. min versus IIEII for the trigonometric function.

For the first Newton iteration, the modification schedule is quite similar for all
MC versions: GMW modifies diagonals 99 <j < 250, and the SE runs enter Phase
2 at j 97. Two PCG iterations are performed for GMW, and one PCG iteration
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is performed for SE(a) and SE(b), until a direction of negative curvature is detected.
Notable differences emerge thereafter. At the second Newton iteration, GMW mod-
ifies negative tentative diagonals 96 _< j _< 250 of magnitude range O(10-1 10-3).
Both SE versions enter Phase 2 at j 153 and modify a few small negative tentative
diagonals as well as small positive diagonal candidates of O(10-2- 10-4); subsequent
diagonals do not become negative. This pattern for all MC versions repeats for several
Newton iterations, involving fewer and fewer diagonal modifications at each iteration.

The tendency of small diagonal entries to form during the MC factorization is
reversed for the GMW and SE versions in the case of diagonal and nondiagonal pre-
conditioners. GMW handles this by specifying larger modifications in the diagonal
case, while SE applies a different two-phase modification schedule in the nondiagonal
cases. As observed in the water minimization, a systematic trend of small, positive
diagonals of O(T) slows minimization progress in TN. The clustered eigenvalue struc-
ture of the trigonometric function appears to work more favorably with the SE MC
scheme. Interestingly, it has been observed that SE produces the most significant
improvement in IIEII over GMW for problems where the eigenvalues are clustered
between-1 and 1 [25].

5. Summary. The GMW and SE MC factorizations were examined in the con-
text of modifying indefinite preconditioners in a truncated Newton algorithm. No
pivoting versions were examined since a variable reordering is determined at the be-
ginning of the optimization procedure to minimize fill-in for the sparse preconditioner.
The two factorizations differ both in their formulas for diagonal modifications and in
the manner by which these formulas are activated. While GMW subjects all tentative
diagonals to the same modification formula, SE employs a two-phase strategy. Phase
1 denotes the state when all diagonal modifications, ej, are zero (positive definite ma-
trices always remain in Phase 1), and Phase 2 is entered when a phase test indicates
that a diagonal element will become negative or very "small." Only at Phase 2 is the
Gerschgorin-based formula of SE applied. In the last two steps, explicit eigenvalue in-
formation is used. Whereas the phase test in SE requires that the diagonal elements of
the matrix be updated at every step, this is not a requirement in GMW. While GMW
requires the full matrix a priori, SE only needs the diagonal at the start. A variation
of the SE factorization was suggested here to produce the same modification formula
for all diagonal elements. In addition, an SE variation in which the modification ej
was not required to be as large as ej-1 was examined.

Our three test problems, with variations of size, preconditioners, starting points,
and truncation parameters, involve three different eigenvalue distributions that are
typically encountered in practice: an isolated negative eigenvalue, several near-zero
positive and negative eigenvalues, and a large percentage of negative eigenvalues.
In the first case, represented by a molecular model with distinct and well-separated
energy minima, nonzero diagonal modifications to M were required in only one or two
Newton iterations. The GMW and SE factorizations behaved very similarly, though
GMW was slightly more efficient despite the typically larger IIEIIo (factor of two). In
the second case, a molecular ensemble possessing numerous and clustered minima with
a characteristically indefinite potential surface, nonzero modifications were made in all
Newton iterations. GMW appeared more efficient for smaller dimensions but SE(b)
(the version where ej was not required to exceed ej_l) became much more efficient
as size increased; IIEIIo was typically around the set tolerance T, O(10-5) for GMW,
and O(102 103) for SE. In the third case of the trigonometric function, nonzero
modifications were involved in some Newton iterations. GMW demonstrated more
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rapid performance for diagonal preconditioners of various dimensions, but SE(a) (the
version where ej _> ej-1) produced better performance as off-diagonals were added to
the preconditioner. I[E[[oo was typically larger for GMW by a factor of two to ten.

Our results suggest that differences in performance between the GMW and SE MC
factorizations depend on such problem characteristics. The following conclusions may
be drawn from the test problems examined and our special preconditioner-modifier
context.

(1) The size of [[E[[oo may not be a crucial factor governing minimization per-
formance. Although in some cases [[E[Ioo from SE is smaller than that of GMW,
minimization progress is not directly correlated with this number, especially for prob-
lems with few isolated negative eigenvalues. This behavior is both a consequence
of the indirect effect of [[El[oo on the computed search direction and the inherent
approximation in the truncated Newton approach.

(2) The trends in the size of []E[[oo for the GMW and the SE schemes may be
distinct for the dense and sparse matrix cases. Whereas dense test problems reveal
that the SE MC often produces smaller values of [[E[]oo than GMW [25], sparse
matrices may exhibit an opposite trend. The Gerschgorin-based estimates of SE may
lead to much larger modifications than GMW in sparse systems, especially in problems
with many near-zero eigenvalues. However, the possibility that these observations
stem from the eigenvalue patterns of the matrices--whether the matrices are sparse
or dense--cannot be excluded.

(3) Producing very small [[E[[oo (i.e., so that M q- E is nearly singular) is usually
disadvantageous in our context, unless M has only a few negative eigenvalues. Such
near-singular "effective preconditioners" often require many inner (PCG) iterations at
each Newton step and produce very slow progress overall. This slow progress is most
pronounced for large dimensions. This observation suggests that larger tolerances for
the minimum-allowed [[E[[oo would be more effective in these cases.

(4) The largest difference between the two factorizations appears to be related
to their different modification schedules. In many cases, the GMW diagonal modi-
fications begin at later stages of the factorization than SE; tentative diagonal values
may then grow more negative and require larger modifications later on. With mod-
ifications at earlier stages of the factorization, the SE scheme may prevent future
diagonals from growing very large and negative. Overall, these differences in schedule
and modification formulas tend to produce, in general, a smaller variance of [[E[[o for
the SE algorithm for the problems examined: [[E[[o for SE is rarely very large or very
small. In particular, the observation that M is rarely barely positive definite with
SE appears advantageous in our optimization context, especially for highly nonlinear
problems. Since it has been suggested that limited-memory quasi-Newton methods
perform better than truncated Newton methods for highly nonlinear functions [16],
the SE MC may improve the competitiveness of truncated Newton methods for highly
nonlinear functions that arise in practice.

Acknowledgments. The author thanks the reviewers and the associate editor,
Margaret Wright, for many valuable insights and instructive comments.
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SYSTEMS*
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Abstract. This paper considers the parallel solution of a sparse system Lz b with triangular

matrix L, which is often a performance bottleneck in parallel computation. When many systems
with the same matrix are to be solved, the parallel efficiency can be improved by representing the
inverse of L as a product of a few sparse factors. The factorization with the smallest number
of factors is constructed, subject to the requirement that no new nonzero elements are created.
Applications are to iterative solvers with triangular preconditioners, to structural analysis, or to
power systems applications. Experimental results on the Connection Machine show the method to
be highly valuable.

Key words, sparsity, sparse matrices, numerical linear algebra, triangular matrices, iterative
methods, parallel computation
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1. Introduction. Consider the solution of a sparse, nonsingular, lower-triangular
linear system Lx b in a parallel environment. (All our results extend in a trivial
way to upper-triangular systems, a fact we shall not mention again.) We consider
the case where the problem must be solved for multiple right-hand side vectors b,
and these vectors are not available all at once. By preprocessing, we shall reduce the
number of parallel steps required.

Important applications where multiple right-hand sides arise include finite element
applications, preconditioned iterative solvers for linear systems, solution of initial
value problems by implicit methods, and variants of Newton’s method for the solution
of nonlinear equations.

There are two possible approaches to the parallel solution of triangular systems
of equations. The usual approach is to exploit whatever parallelism is available in
the usual substitution algorithm [4], [10]. The second, which requires preprocessing,
works with some representation of L-1. In sequential sparse matrix computation,
substitution is universally favored because it retains the sparsity of the problem
while L-1 is usually much denser than L [8].

Here we consider a factorization

m

with sparse factors. Such a factorization is possible in which the factors have no
more nonzeros than L [2], [3], [8]. The chief advantage of a factorization of n-1 is
that all the necessary multiplications for the computation of Qkx can be performed
concurrently. The necessary additions can be done in time logarithmic in the largest
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number of nonzeros in a row of Qk. Thus it is possible to take advantage of more
parallelism in the solution of these equations. The remainder of this introduction
reviews the use of partitioned inverses of L.

Any triangular matrix L can be expressed as a product

where

L- L1L2...Ln,

(Lk)k-- Lk for kK_iK_n,

(Lk):ij 1 for j#k,

(Lk)i:i =- 0 otherwise.

The matrices Lk are known as elementary lower-triangular matrices. They can
be grouped into several factors,

m

(1) L H Pk,
k--1

where

(2) P
and

(3) 0 e0 < el <... < e. n.

Here (ek}km=o is a monotonically increasing integer sequence. The factor Pk is lower
triangular and is zero below its diagonal in all columns except columns ek-1 q" 1
through ek, where it is identical to L. Consider, for example,

1000

0200

3230

4011

(4)

By choosing e0 0, el 2, and e2 4, L is partitioned as

L (LL2)(L3L4)- PP2

1 0 0 0 1

0200 0

3 2 1 0 0

4 0 0 1 0

It follows from (1) that

1

x II
k--m

Thus, we may compute x as follows:

x=b;
for k=ltomdo

x p[lx;
od;
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1.1. Problems addressed. We say that the matrix X is invertible in place if
Xij 0 => (X-1)ij 0. Elementary lower-triangular matrices are invertible in place.
Thus every lower-triangular matrix has at least one partition (1) with factors that
invert in place.

DEFINITION 1. A partition (1) in which the factors Pk are invertible in place is
called a no-fill partition. A no-fill partition of L with the smallest possible number of
factors is a best no-fill partition.

Let G(L) be a digraph with vertices Y {1, 2,..., n} and directed edges E
E(L) =_ ((j, i) Lij 0}. Think of the edge (j, i) as an arrow going from vertex j
to vertex i. If L is lower triangular, then for all edges (j, i) we have i > j. G(L) is
therefore an acyclic digraph.

Consider the matrix L with graph G(L) illustrated in Fig. 1. L has a best no-fill
partition

L- (L1)(L2)(L3L4)(Lh)(L6LT).

FIG. 1. Best no-fill partition .for a graph without reordering. Five .factors are required.

This partition has five factors. It is possible to symmetrically permute the rows and
columns of L such that L remains lower triangular and G(L) is as illustrated in Fig. 2.
A best no-fill partition of this reordered L is

L- (LIL2)(L3L4)(L5L6LT),

which has only three factors.
DEFINITION 2. A best reordered partition of L is a symmetric permutation of the

rows and columns of L such that the permuted matrix is triangular and has a best
no-fill partition with the fewest possible factors.

The aims of this work, and an outline of the paper, are as follows. First, we
develop a theory of efficient algorithms for computing best no-fill and best reordered
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FIG. 2. Best no-fill partition for a reordered graph. Only three factors are required.

partitions. We give a proof of correctness for the procedure of Alvarado, Yu, and
Betancourt for best no-fill partitioning in 2. In 3 we give an efficient procedure
(and proof) for best reordered partitioning. Second, we determine how useful these
ideas are in practice by means of some experiments (4). Our conclusions are in 5.

We allow arbitrary lower-triangular matrices. Pothen and Alvarado [13] give a
simplified version of our methods for the case of Cholesky factors (they exploit the
fact that the graph of a Cholesky factor is chordal) that has O(n) complexity.

Efficient methods for Cholesky factorization exploit cliques of vertices having
the same adjacency, all of which are eliminated as a group; these vertex subsets are
called supernodes [5]. It is possible to take advantage of the dense submatrices of L
corresponding to supernodes in both substitution and partitioned inverse methods.
Our results are stronger; all members of a supernode are included in the same factor
in a best no-fill partition, but the converse is not true.

1.2. Terminology. A topological ordering of an acyclic digraph is a numbering
of vertices in which (j, i) E E implies j < i. Every acyclic digraph has topological
orderings. The digraph of every triangular matrix is acyclic; moreover, its conventional
ordering is topological. If G(L) is reordered so that vertex i is numbered ((i) and
the new ordering is topological, then the symmetric permutation of rows and columns
that moves row i to row c(i) leaves L triangular.

For (j, i) E E we say that j is a predecessor of i and i is a successor of j.
The indegree of a vertex i is the number of vertices j such that (j, i) E. The

indegree of vertex is the number of nonzeros in the ith row of L, which is the number
of predecessors of i.

Let G G(L). For j V, madj(j) is the set of higher numbered neighbors of j,
i.e., the set (i > j Lj 0}. The set madj(j) is the set of rows that are nonzero in
the jth column of L, which is the set of successors of j.
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The transitive closure of a digraph G (V, E) is the graph G’ (V, E’) where
E ((j, i) there is a j --, i path in G}. The digraph G (V, E) is transitively
closed if it is equal to its own transitive closure.

LEMMA 1 (Gilbert [9]). If L is a nonsingular .lower-triangular matrix, then
(i- oI (L).
DEFINITION 3. Let G G(L) (V, E) be an acyclic digraph. Given a subset

S c_ V, define the column subgraph G8 (V, Es) (where E8 =_ ((j, i) E Eli S});
this is the graph of the lower-triangular matrix obtained by zeroing all columns of L
not in S.

The proof of the following result follows immediately from Lemma 1.
THEOREM 2. Let a partition (3) and corresponding factorization (1) be given.

The factors Pk are invertible in place if and only if each column subgraph G(Pk)
G{e_l+l e} is transitively closed.

We write ri(X) for the number of nonzeros in the matrix X.

2. Best no-fill partitioning. The following algorithm was proposed by A1-
varado, Yu, and Betancourt (who call it PA2) [3].

ALGORITHM P1.
Input: L LIL2 Ln.
Output: A best no-fill partition of L.

-- 1; k -- 1;
while (i _< n) do

(Find the largest integer r _> i such that Li-.. Lr is invertible in place.)
r---i;
while every successor of r is a successor of all the predecessors of r do

r -- r+ 1;
od
Pk - L L;
k-k+l; i-r+l;

od

Alvarado, Yu, and Betancourt did not mention the issue of optimality. Here we
show that Algorithm P1 determines a best no-fill partition.

LEMMA 3. If LI’" Lr is invertible in place, then L2... L is, too.
Proof. The graph obtained by removing a source vertex and its incident edges

from a transitively closed graph is transitively closed. The lemma thus follows from
Lemma 1.

THEOREM 4. Algorithm P1 produces a best no-fill partition of L.
Proof. We use induction on the number of columns of L that are nonzero below

the diagonal. The base of the induction is provided by the trivial case L I. We
assume that the result is true if the first column of L is zero below the diagonal, and
then show it to be true for any lower-triangular matrix L.

Suppose that Algorithm P1 produces a partition L PI"’" Pro. Let Q
P2"’" Pro. Clearly, there does not exist a no-fill partition with el any larger than
that produced by Algorithm P1. Let L -/51... P,, be a different no-fill partition.
Suppose that P1 P1. By the inductive hypothesis, Algorithm P1, when applied to
Q, produces a best no-fill partition, so at least m- 1 factors are required in any no-fill
partition of Q. Thus m _> m.
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On the other hand, perhaps 1 L1...Le, with e < el, i.e., /51 has fewer
nonzero columns than does P1. The matrix ( =/52.../5m, has a no-fill partition with
(m- 1) factors. By the previous lemma, we may remove the leftmost elementary
lower-triangular factor of Q and still have an m- 1 factor no-fill partition. Continuing
in this way we find such a partition of Q. But by the inductive hypothesis, any no-fill
partition of Q has at least m- 1 factors. Thus we again see that m _> m. D

Best no-fill partitions are not unique. For example,

X

has best no-fill partitions

and

L L1 (L2L3La)

L (L1L2)(L3La).

Let G (V, E) be an acyclic digraph. Define level(i), i E Y to be the length
of the longest path from a source vertex to vertex i. The computation of levels is
straightforward, requiring O(ri(L)) time. Any parallel implementation of a substitu-
tion method for solving Lx b requires at least as many parallel steps as there are
levels in G(L).

3. Best reordered partitioning. This section describes two new algorithms
for best reordered partitioning. Each algorithm finds a topological ordering of an
acyclic digraph G such that the reordered graph has a best no-fill partition With
the smallest possible number of factors. The first algorithm (RP1; see Fig. 3) is a
straightforward but inefficient "greedy" algorithm. We present it in order to motivate
a better algorithm, RP2.

Consider the following graph model of best reordered partitioning. Let G
G(L) (V, E). We seek a partition Y [.Jkm=l Sk. We number the vertices within a
subset Sk consecutively. We reorder rows and columns of L according to this vertex
numbering, and then partition L as in (3). The factors Pk and the subsets Sk will
correspond; that is, the columns of Pk that are nonzero below the diagonal will be
those corresponding to the vertices in Sk. We call the subsets Sk in this partition
factors in analogy with their corresponding factors Pk of L.

In order to have factors Pk that invert in place, we require that the column
subgraphs Gsk be transitively closed (Theorem 2). Second, in order for the new
vertex ordering to be topological, we require that the partition of V be consistent
with the partial order E: if r > s, then there is no edge in E from a member of Sr to
a member of $8. We produce the required topological ordering of G(L) starting with
a topological ordering of $1, then of $2, and so on.

ALGORITHM RP1 (Reorder, Permute 1).
Input: An acyclic digraph G(L).
Output: A permutation V ---. {1,..., n} and a partition of L.
Compute level(v) for all v E V;
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max-level - maxvev(level(v));
i .--0; k - 1; e0 -0;
while i < n do

g .-- min(j there is an unnumbered vertex at level j};
repeat

for every vertex v at level do
if (([Condition 1] v is unnumbered) gg

([Condition 2] Every predecessor of v has been numbered)
([Condition 3] Every successor of v is a successor of all

u E Sk such that u is a predecessor of v)) then
i - i + 1; a(v) - i;
S - {v}; e .- e + 1;

fi
od
g*-g/l;

until g > max-level or no vertices at level g- 1 were included in Sk;
Pk -- Lk_I ""Lk k k / 1;

od

Figure 3 illustrates the reason for Condition 3. Different node shapes are used to
denote different factors. It is possible to combine nodes 1, 2, and 5 into the same factor
according to Condition 3: all the successors of 5 are successors of the predecessors of
5. It is not possible, however, to combine node 6 into the same factors as nodes 3 and
4 because this rule is violated. Figure 4 illustrates a case where it would be possible
to merge node 5 into $1, along with nodes 2 and 3, without violating the requirement
of transitive closure: Condition 3 is satisfied by 5. But, since one of the predecessors
of 5 is not yet numbered when node 5 is considered, it cannot be included, since the
resulting ordering would then fail to be topological. Condition 2 does not hold. Thus
node 5 must be in a different factor.

THEOREM 5. Algorithm RP1 finds a best-reordered partition.
Proof. The proof is by induction, as is the proof of Theorem 4. Consider any

permutation F and partition Lr rnrr 1-I Pk with Pk defined by (2) and (3),
and with Pk invertible in place. We claim that the partition point el is no larger than
that produced by RP1. For it follows from the construction of P1 that any vertex of
G(L) not included in $1 by RP1 either has an unnumbered predecessor, or else its
inclusion renders Gs not transitively closed. Hence the subset S selected by RP1
is maximal. Now, by the inductive hypothesis, RP1 partitions G \ $1, using m- 1
invertible-in-place factors. Moreover, by the argument used to prove Lemma 3, a
graph obtained by adding source vertices to G \ S requires at least m- 1 factors in
any optimal partition. Thus if we take a subset S of $1 as the first factor, we can
achieve nothing better. [:]

We would like to ensure that running time is bounded by a small constant multiple
of ri(L). But the running time of Algorithm RP1 is large in some cases. Consider a
dense lower-triangular matrix of order n. RP1 takes O(n3) time in this case, since the
cost of checking whether all successors of vertex j are also successors of its predecessors
is O (j(n j)).

We now introduce two new data structures in order to improve the efficiency of
RP1. We can improve the performance of RP1 (to O(n2) for a dense matrix) by
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FIG. 3. Illustration of Condition 3. Successors of predecessors of a node must be successors of
the node itself. Node 5 can be included in the same factor as nodes 1 and 2, but node 6 cannot be
included with 3 and 4. Factors are denoted by shapes and shading.

FIG. 4. Illustration of Condition 2. A node must be excluded from a factor because some of its

predecessors are not numbered. One predecessor of node 5 (node 4) has not been numbered by the
time node 5 becomes eligible to join the factor containing nodes 2 and 3.
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ensuring that a vertex is not examined for possible inclusion in Sk until all of its
predecessors have been numbered. To do so, for every vertex we count the number of
its unnumbered predecessors. Initially, this is its indegree. When the count reaches
zero we can consider the vertex for inclusion in a factor. This is a standard technique
for finding topological orderings [11].

We can avoid much of the work associated with the checking at Condition 3 of
RP1. Let u and v be numbered vertices, both of which have been included in the
current factor Sk. Assume that v is a successor of u. Then we must have that
madj(v) C_ madj(u), otherwise v would have failed the test at Condition 3. Thus
we need not consider vertex u when applying the requirements of Condition 3 to a
vertex that is also a successor of v. We make use of this in the faster implementation
(RP2; see Fig. 3) by keeping track of the set of predecessors of each vertex that may
need to be examined in checking Condition 3. In the situations above, when v is
included in Sk we remove u from the predecessor sets of v’s successors, thus avoiding
the unnecessary checking.

ALGORITHM RP2 (Reorder, Permute 2).
Input: An acyclic digraph G(L).
Output: A permutation and a partition of L.

forall v E V do
pred(v) - {u [L,u 0};
count(v) - indegree(v);
Compute level(v);

od
max-level - maxvey(level(v));
i -0; k - 1; e0 0;
E - (v E U count(v)= 0;
while < n do

S-O; e-i;
g - min(j there is an unnumbered vertex at level j};
repeat

for every vertex v E at level g do
if ([Condition 3] Every successor of v is a successor of all

u pred(v)) then- i + 1; c(v) -- i;
Sk S t2 {v}; ek -- ek + 1;
for every successor w of v do

pred(w) -- pred(w)\ pred(v);
count(w) - count(w) 1;
if count(w) 0 then E -- E U {w}; fi

od
fi

od
-+1;

until g > max-level or no vertices at level - 1 were included in Sk;
Pk -- Le,:_l Le,; k k + 1;

od

The computation of pred(v) is straightforward, requiring O(/(L)) time. Clearly,
the innermost loop of Algorithm RP2 is executed y(L) times. For we have that the
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sum of count(v) over all vertices v is just y(L), and this sum decreases by one for every
execution of this innermost loop. The other statements in the scope of the then clause
are executed no more than n times. It is still possible that testing Condition 3 will
be costly. Indeed, we can construct examples for which the running time is greater
than y(L), but in practice this is unlikely to happen.

4. Examples. This section gives several examples of the performance of the
proposed algorithms. Several examples compare P1 and RP1 with respect to the
number of factors in the partitions they find. We also examine the effect of the
initial ordering of rows and columns of a matrix A on the number of factors in a best
reordered partition of its Cholesky or incomplete Cholesky factor L. An experiment
shows that on the Connection Machine, the solution process (4) can be faster than
substitution by orders of magnitude. (The experiments and illustrations were done
with the aid of Alvarado’s Sparse Matrix Manipulation System [1].)

First, we compare Algorithms P1 and RP1. Table 1 uses five power system
matrices ranging in size from 118 to 1993. Table 2 gives results for matrices arising
from five-point finite difference discretizations.

TABLE 1

Effect of primary ordering on number offactors in best no-fill partitions (P1) and best reordered
partitions (RP1) for power system matrices.

Min. degree MMD MLMD
Size P1 RP1 P1 RP1 P1 RP1
i18 53 14 10 10 6 5
352 132 21 13 12 8 8
707 213 26 23 18 11 10
1084 309 26 33 24 14 11
1993 563 35 41 25 15 15

TABLE 2

Effect of primary ordering on number offactors in best no-fill partitions (P1) and best reordered
partitions (RP1) for five-point finite difference operators on grid graphs.

Min. deg.
Grid size P1 RP1

5by5 10 7
10byl0 21 13
15byl5 33 18
20by20 32 17
25by25 27 19
30by30 36 18
35by35 26 18
40by40 50 23

MMD
P1 RP1

4 4
10 10
12 12
19 18
18 17
23 17
22 19
27 22

MLMD
P1 RP1

4 4
7 6
6 6
13 9

17 10
19 11
20 11

In each case, the original coefficient matrix is first ordered, then the structure of
its Cholesky factor L is found. We need to distinguish this first fill-reducing ordering
of A from the reordering of L found by RP1. We call the ordering of A the primary
ordering. Three primary ordering procedures are used: the minimum degree algorithm
[14], the multiple minimum degree (MMD) algorithm [12], and the minimum level,
minimum degree (MLMD) algorithm [6].

Consider a graph with 3k vertices arranged in three levels of k each. All vertices at level are
adjacent to all at level T 1, for 1, 2. Running time is O((L)3/2) again.
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For each matrix and primary ordering algorithm, two partitioning methods are
compared: Algorithm P1, which simply partitions L optimally without reordering it,
and Algorithm RP1 which reorders the matrix and generates an optimal partition. In
most cases, Algorithm RP1 gives a smaller number of factors than PAl, while in a
few cases both algorithms give the same number of factors.

We observe that RP1 reduces the number of factors at no expense in added
fills. Its effect is most dramatic if the underlying primary ordering is the minimum
degree algorithm. On the other hand, the best results are obtained when the MLMD
algorithm is used for the primary ordering, even though the relative improvement
attainable by Algorithm RP1 over Algorithm P1 is small. The results for the MMD
algorithm fall somewhere between minimum degree and MLMD. The reduction in the
number of factors achieved by RP1 in comparison with P1 is quite dramatic when
MMD is the primary ordering. (MLMD tends to produce more fill than MMD, so the
question of which is preferable is not simple.)

Figures 5 and 6 provide a different illustration of the effect of primary ordering on
matrix structure and partitioning. The matrix L is the Cholesky factor for a 10 10
finite difference grid.

oOo

o." o.. :o

.."’’:,

’1::’:1 [::..

FzG. 5. Five-point finite difference matrix for 10 by 10 grid. Matrix ordered by the minimum
degree algorithm, then reordered and partitioned by RP1. Thirteen factors result.

The second experiment we report compares the solution procedure (4) with a
data-parallel forward substitution method on the Connection Machine model CM-2,
a highly parallel single instruction multiple data (SIMD) computer.

An efficient, parallel substitution algorithm is implemented in CM Fortran, a
dialect of Fortran 90.

The data structure consists of several arrays of length equal to 7(L). We associate,
at least conceptually, a set of /(L) virtual processors, one with each position in these
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FIG. 6. Five-point finite difference matrix for 10 by 10 grid. Matrix ordered by MLMD, then
reordered and partitioned by RP1. Six factors result.

arrays. We choose to store the factors L and D where L ]D and L is unit triangular,
and solve Lx b via Lx D-lb, since this removes a multiplication from the inner
loop. The matrix L is stored as a one-dimensional array containing its nonzeros in

column-major order. In addition, the level of vertex j in G(L) is stored along with
Lij. The elements of b are stored at the processors containing the diagonal of ].
The solution x overwrites b. Finally, a boolean vector indicates the location of the
diagonal elements in the arrays. This vector thus segments the arrays into columns of
differing lengths; in other words, the matrix is stored as a ragged array of columns of
nonzeros. The Connection Machine software provides some operations for such data
structures. It allows broadcast of values from diagonal elements to all elements of the
corresponding column (called a segmented copy scan) and summation of the values in
a column (with a segmented add scan). Also, the Connection Machine router allows
processors to send data to any other processor or read from any other processor; this
is expressed using a vector-valued subscript in CM Fortran. Calls to utility library
routines were used for the scan operations, which are not part of CM Fortran.

The algorithm loops sequentially over levels of G(L), starting with the sources
(level zero). At the beginning of step , those elements xj for which level(j) are
known. Recall that xj is stored in the processor holding Ljj. These known values of
x are sent to the processors holding the corresponding column of ] by a segmented
copy scan. These processors then multiply their L value by the element of x they
receive. The router is then used to permute all these products into row-major order,
so that the elements of each set Ri (Lxj L 0 and level (j) /?} are
stored in consecutive locations. The vector-valued subscript used to accomplish this
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permutation is computed in a preprocessing step. The rows R are now a ragged
array. A segmented add scan forms the sums of these partial results within rows.
Finally, the router is used to send the sum of the elements of R/ to the processor
holding ] and b where it can be subtracted from b. (In fact, our code avoids this
last subtraction entirely, doing it as part of the add scan above.)

Thus, an iteration of the loop involves one parallel multiplication, one copy scan
and one add scan, and two uses of the router for permutation of data. The time
required to set up and load the data structure, including the computation of the
permutation used, the loading of b, and the extraction of x, was not timed.

The sequential algorithm for solving a triangular system looks nearly identical to
the code for matrix-vector products with a triangular matrix. Thus it may come as
no surprise that our partitioned solution method in CM Fortran is nearly identical
to our substitution method. The inner loop involves the same operations. But the
number of executions of the loop is equal to the number of factors in the partition of
L rather than the number of levels in its graph.

We report the CM performance of these two methods for an n x n, dense, unit
lower-triangular matrix L. Our results are obtained with CM Fortran in the "slice-
wise" execution model, which treats each Weitek chip of the CM-2 as a processor. For
this experiment we used 256 Weitek processors on the Connection Machine at NASA
Ames. Results are given in Table 3. Clearly, the partitioned method is superior, by
a factor roughly equal to the ratio of the number of levels in G(L) (n) to the number
of factors (one) in the partition of L.

TABLE 3
CM-2 times for full matrix substitution and partitioned solution.

256
512

Levels
Nonzeros in G(L)
32,896 256
131,328 512

Substitution Partitioned
time Factors soln. time

7.34 secs 1 0.04 secs

50.22 secs 1 0.21 secs

Next, we performed an experiment using several large, sparse, unit lower-triangular
matrices. We begin with a sparse matrix A of order 4037, obtained from a triangular
mesh in the region around a three-element airfoil. Three matrices L1, L2, and L3 are
obtained by approximate factorization.

L1 is obtained by an incomplete LU factorization of A; we carry out the Gaussian
elimination process, but we allow nonzeros in L (and U) only where there is a nonzero
in A2. The ordering of A is obtained from a lexicographic sort of the (x, y) coordinates
of the grid which leads to the matrix; this ordering produces a large number of levels
in G(L).

L2 is the incomplete LU factor obtained when a variant of MLMD is used as the
primary ordering of A.

L3 is the exact lower-triangular factor of A, with the same primary ordering as
for L2.

In Table 4 we give the size of these factors, the number of levels, which is propor-
tional to the time required for our parallel substitution algorithm, and the number of
partitions, which is in practice proportional to the time required by the partitioned
solution algorithm (4).

These results confirm that the time required to solve a triangular system by
partitioning of the inverse is quite well predicted by the number of factors in the
partition. It has also shown that the number of levels in G(L) is also a good predictor
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TABLE 4
CM-2 times for sparse triangular substitution and partitioned solution.

Matrix Ordering Factor-
ization

L1 RCM ILU
L2 MLMD ILU
L3 MLMD exact

Levels Substitution
Nonzeros in G(L) time

23,526 823 19.22 secs
26,793 78 1.38 secs
118,504 311 16.78 secs

Partitioned
Factors soln. time

816 11.66 secs
66 1.20 secs
16 0.87 secs

of the time required for solution by substitution methods. We see that when L has a
fairly rich structure there is a great advantage to the use of the partitioned method,
but when L is very sparse there is little gained. The use of an MLMD primary ordering
improves both substitution and partitioned methods. However, with the introduction
of the additional fill in the exact factor L3 (compared with L2), the number of levels in
G(L) increases sharply (as does the time for substitution) while the number of factors
in the best reordered partition drops dramatically. The difference in the solution time,
even for this problem of modest size, is about a factor of twenty. Thus we conclude
that the method can be quite useful in highly parallel machines when the matrix L
has a rich enough structure, as happens when it is an exact triangular factor.

5. Conclusions. An algorithm for no-fill partitioning of lower-triangular matri-
ces with the fewest possible factors has been presented and proven to be optimal.

We have done a number of experiments with the Cholesky factors of sparse ma-

trices, A. The structure of these factors is influenced by the ordering of rows and
columns of A. (This ordering is chosen to reduce fills during the factorization pro-
cess.) This primary ordering also influences the benefits attainable by the proposed
algorithm. If L is constructed with the minimum degree algorithm, the best no-fill
partition of L (without a change of ordering) tends to have many more factors than
the best reordered partition developed here. This number can be further reduced if
an MLMD primary ordering is used.

An experiment on the Connection Machine has shown that solution time is
roughly proportional, for fixed nonzero count, to either the number of factors or
the number of levels in G(L). Finally, we have seen that for Cholesky factors, a
best reordered partition can have far fewer factors than there are levels, so that the
method is highly valuable. We conjecture that for sufficiently filled incomplete fac-
tors there will be some benefit as well, although for very sparse incomplete factors
the improvement is quite modest.
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Abstract. A variant of the GMRES algorithm is presented that allows changes in the precon-
ditioning at every step. There axe many possible applications of the new algorithm, some of which
are briefly discussed. In paxticular, a result of the flexibility of the new variant is that any iterative
method can be used as a preconditioner. For example, the standard GMRES algorithm itself can
be used as a preconditioner, as can GGNR (or CGNE), the conjugate gradient method applied to
the normal equations. However, the more appealing utilization of the method is in conjunction with
relaxation techniques, possibly multilevel techniques. The possibility of changing preconditioners
may be exploited to develop efficient iterative methods and to enhance robustness. A few numerical
experiments are reported to illustrate this fact.

Key words. Krylov subspace methods, GMRES, non-Hermitian systems, preconditioned con-
jugate gradient, variable preconditioners
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1. Introduction. Krylov subspace techniques have increasingly been viewed as
general-purpose iterative methods, especially since the popularization of precondition-
ing techniques [2] in the mid-seventies. Although iterative methods lack the robustness
of direct methods, they are effective for the large class of problems arising from partial
differential equations of the elliptic type. An important gap in the literature concerns
the development of truly general-purpose iterative solvers that could replace direct
methods with a minimum risk of failure. A comparison between existing software
based on direct methods and software based on iterative methods reveals that the di-
rect solvers have evolved quite differently and have acquired a level of sophistication
that far exceeds that of iterative methods.

In order to be able to enhance robustness of iterative solvers, we should be able
to determine, e.g., by means of heuristics, whether or not a given preconditioner is
suitable for the problem at hand. If not, one can attempt another possible iterative
method/preconditioner and switch periodically if necessary. It is desirable to be able
to switch within the outer iteration instead of restarting. For the GMRES algorithm
[5], this can be accomplished with the help of a rather simple modification of the
standard algorithm, referred to as the flexible GMRES (FGMRES), which is presented
in this paper. An important property of FGMRES is that it satisfies the residual
norm minimization property over the preconditioned Krylov subspace just as in the
standard GMRES algorithm [5].

For motivation, we mention that there are cases in which relaxation-type precon-
ditioners are more attractive than the usual ILU preconditioners. These include the
case in which a red-black ordering is used. In this situation, the single-step SSOR
preconditioner and the ILU preconditioning may perform very poorly. However, our
experience is that if a higher level-of-fill ILU or a multiple-step SSOR (or SOR) pre-
conditioner is used, then the preconditioned method can perform rather well [4]. In
this situation, SOR and SSOR have a distinct advantage over the ILU-type precon-
ditioners, in that they preserve their high degree of parallelism, which is of order N.

Received by the editors November 6, 1991; accepted for publication (in revised form) April 3,
1992.

Computer Science Department and Minnesota Supercomputer Institute, University of Min-
nesota, 200 Union Street S.E., Minneapolis, Minnesota 55455.

461



462 YOUCEF SAAD

In contrast, a serious loss of parallelism is incurred for the incomplete factorization
preconditioners with high level-of-fill. A few other advantages are discussed in [4].
Thus we wish to be able to apply an arbitrary number of SOR or SSOR steps in
the preconditioning phase, for example, in order to solve the preconditioning system
My v to a given tolerance. We may also wish to change the relaxation parameter
w, possibly at each GMRES step, in order to attempt to achieve optimality.

The FGMRES algorithm presented in this paper allows us to incorporate these
changes in the preconditioner into the GMRES framework at little additional cost.
To be precise, there is no additional cost incurred in the arithmetic but the memory
requirement doubles. On the other hand, FGMRES may enable one to utilize the
memory more efficiently since the vectors that are normally not being used in a given
FGMRES step can be fully exploited to compute a preconditioned vector, e.g., via
another GMRES run that uses these vectors. A few tests based on this approach will
be presented in 3. We will present some applications of the technique to show how
the method can be used to improve the robustness of the standard GMRES algorithm.
We should point out that another illustration of the benefits of FGMRES in the finite
element framework is described by Tezduyar, Behr, Abadi, and Ray [6].

2. Krylov subspaces with variable preconditioning. The basic principle of
preconditionings is to use a Krylov subspace method for solving a modified system
such as

AM-I(Mx) --b.

Clearly, the matrix AM-1 need not be formed explicitly: we only need to solve
Mz v whenever such an operation is required. Thus a fundamental requirement
is that it should be easy to compute M-iv for an arbitrary vector v. In some cases,
solving a linear system with the matrix M consists of forming an approximate solu-
tion by performing one or a few steps of a relaxation-type method, or a Chebyshev
iteration. It is natural to consider preconditioners that do not use only a single step of
an iterative method, but as many as are needed to solve a linear system within a given
tolerance. In fact, this would be the equivalent of a higher level-of-fill in the usual ILU
preconditioners, except that the preconditioner is no longer constant but is allowed to
vary from one step to another in the outer iteration. A similar situation in which the
preconditioner is "not constant" is when another Krylov subspace method, e.g., one
that is based on the normal equations approach, is used as a preconditioner. These
applications and others lead us to raise the question of whether or not it is possible to
accommodate such variations in the preconditioners and still obtain an algorithm that
satisfies an optimality property similar to the one satisfied by the original iterative
method. This question has been avoided in the past because in the Hermitian case
there does not seem to exist a version of the usual preconditioned conjugate gradient
algorithm that satisfies a short vector recurrence and that allows the preconditioner
to vary at each step. In the non-Hermitian case and for methods that do not rely
on short vector recurrences, such as GMRES, variations in the preconditioner can be
handled without difficulty, as we now show.

2.1. The algorithm. We start by describing the standard GMRES algorithm
with right preconditioning and then show the flexible modification which allows such
variations.
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ALGORITHM 2.1. GMRES with right preconditioning.
1. Start: Choose x0 and a dimension m of the Krylov subspaces. Define an

(m + 1) m matrix Hm and initialize all its entries hi,j to zero.
2. Arnoldi process:

(a) Compute ro b- Axo, -IIr0112, and Vl ro/.
(b) For j 1,...,m do

Compute zj :- M-ivy;
Compute w :- Azj;

For i 1,...,j, do

Compute hj+l,j --Ilwl12 and vj+l -w/hj+,:).
(c) Define Vm :-[v,..., v,].

3. Form the approximate solution: Compute Xm xo + M-Vmym where
Ym argminu[]ei .mYl]2 and e [1, 0,..., 0]T.

4. Restart: If satisfied stop, else set xo ",- xm and goto 2.

The Arnoldi loop simply constructs an orthogonal basis of the preconditioned
Krylov subspace

Span(r0, AM-1ro, (AM-)m-ro}
by a modified Gram-Schmidt process, in which the new vector to be orthogonalized is
obtained from the previous vector process. The last step in the above algorithm forms
the solution as a linear combination of the preconditioned vectors zi M-vi, i
1,..., m. Because these vectors are all obtained by applying the same preconditioning
matrix M-1 to the v’s, we need not save them. We only need to apply M- to the
linear combination of the vs, i.e., to YmYm. The question we can now ask is: what if
we allowed the preconditioner to change at every step, i.e., zj would be defined by

zi M-lv,
but we saved these vectors to use them in updating x, in step 3? In other words, we
would like to consider the following "flexible" modification to the previous algorithm.

ALGORITHM 2.2. FGMRES: GMRES with variable preconditioning.
1. Start: Choose x0 and a dimension m of the Krylov subspaces. Define an

(m + 1) x m matrix/m and initialize all its entries hi5 to zero.
2. Arnoldi process:

(a) Compute ro b- Axo, Z IIr0112, and vl ro/Z.
(b) For j 1,...,m, do

Compute z "= M-lvj;
Compute w :- Azj;

For i 1,... ,j, do hi, := (w, vi),
w := w hi,jvi;

Compute hj+l,j Ilwl12 and V/+l w/hj+l,j.
(c) Define Zm := [z,...,z,].

3. Form the approximate solution: Compute x, xo + ZmYm where y,
argminyll/e mYll2 and el [1, 0,..., 0]T.

4. Restart: If satisfied stop, else set xo - Xm and goto 2.

As can be observed, the only difference from the standard version is that we now
save the preconditioned vectors zi and update the solution using these vectors. It is
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clear that when Mj M for j 1,..., m, then the new method is mathematically
equivalent to Algorithm 2.2. Note that we can define zj in step 2(b) without reference
to any preconditioner, i.e., we can simply pick a given new vector zj. We would like
to mention that the technique presented above can be viewed as an extension of a
strategy presented in [1] in the context of using Krylov subspace methods for solving
nonlinear equations. More recently, van der Vorst and Vuik developed a family of
algorithms that have the same feature as FGMRES in that they also allow variations
in the preconditioner [7].

2.2. Some basic properties. One notable difference between FGMRES and
the usual GMRES algorithm is that the action of AMI on a vector v of the Krylov
subspace is no longer in the span of Vm+l. Instead, it is easy to show that the following
equality takes place:

(1) AZ, V,+I,
This replaces the simpler relation

(AM-I)V, V,+ ,,
which holds for the standard preconditioned GMRES [5]. Following [5] we will denote
by Hm the m x m matrix obtained from Hm by deleting its last row and by )j+ the
vector w obtained at the end of step 2(b) of the algorithm, i.e., the vector obtained
before normalizing w to get vj+. Then an alternative to (1) that is valid even when
hm/l,m 0 is the following:

TAZ, V,Hm + m+ em

We will now prove an optimality property similar to the one that defines GMRES.
Consider the residual vector for an arbitrary vector z xo + Z,y in the affine space
x0 + span{Zm}. We have

(3)

(4)

b- Az b- A(xo + Zmy)
ro AZmy
Zv, y.+,fI.y
Vm+l[el H,y].

If we denote by Jm (Y) the function

J, (y) lib- A[xo +
we observe that by (4) and the fact that Vm+ is unitary,

Jm(Y) IIe HmylI2.

Since step 3 of Algorithm 2.2 minimizes this norm over all vectors y in Rm to yield Ym,
it is clear that the approximate solution Xm Xo + Zmy, has the smallest residual
norm in x0 / Span{Zm}. Thus we have proved the following result.

PROPOSITION 2.1. The approximate solution Xm obtained at step m minimizes
the residual norm lib- Axmll2 over xo + Span{Z,}.
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We will now examine a case of breakdown in FGMRES, which occurs when
hi+t5 0 in the last part of step 3 in Algorithm 2.2. In this situation, the vec-
tor vi+t cannot be computed and the algorithm breaks down. For the standard
GMRES algorithm this is not a problem because when this breakdown occurs, then
the approximate solution xi is exact. In fact, breakdown is equivalent to convergence.
In FGMRES this is no longer true. More specifically, we have the following result.

PROPOSITION 2.2. Assume that/ ]lr0112 0 and that j- 1 steps of FGMRES
have been successfully per]ormed, i.e., that hi+,i 0 .for i < j. In addition, assume
that the matrix Hi is nonsingular. Then xj is exact if and only if hi+,i O.

Proof. If hi+iS 0, then we have the relation AZi HiV, and as a result,

If we assume that Hi is nonsingular, then the above function is minimized for y
Hfl(fle) and the corresponding minimum norm reached is zero, i.e., xi is exact.

Conversely, if xj is exact, then from (2) and (3) we have

(6) T0 b- Axi V[fltet Hiyi] + i+ei
If the last component of yj is zero, then (6) would mean that Hiy et and, since
hi+,i 0 for 1 _< i _< j- 1, a simple back-substitution starting from the last equation
will show that all components of Yi are zero. This would imply that 0 and
contradict the assumption. Hence efyi O. Therefore, since j+t is orthogonal to
vt,..., vi the only way in which (6) can hold is that e Hiyi 0 and )+ 0,
which implies

Note that the only difference between this result and the one in [5] concerning the
standard GMRES algorithm is that we must make the additional assumption that Hj
is nonsingular since this is no longer implied by the nonsingularity of A.

A consequence of the result is that if at a given step j, we have Azj vy, i.e.,
if the preconditioning is "exact" at step j, then the approximation xy will be exact
if in addition Hi is nonsingular. This is because w Az is linearly dependent on
previous vi’s (it is equal to v), and as a result we will obtain )j+t 0 after the
orthogonalization process.

A difficulty with the theory of the new algorithm is that we cannot prove general
convergence results such as those in [5]. This is because the subspace of approximants
is no longer a standard Krylov subspace and we have no isomorphism with the space of
polynomials. However, the optimality property of Proposition 2.1 can be exploited in
some specific situations. For example, if within each outer iteration we select at least
one of the vectors zj to be a steepest descent direction vector, e.g., for the function
F(x) lib- Axll, then FGMRES is guaranteed to converge, independently of m.

2.3. Practical considerations and applications. The additional cost in-
curred by the flexible variant over the standard algorithm is only in the extra mem-
ory required to save the set of vectors (zj }i=t m. On the other hand, the added
advantage of flexibility may certainly be worth this extra cost. There are a few ap-
plications in which this flexibility can be quite helpful, especially in the context of
developing robust iterative methods or for developing preconditioners for massively
parallel computers. Here is a sample of possible applications.

1. Use of any iterative techniques as preconditioners: block-SOR, SSOR, ADI,
multigrid, etc., but also GMRES, CGNR, CGS, etc.

2. Use of chaotic relaxation-type preconditioners (e.g., in a parallel computing
environment).
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3. Mixing preconditioners to solve a given problem.
For an example of (3), see the recent work by Tezduyar, Behr, Adadi, and Ray

[6], in which two types of preconditioners are alternately applied at each FGMRES
step to mix the effects of "local" and "global" interactions. Tezduyar et al. reported
good performance with this procedure, much better than using either of the two
preconditioners by itself.

Note that any iterative method can now be used as a preconditioner. For example,
we will show how to make some nonnegligible improvements to the performance of
the basic GMRES algorithm by using GMRES as preconditioner to itself (using for
memory space the unused vectors at the ith step of FGMRES(m)).

Preconditioners of particular interest within this framework are relaxation-type
techniques..As an example, the SSOR preconditioning matrix defined by

MssoR(A) (D wE)D-I(D wF),

in which -E is the strict lower part of A, -F is the strict upper part of A, and D is
the diagonal of A, has some important advantages, some of which have been briefly
discussed in the introduction. In the context of preconditioning, it is customary to just
take w 1, as the gains from selecting an optimal w are typically small. However, it is
clear that one can use different values of w at each step of FGMRES and this can open
up the possibility of using heuristics to determine the best w dynamically, by simply
monitoring convergence. Alternatively, a mixture of w’s can be initially selected and
then used cyclically, instead of arbitrarily taking only w 1 as is usually done. We
would also like to make an important point concerning SOR as a preconditioner.
The usual one-step SOR is not popular as a preconditioner, mainly because it tends
to distribute the eigenvalues of the preconditioned matrix around a circle (e.g., for
the model problem). This is not very desirable for a CG-type solver. However, we
found that when using multiple steps, SOR is often more economical than SSOR as
a preconditioner.

We will not discuss these applications here but refer the reader to [4]. Rather,
we would like to demonstrate the flexibility of FGMRES by simply combining it with
other iterative methods to improve its robustness. We are particularly interested in
combinations with CGNR, and with the standard GMRES itself. The reason why we
chose CGNR is that we know that the method is globally convergent and as a result,
adding one direction vector to the standard Krylov subspace will guarantee global
convergence because of the optimality of FGMRES. We should add, however, that
guaranteeing global convergence is not the ultimate goal, since the convergence can
still be too slow to be of any practical value.

3. Numerical experiments. For test purposes we consider the problems aris-
ing from the centered difference discretization of problems of the form

Au q- "/(xu + yuu) -b u f

on square regions with zero Dirichlet boundary conditions. In our first test we select
the parameters 10 and -100 to make the problem indefinite. The grid
consists of a square of 32 internal mesh points in each direction leading to a matrix
of sizeN 1024. The right-hand side is selected once the matrix is constructed so
that the solution is known to be x (1, 1,..., 1)T. In all methods the initial vector
is chosen so that its ith component for i 1,..., n is defined by xo(i) i. We have
compared the following methods.
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1. A standard ILU(0) preconditioned GMRES(m) iteration with m 20 direction
vectors.

2. The CGNR iteration (conjugate gradient, normal equations) using an ILQ
preconditioner with level-of-fill equal to 5; see [3] for details on these preconditioners.
The idea of ILQ is to perform an incomplete Gram-Schmidt factorization on the
rows of A. The normal equations are preconditioned using this factorization and the
conjugate gradient method (CGNR version) is used to solve these equations.

3. The FGMRES iteration using (the unpreconditioned) GMRES itself as a
preconditioner. As was briefly mentioned in the introduction, this is run as fol-
lows. We observe that at step of the FGMRES iteration, the space for the vectors
v+2,...,v,+l and zk, k i + 1,..., m is unused. However, they can be exploited
to generate a preconditioned version of vi by running a standard GMRES iteration
using 2m- i- 1 direction vectors. In fact, the vectors vj and zj occupy the same
array wk(1 n, 1 2m) and the zk’s are stored backwards starting in column 2m to
avoid collisions. Note that for fairness in the comparisons, we use here m 10 so
that the total number of vectors needed is 2m 20, the same as is required for the
ILU(0)-GMRES in 1.

4. The FGMRES iteration using ILU(0)-GMRES as a preconditioner. This is
similar to the previous method except that the method used to precondition is ILU(0)-
GMRES instead of the unpreconditioned GMRES.

5. The FGMRES iteration using k steps of the unpreconditioned CGNR iteration
as a preconditioner. In our first test we took k 5 and in the second, k 2. Other
values of k have also been tested and performed similarly.

Figure 1 is a plot of the residual norm achieved by these five methods against
the number of operations (in millions) required to reach that level for the first test
problem. We chose to plot the residuals versus the number of operations because the
number of iterations is no longer significant for making comparisons since the cost of
each iteration can be quite different for each of the methods compared. Observe that
the FGMRES iteration using the unpreconditioned GMRES (method 3) converges,
although slowly, whereas the standard GMRES(20) (not shown) as well as the ILU(0)
preconditioned GMRES(20) both stagnate. More interesting is the convergence of
FGMRES with ILU(0)-GMRES as a preconditioner. ILU(0)-GMRES(20) alone fails
to converge (stopped after 700 steps). Used as a preconditioner, the technique con-
verges in 15 outer iterations and yields the second best performance in this test. In
this test CGNRILQ(5) performed quite well.

In our second test we took the same partial differential equation as before, but
with the parameters 1000 and 10.0, to make the problem highly nonsym-
metric. The grid is the same as before and so the size of the matrix is still 1024.
The right-hand side and the starting vector are generated similarly to the previous
example. We have run the same methods as before, except that the number of CGNR
steps used in FGMRES-CGNR is two instead of five. The results are shown in Fig.
2. Note that this time, CGNR-ILQ does not perform as well. In fact, some of the
conclusions of the previous test are reversed. Thus, FGMRES-ILU(0)-GMRES is now
outperformed by the simpler ILU(0)-GMRES(20). The FGMRES with unprecondi-
tioned GMRES outperforms the FGMRES with ILU(0)-preconditioned GMRES by a
slight margin. In addition, FGMRES with CGNR preconditioner using just two steps
of CGNR is now the overall best.

4. Conclusion. An interesting observation from the above experiments is that
for indefinite and/or highly nonsymmetric matrices the performance of a given precon-
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ditioner can be unpredictable. In these situations, it is essential to be able to switch
preconditioners in order to improve robustness. FGMRES is an algorithm that allows
arbitrary changes in the preconditioner and can be used to this end. There are many
other uses of the flexible variant of GMRES. In addition, the difference in the coding
of the two methods is so small that they can both be implemented, with no loss of
efficiency, in a single subroutine that incorporates an option parameter.
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A TRANSPOSE-FREE QUASI-MINIMAL RESIDUAL ALGORITHM
FOR NON-HERMITIAN LINEAR SYSTEMS*

ROLAND W. FREUNDt

Abstract. The biconjugate gradient method (BCG) for solving general non-Hermitian linear
systems Ax b and its transpose-free variant, the conjugate gradients squared algorithm (CGS),
both typically exhibit a rather irregular convergence behavior with wild oscillations in the residual
norm. Recently, Freund and Nachtigal proposed a BCG-like approach, the quasi-minimal residual
method (QMR), that remedies this problem for BCG and produces smooth convergence curves.
However, like BCG, QMR requires matrix-vector multiplications with both the coefficient matrix A
and its transpose AT In this note, it is demonstrated that the quasi-minimal residual approach can
also be used to obtain a smoothly convergent CGS-like algorithm that does not involve matrix-vector
multiplications with AT. It is shown that the resulting transpose-free QMR method (TFQMR) can
be implemented very easily by changing only a few lines in the standard CGS algorithm. Finally,
numerical experiments are reported.

Key words, non-Hermitian linear systems, biconjugate gradients, transpose-free, conjugate
gradients squared, quasi-minimal residual property

AMS(MOS) subject classification. 65F10

1. Introduction. The classical conjugate gradient method (CG) [11] is one of
the most powerful iterative schemes for solving large sparse linear systems

(1.1) Ax b

with Hermitian positive definite coefficient matrices A. The biconjugate gradient
algorithm (BCG) [13], [3] is the "natural" extension of CG to linear systems (1.1)
with general non-Hermitian nonsingular coefficient matrices. However, unlike CG, the
BCG iterates are not characterized by a minimization property, which means that the
algorithm can exhibit--and typically does--a rather irregular convergence behavior
with wild oscillations in the residual norm. Furthermore, in the BCG algorithm, even
breakdowns--more precisely, division by 0--may occur.

Recently, Freund and Nachtigal [7] proposed a BCG-like approach, the quasi-
minimal residual method (QMR), that remedies the problems of BCG. The QMR
iterates are defined by a quasi minimization of the residual norm, which leads to
smooth convergence curves. Furthermore, QMR can be implemented based on a
look-ahead version [14], [6] of the nonsymmetric Lanczos algorithm [12], which avoids
possible breakdowns of the process, except for the very special situation of an incurable
breakdown.

Except for special cases [8], such as complex symmetric matrices [4], BCG and
QMR require matrix-vector multiplications with both the coefficient matrix A of
(1.1) and its transpose AT. This is a disadvantage for certain applications, such
as linear systems arising in ordinary differential equation solvers [9], where AT is not
readily available. Sonneveld [15] derived a variant of BCG, the conjugate gradients
squared algorithm (CGS), that does not involve AT. However, like BCG, CGS also
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exhibits rather erratic convergence behavior. Van der Vorst [16] proposed the Bi-
CGSTAB algorithm, which uses local steepest descent steps to obtain a more smoothly
convergent CGS-like process. While Bi-CGSTAB seems to work well in many cases,
it still exhibits irregular convergence behavior for some difficult problems. Also, Bi-
CGSTAB can converge considerably slower than CGS.

In this note, we demonstrate that the quasi-minimal residual approach can also
be used to obtain a smoothly convergent CGS-like algorithm that does not require
matrix-vector multiplications with AT We show that the resulting transpose-free
QMR method (TFQMR) can be implemented very easily, by changing only a few
lines in the standard CGS algorithm. We stress that the proposed TFQMR method
and the original QMR algorithm [7] are not mathematically equivalent. In particular,
the sets of iterates generated by the two schemes are different.

The rest of this paper is organized as follows. In 2, we briefly review the CGS
algorithm. In 3, we present the transpose-free quasi-minimal residual approach. To
derive an actual implementation, we first present an auxiliary result in 4 and then
present the resulting TFQMR algorithm in 5. Numerical examples are reported in
6, and in 7, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or complex
entries. As usual, MT and MH denote the transpose and conjugate transpose of M,
respectively. The vector norm Ilxll is always the Euclidean norm, and

IIMII- maxllxll=l IIMxll is the corresponding matrix norm. The notation

Kn(c,M) :- span (c, Mc,. ,Mn-lc}

is used for the nth Krylov subspace of Cg generated by c E CN and the N N matrix
M. For q E R, [q] is the largest integer <_ q. The set of all complex polynomials of
degree at most n is denoted by

Pn :-- {()k) ")’0 -[- "1) -[-"’"-+’n/n "/0,’)’1, ,’)’n e C}.

The coefficient matrix A of (1.1) is always assumed to be a nonsingular, in general
non-Hermitian, N N matrix, and b CN. Generally, x CN, n 0, 1,..., denote
iterates for (1.1) with corresponding residual vectors rn b- Axn. If necessary,
quantities of different algorithms will be distinguished by superscripts, e.g. _BCG andun

XnCGS"
2. The CGS algorithm. Let x0 e CN be any initial guess for (1.1) with residual

vector ro b- Axo, and let 0 E Cg be any vector such that 0Hr0 0, e.g., 0 r0.
The nth iterate, _BCG generated by the BCG process is defined by the Galerkin-type
condition

(2.1) wH b BCG _BCG
AX 0 for all w g(0, AH), x

_
Xo + gn (to, A).

Clearly, the corresponding residual vector _BCG is of the form

(2.2) ’r,-BCG n(A)r0, where n;:n and 99n(0)=1.

Sonneveld [15] observed that the iterates xn xo + K2n(r0, A) whose residual vectors
are just the "squares" of (2.2), i.e.,

(2.3) r= (n(A))2ro,
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can be computed by means of a BCG-like process that does not involve AH.
resulting process is as follows.

The

ALGORITHM 2.1 (CGS ALGORITHM [15]).
(1) Start:

(a) Choose x0
(b) Set po uo ro b- Axo, vo Apo;
(c) Choose 0 such that P0 0Hr0 0.

(2) For n- 1,2,..., do:
(a) Setan_l oHvn-, an-1 pn-/an-;

qn Un-1 Oln- Vn-1;

(b) Set Xn Xn-1 + an-(Un-1 + qn);
rn rn-1 on-lA(un-1 + qn);

If xn has converged: stop
(c) Set Pn oHrn, n Pn/Pn-;

U r +q;
Pn Un + fln(qn + nPn-1);
vn mpn.

In exact arithmetic, Algorithm 2.1 terminates after a finite number, say n., of
iterations. Usually, xn. A-b is the solution of (1.1). However, for general A,
the possibility cannot be excluded that Algorithm 2.1 terminates prematurely with
an. 0 or Pn. 0, before the solution of (1.1) has been found. If this happens, a
continuation of the process would lead to division by 0 in step (2a) or (2c) of the next
iteration, and therefore premature termination is also referred to as a "breakdown"
of the algorithm. Fortunately, breakdowns are very rare in practice and, furthermore,
they can be overcome by using look-ahead strategies (cf. 7). Here, for simplicity,
we will consider only the standard CGS Algorithm 2.1, without look-ahead. We note
that a modified CGS algorithm that avoids exact breakdowns was recently given by
Brezinski and Sadok [1].

In the sequel, we always assume that n E (1, 2,..., n. }. Note that

(2.4) an- 0 for all n.

Moreover, we will make use of the relations

un- n-(A)n-l(A)ro and qn n(A)n-(A)ro,

which are derived in [15]. Here the n’S are given by (2.2), and the polynomials
can be updated by means of

(2.6) )n() n(/) --/n)n--l(/),

where 0(A) --- 1. Finally, we note that

3. The quasi-minimal residual approach. By (2.2) and (2.3), the CGS iter-
ates are defined implicitly via the Galerkin condition (2.1), but they do not satisfy a
residual norm minimization property. In this section, we demonstrate that, using the
same sequence of vectors un- and qn as generated by Algorithm 2.1, one can also
define iterates with a quasi-minimization property.
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We set

(3.1) Ym
un-1 ifm=2n-lisodd,

t qn if m 2n is even,

and

(on(A))2 r0 if m- 2n -4- 1 is odd,
(3.2)

,(A)=_(A)ro if m 2n is even.

Note that, by (2.3),

(3.3) w2n+i rncGs, n 1, 2,..., n,.

In the sequel, it is always assumed that m e {1, 2,..., 2n,}. Using (2.5) and (2.7),
one readily verifies that the vectors (3.1) and (3.2) are related by

1
(3.4) Ay, (w,-w,+i).

L(m-1)/2J

Note that, by (2.4), the denominator in (3.4) is guaranteed to be different from 0.
Setting

Ym -[Yl Y2 Ym],
Wm+l-" [Wl w2 Wm Wm4-1],

we can rewrite the relations (3.4) in matrix form

(3.5) AYm Wm+iB(),

where

(3.6) B(

1 0 0

-1 1 ".

0 ". ". 0

". -1 1

0 0 -1

(diag (ao, ao, o1,..., C[(m--1)/2J ))--1

is an (m / 1) m lower bidiagonal matrix. Finally, note that in view of (2.6), (2.7),
and (2.4), the polynomials on and Cn are both of full degree n, and with (2.5) and
(3.1), it follows that

Kin(to, A) span {Yl, Y2, Ym}

After these preliminaries, we now begin our derivation of the quasi-minimal resid-
ual approach By (3.7), any possible iterate Xm E xo 4- Km(ro, A) can be written in
the form

(3.s) x, xo + Y,z for some z 2".
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By (3.5) and since wl r0 (see (3.3)), the corresponding residual vector satisfies

(3.9) (m-I-1)rm ro AYmz Wm+ e B )z

where em+) [1 0 0]T E ]R(m+). Ideally, we would like to choose the free
parameter vector z in (3.8) such that the norm Ilrmll of (3.9) is minimized. However,
since, in general, the matrix Wm+ is dense and its columns are not orthogonal to each
other, this would require the solution of a dense N (m / 1) least-squares problem.
Instead, we minimize only the length of the coefficient vector in the representation
(3.9) of rm. More precisely, let

(3.10) Gm+ diag ((.Ol,(.d2,..., OJm+l)

be any scaling matrix, and rewrite (3.9) as

where

wk>0, k--1,2,...,m+1,

(3.12) fm+ 0)lem+l) and H( 12m+B(me).

We then define the mth iterate Xm of TFQMR by

(3.13) Xm = xo + Ymzm,

where Zm E C" is the solution of the least-squares problem

(3.14) Tm :-"
zCm

Note that by (3.6), (3.10), and (3.12), the matrix H(me) has full column rank m, and
thus z, is uniquely defined by (3.14). Furthermore, as we will show in the next two
sections, the solution of (3.14) and hence Xm can be computed by means of simple
recurrences.

Clearly, the iterates Xm still depend on the choice of the weights wk in (3.10).
The standard strategy is to set

(3.15) wk I111, k 1, 2,..., m + 1,

which means that all columns of Wm+l’nl-1 in the representation (3.11) are treated
equally and scaled to be unit vectors. However, we will also consider a slightly less
expensive choice of the weights in 5.

For the derivation of an actual implementation of the TFQMR method, the aux-
iliary iterates

(3.16) Yc, xo + Ymhm where 5m Hnfm

will be used. Here H, denotes the m m matrix obtained by deleting the last
row of H(me). Using (3.6), (3.10), and (3.12), one readily verifies that Hm is indeed
nonsingular and that

(3.17) m [c0 c0 1 oz[(m-1)/2J]T,
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Finally, by comparing (3.16) and (3.17) with the update formula for the iterates xncGs
in step (2b) of Algorithm 2.1, we conclude that

(3.19) &2n xncGs.

4. A lemma. In this section, we show that the solutions of least-squares prob-
lems of the type (3.14) can be updated easily from step to step by using the auxiliary
quantity m defined in (3.16). This is true for more general upper Hessenberg matri-

ces H), not only for the particular matrices given by (3.12) and (3.6). Therefore, we
prove the following more general result, which might also be useful in other situations.

LEMMA 4.1. Let wl > O, m >_ 1, and

hm+l,meTm 0 hm+l,m

where emT [0 0 1], be an (m-t-l) m upper Hessenberg matrix of full
column rank m. For k m- 1, m, let zk E Ck denote the solution of the least-
squares problem

.=

zECk
where fk+ 0lek/l) ]k-t-1.

Moreover, assume that the m m matrix Hm in (4.1) is nonsingular, and set 5m "=

H fm Then

Zm (1--C%) Zm-1
+Cm

0

(4.4) Tm ’m-lmC,,

where

V/1 /02m

Proof. Let k--m- 1 or k--m. The standard approach (see, e.g., [10, Chap. 6])
for solving the least-squares problem (4.2) is based on a QR factorization of H(),

(4.6) Qk+iH(k)= [ Rk ]0

where Qk+l is unitary and R} is a nonsingular upper triangular matrix. The solution
of (4.2) is then given by

(4.7) zk Rk gk, where Qk+fk+, /k+ C,
k+l
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and

(4.8) Tk

Furthermore, since Hk(e) is an upper Hessenberg matrix, we can choose the matrix
Qk+l as a product of k Givens rotations. In particular, the factorization (4.6) for
k m can then be easily updated from the one for k m- 1, by setting

(4.9) Qm+l 0 c, -s--
0 1

0 Sm Cm

where Cm >_ 0 and Sm E C are suitably chosen with C2m + ISml 2 1. Also, note that

(4.10) Rm
0 *

Using (4.9) and (4.1), we deduce from (4.6) (with k m) that

(4.11) Q,H, diag (1,..., 1, c,,)R,,

which, in particular, implies Cm > 0. Moreover, with (4.9), one easily verifies that

(4.12) gm=]gm-ll, ym=CmX/m, and /m+l=SmZm.

From (4.11), (4.12), and (4.7), it follows that

Using (4.7), (4.12), and (4.13), we obtain

z, (1-=-1[ ]+Cmc,)R,
R,_

0

which, in view of (4.10), is just (4.3).
Since Qm+l is unitary, the following holds:

and with (4.), (4.7), (4.1a), and (4.12), we arrive

(4.14)

’()-n, z,l[
(m-F 0

Finally, setting m II/, and using (4.8), the relations (4.5) and (4.4) follow
from (4.14) and the identity on the right-hand side of (4.12). []
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5. The TFQMR algorithm. We now apply Lemma 4.1 to the particular least-
squares problem (3.14). From (4.3), it follows that the TFQMR iterates (3.13) and
the auxiliary iterates (3.16) are connected by

(5.1)

Moreover, by (4.5), (4.4), and (3.18), we have

(5.2) m m-{-I 1, Cm and Tm "--Tm_lmCm.
Tin--1 V/1 + 2’

Setting

1
(5.3) dm (Cm xm-1)

aL(m-1)/2J

we can rewrite (5.1) in the form

2(5.4) Xm Xm--1 4- rmdm, where rm CmaL(m_l)/2

Next note that by (3.16) and (3.17), we have

rn m--1 4- a[(m-1)/2JYm,

and together with (5.3) and (5.4) (both with m replaced by m- 1), it follows that

2 1 c2
(5.5) dm= Ym + m-}m-

din-l, where Vm_2 := 2
m--

a[(m--1)/2J Cm_l

Next we note that with (3.1) and (3.3), the recursions for an and Un in step (2a)
and (2c) of Algorithm 2.1 can be rewritten as follows:

(5.6) Y2n Y2n- Oln-lYE- and Y2n-{- W2n-bl f- nY2n.

Also, by multiplying the update formula for pn in step (2c) of Algorithm 2.1 by A,
we obtain the recursion

(5.7) vn Ay2n+l 4- ln(Ay2n 4- ]nVn--1)

for vn Apn. By (3.4), the Wm’S can be generated via

(5.8) Wmq-1 Wm a[(m-1)/2JAym.

Finally, by combining the recurrences (5.2), (5.4)-(5.8), we obtain an actual im-
plementation for computing the iterates of the TFQMR method. First, we state the
resulting algorithm for the standard weighting strategy (3.15).

ALGORITHM 5.1 (TFQMR ALGORITHM WITH WEIGHTS (3.15)).
(1) Start:

(a) Choose xo E CN;
(b) Setw=y=ro=b-Axo, vo=Ay,do=0;

I1 o11, 0, vo 0;
(c) Choose o such that Po 0Hro 0.

(2) For n-- 1,2,..., do:
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(a) Set an-1 --oHVn-1, Oln-1 tOn-1/tTn-1;
Y2n Y2n-1 Oln- Vn-1;

(b) For m 2n- 1, 2n do:
Set Wm+l Wm On-lAym;

I1+111/-1, 1/v/1 +;
Tm: Tm--lmCm ?m C2mOn--1;

(Om--IT--I/(::B-- )dm-:dm Ym -- 2

Xm Xm--1 + mdm;
If Xm has converged: stop

(c) Set e0+, Z /-1;
Y2n+ W2n+ -- nY2n
Vn Ay2n+: + (Ay2 + v_:).

The convergence check in step (2b) is usually based on the norm I111 of the
residual vector rm corresponding to Xm. These vectors are not generated explicitly
in Algorithm 5.1. However, we have the following upper bound available at no extra
cost:

The inequalities in (5.9) follow from (3.11) (with z Zm), (3.14), and

]]Wm+:1i] m + I.

The latter estimate holds since, by (3.5), the columns of the N (m + 1) matrix

W+m+ 11 have unit lenh. Therefore, the convergence criterion in Algorithm
5.1 can be checked for the upper bound on the right-hand side of (5.9), and the actual
norm ]]rm]] only needs to be computed in the final stages of the iteration process.

Notice that the vectors w2n in Algorithm 5.1 are not used directly; only their
norms ]]w2n are needed. We can eliminate the w2n’s, and thus save one inner product
per iteration, by approximating the weights w2n in (3.15) follows. First, recall that
by (3.3) and (2.3),

(5.10) ]w2+: cas )2

Since by (3.2), w2n (d)n-(d)ro, the relation (5.10) suggests the approximation

This leads to the weighting strate

{ ]]raS]] if m 2n + 1 is odd,
(5.11) m cs rS1.-1 I. if m e. is even.

In the ce of (5.11) and, more generally, for any choice of weights wk > 0 in (3.10)
that does not require ]]w2,[[, we can eliminate w2n in Algorithm 5.1. The resulting
procedure is, except for the update of the different iterates in step (2b), identical with
the CGS Algorithm 2.1, and it can be stated follows.

ALGORITHM 5.2 (TFQMR ALGORITHM WITH GENERAL WEIGHTS Wk > 0).
(1) Start:
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(a) Choose x0
(b) Set po uo rCo c’s ro b- Axo, vo Apo, do 0;

TO wl, 0 0, /0 0;
(c) Choose 0 such that P0 0Hr0 0.

(2) For n 1,2,..., do"
(a) Set a,_ oHvn_, n-1 pn-i/an-;

an Un-1 Oln- Vn-1;

rnCGS .CGS
"n-1 on-lA(un-1 + qn);

(b) For m 2n- 1, 2n do"
* Set Om -Wm+/Tm-1, Cm l/V/1 + 02. T. T._O,C,, . C,_;

dm y, + (2m_Ym-1/(n-)dm-,

where Ym
Un-1 if m 2n- 1,
q if m 2n;

Xm --Xm-1 "" ]mdm;If Xm has converged" stop;
(c) Set Pn oHrCn o’s, /n P,IPn-I;

U, rCcs +/nq,;
Pn Un + n(qn + nPn-);
Vn Apn.

Finally, we note that xcs can be generated easily during the course of the
TFQMR Algorithms 5.1 or 5.2, whenever a CGS iterate is desired. Indeed, in view of
(3.19), (5.1), and (5.3), the CGS and TFQMR iterates are connected by

xCGSn X2n- -}- Oln- d2n.

6. Numerical examples. We have performed numerical experiments with the
CGS method, the Bi-CGSTAB algorithm, and the TFQMR algorithm with both
weighting strategies (3.15) and (5.11). In this section, we present the results for two
linear systems that are quite difficult to solve by iterative methods.

In both examples we used x0 0 as starting vector, and 0 was chosen as a vector
with random entries from a normal distribution with mean 0.0 and variance 1.0. As
stopping criterion, we used

IIrll < 10-6(6.1)
ilroll

for CGS and Bi-CGSTAB, and

(6.2) Ilrml[ < 10-6
IIroll

for TFQMR. Note that CGS and Bi-CGSTAB both produce only one iterate x, per
iteration, while QMR generates two iterates Xm, with indices m 2n- 1 and m 2n,
in the nth step of the iteration. However, work and storage per iteration are roughly
the same for all three methods. For both examples, we show the relative residual norm
(6.1), respectively (6.2), plotted versus the iteration number n. The solid line is the
convergence curve for the TFQMR Algorithm 5.1 (with weighting strategy (3.15)),
the dotted line shows the behavior of CGS, and the dashed line is the Bi-CGSTAB
convergence curve.
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Example 6.1. We consider the partial differential equation

+ y + Zu l (0,1) (0,1),

with Dirichlet boundy conditions. We discretize (6.3) using centered differences on
a uniform 63 63 grid with mesh size h 1/64. The resulting linear system h a
sparse coefficiem matrix A of order N 3969. The pameters in (6.3) were chosen
to be -200 and 100. Note that this choice guarantees that the cell Reynolds
number is smaller than one, and hence centered differences yield a stable discretization
of (6.3). The right-hand side w chosen such that the vector of all ones is the exact
solution of the linear system. The convergence behavior is shown in Fig. 6.1. For
this example, we have also plotted (dhed-dotted line) the convergence curve for
the TFQMR Algorithm 5.2 with the slightly less expensive weighting strate (5.11).
Note that the TFQMR curves for both strategies (3.15) and (5.11) are very close.
This behavior is typical, and it w also observed in other numerical tests.

109

106

10o

10-3

10
0

number n of iterations

FIG. 6.1.

Example 6.2. This example was taken from the Harwell-Boeing set of sparse test
matrices [2]. It is the fifth matrix from the SHERMAN collection, called SHERMAN5.
It comes from a fully implicit black oil simulator on a 16 23 3 grid, with three
unknowns per grid point. The order of the matrix is 3312, and it has 20793 nonzero
elements. The right-hand side b was also chosen as a vector with random entries. The
convergence curves are shown in Fig. 6.2.

Both examples clearly demonstrate that the TFQMR method is certainly a rem-
edy for the erratic convergence behavior of CGS. They also show that, in general, the
residual norms for Bi-CGSTAB can still oscillate considerably, and that for difficult
problems, convergence can be significantly slower than for CGS and TFQMR.
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number n of iterations

FIG. 6.2.

7. Conclusion. In this note, we proposed the TFQMR algorithm for solving
general nonsingular non-Hermitian linear systems. The TFQMR method is closely
related to the CGS algorithm, and it can be implemented by changing only a few
lines in standard CGS. However, unlike CGS, the iterates of the TFQMR algorithm
are characterized by a quasi minimization of the residual norm. This leads to smooth
convergence curves for the TFQMR method, while CGS typically exhibits a rather
irregular convergence behavior with wild oscillations in the residual norm.

Like standard CGS, the TFQMR algorithm described here can break down pre-
maturely. Although these breakdowns are very rare in practice, for a robust im-
plementation of the method that can be used as a black-box solver, it is crucial to
incorporate look-ahead steps that allow to leap over those iterations in which exact
breakdowns or near-breakdowns would occur in the standard process. The details of
such a TFQMR algorithm with look-ahead will be presented elsewhere.

Finally, we remark that, based on the quasi-minimal residual property, one can
derive upper bounds for the residual norms of the TFQMR iterates. Such a conver-
gence result for the TFQMR method is given in [5, Thm. 6].
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PRESERVING SYMMETRIES IN THE PROPER ORTHOGONAL
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Abstract. The proper orthogonal decomposition (POD) (also called Karhunen-Love expan-
sion) has been recently used in turbulence to derive optimally fast converging bases of spatial func-
tions, leading to efficient finite truncations. Whether a finite number of these modes can be used
in numerical simulations to derive an "accurate" finite set of ordinary differential equations, over a
certain range of bifurcation parameter values, still remains an open question. It is shown here that a
necessary condition for achieving this goal is that the truncated system inherit the symmetry proper-
ties of the original infinite-dimensional system. In most cases, this leads to a systematic involvement
of the symmetry group in deriving a new expansion basis called the symmetric POD basis. The
Kuramoto-Sivashinsky equation with periodic boundary conditions is used as a paradigm to illus-
trate this point of view. However, the conclusion is general and can be applied to other equations,
such as the Navier-Stokes equations, the complex Ginzburg-Landau equation, and others.

Key words, proper orthogonal decomposition, Karhunen-Love expansion, empirical eigen-
functions, Kuramoto-Sivashinsky equation

AMS(MOS) subject classifications. 34C40, 35A40, 35K60, 58F32, 65M60

0. Introduction. All computations involve a process of discretization in which
infinite-dimensional (continuum) models, taking the form of partial differential equa-
tions (PDEs), are projected onto discrete or finite-dimensional forms. The way this
finite projection is carried out is crucial for the accuracy and efficiency of the nu-
merical simulation. Even if the process that is modeled is of low dimension, a finite
projection may not be successful if it does not retain the essential dynamical features
of the PDE such as the symplectic structure for namiltonian systems (see [18], [14],
and [68]) or the preservation of dissipation in dissipative systems [29], [21], [38], [39].
In this paper, we are interested in reproducing the bifurcation di gram of dissipative
equations based on the truncated proper orthogonal decomposition (POD) as defined
below. In particular, we are concerned with deriving truncated dynamical systems
that obey the symmetries of the original infinite-dimensional equation.

It is known that the long time behavior of certain PDEs such as the dissipative
ones, is finite dimensional and sometimes relatively low dimensional. Moreover, it is
sometimes possible to reduce the dynamics to a finite-dimensionM system of ordinary
differential equations (ODEs) in a rigorous manner. In the latter case, the reduced
ODE is called an inertial form and the reduction takes place on a smooth finite-
dimensional invariant manifold, which is called inertial manifold. More precisely, an
inertial manifold is an invariant manifold that attracts all the trajectories exponen-
tially fast and therefore it contains the global attractor [25]-[27]. The advantage is
that stability and bifurcation calculations of the PDE can be performed for the in-
ertial form [20], [38], [39]. In practice, an inertial manifold can be thought of as an
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interaction law relating small and large scales, resembling an eddy viscosity model in
turbulence [24]. The existence of an inertial manifold has been established for certain
dissipative evolution PDEs such as the complex Ginzburg-Landau (CGL) equation,
the Kuramoto-Sivashinsky equation (KSE), certain reaction-diffusion equations, the
nonlocal Burgers equation, the Cahn-Hilliard equation, and others (see, e.g., [15]
and references therein). Most recently, Kwak [44] has shown the existence of an
inertial form for the two-dimensional Navier-Stokes equations with periodic boundary
conditions. The difficulty, however, is that even when an inertial manifold is known
to exist, it is often not unique and its exact form is unknown. Thus an approximation
is necessary. Various approximation schemes have been developed to approximate
inertial manifolds, or to directly approximate the global attractor (see, for example
[20], [23], [27], [38], [39], [49], [66], and [67], and references therein).

Another approach to the issue of the finite projection of PDEs is the selection of
"proper" modes, that is, modes that are relevant to the dynamics. These may be pro-
vided by the POD, also called Karhunen-Love expansion, or empirical eigenfunctions
method [45]-[48], [58], and [6]. The proper orthogonal decomposition of probability
theory [45] has been developed, discussed, and extensively used to represent a random
process. It has been proposed by Lumley [46]-[48] for identification of coherent struc-
tures in turbulence. It consists of decomposing a square integrable stochastic signal
u,,(x), where x belongs to the physical space X and w is a random variable on the
probability space t. For simplicity, we restrict ourselves to scalar functions, although
the extension to vector-valued functions is straightforward. The proper orthogonal
decomposition theorem [45] allows a decomposition of the random signal u,,(x) into
orthogonal deterministic functions pn(x) and random coefficients a

(1) u,(x)
n--1

where the ’’s are eigenfunctions, called in the literature POD modes or empirical
eigenfunctions, of the following (Fredholm) integral equation:

R(x,x’)p(x’)dx’- Ap(x),

in which R(x, x’) denotes the two-(space)-point correlation function

(3)

that is, the ensemble average (over the random variable w) of the product u,(x)u(x’).
It is well known (Hilbert-Schmidt and Mercer theorems; see, e.g., [56]) that if the
correlation function is square integrable, then the set of eigenfunctions of the kernel
R(x,x) forms a complete set of L2(X). An important property of the POD is its
optimally fast convergence in the sense that it maximizes the quantity ((u, )2),
where (.,.) denotes the canonical L2(X) scalar product, and IIllL2 1. On the other
hand, the "energy" of the stochastic signal (defined as ((u, u))) is given by the
sum of the eigenvalues A (defined in (2)) counted with their multiplicities. Each eigen-
value, taken individually, represents the "energy" contribution of the corresponding
eigenfunction. The method has been applied to various flows (see, for example, [9],
[55], [50], [32], [33], [51], [57]-[61], [34], [16], [17], and references therein).

In the fluid mechanics literature, statistical stationarity and ergodicity are as-
sumed (see, e.g., [6] and [58]). Indeed, under the assumption of the ergodicity of
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the flow on the global attractor, we can substitute the ensemble average by the time
average, namely,

(4) R(x, x’) lim
1 f0

T

T-,oo
U(X, t)u(x’, t)dt.

We stress the fact that, regardless of the ergodicity of the flow, we can still find a
two-(space)-point correlation function using time averages, and find an orthonormal
basis of L2(X) consisting of eigenfunctions of the correlation operator, defined in (4),
provided the latter converges and satisfies the appropriate conditions (i.e., the condi-
tions of Hilbert-Schmidt and Mercer theorems; see [56]). However, by implementing
the long time average, as in (4), the "energy" contribution of the short-term events,
such as the intermittent bursts in the presence of homoclinic orbits, might be very
small. Therefore, we would not expect to be able to reproduce these events by taking
only the largest "energy" POD modes in the Galerkin procedure. On the other hand,
it is well known that, in certain cases, such short time events are responsible for an es-
sential part of the chaotic dynamics. As a result, we might be obliged to take a larger
Galerkin approximation, which will involve POD modes with almost zero "energy," in
order to be able to reproduce the right dynamics. Indeed, a similar phenomenon can
be observed in our computations in 4.2. The Galerkin approximation based on six
POD modes, which contain 99.9995 percent of the "energy," could not reproduce the
right dynamics. Only after taking seven modes are we able to get the right dynamics.
This time-average procedure has been used by Aubry, Guyonnet, and Lima [4] to
derive a space/time symmetric version of the expansion, the bi-orthogonal decompo-
sition. This is a very useful tool to analyze space/time symmetries and bifurcations
in complex spatio-temporal systems [2], [5], [7].

While the inertial manifold approach is global in the sense that such a manifold
is invariant and contains the global attractor, the POD approach is local in phase
space unless the global attractor is ergodic. Namely, the important POD modes, i.e.,
those with most of the "energy," span a linear manifold which closely approximates
the w-limit set of the particular trajectory that was used in the averaging process.
The POD, indeed, leads to an optimally fast convergent expansion, in a certain sense,
only for the particular signals u(x, t) used in the determination of the two-(space)-
point correlation function. Other signals, even those that are solutions of the same
PDE for the same bifurcation parameter value, in particular those of other ergodic
components of the global attractor, are likely to be poorly represented by the Galerkin
approximation, based on a truncated set of these basis functions. In other words,
spatial eigenfunctions derived from a particular solution necessarily provided a basis
for L2(X), but a finite part of this basis may have absolutely no meaning for some
components of the global attractor. Moreover, we emphasize that the characteristic
spatial eigenfunctions, that is, those that have nonnegligible "energy," may completely
change through bifurcations as the bifurcation parameter changes (see [2], [5], and [7]).

A finite-dimensional dynamical system has been derived by Aubry et al. [6] and
Aubry and Sanghi [8], who projected the Navier-Stokes equation onto a finite number
of basis spatial modes extracted from (2) and (4), where (4) had been previously
experimentally determined. Low-dimensional dynamical systems thus derived could
approximately reproduce the structure and dynamics of a turbulent flow in the vicinity
of a wall. However, no parametric study with respect to Reynolds number was carried
out and the global phase space study was not performed. One of the most important
remaining issues is whether the POD method can be used to extract finite-dimensional
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approximations to a PDE in order to study global bifurcations. The aim is then to
reconstruct the bifurcation diagram over a certain range of parameter values from a
specific finite set of POD modes which would then be global on such a range. An
attempt in this direction has been carried out by Sirovich and Rodriguez [57], [59] for
the CGL equation. With three POD modes extracted from a chaotic solution, they
could reproduce the period doubling route to chaos as first discovered by Keefe [40].
It is possible that a more careful bifurcation diagram analysis (including fixed points,
precise bifurcation branch locations, etc.) may reveal problems of the type that will be
pointed out in 4. (For a detailed global bifurcation analysis of the CGL equation, see,
for instance, [12].) Along these lines, Deane et al. [16] have recently applied the POD
method to the wake flow behind a cylinder at relatively small Reynolds number and
observed similar difficulties. Finding a finite set of appropriate modes for the global
bifurcation diagram is thus nontrivial. Although in this paper we do not answer this
difficult question, we find a necessary condition that the finite set of global modes
should satisfy. We are specifically interested in deriving Galerkin approximations
that are inspired by the Karhunen-Love procedure and that preserve the symmetric
features of the problem and its global attractor (see Propositions 3 and 5 in 3).

The paper is organized as follows. In 1, we recall a few previous results concerning
the KSE, which we need for our method implementation. In 2, we expand the
solution of the equation by two complete sets of modes, the Fourier modes and the
POD modes, and justify this operation in both cases. Then, in 3 we discuss the
symmetries of the truncated finite sets of ODEs obtained by Galerkin projection of
the PDE onto these modes. In the case of POD modes, we find a sufficient condition
for the truncated system of ODEs which obeys the symmetries of the original PDE.
This leads to a modification of the basic POD technique, by involving the average over
the global symmetry group in the ensemble average. Finally, we show the necessity of
this alternative procedure by studying the bifurcation diagram of stationary solutions
of the KSE in 4. Moreover, in 4.2 we demonstrate that the modes with negligible
"energy" are sometimes essential in reproducing the right dynamics, and hence must
be included in the Galerkin projection. In conclusion, we raise the following questions:
If it is not the "energy," then what should be the right criterion for determining the
number of modes to be included in the Galerkin projection? What trajectories would
be considered reliable to produce good PODs? And what should be the right ensemble
average?

1. The Kuramoto-Sivashinsky equation. As an example, we consider the
KSE subject to periodic boundary conditions. This equation is a model for a variety
of physical problems such as flame propagation and reaction-diffusion dynamics in
combustion [62], [63]; thin film flows [10], [64], [35]; and, two-phase flows [30], [53].
It has been extensively studied analytically and numerically (see, for example, [38],
[39], [31], [54], and references therein). Despite numerous bifurcations [41] and the
complexity of some chaotic spatio-temporal solutions [36], [121, [13], [7], the KSE is
known to have an inertial manifold [26], [27], [15] that is apparently low dimensional,
as reflected by the numerical simulations. Foias et al. [20] and, Jolly, Kevrekidis,
and Titi [38], [39] used the approximate inertial manifold technique to compute the
bifurcation diagram in a relatively large range of the bifurcation parameter a (as de-
fined below in (7)). Different approximate inertial manifolds and nonlinear Galerkin
schemes were used and it was shown that, for a certain range of a, only three modes
were enough to recover bifurcation branches. Along the same lines, Armbruster,
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Guckenheimer, and Holmes [1] used the center manifold technique to derive a four-
dimensional ODE system to study local bifurcations around a critical parameter value.

We consider the normalized KSE

(5)

Ou cu O:u Ou
0--- + xa + + Uxx 0, where (x, t) E R R+,

u(x, O)= uo(x), where x e R,

with periodic boundary conditions

(6) u(x, t) u(x + L, t), with

and

L

u(x, t)dx O.

After rescaling time and space, (5) and (6) become

Ou 0% ( Ou)(7) + 4 xa + 2 + U xx o, where

and where c L2/71"2 is the bifurcation parameter.
condition becomes

L>O,

(x, t) e R R+,

In this case, the boundary

(8) t) +

In the following, we refer to (7) subject to the boundary condition (8) as the KSE.
It is well known that the subspace of odd functions is an invariant subspace for this
equation and the restricted system to this subspace is a dissipative system (see [52]
and [65]). Recently, however, it was shown by II’Yashenko [37] that the KSE is a
dissipative system without the restriction to the odd case. Following the same proofs
as in the odd case, and using the results of II’Yashenko [37], we can show that the
KSE has a compact global attractor and an inertial manifold. Moreover, since the
space of solutions is invariant under translations x -. x +/ for every/ (in the odd
case/ equals r only), namely, if u(x, t) is a solution, then u(x +, t) is also a solution,
the global attractor enjoys the same property. This translation symmetry is as crucial
for the analysis performed in this paper as it was for the case in [1]. Generally, if the
space of solutions of a dissipative system is invariant under a symmetry group G, then
the global attractor will have the same property. Since certain dynamic behavior is
structurally stable in the presence of symmetry, in general, we must ensure that the
truncated system enjoys the symmetry properties of the nontruncated system.

2. Fourier modes and POD modes. In general, we can expand the solution
of the KSE into a Fourier series

(9) u(x, t) E aj (t) cos jx + by (t) sin jx,
j=l

where in the odd subspace, the aj’s are equal to zero. On the other hand, we can
expand the solutions in terms of the eigenfunctions of the operator defined below,
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which will be referred to as POD modes. We denote by : L2((0, 2r)) L2((0, 2r))
the operator

(o)(x) R(x, x’)(x’)dx’,

where R is the tw(spe)-point correlation function

(10) R(x x’)= lim
1 Tr u(x, t)u(x’, t)dt,

and where u(x, t) is a solution of the KSE. In general, there is no re,on for the limit
in (10) to converge. However, in real implementations we choose u(x, t) for which the
numerical limit in (10) exists. Hereaer, we will sume that the limit in (10) exists
and that the correlation tensor is well defined.

PROPOSITION 1. The eigenunctions of , {j}, o a complete set o
L2((0, 2r)).

Proof. It is clear that the operator is symmetric and nonnegative definite.
Therefore, in order to apply the Hilbert-Schmidt and Mercer theorems (see, e.g.,
[56]), we must check that R(x, x’) is square integrable. The details of the proof are
straightforward and bed on both the regularity of the solutions of the KSE and the
fact that it is a dissipative equation.

As a conclusion, every solution of the KSE can be expanded in terms of the j’s:

(11) u(x, t) E c(t)j(x).
j=l

Remark 2. In view of the works of II’Yashenko [37] and Foias and Tmam [28],
we can show that the solution of the KSE belongs to a Gevrey class of regularity.
Therefore, we can implement the proof of Foias, Manley, and Sirovich [22] to show
that the eigenvalues of the operator ] are bounded by an exponentially decaying
function.

3. Symmetries. It is expected that the Galerkin approximation based on the
POD modes will converge optimally fast. However, the truncated system might not
preserve the dynamical features of the original equations, such as dissipation (see
[27], [21], [38], and [39]) or those originating from the symmetries. Since the space
of solutions of the KSE is invariant under spatial translations, we are interested in
deriving truncated dynamical systems that respect this property.

3.1. Symmetric POD modes. We now seek conditions under which the POD
eigenspaces enjoy the global symmetric properties of the solutions of the equation.

Suppose we have a PDE for which the space of solutions is invariant under a
symmetry group G; namely, for every solution u(x, t) of the PDE, g o u(x, t) is also
a solution (for every g G). The largest group with the above property will be
called the global symmetry group. A symmetry group could be spatial, temporal, or
spatio-temporal. In this paper, we will consider only spatial symmetry groups (for
spatio-temporal symmetries, see, for instance, [5]). We call a symmetric POD mode
if go, for every g E G, is an eigenfunction of the operator corresponding to the same
eigenvalue. Each eigenspace of symmetric PODs is then invariant under the symmetry
group G, and we call it a symmetric eigenspace. In Remark 4 (iv) we give some
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examples of particular solutions u(x, t) for which the eigenspaces of the correlation
functions, induced by u(x, t), are symmetric eigenspaces. It is worth mentioning that
if the flow is ergodic on the global attractor, then for almost every solution u(x, t)
in the global attractor, the POD eigenspaces of the correlation function, induced by
u(x,t), are symmetric eigenspaces (in this regard, see [11]). Since ergodicity is a
rarity and is generally difficult to check, we propose a systematic method to produce
symmetric POD modes by involving the average over the symmetry group in addition
to the time average of the correlation function given by (10). In Proposition 3, we
consider symmetry groups that are acting on the functions by changing variables
on the physical space, such as reflections, translations, etc. (for spatio-temporal
symmetries, see, for instance, [5]). We should mention that Sirovich [58] proposed
using this idea to enlarge the data and generate more accurate POD modes, and has
implemented it for this purpose in several applications (see, for example, [58], [61],
and [17]).

However, our aim is fundamentally different. First, we mention that in many
situations, the POD modes and the symmetric POD modes do not coincide. If we
perform a data analysis only to carry out a local bifurcation study of the signal itself
that provided the POD modes, the procedure of generating symmetric POD modes
by averaging over the symmetry group is obviously not adequate because the POD
modes prevent us from studying symmetry-related bifurcations. (See [5] for a full
discussion and examples, and [42] and [43] for another approach using the PODs to
study local bifurcation.) However, we emphasize that symmetric POD modes should
necessarily be considered for the derivation of finite-dimensional dynamical systems
that approximate the global dynamics of the equation (see Proposition 5). In general,
this is an essential step, because, from the dynamical systems point of view, it is well
known that certain dynamical features are structurally stable only in the presence of
particular symmetries. Also, our computations in 4 demonstrate the importance of
this step.

In this paper we consider only finite spatial symmetry groups. To be more specific,
suppose that there is a symmetry group G consisting of N elements, such that for every
g E G, there is a one-to-one, invertible, and smooth function Cg D D, where D
is the domain in the physical space where the equation is defined, satisfying

(12) Cgok(X) Cg(k(X)), Cg-,(X) -1(X) and [det(DCg)l-- 1.

Moreover, assume that if u(x, t) is a solution to the PDE under consideration, then
gou(x, t) au((x), t), where aa is a real number, is also a solution (i.e., the space
of solutions is invariant under this kind of symmetry). Since G is a finite group we
can easily show that a must be equal to either /1 or -1. We define the symmetric
two-point correlation matrix as

(13) Rs(x,x’)= lim
1 f0

T

T-o- Z u(g(x), t)u(a(x’), t)dt,
gEG

and denote by 8 the corresponding operator. Here again we assume that the limit
in (13) exists.

PROPOSITION 3. Under the above assumptions, if is an eigenfunction of
with eigenvalues ), then (g(x)) is also an eigenfunction corresponding to the same
) for every g G.
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Proof. Let qa be an eigenfunction of the operator 8 so that it satisfies

Rs(x, x’)qo(x’)dx’

Using the definition of R in (13), and letting h be an arbitrary element of G, we can
write

where y Ch(X’). Denoting k g o h-1, we obtain

/D R(x’ x)qo(h(x))dx T--.oolim -lj0T/D
lim ljoT/DT---oo

t)v(u)
kEG

E U(k(h(X)), t)U(k(y), t)qo(y)dy
kEG

Remark 4. (i) We remark that all the formal steps in the previous proof can be
rigorously justified by using the regularity properties of the solution u(x, t). Also note
that for the same reason, R(x,x’) (and therefore R(x,x’))satisfies the conditions of
Hilbert-Schmidt and Mercer theorems. Therefore, the number of linearly independent
eigenfunctions in each eigenspace is finite. As a result, it is possible to choose an
orthonormal basis (qo(x)}= of eigenfunctions of the operator 8 such that qo
Ajqa, where A1 _> A2 _> ", and any solution of the PDE can then be expanded as a
series

t)
j=l

(ii) In the case of the KSE with general periodic boundary conditions, the space
of solutions is invariant under translations Tfl x x + for every fl in [0, 2r].
Therefore, it suffices to replace in Proposition 3 the summation -gEG by the integral

f[0,2] d/and to define (x) eft(x) x + , where e [0, 2zr]. In this case, if
qa(x) is an eigenfunction of with eigenvalue A, then qo(x +/), for every fl e [0, 2r],
is also an eigenfunction corresponding to the same A. Moreover, here it can be easily
shown that R(x, x) is only a function of x- x and therefore the Fourier modes are
eigenfunctions of s. However, they might not be ordered according to their wave
numbers, because the mode with wave number 1, for instance, may not necessarily be
the POD with maximum energy. As a result, the set of symmetric PODs in this case
must coincide with the set of Fourier modes.

(iii) We observe that the subspace of odd solutions of the KSE is invariant
under the Z2 symmetry group generated by the translation T, x x + r. Note,
also, that particular solutions may have additional symmetries, as we will see in 5.
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(iv) If R(x,x’) Rs(x,x’), then the symmetric POD modes coincide with the
regular ones, and in this case Proposition 3 is valid for the regular POD modes. This
occurs, for instance, when the solution u(x, t) used in the correlation function is itself
invariant under the symmetry group (see [11]). Also, in the case of the translation
symmetry group, the symmetric POD modes coincide with the regular ones in the
cases of statistical homogeneity, or when the solution used in the correlation function
is either a fixed point u(x, t) c or a traveling wave (in all three cases, R is only a
function of x x). The case of traveling waves has been treated in detail in [5].

Next we show that the Galerkin projection of the KSE onto any finite number
of symmetric eigenspaces gives an ODE system whose space of solutions is invariant
under the translation symmetry group of the KSE. To illustrate our idea we consider
the KSE restricted to the space of odd functions. However, we will discuss the general
case as well as other equations in Remark 6.

Let (o(x)}= be an orthonormal basis of symmetric eigenfunctions of !R8 for
the KSE restricted to the space of odd functions. Let N satisfy AN+I < AN, where
1 >_ )2 >_ are the eigenvalues of the operator !R. Let

N

j=l

’s. It isdenote a solution to the Galerkin approximation of the KSE based on the oj
clear from (7) that the aj(t)’s satisfy the ODE system

N N N

(14) dk + 4 Ak.a. o Bk.i a. + o Ck.ma.am 0 for k 1, 2,..., N,
j=l j=l j,m=l

where

(15)

for k, j, m 1,2,...,N.
PP.OPOSITION 5. Let a(t) (al(t),...,ag(t))T be a solution of (14). Denote

by UN(X,t) ’;=1 aj(t)qo(x) the corresponding solution to the Galerkin projection

t Nsystem. Then UN(X + 7r, =1 b(t)o(x), and b(t) (hi (t),..., bN(t))T is a
solution of (14) (i.e., UN(X -}- 7r, t) is also a solution to the Galerkin projection).

Proof. Because of Proposition 3 and Remark 4(i) there exists a matrix 1 such
that for every j 1,..., N, we have

N

(16) +.)
k--1

Therefore,
2vr

j0
2r

+ +
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Moreover, we can easily check that r2 I. Hence,

(17) r rr r-’.

From (16) we can easily see that

N N

uv(x+r,t)= a(t)r(x) -.b(t)(x),
j,k=l k--1

where b(t)= rra(t).
It remains to show that b(t) solves (14). From (15) it is easy to observe that

(18) A AT, B BT, A ratT, and B rBrT.

Next we show that

N N

(19) Z r,caa= Cqbqb
j,k,m--1 p,q--1

(the proof of (lS) is similar and will be omitted). From (15) and because the functions
n(x) are periodic of period 2r, we have

by (16),

2r

Ckjm (X + r)n(x + r)(x + r)dx;

From (14) and the above, we obtain

N

Z Ckjmajam
j,m-1

N

Z FjqFmpFkiCiqpajam
i,p,q,j,m=l

N

i,p,q--1

Hence, because of (17) and the above, we have

j,m,k=l

N

FklCkjmajam- Z FlkCkjmajam
j,m,k--1

N

p,q--1

which proves (19).
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To conclude our proof, we apply rT to (14) and use (17), (18), and (19).
Remark 6. (i) The above proof can be easily extended to other equations with

polynomial-type nonlinearities, and other kinds of symmetry, such as reflection. To
be more specific, we can prove results similar to those of Proposition 5 for the CGL
equation with periodic boundary conditions, and to the results of problems considered
in [58], [17], and [16].

(ii) It is clear from the above proof (in particular, see (16)) that if the KSE is
projected onto the Fourier modes, the space of solutions of the truncated system in
this case is invariant with respect to the translation symmetry.

3.2. Dissipation and POD modes. Showing the dissipation property for the
KSE is u little tricky, unlike other dissipative equations, such as the Navier-Stokes
equations or the CGL equation (see [52] and [37]). Without knowing the spatial
structure of the first N POD modes it will not be easy to show that the truncated
system (14) is dissipative. In fact, if N is not large enough, depending on c, the
system (14) might not be dissipative at all. Moreover, in the latter case, some of
the solutions might even blow up in finite time. This issue of dissipativity of the
discretized KSE has been discussed in detail for various numerical schemes in [38],
[39], [21], and [27]. However, let us remark that in the cases of the Navier-Stokes
equations or the CGL equation, for instance, the dissipation property always holds
independently of the orthonormal basis with respect to which we truncate.

4. Computations of the Kuramoto-Sivashinsky equation. In this section
we derive sets of ODEs via a Galerkin projection of the KSE onto both Fourier and
POD modes. In order to demonstrate our point of view, it will be more instructive if
we restrict our computations to the invariant subspace of odd functions. Otherwise,
in view of Remark 4(ii), the symmetric PODs for the KSE will coincide with the
Fourier modes. It is worth mentioning that certain interesting solutions, such as
traveling waves, will not be allowed in the odd case. Nevertheless, the dynamics of
the restricted KSE is still rich, as indicated in the computations of Jolly, Kevrekidis,
and Titi [38], [39]. In this work, we are specifically interested in the bifurcation
diagram for parameter values 0 _< a _< 40. In the following, the bifurcation diagrams
are obtained by using the bifurcation package AUTO [19].

4.1. Projection onto Fourier modes. We first integrate a set of 14 ODEs
derived from Fourier modes, as the bifurcation diagram thus obtained is qualitatively
correct in the parameter range 0 _< c _< 40 for both steady and unsteady solutions.
Indeed, by increasing the number of Fourier modes, we could not notice any major
difference. As first noted by Brown [12] and Jolly, Kevrekidis, and Titi [38], we could
even decrease the number of Fourier modes to 6, but 14 were kept for the computations
described below. The steady-state bifurcation diagram is plotted in Fig. 1 from a set
of 6 ODEs based on Fourier modes, and it will be our reference. (This diagram is
identical to that obtained by Jolly, Kevrekidis, and Titi [38].)

We now recall in detail the symmetries of various branches since, as explained
earlier, they play an essential role for the implementation of the POD modes (see,
e.g., [41], [38], and references therein). First, for small values of (, ( < 4, the trivial
solution is asymptotically stable. A stability analysis of this trivial fixed point shows
that a pitchfork bifurcation occurs at ( 4 and that subsequent bifurcations take
place on the trivial branch, from which primary steady branches emerge. It is fun-
damental to note that since the linear part of the KSE is diagonal, linearized modal
equations decouple and single modes bifurcate: sin x at c 4, sin2x at ( 16,
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FIG. 1. Steady-state bifurcation diagram of a dynamical system derived by projecting the KSE
restricted to the odd subspace onto a set o] six Fourier modes. The open circles represent steady-state
bifurcation points, and the black circles present Hopf bifurcations.

sin 3x at c 32, sin 4x at a 64, etc. For this reason, branches thus born are called
unimodal, bimodal, trimodal, or quadrimodal branches since young solutions (close
to their birth) have one, two, three, or four humps, respectively. Then, by nonlin-
ear quadratic interactions, multiple frequencies are activated so that solutions on an
n-modal branch are linear combinations of sin jx, j 1, 2, 3,..., and have a period
of 2r/n. Then secondary branches of various periods emerge from primary branches
on which solutions may have various periods. In the parameter range 0 _< c <_ 40,
a secondary branch connects the bimodal and the trimodal branches before turning
back to eventually ge to the quadrimodal branch. The part connecting the bimodal
and the trimodal branches is called the bitrimodal branch and has periodicity of 2r.

Now we remark that the global symmetry group of the KSE reduced to the odd
subspace is the discrete Z2 symmetry group, i.e., if u(x, t) is a solution then u(x+r, t)
is also a solution. This implies that steady-state branches occur in pairs, both branches
of the same pair being superposed in the bifurcation diagram. This is due to the fact
that symmetric solutions are only distinct by a phase shift and therefore they have the
same L2 norm. Both symmetric odd-modal branches have th.e same stability, while
both symmetric even-modal branches have different stabilities [41], [38].

4.2. Computation of POD modes. Let us recall that a Hopf bifurcation oc-
curs on one of the bimodal branches at the parameter value ( 30.278 (see [38]).
The limit cyc_le thus born is stable and is invariant under the spatial and temporal
symmetries T" t --. T/2 and T "x x + r, so that u(x,t) u(x + r,t + T/2),
where T is the limit cycle (temporal) period. These symmetries have consequences
on the POD modes and their coefficients that we do not exploit here [5], [7]. We
remark that the symmetry of the bimodal branch x --, x + r/2 is lost, due to the
fact that the Hopf bifurcation occurs on one of the two bimodal stationary branches
only. The cycle has, however, the global symmetry of the KSE. At 32.85, there is
a symmetry-breaking bifurcation. The symmetric cycle becomes unstable while two
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stable asymmetric limit cycles appear in the phase space, symmetric one to the other
through the symmetry x x + r. Each asymmetric limit cycle then undergoes a
period-doubling bifurcation sequence, leading to an apparently chaotic solution. (See
[38] for a description of the whole bifurcation series from the bimodal branch. Also
see [13] and [7] for a spatio-temporal analysis of stable solutions in this bifurcation
series.) POD modes have been computed.from such an apparently chaotic solution
at the parameter value ( 33.005. More precisely, Fourier coefficients of the POD
modes are computed from the Fourier coefficients of the solution since we have

N

m----1

n,j-l,2,...,N,

where

N
sin nx

n--1

and

Rij lim
1 f0

T

T-o
ci(t)cj(t)dt, I<_i<_N,I<_j<_N,

where ck stands for the k Fourier coefficient of the solution UN(X, t), i.e., UN(X, t)
g

(sinnx/v/-). Recall that in our computations N 14.n= Cn
In the computation of the apparently chaotic solution, the timestep used and time

integration are 0.005 and 20, respectively (after 20 steps the time average was stabi-
lizing), while the initial conditions were taken to be cl -0.9518, c2 5.9054, c3
5.9296, ca -0.6256, c5 -0.9899, c6 -0.2159, and ci --0 for all i > 6.

We denote by Pk the eigenvalue normalized by the energy

k

and by Sk the partial energy

The value of Ak, Pk, and Sk are reported in Table 1. Fourier coefficients of POD modes
are listed in Table 2. These tables show that the first two modes contain 96 percent
of the energy and the first three modes, 99 percent of the energy. Although the first,
second, and third POD modes get their main contribution from the second, third, and
first Fourier modes, respectively, the other Fourier coefficients of the POD modes are
not all zero: for example, 1 has nonnegligible first four Fourier coefficients.

First, we mention that the integration of the dynamical system retaining seven
or more POD modes using the same initial conditions as those used in the dynamical
system based on Fourier modes leads to a good reproduction of the apparently chaotic
trajectory. However, we could not obtain a stable orbit of this type by reducing the
number of POD modes to six or less: the trajectory was attracted by a stable fixed
point. Although the quasi totality of the energy, namely 99.9995 percent, is included
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TABLE 1
List of eigenvalues.

Index of POD

1
2
3
4
5
6
7
8
9
10
11
12
13
14

mode k
Eigenvalue

A
0.814592Eq-01
0.671891Eq-01
0.448952Eq-00
0.151746Eq-00
0.666166E-02
0.136265E-03
0.665096E-04
0.614423E-05
0.940076E-07
0.216713E-07
0.227465E-09
0.301249E-10
0.886460E-12
0.419195E-13

Normalized eigenvalue
Pk

0.526481Eq-00
0.434251E00
0.290163E-01
0.980755E-02
0.430551E-03
0.880696E-05
0.429860E-05
0.397109E-06
0.607583E-08
0.140065E-08
0.147014E-10
0.194701E-11
0.572930E-13
0.270931E-14

Partial energy

S
0.526481E+00
0.960732E+00
0.989748E+00
0.999556E+00
0.999986E+00
0.999995E+00
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01

TABLE 2
List o] the first 8 POD modes computed from 14 Fourier modes. There is one POD mode

per column. Its 14 Fourier coe.Ocients are listed from top to bottom following the orders of the
corresponding wave numbers.

1 2 3 4 5 6 7 8
1 0.0434 -0.3582 0.9293 0.0514 -0.0586 0.0041 -0.0104 0.0020
2 0.9881 0.0824 -0.0202 0.1164 0.0156 0.0511 -0.0046 0.0060
3 -0.0766 0.9190 0.3634 0.0437 0.1227 0.0079 0.0227 -0.0036
4 -0.1249 -0.0412 -0.0603 0.9472 0.0601 0.2759 -0.0254 0.0393
5 0.0041 -0.1364 0.00140 -0.0669 0.9617 0.0297 0.2223 -0.0315
6 -0.0164 0.0052 0.0115 -0.2816 -0.0207 0.9262 -0.0830 0.2346
7 0.0010 0.0060 -0.0024 0.0132 -0.2269 0.1033 0.9407 -0.0791
8 0.0028 0.0001 -0.0005 0.0284 0.0156 -0.2240 0.1060 0.9525
9 -0.0002 0.0007 0.0002 -O.0010 0.0259 -0.0203 -0.2133 0.0039
10 -0.0002 -0.0001 0.0000 -0.0010 -0.0019 0.0347 -0.0111 -0.1691
11 0.0000 -0.0001 0.0000 0.0000 -0.0013 0.0015 0.0244 -0.0005
12 0.0000 0.0000 0.0000 -0.0001 0.0001 -0.0032 0.0003 0.0154
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0013 0.0001
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 -0.0006

in the first six modes, these modes do not seem to be sufficient to reproduce the
dynamical system. In this regard, it is worth mentioning that we have found that the
stability of the cycles appearing through the period-doubling sequence, as well as that
of the apparently chaotic regime it leads to, is very sensitive to the precision of the
numerical scheme. Thus it is not surprising that it is sensitive to the presence of high
modes. We now return to the reconstruction of the bifurcation diagram of stationary
solutions. Obviously, if the number of modes retained in the Galerkin projection is
equal to the number of Fourier modes, the bifurcation diagram is exactly the same
as that found with Fourier modes. Discrepancy starts appearing as the number of
POD modes is decreased. In a first step, we are interested in reconstructing the
steady-state bifurcation diagram for parameter values below (x 33.005, at which the
apparently chaotic solution has been computed for POD mode extraction. Bifurcation
diagrams obtained with four, five, six, and seven POD modes are presented in Figs. 2,
3, 4, and 5, respectively. As we compare these diagrams with our reference (Fig. 1),
discrepancies can be immediately observed, such as the parameter values of the steady-
state bifurcations from the trivial branch when only four POD modes are retained.
In particular, this shows that although four POD modes account for 99.96 percent
of the total energy of the apparently chaotic solution at a 33.005, they are not
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sufficient for a correct reproduction of the full dynamical system. More importantly,
a striking feature of Figs. 2 and 3 is that all branches appear in pairs, but each pair
is not superposed as it should be by symmetry considerations. This decoupling has
secondary consequences: The steady-state bifurcation at the intersection between the
unimodal and bimodal branches and that at the intersection between the bimodal and
secondary branch have disappeared. Branch decoupling still exists, but is less visible
in Figs. 4 and 5, while the inexistence of the steady-state bifurcation point connecting
the unimodal and the bimodal branches persists.

15. Sa 22. 505 30.

FIG. 2. Steady-state bijarcation diagram of a dynamical system derived by projecting the KSE
restricted to the odd invariant subspace onto the set o] the first four POD modes extracted from an
apparently chaotic solution at c 33.005.

FIG. 3. Same as Fig. 2 with the first five POD modes.

The solutions of the truncated dynamical systems that we have derived are thus
not invariant through the Z2 symmetry x -, x + r under which the space of solutions
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of the KSE is invariant. Therefore, in view of the work of Berkooz [11], this suggests
that the apparently chaotic flow around a 33.005 is not ergodic. Hence, in order to
impose this symmetry in the absence of ergodicity, we now compute the symmetric
POD modes, as we previously proposed in 3. This is equivalent to taking into account
the chaotic solution already considered and its symmetric companion. Symmetric
POD modes and their respective eigenvalues are shown in Tables 3 and 4, respectively.

FIG. 4. Same as Fig. 2 with the first six POD modes.

FIG. 5. Same as Fig. 2 with the first seven POD modes.

We note that the convergence given by the partial energies Sk is almost as fast
as in the first case (Table 1) without symmetry involvement. An essential difference
occurs among the eigenfunctions k, which are now linear combinations of sinjx,
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TABLE 3
List of symmetric eigenvalues.

Index of POD

1
2
3
4
5
6
7
8
9
10
11
12
13
14

mode k
Eigenvalue

0.813340E+01
0.672331E+01
0.448948E+00
0.158653E/00
0.782172E-02
0.191528E-03
0.679747E-04
0.796359E-05
0.107020E-06
0.319819E-07
0.302034E-09
0.437756E-10
0.148950E-11
0.588551E-13

Normalized eigenvalue

Pk

0.7E+00
0.434536E+00
0.290160E-01
0.102539E-01
0.505527E-03
0.123787E-04
0.439329E-05
0.514697E-06
0.691684E-08
0.206703E-08
0.195208E-10
0.282927E-11
0.962684E-13
0.380387E-14

Partial energy

Sk
0.525672E+00
0.960207E+00
0.989223E+00
0.999477E+00
0.999983E+00
0.999995E+00
0.999999E+00
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01
0.100000E+01

TABLE 4
List of the first 8 POD modes computed from 14 Fourier modes. Each column corresponds to

one POD mode. Their 14 Fourier coecients are listed lrom top to bottom following the orders of
the corresponding wave numbers.

1 2 3 4 5 6 7 8
1 0.0000 --0.3611 0.9306 0.0000 --0.0589 0.0000 --0.0097 0.0000
2 0.9917 0o0000 0o0000 0.1180 0.0000 0.0508 0.0000 0.0068
3 0.0000 0.9225 0.3659 0.0000 0.1208 0.0000 0.0230 0.0000
4 --0.1276 0.0000 0.0000 0.9526 0.0000 0.2726 0.0000 0.0433
5 0.0000 --0.1362 0.0106 0.0000 0.9652 0.0000 0.2214 0.0000
6 --0.0160 0.0000 0.0000 --0.2790 00000 0.9285 0.0000 0.2446
7 0.0000 0.0059 --0.0018 0.0000 --0.2228 0.0000 0.9503 0.0000
8 0.0028 0.0000 0.0000 0.0273 0.0000 --0.2447 0.0000 0.9557
9 0.0000 0.0007 0.0002 0.0000 0.0245 0o0000 --0.2161 0.0000
i0 --0.0002 00000 0.0000 -0.0009 0.0000 0.0343 0.0000 --0.1571
11 0.0000 --0.0001 0.0000 0.0000 --00011 00000 0.0247 0.0000
12 0.0000 0o0000 00000 --0.0001 0.0000 --0.0027 0.0000 0.0127
13 0o0000 0.0000 00000 0o0000 --0.0001 0.0000 --0.0014 00000
14 00000 00000 00000 0o0000 00000 00001 00000 --0.0003

where all the j’s are either odd or even. Note that each one is invariant under the
translation symmetry x -+ x+ r. Note that they were almost, but not quite, invariant
in the previous case. (This small discrepancy was enough to make the POD modes
nonsymmetric, which was reflected in the unimodal branch decoupling). Symmetric
POD modes are therefore invariant under the global symmetry and, in this case, either
(pk(X) k(g(X)) or --k(X) k(g(X)) (with (x) x or (x) x/r) so that
the eigenvalues are not degenerate. It immediately follows that any truncated system
based on these modes is necessarily invariant under the symmetry group generated
by T (see Proposition 5). This is immediately checked by reconstructing the steady-
state bifurcation diagram: The pair of unimodal branches are now superposed as
they should be and a steady-state bifurcation occurs when the pair meets with the
bimodal branches. The same is true for the pair of bitrimodal branches that are now
superposed and meet one bimodal branch through a steady-state bifurcation. This
can be seen on bifurcation diagrams in Figs. 6, 7, 8, and 9, where four, five, six,
and seven symmetric POD modes have been retained. However, the decoupling of
the two bimodal branches still persists, due to the fact that the symmetry involved
here is specific to the branch (T/2). Note that this symmetry cannot be imposed on
physical grounds in our dynamical systems, as the global symmetry could. However,
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it tends to disappear as the dimension of the dynamical system increases; with six
POD modes, it is no longer noticeable. The bifurcation diagram using six POD modes
is qualitatively correct. However, we should recall that a truncated dynamical system
based on six Fourier modes also gives good results. Therefore, we have not been
able to decrease the number of necessary modes in the truncated dynamical system
by taking POD modes, as we might have expected, not to mention that by using
approximate inertial manifolds, three Fourier modes were enough to give the right
qualitative diagram [20], [38], [39].

0.088

8.508 17.900 25.50 34.0g8

FIG. 6. Same as Fig. 2 wiLh the firsL four symmetric POD modes.

16.|B

12.000

4.808

8.088
25.58 34.OO

FIG. 7. Same as Fig. 2 wiLh the first five symmetric POD modes.

5. Conclusion and discussion. We have proposed a technique to derive finite
sets of ODEs based on POD modes that preserves the symmetry of the infinite-
dimensional system. It consists of systematically involving the symmetry group in
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FIG. 8. Same as Fig. 2 with the first six symmetric POD modes.

FzG. 9. Same as Fig. 2 with the first seven symmetric POD modes.

the derivation of basis modes. We have applied the technique to the KSE subject
to periodic boundary conditions and restricted to the odd invariant subspace. How-
ever, we were not able to decrease the number of necessary POD modes below six,
which is also the minimum number of Fourier modes necessary for the reconstruc-
tion of a qualitatively correct steady-state bifurcation diagram. POD modes that we
have found numerically are not identical to Fourier modes. Even the first modes ac-
counted for higher Fourier components, which are perhaps responsible for introducing
extra dissipation in our dynamical system compared to a dynamical system based on
Fourier modes. This could be the reason why the unbounded branches found by Jolly,
Kevrekidis, and Witi [38], [39] do not occur as often in low-dimensional dynamical sys-
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tems based on POD modes. The counterpart of this is perhaps a misrepresentation of
low Fourier components in low-order POD modes. This did not have a major effect
for values of parameters below 33, but it may have noticeable consequences on the
trimodal branch on which the first steady-state bifurcation disappears when six (sym-
metric or nonsymmetric) POD modes are retained (see Fig. 10). Although our work
focuses on the symmetry issue, we point out that this may not be the only problem
in the procedure. Again, we recall that POD modes may completely change as the
bifurcation parameter varies.

16. |$$ ’1’" I"’ ’i "’I

FIG. 10. Same as Fig. 9 for a broader range of parameter values (0 < c < 40).

To conclude, we point out that it is not trivial, at least for the PDE chosen as an
example in this paper, to derive global modes that would be superior to Fourier modes
and valid for a finite projection of the ODE over a relatively broad range of parameter
values. This is not surprising since characteristic POD modes can dramatically change
through bifurcations. From this point of view, local studies in phase space might be
more promising [5], [7], [42], [43].

Acknowledgment. The authors would like to thank Professor I.G. Kevrekidis
for the interesting discussions.
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Abstract. This note explores the suggestive similarities between wavelet (multiresolution) and
multigrid approaches to general operator equations. After presenting the essentials of wavelet and
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1. Introducton. The last few years have seen a remarkable amount of activ-
ity and interest in the field of wavelet theory and multiresolution analysis. With
this heightened level of interest, researchers in diverse fields have begun to consider
wavelet-based methods. The work presented in this paper was done in an exploratory
spirit, by investigating the very suggestive similarities between multiresolution anal-
ysis and multigrid methods. The results are preliminary and only point to several
avenues of future work.

Like many mathematical topics that suddenly gain currency, wavelet theory has
origins that are not particularly recent. Both the history and the theoretical foun-
dations of wavelets can be found in several recent and outstanding papers [3], [5],
[6], [8], [9], [12]. By all accounts, the definitive treatise is the book by Meyer [11].
In this paper we have neither the space nor the audacity to duplicate the excellent
presentations that already exist in these sources. Instead, we will review the essential
features of multiresolution analysis that seem to pertain to multigrid algorithms.

2. Multiresolution analysis. A multiresolution analysis is a framework that
consists of a sequence of nested closed subspaces (typically of L:(R)),

c 1/2 c V c Vo c V_ c V_ c...,

whose union is dense in L2(R). The important features of these subsets are that:
(a) V0 is spanned by an orthonormal set consisting of integer translations of a

single scaling function . For each integer j, V is spanned by an orthonormal set
consisting of translations of scaled versions of :

Vy span ((2-Jx k)}k.

(b) For each integer j, Vy Vy+l Wj+I, where each Wj is spanned by an
orthonormal set consisting of translations of scaled versions of a single wavelet function
:
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s, n

(c) The doubly indexed set ((2-Jx- k)}j,k spans/(R).
Once a scaling function is found, the associated wavelet function with all of

the required orthogonality properties can be found directly. However, is clearly a
rather extraordinary function and the discovery of such functions h been a major
research quest. Computationally there are several ways to produce a scaling function,
among them to compute its Fourier transform first. An important property of scaling
functions and the sociated wavelet functions is that they are highly localized in both
the spatial and the frequency domains. Summarizing a wealth of fcinating work,
there appear to be three general closes of scaling functions:

(a) C scaling functions due to Meyer [10] that have noncompact support and
polynomial decay,

(b) Ck scaling functions due to Battle [1] and Lemarie [7] that have noncompact
support and exponential decay and are generated by orthogonalization of clsical
splines, and

(c) the Daubechies scaling functions D2k [3] that have compact support, but
smoothness that increes slowly with k.

In practice, when dealing with discrete problems such image processing or
signal analysis, the problem is posed on (or projected onto) a finite-dimensional space

which represents the highest level of resolution that is desired. In a multigrid
setting
V0, the subspaces V,..., VM, for some M (corresponding to the coarse grid spaces
2h, ah,... in multigrid) give representations of u on increingly coarse levels. At
each level, the difference between the projection of u in the spaces + and is
given by the projection of u in the space W+I. The projection retains the smooth
features of u, while the W projection captures the detail (or oscillatory) components

Within the multiresolution framework it is possible to do a very efficient decom-
position of a function over all of the subspaces of interest. Given a function u V0,
the orthogonality of and may be used to find coefficients Cok such that

(1) u(x) k(X k).
k

This may be regarded a fine grid representation of u. rthermore, coefficients c
and dlk may be found for a coarse id representation of u on V and W of the form

X X(2) U(X)
k

This process may be continued by decomposing each representation of u on the next
coarser pair of grids + d Wj+ until the coarsest grid is reached. The efficient
Pyramid Algorithm for performing this decomposition (and the inverse synthesis) h
been proposed by Mallat [8], [9]. The full decomposition of an N 2M-point sample
of u over M levels requires O(N) operations.

3. The multigrid connection. With this brief survey, we turn to possible con-
nections between multiresolution analysis and clsical multigrid algorithms. We will
consider a general operator equation of the form Lu f where L is a self-adjoint
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operator representing, for example, an elliptic boundary value problem. The notation
can be simplified by letting

Cjk (2-JX k) and k (2-x k).

In addition, (u, v) will denote the appropriate inner product for the problem.
On the fine grid V0 and the first coarse grid (V1, W1), the solution u may be

represented as in (1) and (2). The data f also have a representation on V0 and
(V1, W1) with respective coefficients fok, flk, and glk. The fine grid problem after
using orthogonality in a standard Galerkin way has the form

(3) E c0k (0j, Lok foj Vj.
k

The known wavelets appear to have no special orthogonality properties with respect to
standard elliptic operators so{3) represents a system of linear equations with generally
narrow bandwidth, but with no obvious advantages over known discretizations.

In a similar way, the problem may also be represented on the coarse grid. Sub-
stituting the (V, W) representations for u and f and using orthogonality leads to

(4) EClk(j,Lk) -{- dlk(j,Lk) fl.i Vj
k

and

(5) E ck(:i’LIk’) + dk(j,Lk) gj Vj.
k

The problem given in (4) may be regarded as the coarse grid problem for the smooth
components of the solution, while (5) gives the coarse grid problem for the oscillatory
components.

In classical multigrid algorithms, a solution is sought on a fine grid ’h (with grid
spacing h) by using standard relaxation methods to approximate errors on the coarse
grids ’2h, -4h, The details of the various multigrid cycles are not important for
this discussion [2], except to say that vectors are transferred from coarse grids to
finer grids with an interpolation operator denoted Ih2h, while vectors are transferred
from fine grids to coarser grids with a restriction operator denoted Ih. The most
common choice for interpolation is linear interpolation, while full weighting (averaging
of neighbors) is one of the most commonly used restriction operators.

The use of linear interpolation in multigrid schemes corresponds to a representa-
tion of the solution in terms of piecewise linear hat functions 0k. The hat functions
lack the required orthogonality to be genuine scaling functions. Nevertheless, an as-
sociated "wavelet" function may be found for the hat functions (Fig. 1) that allows
for an orthogonal decomposition of the fine grid space (V0 or -h). It is known that the
functions 1k span the range of the interpolation operator Ih2h, while the functions
span the nullspace of the full weighting operator Ih. Therefore, in multiresolution
terms, we would write

V0 span {elk } ( span {)lk } Yl ( W1,

while in multigrid terms we would write

span (k} span (elk} Range (Ih2h} @ Nullspace (Ih}.
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FIG. 1. The hat functions (left) span V1 (or the range of interpolation), while the teeth
functions (right) span Wx (or the nullspace of yull weighting). These spaces provide an orthogonal
decomposition of the fine grid space Vo (or 12h).

Thus multigrid with piecewise linear interpolation produces the same orthogonal de-
composition of the fine grid fh that multiresolution produces of the space V0.

Classical multigrid methods apply limited relaxation to the fine grid problem
(3). They deal only with the coarse grid equation for the smooth components (4).
Furthermore, the second term of (4) representing oscillatory components is dropped
and the matrix given by (lj,Llk) is precisely the multigrid coarse grid operator
L2h IhLhIh2h The entire coarse grid equation for the oscillatory components (5)
is also dropped in multigrid. The rationale for neglecting the oscillatory components
in (4) and (5) is that relaxation is an extremely effective way to isolate or eliminate
them.

In summary, multigrid formulations use simple, near-orthogonal basis functions
that still allow for an orthogonal decomposition of the fine grid space (and similar
decompositions of subsequent coarse grid spaces). Furthermore, multigrid does not
attempt to solve for the oscillatory (Wj) components of the solution directly, but
rather lets relaxation handle them indirectly. This choice of departing from orthogo-
nality and incorporating relaxation (as well as the residual equation) accounts for the
extreme efficiency of multigrid algorithms.

In closing, it should be said that preliminary work on wavelet-based multigrid
algorithms for differential equations is in progress [4]. It appears that accuracy com-
parable to multigrid algorithms can be obtained using the D2k compact wavelets on
boundary value problems. However, considerable work on wavelet-based multilevel
methods remains to be done.
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Abstract. Smoothing with L-splines involves the use of the penalty term xl -$ (Lx)2(t) dt where L
is an arbitrary linear differential operator of order m. It also involves the choice of rn constraint functionals
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reproducing kernel for the associated Hilbert space. Computing the kernel for the subspace complementary
to H ker L can be difficult. Techniques for computing these kernels for arbitrary linear differential operators
and constraint functions are developed and illustrated.

Key words, spline smoothing, L-splines, reproducing kernel Hilbert space, Green’s function, boundary
constraints, nonparametric regression
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1. Introduction. In the spline smoothing problem the objective is to find a function
x(t) that will represent the set of observations (y, t) {(yj, tj),j 1,..., p}. It is assumed
that x is an element of the set H of functions with m-1 absolutely continuous
derivatives and a square-integrable mth derivative, m -> 1. It will also be assumed that
x is defined on the real interval [0, T]. The definition of the problem usually involves
a linear differential operator

(1) Lx _, ajlYx,
j=0

where Din-J% is an absolutely continuous function of t, am O, Dx denotes the jth
derivative of x, and Dx x. Let the evaluation operator pt be defined by pt(x)--
(X(tl),... ,x(tp))’. Then x is defined to be the minimizer of the smoothing criterion

(2) Q(x [y, A) Ily- pt(x)ll + IIx[l ,
where IlYI[ y’Ny for some symmetric positive definite matrix N and A > 0. The norm
in the second term is

(3) IIxIIN (Lx)2(t) dt.

The use of L to define (3) implies that H is partitioned into subspace H1 ker L
{u Lu 0} of dimension rn and a complementary subspace H. The variational problem
(2) is solved by defining a reproducing kernel Hilbert space on Hm. This, in turn,
involves a choice of inner products and reproducing kernels for the two subspaces H
and H2 with respect to which they are orthogonal. If the bivariate reproducing kernels
for H and H2 are denoted by kl and k2, respectively, then the reproducing kernel for
H Ho H@ H2 is ko kl + k2, and these kernels satisfy the equations

(kh(S,’),X)h=X(S) /XeHh, h =0, 1,2.
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Thus the reproducing kernel kh($," is the representer in Hilbert space Hh of the
evaluation functional Ps x(s), the existence of which is assured by the continuity of
ps in H" and the Riesz representation theorem.

The inner products must define orthogonal Hilbert spaces H1 and H2, and this
can be done by choosing a second linear operator B: Hm R to be a set of m
functionals such that H1 ker L and H2 ker B. The orthogonality of H and H2
implies that ker L f3 ker B 0. The inner product for H1 can then be defined as

(4) (x, y)l (Bx)’(By).

The smoothing function x Ho does not depend on the choices of the two inner
products and their associated reproducing kernels for the subspaces H1 and H2, and
if one’s sole interest is in x itself, these choices can be governed by mathematical
convenience. In particular, Kimeldorf and Wahba [2], [3] and Wahba [7] describe
reproducing kernels for the special class of differential operators

1 1 1
(5) L=D--D D,

al a2 am
where the inner products for HI are based on initial value constraints associated with
the differential equation Lx e. In practice, almost all applications of spline smoothing
have involved the operator L D associated with polynomial smoothing splines and
the initial value constraints

Bo ={(D)x)(0),j=0,..., m- 1}.

There are important reasons for considering the problem of choosing inner prod-
ucts for H and H2 that are more general. Not all operators L that an application
would suggest fall into the class (5). Moreover, the representations of the data in the
subspaces H1 and H2 can have substantive significance, and interesting constraint
operators B defining these subspaces may not correspond to standard initial or boun-
dary value constraints discussed in most references on differential equations. Besse
and Ramsay [1] and Ramsay and Dalzell [4] argued that in statistical applications of
spline smoothing it is useful to look at the image of x in H1 and H separately, and
also that these images will naturally depend on the nature of the inner products chosen.
They further pointed out that inner products based on initial value constraints often
do not have much substantive meaning.

The following example illustrates alternative choices of L and B. Suppose that
one has data with a tendency to linear trend, and that it is desired to smooth the data
in such a way that the linear component u in the smoothing function x u + e is
identified independently of the nonlinear component e. Let H H2[0, T] and L(x)=
D2x, for which ker L=span {1, t}. If, for some reason, we require that this linear
component u fit the data exactly for the first observation y, which we can take to be
at =0, then we would use the initial value boundary functional defined by B(u)=
(u(O),(Du)(O))’. H1 then contains functions of the form u(t)=C-+-C2 t, with inner
product (u, v)=u(O)v(O)+(Du)(O)(Dv)(O), while H2 contains functions without
initial linear trend in the sense that e(O)=(De)(O)=O for all e e H and (e,f)2
I OeO2fdt.

This approach might be unsuitable if the initial observation Yl contains substantial
observational error, or if there is no particular reason to pass the smoothing function
exactly through this or any other observation. In data analysis, it would often appear
more natural to use all observations to define the linear trend, and to use them
symmetrically in the sense that the indices for play identical roles in the smoothing
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process. In this context, a more natural choice for the boundary functionals would be
B(u) ( u(t) dt, tu(t) dt)’. By setting B(u) =0 we are still defining Ha as span {1, t},
but now with the inner product

(6) (u,v)l:[f u(t)dt][f v(t)dt]+[f tu(t)dt][f tv(t)dt].
This inner product is uniform in that it depends on the behavior of u and v at all
values of rather than just on 0. H2 will have the same inner product as in the
previous example, but will now consist of functions with linear trend eliminated by
averaging across all values.

Ramsay and Dalzell [4] considered an example in which the smoothing was by
the shifted harmonic splines defined by

Lx toZD-F D3,
so that H1 =ker L is spanned by {1, sin (tot), cos (tot)}. In their application, H2 was
defined to be the set of x H such that

r

x(t) dt=O,
o

or
sin (tot)x( t) dt O,

cos (tot)x( t) dt O.

These constraints were natural with the periodic character of their data, consisting of
observations of mean monthly temperature and precipitation, since there was no
particular reason to single out any one month as the origin for the series.

The reproducing kernel kl is easily computed. Let ul,..., Um be functions spanning
HI and let u-(ul,..., Um)’. Defining the matrix U1 to be the order m symmetric
matrix with values (ui, uj), i, j,- 1,..., m, we have

(7) k(s, t) u(s)’ u-lu(t).

Thus, for inner product (6), we have that

kl(S, t)= 4(13-24(s + t)+45st).

Computing the kernel k2 is generally much more difficult, and this is the problem
principally addressed by this paper. In the following section, the Green’s function for
the initial value operator Bo is given, and it is shown how this can be transformed to
give the Green’s function for any linear operator satisfying the orthogonality condition
ker L ker B 0. Because the actual reproducing kernel can be very complex if written
out completely in univariate algebraic notation, the following section also develops
an expression for the Green’s function and the reproducing kernel in matrix notation
that is more suitable for computation.

2. Computing the reproducing kernel k2. We proceed here by first computing the
Green’s function go(t; w) associated with the initial value condition

Box (x(0), (Dx)(O),..., (Dm-x)(O))’=O,
and then show how to modify this Green’s function to obtain the Green’s function for
the desired B.
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In the particular case where e is a real-valued function and L a linear differential
operator of order m, the Green’s function g(t; w) associated with L and the boundary
constraints B(e) 0 satisfies

(8) e(t)= f g(t; w)(Le)(w) dw, YelB(e):O,

and has the additional properties

Bg( w) Yw O,

(L*g)(t; w)=O Vt# w,

L* being the adjoint operator associated with L,

(9) L’x= 2 (-1)JDJ(ajx),
j=0

and applied to g as a function of w (see Roach [5] and Schumaker [6, p. 426]). The
Green’s function

provides a convenient means of computing the reproducing kernel,
is useful when computing Lx,
links the theory of reproducing kernel Hilbert spaces with the theory of ordinary

differential equations.
The Green’s function can be derived simply from k2 since it follows from (8) that
Lkz(s,. )-- g(s; ), where L is applied to k2 as a function of w for fixed s. Conversely,
the reproducing kernel k2 can also be computed from g as

k2(s, t)= (k2(s, ), k2(t, ))2

1 O) f Lk2(s, w), Lk2 t, w) dw

f g(s; w), g(t; w)dw.

2.1. Green’s function for the initial value condition. We follow here the exposition
of Schumaker [6, pp. 422-429], in which it is assumed without loss of generality that
L is in the form

m--1

L D + Y aDx.
j=0

Let

u (u,..., u,,)’ span {ker L}.

The Wronskian matrix W" T R"" is the order rn matrix-valued function with elements
D-ui, i,j 1,..., rn. It is assumed that W(w) is nonsingular for all w. The adjoint
functions u* (u*,..., u*)’ are defined by u* (w-l),,, where (W-)’ is the ruth row
of W-. The Green’s function for the initial value condition is (Schumaker [6, Thm.
10.11])

(11) go( t; w) u(t)’u*(w) ui(t)u*i(w), w <- t,

and 0 otherwise.
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and

Example 1: Linear trend. When L= D2 with u(t)= (1, t)’, t[0, 1], we have that

with ]W[ 1. Thus go(t; w)= t-w, w <-_ t, and 0 otherwise.
Example 2: Harmonic variation with mean zero. When

we have that

and

L= 021 + D2 with u(t) (sin (Ot), cos (Ot))’,

W(w)= [sin (Ow) O cos (Ow) ]cos (0w) 0 sin (0w)

(13) W(t)-l=[ sin(Ow) cos(0w) ]0-1 cos (0w) -0-1 sin (0w)

with IW[ =-0-1. Thus

(14)

and 0 otherwise.

go(t; w) 0-1 sin 0(t w)], w<-t,

Example 3: Harmonic variation with arbitrary mean. When

L=O2D+D withu(t)=(1, sin(0t),cos(0t))’,

we have that

1 0 0

W(w) sin (Ow) 0 cos (Ow) -02 sin (Ow)
cos (Ow) 0 sin (Ow) 02 cos (Ow)

and

(15)
1 0 0

W(t)-1= 0 0-lcos(Ow) -0-lsin(Ow)
0 -2 0-2 sin (0w) 0-2 cos (0w)

with Iwl---o Thus

(16) go(t; w)= 0-2{1 -cos [O(t- w)]}, w_< t,

and 0 otherwise.

2.2. Modifying go to obtain g for arbitrary Bx =0. Now let B be an arbitrary set
of functions for which ker L ker B 0 and define the vector-valued function bo by

bo(w) Bgo( "; w).

Let order m matrix B* have elements biuj, where bi is the ith functional in B; that is,
B*= Bu’.
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THEOREM 1. If B* is nonsingular and the functionals bi commute with integration
in H’, then the Green’s function for the condition Bf 0 is

(17) g(t; w)=go(t; w)-u(t)’B*-bo(w).

Proof For any forker Bo let f(t)=fo(t)-u(t)’B*-(Bfo). Then Bf=O, and it is
easy to show that the mapping ker Bo -> ker B defined in this way is a bijection. By Lu O,

I go(t; w)(Lf)(w) dw=fo(t)-[B*-l(Bfo)]’ f go(t; w)(Lu)(w) dw

=fo(t).

Consequently,

f g(t; w)(Lf)(w) dw= I go(t; w)(Lfo)(w) dw

-u(t)’B*-’ I Bg(", w)(Lf)(w) dw

=fo(t)-u(t)’B*-lB f g(’; w)(Lf)(w) dw

fo( t) u( t)’B*-lBfo

The condition of commutability of B and integration will hold for bounded functionals
and for evaluations of derivatives up to order m-1, which includes all the cases
discussed in this paper.

Example 1" Linear trend with integral constraints. In this case

and

so that

21bo(w) (1/6) L 2-3w+ W J’

w3(1-2t) + w2(3t-2), w_--< t,
(18) g(t; w)= w3(l_2t)+w2(3t_2)+w_t, w> t.

This yields

(19)
k(s, t) [4- 22(s + t) + 156st 210st + 70t 70( 4 -t- s4)

+ 105st(s3+ t3) +21(s5+ ts)--42st(s4+ t4)]/420,
The symmetry of k2 provides the value of k2(s, t), s > t.

3. Matrix computation of g and k2. The integrations involved in transforming go
to g as well as the final computation of the reproducing kernel k can be tedious, and
are greatly facilitated by symbolic computation software. In particular, computation
of k requires that the integration be performed separately for the subintervals [0, t],
It, s], and Is, T], since g will have an expression for [0, s] which differs from that for
Is, T]. However, the calculations can be simplified as follows.
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By (11) and (17), g(.; w) ker L for t# w. Moreover, go(t; .) ker L*L for t# w,
where L* is the adjoint operator for L. Consequently,

go(t; w)=v(w)’Cou(t), w< t,

and 0 otherwise, where ’-’(/)1,""", /-)2m)’ spans ker L*L. Moreover, u(t)’B*-lbo(w)
can be expressed in the form v(w)’ClU(t). Thus

(20) g(t" w)--[v(W)’(CO-C1)u(t)’ W<I]-(w)’Clli(t), w>

and finally,

(21) k2(s, t) u(s)’[ CF(s)Co- CoF(s)C1- CF(t)Co

+ CF(T)C1]u(t), s < t,

and k(s, t) k( t, s), s > t, where

F(s) v(w)v(w)’ dw.

These results imply that once the constant matrices Co and C1 and the matrix function
F are computed, the values of k2 can be computed by simple matrix computations.

Example 2: Harmonic variation, mean zero with integral constraints. In this case,

v (sin (0w), cos (0w), w sin (0w), w sin (Ow))’,

so that

(22) C--0-1[ 0 10-10 0 00]"
Matrix 0[ 02 T2 sin2 (0T)] C1 works out to be

(23)

OT+ cos (0T) sin (0T)
02 T2 sin2 (0T)
-0 sinz (0T)

-02T-0 cos (0T) sin (0T)

_02T2

0

02T 0 cos (OT) sin (OT)
0 sin- (OT)

Example 3: Harmonic variation with arbitrary mean and integral constraints. In
this case,

v 1, w, sin (Ow), cos (Ow), w sin (Ow), w sin Ow))’,

so that

(24)
1 0 0 0 0 0

Cto--O-2 0 0 --1 0 00.

0 0 0 --1 0 0

Matrix C1 can be expressed as C*B*-1 where the matrix (20)B* is

20T 2(1-cos (OT)) 2 sin (OT) ]
(25) 2(1-cos (OT)) 0T-sin (OT) cos (OT) sin2 (OT) 12 sin (0T), sin2 (0T) OT+ sin (0T) cos (0T)



518 c.J. DALZELL AND J. O. RAMSAY

and the matrix (20)3C*’ is

(26)

20T -2 cos (OT) 2 sin (OT)
-20 0 0

2 cos (OT) sin (OT) cos (OT) OT cos2 (OT) 2

-2 sin (OT) 1 + cos2 (OT) -sin (OT) cos (OT) OT
0 0 0

0 0 0
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SPARSE MATRIX COMPUTATIONS ON PARALLEL
PROCESSOR ARRAYS*
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Abstract. This paper investigates the balancing ofdistributed compressed storage oflarge sparse matrices
on a massively parallel computer. For fast computation of matrix-vector and matrix-matrix products on a
rectangular processor array with efficient communications along its rows and columns it is required that the
nonzero elements of each matrix row or column be distributed among the processors located within the
same array row or column, respectively. Randomized packing algorithms are constructed with such properties,
and it is proved that with high probability the algorithms produce well-balanced storage for sufficiently
large matrices with bounded number of nonzeros in each row and column, but no other restrictions on
structure. Then basic matrix-vector multiplication routines are described with fully parallel interprocessor
communications and intraprocessor gather and scatter operations. Their efficiency is demonstrated on the
16,384-processor MasPar computer.

Key words, distributed data structures, linear algebra, load balancing, parallel algorithms, randomized
algorithms, sparse matrices
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1. Introduction. Efficient computation in the data-parallel mode is achieved with
distributed data structures that balance the processors’ computation load and promote
maximum parallelism of data communications. For parallel dense matrix linear algebra
routines [2]-[4], [6], [7], [9], 12], a balanced distribution of computations to processors
can be achieved together with very regular interprocessor communication patterns. In
contrast, in the design of algorithms for unstructured sparse matrices, the data compress-
ion scheme may conflict with efficient communication. For instance, if a large matrix
is evenly partitioned into blocks in correspondence with the processor array, the
communications are similar to the dense case, but the computation time will be
determined by the block with the largest number of nonzeros, which may be unaccep-
tably large. Alternatively, if the nonzeros are densely packed into the processor array
without regard for the row and column structure, the benefit of even processor load
may be negated by overwhelming communication costs.

Universal distributed data structures that guarantee both fast computation and
efficient compression for all sparse matrices have not been found. Therefore, we
associate classes of sparse matrices with appropriate data structures and computational
kernels. For unstructured sparse matrices, it is desirable to have few classes defined
by simple and easily verified properties. Here we will only request that no row or
column of a sparse matrix be too dense, with no other restrictions on matrix structure.
We assume that the matrix remains unchanged during computation, and that it is
accessed sufficiently often to justify preprocessing for well-balanced storage; this is
the case in the family of Lanczos algorithms for the symmetric eigenvalue problem,
conjugate gradient methods, and in many other numerical algorithms [7].

Suppose we have an rn n two-dimensional processor array with efficient com-
munications along its rows and columns. Many parallel computers can be configured
in this way. The processing element in the ith row and the jth column will be called

Received by the editors August 19, 1991; accepted for publication (in revised form) May 11, 1992.
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PE (i,j). Let A be a sparse M x N matrix, M >> m and N >> n. We will say that an
assignment of matrix elements to the processor array preserves the integrity of the
matrix if for every row (column) all its nonzero elements are placed into processors
lying in a single row (column) of the array. In such an assignment each processor
stores a submatrix, and the data communications required by linear operations can be
carried out in parallel. The problem of finding an assignment that preserves the integrity
of the matrix and minimizes the largest processor load is NP-complete. This can easily
be shown by a reduction from bin packing [5]. Nonetheless, we show that if we do
not require a deterministic, optimal solution, then a fast random assignment that
preserves the matrix integrity and comes very close to optimal can be achieved with
high probability.

We analyze two schemes for random assignments that preserve the integrity. In
the simplest random assignment scheme each matrix row index is randomly and
independently assigned a row of the processor array, and each matrix column index
is randomly and independently assigned a column of the array. The dimensions of
submatrices stored in different processors generally will be different.

This loss of uniformity is corrected in the second, more restricted scheme Suppose
that before the loading a random permutation of matrix rows and a random permutation
of matrix columns are performed, and then the permuted matrix is partitioned into
blocks of size [M/m] x IN/hi (the right-most and lowest blocks may be smaller).
This results in an m x n matrix of blocks which are assigned in the natural way to the
rn n processor array.

The second scheme is very convenient for algorithm design, but a priori it is not
obvious that it can achieve as good a load balancing as the first method. Suppose that
the matrix A has T nonzero elements and at most R(C) nonzeros in each row (column).
Let IPil denote the number of nonzeros assigned to processor PE(i,j); it is easily seen
that for any assignment scheme we must have maxi, [P,j[ >- IT/mn ]. We prove that
for sufficiently large T and sufficiently small R and C, either assignment scheme
produces a well-balanced load with high probability. This is stated by showing that
in both schemes Pr{maxi,lPi,l>-(l+e)2[T/mn]} is bounded from above by
exp{-O(eh(e))}, where h(x)=(l+x-1)ln(l+x)-l. The function h(x) is strictly
monotonically increasing, and h(x) x/2 for x-0, h(x)ln (x) for x-o.

As far as we know, this is the first result on parallel sparse matrix computations
with provably good storage efficiency for unstructured sparse matrices. The exact
statement of the theorem and its proof are given in 2. The proof for the first scheme
makes repeated use of Bennett’s inequality for large deviations from the expected value
of a sum of independent random variables [1]. The second scheme uses an extension
of this inequality to a special case of dependent random variables due to Hoettding
[8]. Incidently, very large randomly sparse matrices (where each element independently
is nonzero with a fixed probability) with high probability give balanced load in the
second scheme even without the row and column permutations (apply Bennett’s
inequality directly to block submatrices).

Once submatrices are assigned to processor elements, the nonzeros are stored in
a compressed format. Although the structure (i.e., location of nonzeros) of submatrices
stored in different processing elements (PEs) may vary, this does not impede the
parallelism of data movement and execution of matrix primitives if scatter and gather
techniques are used: data can be transmitted in parallel in regular patterns to buffers
in PEs and then scattered to proper memory locations, or vice versa. For this we assume
that the parallel computer supports indirect addressing; that is, the PEs can store
pointers to their own memories. With indirect addressing the scatter and gather
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operations can be executed in parallel even on data-parallel machines, since each PE
can access a different memory location in a single instruction.

In 3 we assume a balanced distribution of nonzeros and show one possible
implementation of the basic matrix-vector kernels for computation of Ax or yTA and
their extensions to blocks of vectors assuming only the data-parallel computer model.
We also present examples of both the efficiency of packing and the performance of
kernels on a particular data-parallel computer, the 16,384-processor MasPar MP-1216.

The NP-completeness of the optimum integrity-preserving matrix assignment
problem does not preclude the possibility that a deterministic, polynomial time
algorithm may be able to produce an assignment that provably comes within a constant
factor of the optimum. Finding such an algorithm is an interesting question for future
research. We also expect that randomized storage of data in distributed data structures
preserving the favorable communication patterns will be useful in other applications.

2. Balanced loading. To distinguish the matrix row and column indices from the
processor array indices we always use capital letters/, J,... for the matrix, and lower
case letters i,j,.., for the processors. For brevity, in this section we use Pi to denote
the processor PE(i,j). Also, we will denote the set of integers from a to b inclusive
by [a, b].

We consider assignments of nonzero elements of an M N sparse matrix A to
processors in an m x n array (where M >> rn and N >> n) which preserve the integrity
of matrix rows and columns. Any such assignment, by definition, can be described by
two mappings: The row mapping p:[0, M-1]--> [0, rn- 1], and the column mapping
o-: [0, N-1]-> [0, n-l]. A matrix element A,j is assigned to P,(I),,r(r); therefore, the
processor Po stores the submatrix of A given by the rows in p-l(i) and the columns
in o--l(j). Let IPil denote the number of nonzeros in this submatrix.

We analyze two fast probabilistic algorithms for the construction of row and
column mappings that attempt to keep all the IPil as close to the optimum value
Tmn] as possible. To describe the first, let 4,, be the uniform distribution on all

functions from [0, M- 1] to [0, m- 1]. We draw p according to 4,, and tr according
to ffN, An explicit method to construct such random mappings is to assign a uniform
random value from [0, m-1] to p(I) independently for each I [0, M-1], and to
assign a uniform random value form [0, n-1] to tr(J) independently for all J
[0, N- 1].

The second type of random mapping is as follows. Let 4,, be the uniform
distribution on all functions p from [0, M- 1] to [0, m- 1] such that [/9-1(i)1-" [M/m]
for [O, (M mod m)- l] and Ip-l(i)l=[M/mJ for i[Mmodm, m-1]. The row
mapping is drawn according to cga4,m and the column mapping is drawn according to

N,n. This leads to the assignment scheme mentioned in the Introduction, since one
way to generate a mapping according to M,,, is to take a random permutation 7r of
[0, M- 1] and break the permuted sequence into M mod m consecutive subsequences
of length [M/m and m (M mod m) subsequences of length LM/mJ. Alternatively,
we may use p(I) 7r(I) mod m. This restriction on the size of each submatrix actually
forces a slight inefficiency, as we will see. For ease of notation in handling this, let m’
and n’ be M [M/m] and NIN l, respectively, when we are dealing with the
distributions d4,, and dv,,, and let them be simpl m and n when dealing with the
distributions ff4,m and

We can now state our main theorem. As defined before, T is the total number of
nonzeros of A, R is the largest number of nonzeros in a row, and C is the largest
number of nonzeros in a column.
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THEOREM. If the row and column assignments are chosen either according to t,,.
and -N,n, respectively, or according to (M, and (N,n, respectively, then for any e > 0 the

Pr {max {[Pa[}_-> (1 + e)-T,1
is at most the minimum of

T
mn exp

m’R eh(e)} + Mn exp {-R eh(e)) + n eXP -n’cT eh(e))
and

T
eh(e) +Nmexp Ceh(e) +mexp

m’R
mn exp

n’C m’

where h(x) (1 + x-1) In (1 + x)- 1.

Proof We first consider the case when the pair of index mappings (p, r) is drawn
according to o%a4,,, x o%N, The proof involves three applications of a large deviation
theorem due to Bennett 1 ]. When (p, tr) is drawn according to 4,,, cgN, the proof
follows immediately once we argue that a certain extension of Bennett’s inequality
due to Hoeffding [8] applies.

For the statement of Bennett’s inequality let sCo, sc,..., M- be independent
random variables, bounded from above, and with finite first and second moments. Let
S Y i, and let Var (S) be its variance.

Bennett’s inequality. For all d ->_ 0 such that :i E(I -< d for all/, and for all y => 0,

Pr {S >= E(S) + T} <= exp --d h
Var(S)

We need an application of Bennett’s inequality to the following. Let W=
{ Wo, .., W4_} be a set ofM objects, each having a well-defined nonnegative "weight"
WI I- Define the weight of a subset , ___

if’ as the sum of the weights of the elements
of X. Suppose that we put each W W independently and uniformly into one of m
bins, {Bo, B,..., B,,_}. Formally, each bin Bi, [0, m 1], is the set of objects WI
such that p(I)= where p is drawn according to o%4,,,. The weight of each bin I1 is
the sum of the weights of the elements in the bin. This can be written as IBI-
Y,((I)-i)lw, I, where (p(I)=i)is the indicator variable which is one when
p(I) and zero otherwise. Since p is drawn according to 4,,,, for any fixed bin

[0, m 1], the 0-1 random variables (p(0) i), (p(1) i),..., (p(M- 1) i) are
independent Bernoulli variables with probability of success l!m. Hence, the weight
of each bin IBI has the same distribution as the weighted sum of independently and
identically distributed Bernoulli variables (although IBol,..., In-,I are themselves
dependent random variables).

If we know a w > 0 such that 0_-<l WII <= w for all I [0, M 1] then the expected
value E(lnfl) (1/ m) E4 w, ffC[/ m, and variance,

Var(IBl)-- E Var((p(I)=i)lWt[)--(1/m)(1-1/m) E Iw, 2,
=0 =0

are bounded. Furthermore, (p(I)=i)lwl-E((p(I)=i)lwil)<=(1-1/m)lWil<=
(1-1/m)w for all I[0, M-1]. Hence, we may apply Bennett’s inequality with
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d (1-1/m)w and the union bound to get a bound on the weight of the largest bin,

I.
max {IBl)-->lWl+ Y =< m expPr

i[O,m-1] m (1-1/m)w il:z

<- m exp h
w

Unfortunately, in the course of the remainder of the proof, we may not know
enough about if" to compute E,ll w,I or E, w, = exactly. Nonetheless, we will
know an upper bound W> 0 on the sum of the weights, 1 WII <- W. This implies
an upper bound of wW on E_o Iw, = To see this, note thatE IWlI=< w y,-
since 0 -< WiI <= w. This, in turn, is at most wW by the bound on the sum of the weights.
Now we can get a simple upper bound on the probability that one of the m bins has
large weight

PF{ max {IBl}_->(l+e)}_-<Pr{ max
ie[0,m-1] ie[0,m-1]

(,
_<-mexp -eh(e)

The last inequality follows due to the fact that h is monotone.
We return now to the problem of assigning submatrices of A to processors in the

array. Let the weight of an element A,j, denoted IA,I, be 1 if A, is a nonzero, and
zero otherwise. Let A.. be the Ith row of A and let IA,,I be the number of ones in
the Ith row. Let R be an upper bound on the weights of the rows of A. Similarly, let
A,,j be the Jth column of A and IA,,I the number of ones in the Jth column. Let C
be an upper bound on the weights of the columns of A.

For the purposes of this analysis we make the column assignment, r, first and
then the row assignment, 0. Let V, I e [0, M 1 ], and j e [0, n 1 be the submatrices
formed by the column assignment. That is, V {A,j J e o’-(j)}. This defines the
matrix V. Let V. be the jth column of V. It is the submatrix of A consisting of all
the columns, A,,j, such that o(J)=j. That is, the column assignment o- assigns the
objects I={A.,jIJ [0, N- 1]} uniformly and randomly to the bins {V,
[0, n-1]}. We can apply (.) to bound the weight of the largest bin by recalling that
A,,j has weight at most C, since it is simply a column of A, and WI =j IA,,jI is
simply the total number of nonzeros of A, which is at most T. Hence,

/ } { }Pr max {I v,l} -->- ( + :3) t exp 3h(i3)
ON, (je[O,n--1] n

A similar analysis can also be applied on a row by row basis. For a fixed row
I [0, M 1], tr assigns the Ith row of A, W {AI,j[J [0, N- 1]}, uniformly and
independently to the Ith row of V, { VI, IJ [0, n 1 ]}. For each I [0, M 1 we can
use (,) to bound the weight of the largest bin, maxj {I V,jl}, by recalling that each
is at most one and IWl is simply IA,,.I, which is at most R. Hence,

Pr max {IVII} >--(l+e) <-_nexp ---eh(e,, je[0, n-l] n

Applying this to each row I and using the union bound we get

Pr max {IVl}->--(l+e _-<Mnexp ---eh(e,, le[0,M-1] n
je[O,n-1]
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We complete the assignment of submatrices of A to processors by making the
row assignments. Rows of V are assigned to rows of P. That is, Pi,. is the submatrix
composed of rows of V, V,., such that p(I)= where p is drawn from ffM, In other
words, for a fixed column j [0, n- 1], the objects { VI, I [0, M-1]} are assigned
uniformly and independently to the bins {PvI i [0, m-1]). We can apply (.) so long
as we have upper bounds on the weights v, l and the sum of the weights,

Assume for now that after the column assignment (but before the row assignment)
we have V,j[-<_ v for all I [0, M- 1] andj [0, n 1], and thatYI V,, I- V,,l--< V
for all j 6 [0, n ]. Call the former event v, the latter event v, and their conjunction
v,v. For each column j [0, n-1], we can apply (.) to the random row assignment

V
Pr max {IPi ;I}-->-- (1 + e,)
M,m i[0, m--l] m

81h(el)
/Am

Applying this to every column, we obtain

V
Pr max {[P l}->-- (1 + 1)
;M,m i[O,m--1] m

j[O,n-1]
/Am

To achieve a similarly small probability for maxi, {[Pi,j[} being large without the
conditioning event ,v, we need only show that the probability that v,v is not true
is very small. That is,

Pr {}= Pr {1 ,v} Pr {,v} + Pr {[ -o,v} Pr { ?,v}
_-< Pr {l v,v} + Pr { ,v},

where ff is the event that maxi, {IPi,jl}>-(V/m)(1 + el). If we choose V= (1 + e3)Tin
and v=(1 +e_)R/n then we already have an upper bound for Pr{ [_J v}.

Putting everything together we obtain

} / }Pr max {IP;l}>-(l +ea)(l +e,) _-<mnexp eh(e)
t ’ mn mR l+e2

+ Mn exp eah(e2)
n

{ }+nexp --- e3h( e3)

The choice el e e gives a more tractable (but not necessarily optimal) bound. Of
course, we can do the whole analysis by conditioning on the results of the row
assignment first. This gives the same bound as the one above with the roles of M and
N, m and n, and R and C interchanged. The actual bound is the minimum of these two.

The proof for the case where the row and column assignments are made according
to (M,m and (fiN, respectively, is nearly identical, except that we need an extension
of Bennett’s inequality, due to Hoeffding [8], to the following case. As before, let W
be a set of M objects if" (Wo,..., Wa4-1) with weights WI I. Let /a, be the set of
objects obtained by randomly selecting r objects from W without replacement, and
let / be the set of objects obtained by randomly selecting r objects from if" with
replacement. Note that

M-1

E(II) E([ce[)=(r/M) E IWK[
K=0
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Also observe that

but that

M-1

Var (]/vl) (r/M) 2 (I w, l-I ffl/M)2,
K=0

Var ([/1)= ((M- r)/(M- 1)) Var

Bennett-Hoeffding inequality. For any d => 0 such that WI-I WI/M <= d for all
I[0, M-l] and any 3,_->0

{ 3’ (Var(l/a’[)d3,)}Pr {[/’l >_- E([/[)+ 3,}-<exp --h
We apply this bound to the situation where we place exactly [M/m objects into

bins Bi i[O,(Mmodm)-l], and exactly [M/mJ objects into bins Bi
[M mod m, m-l]. Formally, /f={Wi[I p-l(i)} where p has distribution
By s,mmetry we know that each Bi [0, (M mod m) 1 ], has the same distribution
as / above with r=[M/m] and each /, i[Mmodm, m-1], has the same
distribution as /a, above with r= [M/mJ. Using algebra similar to that used for
deriving (,) from Bennett’s inequality, it is straightforward to derive the following
bound from the Bennett-Hoetfding inequality.

For any W >_- if’I, any w > 0 such that for all I [0, M- 1], W w, and e _-> O,

Pr { max {[/[}-> W [M/m-------](l+e)} <-m exp{ W [M/m] eh(e)}CM. ie[0,m--1] M w M

This is the same bound as (,) when we substitute the m’ and n’ as previously
defined. Hence, the remainder of the proof follows exactly as before, rq

3. Data-parallel sparse matrix-vector multiplication. So far, we have analyzed
randomized algorithms for the balanced assignment of nonzeros of a sparse matrix to
a rectangular processor array. Such assignments preserve the alignment of matrix rows
and columns for the design of efficient parallel sparse matrix routines. In this section
we consider the design of the basic sparse matrix-vector multiplication kernels for
parallel processor arrays under the restrictive conditions of the data-parallel single
instruction multiple data (SIMD) machine model. Program-parallel multiple instruction
multiple data (MIMD) machines are more powerful, and naturally include the SIMD
model.

The minimum characteristics of a data-parallel computer model required here are"

1. There are p PEs interconnected by a communication network. Every PE has
its own, identically organized local memory. It is assumed that the network is configured
as a (virtual) two-dimensional rectangular grid, with efficient communication among
the PEs along any row or column of the grid.

2. Each PE can be in the active or inactive state independently, depending on
the local data, and this may change from instruction to instruction.

3. There is a separate processor (controller) executing the program and broadcast-
ing instructions which are synchronously evaluated in all active PEs. It is assumed
that the indirect addressing feature is available" The PEs can store local pointers to
their local memories, thus each PE can access a different memory location in a single
instruction. We will concentrate on the second (i.e., random permutation) assignment
scheme. While both schemes produce balanced load under the same assumptions, and,
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with balanced load, lead to similar matrix algorithms, only the second scheme guaran-
tees the upper limit on the dimension of the submatrices allocated to each processor.
This simplifies memory management and algorithm design for SIMD computers.

Therefore, suppose that for a large sparse matrix A, the random row and column
permutations result in an acceptably balanced distribution of the nonzeros of A to the
PEs. If the row permutation is represented by an M x M matrix P, and the column
permutation is represented by an N N matrix 0, then the assignment of nonzeros
to PEs considered in 2 can be written as (pAQT)I,j - PE(I mod m, J mod n). In most
matrix problems one may do the computations with PAQr instead of A and undo the
permutations at the end. This is straightforward; therefore, from now on, we will ignore
the permutations for the sake of simplicity, and we will set P Ia4 and Q In.

Each PE stores the nonzeros of a sparse submatrix of A in a compressed data
structure. The choice of compression scheme may be dictated by the PE architecture,
available local memory, or other considerations [13], [14]. Here we use a simple
symmetric scheme which allows for fast computation of both right and left multiplica-
tions, y Ax and xT"= Y TA. The processors’ memory is therefore organized as follows:
The nonzeros allocated to PE(i,j) are stored in three aligned arrays, a[k], r[k], c[k],
k --0, 1,..., PoI- 1, where a is the matrix element and r and c are its row and column
indices, respectively.

It is not efficient to store dense vectors as matrices with one row or column. For
communication efficiency and good load balance, it is preferable to distribute the
components of a vector x (Xo, xl,..., x/_l) to processors according to a multilayer
lexicographic scheme. In each PE define a local array u[ of length [L/mn]. For
row-wise lexicographic storage renumber the processors with a single index, so that
PE(i,j) gets the index k= i. n+j, and place the component xj in array element
u[ [J/mn in the PE with index k J mod mn, for J 0, 1,..., L- 1. For column-wise
lexicographic placement renumber the processors so that PE(i,j) gets the index
k--j.m + i, and proceed as before.

We shall discuss only the routine for computation of y Ax in detail. Obvious
modifications are required for the computation of yTA, and for the extension to blocks
of dense vectors. The vector x is distributed among processors in a row-wise lexico-
graphic order and stored in the local arrays u[ ], while vector y is distributed in the
column-wise lexicographic order, and stored in the local arrays v[ ]. The multiplication
routine requires an auxiliary local accumulator array acc[ of length IPI, and an
auxiliary local buffer array buf[ in each PE(i,j), and proceeds in several phases.

For transparency, the pseudocode below is written for the case when the PE array
dimensions divide the matrix dimensions, i.e., M rm and N sn, and each PE has
sufficient memory for the buffer array of length max (r, s). We note that indirect
addressing is critical for data-parallel execution of the scatter and gather steps.

Matrix-vector multiplication y Ax
1. Distribute vector components

for k=O,...,s-1
in parallel in each array column j 0,..., n- 1

temp k mod m,
PE(temp, j) sends u[ [k/rnJ to all PEs in column J,
every PE copies received value in bur[k].

2. Scatter: every PE (i, j) in parallel
for k 0,..., IP0l- 1

acc [k] - buf [(c[k] -j)/ n].
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3. Multiply: every PE (i, j) in parallel
for k=0,...,IP01-1

acc [k] acc [k]* a[k].
4. Gather: every PE (i, j) in parallel

for k=0,..., r-1
buf [k] =0,

for k=0,..., IP0[- 1
temp=(r[k]-i)/m,
buf tempi - buf tempi +acc k].

5. Row sums
for k-0,..., r-1

in parallel in each array row i= 0,..., m- 1
compute the sum of buf[k] along row i,
copy the sum to v[ [k/n in PE (i, k mod n).

When the routine completes execution, the local array element v[l] in PE(i,j) stores
the vector component yl,,,,+j,,+i, as determined by column-wise lexicographic order.

The number of parallel operations is as follows: IN vector copy steps;
maxi, IPo] each of the scatter, multiply, and gather steps; [M/rn row sum evaluations.
In practice, it may be more efficient to employ systolic techniques for the first and last
stages, rather than use broadcast along array columns and segmented scan-adds,
respectively. The distribute/scatter and gather/sum steps may be iterated if there is
not enough memory for a long buffer array. Multiple iterations can be efficiently
managed with pointers when the arrays a, r, and c are sorted in the order of increasing
row index, r[O] <= r[1] =<... =< r[lPo]- 1], and in the order of increasing column index
via an auxiliary local pointer array p[i] such that c[p[O]]<-c[p[1]]<= .<=
c[p[lPol 1]].

3.1. A practical implementation. In order to demonstrate the practicality of data
structures and algorithms proposed in this report, we have implemented the matrix
multiplication routines and load balancing on a commercially available computer, the
MasPar MP-1216. This is a data-parallel machine with 16,384 RISC processors. Each
processor has 64 kbytes of local memory, and operates on four-bit-wide data fields,
with floating point instructions implemented in microcode. There are two separate
communication networks: a two-dimensional toroidal mesh, and a global router. Only
the mesh network is used in matrix calculations, and on the MP-1216 the PEs are
connected as a 128 128 array. The programs have been written in MPL [11], which
is a data-parallel extension of the ANSI standard C language [10]. Several parallel
algorithms for dense matrix multiplication have been implemented and analyzed on
this computer in [2].

We have found that the performance of the load balancing algorithm is much
better in practice than guaranteed by our theorem. The reason for this is that in the
proof some dependencies have been bounded by overcounting, and some bounds have
been relaxed to obtain a compact final formula. An extended empirical study of our
assignment scheme for a variety of structures and sizes is beyond the scope of this
report, nonetheless, as an illustration we do present data for some large matrices, both
unstructured and highly structured. Let Po IT/ran be the perfectly balanced load
per PE. For the matrices described below we have estimated the distribution function
Pr {max,j IPo[/Po < A}, which succinctly illustrates the performance of the randomized
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allocation algorithm. The probability distribution is the q3M,, x N,, of 2, correspond-
ing to independent randomly drawn row and column permutations. Empirical distribu-
tion functions were obtained from a few hundred independent assignments for each
matrix.

For the first example we take a 25,629 x 56,530 matrix representing the frequencies
of words occurring in more than two articles from the Academic American Encyc-
lopedia. This is a sparse, unstructured matrix with T 2,843,956 nonzeros, C 13,904,
and R 2,168. However, despite the presence of some quite dense rows and columns
the random permutation assignment works reasonably well. An estimate of
Pr {maxij IPoI/Po < A} for the 128 x 128 MasPar array is shown in Fig. 1. We see that
a maximum load of at most 2Po can be achieved in one attempt with probability about
0.22. This probability increases sharply when the requirement on the maximum load
is relaxed. Qualitatively similar results have been obtained for other large sparse
matrices representing word frequencies in different document databases.

0.8

0.6

0.4

0.2

0.0

1.0 1.5 2.0 2.5 3.0

FIG. 1. Estimated probability distributions Pr {maxj IP,sl/Po < x) for the band matrix (left) and the word
frequency matrix (right) described in the text.

For a completely different example we consider a square 200,000 x 200,000 banded
matrix with a half-bandwidth of 100. Although for such special matrices we would
rather design a different distributed data structure, it is instructive to see the power of
randomization: A direct tiling mapping of this matrix onto the 128 x 128 PE array
would produce maxi, ]PoI= 151,350 compared to Po 1221. However, the random
permutation assignment does very well (see Fig. 1): with probability of success over
0.99, we obtain an assignment that deviates from the perfectly balanced load by less
than 15 percent.

In order to assess the performance of our implementation of the sparse matrix-
vector multiplication routine, and to estimate the fraction of time spent on inter-
processor communication and nonnumerical operations, we compare the performance
of the routine to the machine’s peak floating point computing speed. All performance
figures are for the double precision (64 bits) floating point format for matrix and vector
components. According to custom, we also characterize the routine’s performance in
terms of the number of floating point operations per second (flops), including all
nonnumerical operations in the time measurement.
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For a standard of the machine peak rate we consider two array operations
c[ i] a[ i] + b[ i] and c[ i] - a[ i] b[ i] executing in parallel in the PEs without inter-
processor communication. The timing of these instructions for long arrays on a

16,384-processor MasPar gives the average peak rate of 250 Mflops (register operations
are about twice as fast, but not proper for comparisons with routines involving array
references). For the sparse matrix-vector multiplication routine, the flop rate is deter-
mined by the number of nonzeros T, and in accordance with [7], is defined as 2T,
where is the routine execution time. The highest performance has been achieved
with the perfectly balanced PE load (i.e., maxij IPijl T 16,384) for large dense matrices
cast in the sparse data structure, giving 116 Mflops, that is, about 45 percent of the
peak machine rate determined above. For sparse matrices the ratio max IPol/Po
quantifies the performance loss resulting from load imbalance.

Our fastest implementation of the sparse matrix-vector multiplication on the
MasPar utilizes only the nearest-neighbor communications in the vector distribution
and row sum collection stages. We have analyzed its performance, obtaining a formula
for the execution time ,

"r "r, m. INmn + ’. max IP l + n. M/mn ].
t,j

The first term accounts for the vector distribution; the second for the scatter, multiply,
and gather steps; and the last for the row sum collection. The expected operation times, measured on a 128 x 128 machine, are 17 is, 2 290 s, and 3 84 p,s (micro-
seconds). The formula for predicts quite accurately the actual execution time for
arbitrary matrices and imperfectly balanced loads, with a small uncertainty due to the
dependence of the course of the scatter and gather operations on the data. For instance,
for the first word frequency matrix described above, we obtained 48 Mflops, and for
the banded matrix we obtained 70 Mflops. On this machine for a fixed T, the flop rate
decreases with increasing matrix dimensions M and N; thus, for extremely sparse
matrices with very large dimensions another algorithm could offer better performance.

Acknowledgments. We thank Tom Leighton and Michael Berry for useful dis-
cussions and Sue Dumais for examples of word-frequency matrices.
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SOME ASPECTS OF CIRCULANT PRECONDITIONERS*

THOMAS HUCKLEf

Abstract. This paper studies circulant approximations of Hermitian Toeplitz matrices that are solutions
of certain minimization problems relative to the Frobenius norm, the lubl, or the lub norms. The examin-
ations supplement the family of the so-called optimal and superoptimal preconditioners that have been
proposed for the preconditioned conjugate gradient method for solving Toeplitz systems Tnx b. For the
new Frobenius norm approximations it is shown that they can be computed in O(n log (n)) arithmetic
operations, and that the eigenvalues of the preconditioned linear equations are asymptotically clustered
around if Tn is a leading principal submatrix of an infinite Toeplitz matrix connected with a positive
function of the Wiener class.

Key words. Toeplitz matrix, circulant matrix, preconditioned conjugate gradient method
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0. Introduction. In this paper we derive some new properties of circulant precon-
ditioners for the solution of linear Toeplitz equations. A matrix Tn is a Hermitian
Toeplitz matrix if

to tl tn-1

t o

(1) Tn ". ". ". T,(to, t,,..., tn-),

’1 to tl
?,- 1 to

and a matrix C is a Hermitian circulant matrix if C Tn(co, c, c2,..., , ?1). Strang
in 14] proposed using the preconditioned conjugate gradient (PCG) method for solving
symmetric positive definite Toeplitz systems. By the fast Fourier transform, linear
equations with circulant matrices can be solved in O(n log (n)) operations, and every
circulant matrix has a diagonalization of the form C FAF, with the Fourier matrix
(see [7])

1 1
),:o-,/-ff ,:o,(2) F"H :=n (exp (27rijk/,) "-’ wjk"-I

where w exp (27ri/n).
An infinite Toeplitz matrix T (ti_j)i,:1 is connected with a function

f(0):= Y’. tje-i, 06[0,2r],

which is said to be in the Wiener class if f is an 11 function, thus Y=_ t[ _<-M < c.
If the Toeplitz matrices T, are leading principal submatrices of an infinite Toeplitz
matrix T with underlying function f positive and in the Wiener class, the eigenvalues
of the preconditioned systems C-T, are asymptotically clustered around 1 for many
different circulant approximations C on T, (see [1]-[4], [6], [10]-[13], [15], and [16]).
Hence, the number of iterations in the PCG method is bounded independent of n in
this case.

* Received by the editors August 7, 1991" accepted for publication (in revised form) May 11, 1992.
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I. Frobenius norm approximations. In [6], T. Chan introduced the optimal cir-
culant Frobenius norm approximation CF for a given Hermitian matrix A. Every
element Ck of CF is the mean value of the corresponding elements on a kth diagonal
of A. For the following, using the notation of relation (I), let us denote

(3) Circ (A):= T,(co, Cl, C2,... I2, I’1) with Ck :---- aj,j+kmod
F/j=I

Then Cv- Circ (A). The convergence of the PCG method depends on the spectrum
of C-1/2AC-1/2 or C-1A. Hence, it seems to be more appropriate to look for a positive
definite circulant matrix that minimizes [[I-C-1A[[ for a certain norm. This leads to
the superoptimal Frobenius norm approximation of Tyrtyshnikov [3], [15], [16] Cr
Circ (A2) * Circ (A) -1, which minimizes I-C-1A in the Frobenius norm. Here,
denotes the standard matrix or scalar multiplication.

But this is not the true optimal approximation, because the Hermitian matrix
which is used in the PCG method is C-1/2AC-1/2, and thus one should better minimize
[[I-C-1/2AC-1/2[[ in some norm. For the Frobenius norm we can again solve this
problem.

THEOREM 1. Let A be a Hermitian positive definite n x n matrix. Let B F,AFH,
D B ; be the Hadamard product of B and B-, b =diag (B), and x D-lb. Then D
is positive definite. If all components of the vector x are positive, define

A=diag ( -)
and it holds that

min
C circulant

Cn := FHAF,

[II- C-1/2AC-1/2[[ F.

(4) bkk Y’. k=l,...,n.
j=l /-j

Therefore, we get the minimal Frobenius norm approximation by solving this system
of linear equations in x (1/hi,..., 1/h,) if all components of x are .positive. Note
that with A, the matrix D is also positive definite [9, Thm 5.3.1], and that bii are the
eigenvalues of CF with Amin(A) -< bu <= hmax(A) 11 ], 12]. [3

To show that this new preconditioner is competitive with CF for Toeplitz matrices
connected with positive functions of the Wiener class, we prove in the following that
under this assumption

(a) the matrices B and D can be computed in O(n log (n)),
(b) equation (4) can be solved in O(n log (n)),
(c) the solution of (4) is positive for n large enough,
(d) CF and CR are asymptotically equivalent, and thus the eigenvalues of CIT,

are clustered around 1 for large n [1], [2], [3].
First, let us consider (c) and (d).

The condition Vf 0 is equivalent to the equations

=f(a,,..., A,,).

Proof. With C FHAF,
bll Iblj[2][I-C-1/2AC-1/2II2F= 11I-A-’/2BA-1/2112= 1-2 --1 -[-j=l /l/.j

-1-
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THEOREM 2. If A T, is a Hermitian Toeplitz matrix with an underlying positive
function f of the Wiener class, then

IIc-cll=o fornoo,

and thus Ca and CF are asymptotically equivalent relative to the spectral norm. Hence,
for n large enough, Ca and C are well defined and of bounded spectral norm.

Proof. First, note that the diagonal elements of B are the eigenvalues of CF and
are contained in the interval m, M] with 0 < m min f_-< M maxf.<_o 1], 11],
[12]. For the elements of B,

(5)
n k,m=l

ak, F(i-1)(k- 1) w(J--1)(m--1)

1 n--1 min {n,n--r}

E -’+<’-’ E w(-’.
n r=l-n {1,l-r}

Hence, we get

1 n--1

r,k=l-n
t0(n -Irl)(n -[kl)w’--

and

ib jl2
1 .-1 min{n,n--r} min{n.n-k}

n2 Y tggrWi-)(k-r y Y
j= r,k= m =max{l,1 -r} m=max{1,1-k}

Wi(m2-ml) W(ml-m2)j

j=l

1 n--1 min{n,n-r,n-k}

=-- E tk?rwi-lk-r En r,k=l-n m=max{1,1-r,l-k}
no

Therefore, with the notation B (b, b2,... b,),

j#i,j=l

n--1, tkrw(i-1)(k-r)
r,k=l-n

([min {n, n-r, n- k}-maXn {0,-r, -k}]+

1 n--1

tgrW(i-1)(g-r)

n2 r,g= l-n
Or, g

with

min {(n- Irl)lkl, (n- Ikl)lrl}
Cr,k

-(n Irl)(n

for rk >= O,
for rk < 0 and [k + Irl _-< n,
for rk < 0 and lk +lr] _-> n,

and Ix]+ := max {0, x}. Thus ICr, kl Mn for Irl =< M or Ikl M, M independent of n, and

(6) 4(n):=max{llb, ll-b,)-,0 forn-+oo.
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For a proof of (6), see also the Corollary to Theorem 4 in [3]. With the notations of
Theorem 1, IID-diag(bll,..., bn)ll tends to 0 for increasing n, and therefore
IID[[, lID-Ilia, and Ilxllo IID-Ib[[ are bounded independent of n. Hence,

m/ax{

tends to 0 for increasing n, and

IIb-diag bn) * xll(b121,...,

[[(D-diag (bl,... bn)) * x[[

0 < m -< Ai <= M1 < x3, 1,..., n,

for large n. [3

THEOREM 3. For a Hermitian Toeplitz matrix T,, the matrices B F,TnFH, and
D B B can be computed in O(n log (n)). Furthermore, for a vector a, the evaluation
of B a and D a take O(n log (n)) operations.

Proof. Using (5), for its j,

n--1 --1

nbi,j-- ?r]j-i+(i-1)r w(J--i)m-t- E
r=l m=l r=l--n

rlj-i+(i-1)r
W
(j-i)m

m=l--r

and

Tw:=-* T. 0,
n 1 w’ 1 W

n-1

the purely imaginary matrix G:=(g-), (1,..., 1), and the rank-2 matrix E :=
G + GH. Then,

B=(Eo Tw) +diag (bll,..., b,n)

D=(Eo ff_,)o(Two w)+diag (b,,...,
with rank (E o/)<=4 (see [9, Thm 5.1.7]). Furthermore, with e :- (1,..., 1) T, h :- g-,
and D(a):= diag (a,..., an) for a given vector a, we get

B*a=((h*eW+e*h") Tw)*a+diag(bl,...,b,,,)*a,

and with [9, Lemma 5.1.3],

(Tw o(h eT)) , a=diag(Tw * D(a) , (e * hT))=diag((Tw a) , hT),
and

(Tw (e hH)) * a =diag (Tw * D(a) ( eT)) Tw * (a )
can be computed in O(n log (n)). Obviously, the same holds for D, a. [3

Remark. (1) In view of Theorem 4, it seems to be more efficient to apply the PCG
method not to the original linear equations T,x b, but to the corresponding system
B(Fnx) F,b. Each iteration of the PCG method with preconditioner C and matrix

1 wj-’

n--1
1, (i-- 1)with gi := Er=l ’r( ), i= 1,..., n, and g (gl,..., gn) T can be computed by the

fast Fourier transform applied to (0, ,..., ?-1) in O(n log (n)). Define the circulant
Hermitian matrix
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Tn takes six Fourier transforms, but with diag (b11,..., b,,) and B, it takes only four
Fourier transforms for evaluating Tw * a and Tw * (a h) with circulant Tw. Note that
in this formulation the preconditioner is the diagonal of the underlying matrix of the
linear system.

(2) A similar representation of a Toeplitz matrix by means of the Hadamard
product of a ranko2 matrix with a unitary circulant matrix Co is given in 15]. The first
row of Co is

2
k=0,..., n- 1, with o-=exp (,n’i/n),

n(1 --o’wk)

and Co has the eigenvalues /-/k--o’k, k 0,..., n- 1. The eigenvalues of Tw are ,k--
-1/2+(2k+l)/2n, k--0,...,n-1. Hence, /Xk and hk are connected by /Xk

exp ((hk ho) ri), k 0,..., n 1.
For general Hermitian positive definite matrix A, the matrices B and D are general

Hermitian positive definite matrices. Thus it takes O(n2 log (n)) operations to compute
/3 by 2n fast Fourier transforms and, in addition, O(n2) operations for D. But there
are interesting cases for which the matrix D is of special form. Consider A--C + E,
with C circulant and E of low rank. Then B A+ F,,EFH, A+/ with rank (/)
rank (E), and

D A A+ A o/ + A+/ o/ diagonal +/ o/ diagonal +/

and rank (/) _-< rank (/)2 (see [9, Thm. 5.1.7]). Then D can be computed in O( n log n ))
operations, and Dx b can be solved in O(n). For example, let

A= T,(2,-1, 0,..., 0)= T,(2, -1, 0,..., 0,-1)+ ele 7. + e,el

(see [5]). In this case, D=diagonal+/ with rank (/)-<4 can be computed in O(n)
in view of the special structure of A. Unfortunately, numerical computations show
that for this matrix A the vector x in Theorem 1 has exactly one negative component
for many n. This is caused by the fact that the underlying 11 function f is only
nonnegative.

If x has negative components, we can define positive definite preconditioners by
setting

hi:=[1/x,[, CBs:=FH, diag(hi)F,, ifxi0,

or better,

1/xi ifxi > 0,
Ai

bii else,
CBb := F diag (Ai)Fn.

In the last section we will give numerical results for CBs and Cb.
THEOREM 4. For a Hermitian Toeplitz matrix with an underlying positive function

of the Wiener class, (4) can be solved in O(n log (n)) operations.
Proof Following (6), the spectrum of the matrix R := diag (b2 --2,...,b,,)* D is

contained in the interval 1 b (n), 1 + 4 (n) with b (n) - 0 for n - . Let us use the
PCG method for solving Dx b with preconditioner diag (bl,..., bZ,,). Note that for
a vector a, D, a can be computed in O(n log (n)) operations in view of Theorem 3.
The condition number of R is bounded by

l+6(n)
1-b(n)’
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and thus for

ek := x/(A-l b xk)HA(A-l b Xk),

the error after the kth step (see [8]),

( (e<__ 1-/(l+d(n))/(1-4(n}) 1-/1- 4(n)
eo 1 +#(1 + (n))/(1 (n (n) 2

Hence, ek/eo e is fulfilled if asymptotically

or (n)N2, e/(. Therefore, the number of iterations of the PCG method for
computing the vector x is bounded by O(1/llog ((n))l), and the total number of
operations for solving (4) is O(n log (n)).

We can consider a similar minimization problem that leads to another well-defined
circulant approximation to a given matrix A. Let us look for the solution of

(7) rain IIC/-A, c-l/ll,
C circulant

Because of

c’/- A * C-1/21{v IIA 1/2_ e *

A1
the solution of (7) is given by the circulant matrix CF2 with eigenvalues
and we get with (3),

C2 Circ (A2) ,/2,
which is always defined, positive semidefinite, and asymptotically equal to CF if A
is related to a positive function of the Wiener class. In view of the connection between
Cr, CF, and CF2, CF2 can be computed in O(n log (n)) [3], [15], [16], and the clustering
propey that holds for Toeplitz matrices with underlying positive 1 function is true
for CT, as well [1], [2], [3].

Note that the various Frobenius norm approximations fulfill

Circ(A)=Circ(C)=Circ(Cr, A2) Circ (A Ca’ A),

Circ (C2) Circ (A2).
The equation for C follows from diag (B diag (1/a,..., 1/a,) B) diag (B) [9,
Lemma 5.1.3] and Theorem 2 in [3].

2. Approximations in other norms. Looking for a circulant matrix that minimizes
[]C- A[2 is equivalent to minimizing

with a diagonal matrix A and B F,AF. In this section we will determine some
circulant approximations that correspond to an (in some sense) optimal diagonal
matrix A. First, let us remark that the Frobenius norm approximation CF not only
solves min [[A-BII [IC-AII, but also min [[A-B[[, and min IIA-B[[. A similar
propey is possessed by the circulant approximation of Strang 14], which for Toeplitz
matrices solves min c T [1, min c T
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We can also determine superoptimal diagonal approximations in the 11,11 norm.
THEOREM 5. Let A be a Hermitian positive definite matrix. If IIb, ll--< 2, b., i-

1,..., n, then the matrix AF := F.CFFn. is a solution of
min IlI- A-1BII,

A diagonal

Proof. It holds that

I- A-1B Ill max 1
b,, bi II1 bi,+

For b, -> Ai the ith term takes its minimal value if Ai= bii. For b.<A, and IIb, ll-<2bii,
the minimum again is Ai b.. Finally, if b !2 < b, < )ti, the optimal value of the ith
term is 1 for Ai . Thus, if IIb, ll-<2b, for i= 1,..., n, a solution is given by the
diagonal matrix built up by the eigenvalues of CF. [3

THEOREM 6. Let A be a Hermitian positive definite matrix and B F.AFH.. A
solution of

is given by

min IIA 1/2__ BA-1/2II
A diagonal

Proof It holds that

IlA1/2-BA-1/2lll=max x/ii- +
i=1

For hi<-bii or hi> b.>--Ilb.lll/3, the ith term takes its minimum value for hi=b.. If
b, < hi and lib, Ill > 3b.. the ith term is minimal for

Let us denote by C1 the circulant approximation that corresponds to the diagonal
matrix of Theorem 6.

The last two theorems show that the Frobenius norm approximation Cv is often
an optimal circulant approximation to a given matrix A relative to the norm IIAII l :-
IIf.aF"ll,. But in some cases we get circulant approximations that depend on lib, ill.
Therefore, we have to consider IIBII1 to show that C1 is well defined.

THEOREM 7. Let T. be a symmetric Toeplitz matrix connected with a positivefunction
of the Wiener class, and B F.T.FH. If

(8) [rtr[
r=l

is bounded, then B II1 is bounded.
Proof With (5) we get, for k

n--1 --r--1 1 --1

bk, -1- trw(1-k)r w(J-k)m+-- trw(1-k)r Z w(J-k)(m-1)
/e/ r=l m-0 rl l-n l-r

1 {tr(W(1-k)r W(1-j)r
__

w(J-1)r (k-1

n (1 Wj-k) r=l

W )r) }

tr 2i sin + 2i sin
n sin ((k-j)Tr/n) r=l n n

4iw(k-j) ( 7rr(k+j-2))n sin ((k-j)Tr/n) tr sin COS
r=l /’/ n
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Then, for j= 1,..., n,j k,

Ibd[<-- nl sin ((j-k)r/n)l r=l
Itr sin ((j-k)rr/n)l"

Hence,
n--1

Ib,l4 Itl*
j=l,jk n j=l,jk r=l

--4
r=l j=l

sin 7rr(j k)/ n
sin (rr(j- k)/n)

sin (Trrj/n)
sin Trj/ n

n--1

=4* Itrl.f(r).
r--1

By induction it is easy to prove that f(r) <= r for r 1,..., n, and thus IIB[I1 is bounded
if (8) is fulfilled.

It can be shown that f(r) asymptotically satisfies the stronger inequality f(r)<=
c * log (r) with c independent of n. The proof uses a partitioning of f(r) for 7rjr/n
[kTr-Tr/4, kTr+r/4] and 7rjr/ne[kTr+Tr/4, kTr+37r/4], k=O, 1,..., r. Thus con-
dition (8) in Theorem 7 can be replaced by the weaker condition that tr log (r) is an

11 sequence.
For the preconditioner C we can not give any clustering analysis. Besides, the

computation of IIb, ll,, i-- 1,..., n, takes O(n2) operations, and thus is unattractive in
practice. But, in many cases, C--CF. Thus the main result of this section is that CF
is often an optimal approximation to a given matrix, not only in the Frobenius norm,
but in other norms, as well.

3. Numerical examples. To test the different preconditioners, we display the
spectra of the preconditioned matrices with n 16 for

(a) to--2.007, tl=-l, ti=0 for i=2,..., 15,
(b) to-- 2.006, t =-1, ti =0 for i=2,..., 15,
(c) to=0.6, ti=cos (i)/(i+l) for i= 1,..., 15.
For these examples, C1 CF. CB is not defined only for (b), and in that case, we

examine CBs and Cnb. See Figs. 1-3.

CI" (-I)A

CB (-I)A

CF2 (-I)A

CT" (-I)A

CF" (-I)A

0.5 i, 1.5 25

FIG. 1. Spectra of the preconditioned systems for example a ).
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3.5

(-I)A

2.5

CBb (-I)A

1.5

(-I)A

0.5

-0.5 0.5 1.5 2.5

FIG. 2. Spectra of the preconditioned systems for example b ).

CI^ (-I)A

(-I)A

CF2 (-I)A

CT (-I)A

(-I)A

.5 3.5

FIG. 3. Spectra of the preconditioned systems for example (c).
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For example (b), Fig. 2 shows that CBb seems to be the better choice if CB is not
defined.

Next, we test the use of the PCG method for solving (4), Dx b, with start vector
(1/b11,..., 1lb,,) " for the examples (see Tables 1 and 2)

(d) t(i)=l/(i+l)2, i--O,...,n-1,
(e) to=2, t,=(l+v/-1)/(i+l)ll,i=l,...,n-1.

TABLE
Error after the kth step for the PCG method on (4).

Example (d)

n 8 0.047 2.6 x 10-5

n 16 0.041 2.6 x 10-5

n 32 0.031 1.8x 10-5

n 64 0.023 8.7 x 10-6

n 128 0.016 3.6 10-6

1.2 10-7

5.7x 10-8

5.6x 10-9

9.0 x 10-10

2.2 x 10-10
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TABLE 2
Error after the kth step for the PCG method on (4).

Example (e) o

n 8 0.096 0.0015 2.1 x 10-5 2.4 10-7 1.0 10 -9

n 16 0.13 0.0016 1.8 10-5 2.6 10-7 2.5 10-9

n 32 0.13 0.0010 1.3 x 10-5 1.8 10-7 5.8 10-n 64 0.12 4.5 10-4 7.6 10-6 7.1 10-8 1.2 10-t

n 128 0.095 1.8 10-4 4.1 10-6 2.0 x 10-8 3.7 10-
Table 3 displays the number of iterations for the PCG method for solving Tnx b

with example (e). The right-hand side is given by b (1,..., 1)T/x/-ff and the initial
guess is the zero vector. The algorithm stops if the Euclidean norm of the residuum
is less than 10-6

Here, CB is always defined, and C1 differs from CF for n 64 and n 128 on 2,
respectively 8, positions.

TABLE 3
Number of iterations for different preconditioners in example (e).

n CF CF2 CB C1

8 6 6 6 6

16 6 6 6 6

32 6 6 6 6
64 6 6 6 6
128 6 6 6 7

In most numerical experiments, the condition numbers of CITn and CTn are
smaller than that ofC1T,, but the clustering property of the spectrum of the precondi-
tioned linear equation seems to be better for Cv.
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A PARALLEL ALGORITHM FOR THE NONSYMMETRIC
EIGENVALUE PROBLEM*

JACK J. DONGARRAt AND MAJED SIDANI$

Abstract. This paper describes a parallel algorithm for computing the eigenvalues and eigenvectors of
a nonsymmetric matrix. The algorithm is based on a divide-and-conquer procedure and uses an iterative
refinement technique.

Key words, eigenvalue problem, divide and conquer, parallel computing

AMS(MOS) subject classification. 65F15

1. Introduction. The algebraic eigenvalue problem is one of the fundamental
problems in computational mathematics. It arises in many applications and therefore
represents an important area of algorithmic research. The problem has received con-
siderable attention, which has resulted in reliable methods [17]-[19]. However, it is
reasonable to expect that calculations might be accelerated through the use of parallel
algorithms. A fully parallel algorithm for the symmetric eigenvalue problem was recently
proposed in [7]. This algorithm is based on a divide-and-conquer procedure outlined
in [4]. The latter was based on work in 11] and [2]. The fundamental principle behind
this algorithm is that the partitioning by rank-one tearing interlaces the eigenvalues
of the modified problem with the eigenvalues of the original problem (the matrix is
first reduced to tridiagonal form). This approach in turn enables rapid and accurate
determination, in parallel, of the eigenvalues and the associated eigenvectors.

In this paper we propose a parallel algorithm for the solution of the nonsymmetric
eigenvalue problem. The approach uses some of the features of the divide-and-conquer
algorithm for the symmetric case mentioned earlier. In particular, the original problem
is divided into two smaller and independent subproblems by a rank-one modification
of the matrix. (We assume that the matrix has already been reduced to Hessenberg
form, and that the rank-one modification removes a subdiagonal element.) Once the
eigensystems of the smaller subproblems are known, it is possible to compute those
of the original matrix. In the nonsymmetric case, the eigenvalues of the modified matrix
do not interlace with those of the original matrix. Indeed, the eigenvalues can scatter
anywhere in the complex plane.

In our algorithm for the nonsymmetric case, the eigensystem of the subproblem
is used only to construct initial guesses for an iterative process which yields the desired
eigensystem of the original problem. Under suitable conditions, iterative refinement
or continuation can be used to find the eigenpairs of the original problem. We report
here on our application of an iterative refinement approach based on Newton’s method;
we shall not pursue the continuation method in this paper. Work on the continuation
approach has been reported by 14] and 15]. For other divide-and-conquer approaches,
see [1] and [12].
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In 2 we describe an algorithm that uses an iterative refinement procedure based
on Newton’s method. Section 3 covers the deflation step required to overcome multiple
convergence to a particular eigenvalue. In 5 the convergence behavior of the new
algorithm is discussed. In 4 we discuss the case when the matrix or its rank-one
modification has a defective system of eigenvectors. Section 7 estimates the amount
of work the parallel algorithm requires and compares this to the standard techniques.
Section 6 describes the parallel algorithm and the different parallel implementations
of the new algorithm, and gives numerical results. Section 9 describes how our ideas
extend to the generalized eigenvalue problem.

2. The algorithm. Given a matrix H, an eigenpair (Xo, A0) of H can be thought
of as a solution to the polynomial system

Hx Ax O,
(s)

L(x) 1,

where L(x) is a scalar equation. Here, we set L(x)= ex, where es is the sth unit
vector (in practice, we choose s so as to normalize a known approximation to an
eigenvector of H). Let

[HxFs(x,)=\e[x_ 1 ]"

Then, finding an eigenpair of H reduces to finding a zero of F. In what follows, unless
otherwise mentioned, H is assumed to be a real, unreduced (no zeros on the sub-
diagonal), upper-Hessenberg matrix of order n. This does not restrict the type of
problems we want to solve, since if H has a zero on the subdiagonal then finding its
eigenvalues reduces to finding those of the blocks on the diagonal. We note also by
our assumption that H is unreduced, an eigenvalue of H can only have geometric
multiplicity one" this is quite easy to see since the first n- 1 columns of H-AI are
linearly independent. We assume for now that H has a simple spectrum. We can write
H as

HllH _(--.,"(k)T
Ole e: k

where Hl and H22 are upper-Hessenberg of dimensions k x k and n-kx n-k,
respectively; a hk/l.k, and el k) is the ith unit vector of length k.

Let Ho H---’() ()r,k+e Then

and o-(Ho) o-(Hll _J 0"(H22

(where tr(M) is the spectrum of M). The algorithm can then be described as follows.
We first find the k eigenpairs of H and the n- k eigenpairs of H22 by some method.
These eigenpairs are then used to construct initial approximations to the eigenpairs
of H. If A is an eigenvalue of Hl and x is the corresponding eigenvector, then is
viewed as an approximate eigenvalue of H with the corresponding approximate
eigenvector taken to be (), where n- k zeros are appended to x. Note that () is an
exact eigenvector of Ho corresponding to A. On the other hand, if A is an eigenvalue
of H22 and x is the corresponding eigenvector, then (0), where k zeros are prefixed to
x, is taken as an approximate eigenvector of H corresponding to the approximate
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eigenvalue h. If h is not an eigenvalue of Hl then the last n-k components of an
exact eigenvector of Ho corresponding to A,

((H11- A)-1H12x)
are the components of x. However, if is an eigenvalue of Hll, and if its geometric
multiplicity is one as an eigenvalue of Ho, then no eigenvector of Ho will have the
components of x as its trailing components. We have chosen to take (x) as initial
eigenvector instead of

( (Hll-A)-lH12x)X
in order to avoid the additional computation involved in solving a linear system. The
choice proved adequate in practice, in that there was no significant difference in the
convergence behavior of the algorithm.

Newton’s method comes into this problem in a rather "natural" way. Indeed,
suppose that (x, ,) is an approximate eigenpair of H, Hx Ax. Let us find a way to
compute a correction (y,/x) to this approximate eigenpair. Clearly, (y,/x) should satisfy

H(x + y) (A + )(x + y).

Rearranging the latter equation yields

1 (H A)y txx Ax Hx + txy.

Now we ignore the second-order term/xy, and we impose a normalization condition
on x, say xs 1, where xs is the sth component of x. If we also assume that the desired
eigenvector should satisfy the same condition, then (y, tz) is the solution of

{H-hi(2) \e

with r hx- Hx. But, this is the same equation that we obtain when a Newton iteration
is applied to the function F to find a correction to (x, ). We note here a result from
[5], where the author studied an iterative refinement technique to compute the correc-
tion (y, x) to (x, ) from (1) (i.e., without ignoring the second-order term) and proved
that in exact arithmetic, that method and Newton’s method produce the same final
iteration.

So far we have not attempted to answer the question of which subdiagonal entry
will introduce the zero. We will use first-order perturbation theory in order to shed
some light on this issue. Let E =--OZek+le[, where as above, a hk+l,k (note that
H-+ E Ho, introduced above). Then given a simple eigenpair (x, A) of H, classical
results from function theory [13, V.2, pp. 119-134] allow us to state that in a small
neighborhood of zero, there exist differentiable (x(e), A(e)) that satisfy

(H + eE)x(e) A(e)x(e),

for all e in that neighborhood. Clearly, x(0)=x and A(0)= A. Let yH be the left
eigenvetor of H corresponding to A. Then differentiating both sides with respect to e

we have

HDx(e)+ Ex(e)+ eEDx(e)= DA(e)x(e)+ A(e)Dx(e),



PARALLEL ALGORITHM FOR NONSYMMETRIC EIGENVALUE PROBLEM 545

where De denotes the differentiation operator. Multiplying by yH and setting e 0 we
get

y"Ex D,,X O y l-lx,

and therefore

[y’-’F.x[ I Ily+lllx[
(3) [D;t(0)l-[yxl- ly’-’x[

The quantities that vary with k in this expression are in the numerator. However,
lY/ll, and Ixl are not really independent of one another; indeed, if a 0, then at least
one of Yg+l or xg is zero. Hence for a small, we can expect one of Yg+l and xg to be
correspondingly small, since the components of the eigenvectors vary continuously.
Therefore, we have found it sufficient in practice to look for the smallest subdiagonal
entry in a prespecified range, and accept it as the subdiagonal entry (in that range)
with respect to which the eigenvalues of the matrix are least sensitive, and set it equal
to zero.

An outline of the algorithm follows.
ALGORITHM 2.1. Given an unreduced upper-Hessenberg matrix H, the following

algorithm computes the eigensystems of two submatrices of H and uses them as initial
guesses for starting Newton iterations for determining the eigensystem of H.

Determine subdiagonal element a where

should be split; Determine initial guesses from eigensystems of the two
diagonal blocks Hll and H22; For each initial guess (Ai, xi) iterate until
convergence:

esr x

end;
Check for duplicates and deflate if necessary;

More will be said about the last step, deflation, in 3. In practice, the original
matrix will be dense and we will need to reduce it to upper-Hessenberg form as a first
step. This can be done in a stable fashion through a sequence of orthogonal similarity
transformations, although elementary transformations can also be used with confidence,
as in ELMHES [17].

A brief study of some sufficient conditions guaranteeing the convergence of our
method will be touched upon in 5. Now, assuming that the algorithm converges, it
could happen that the same eigenpair of H is obtained more than once, i.e., starting
from two (or more) distinct initial approximations, Newton’s method converges to the
same eigenpair of H. We have investigated methods to obtain further eigenpairs of H
should this happen (see 3).

We end this section with some implementational details. Our algorithm will accept
(x, A) as an eigenpair of H when IIH-xll/llxll IIHII < tol, where tol is some specified
tolerance of order e, the machine unit roundoff. Under these conditions [9], (x, A) is
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an exact eigenpair of a matrix obtained from H by a slight perturbation. Indeed,

rxH XxHx
where r Ax- Hx.

Starting from two complex conjugate initial approximations, Newton’s method
will converge to two complex conjugate zeros of Fs, or the same real zero. To prove
this, it suffices to look at one iteration and show that when the current approximations
are complex conjugate, Newton’s method yields two complex conjugate corrections,
or the same real correction. The system we must solve starting from (x, A) is (2). For
(., A) this becomes

8-21e-) (") ()
But this is the same linear system obtained when the conjugate of both sides in (2) is
taken, since H H. Therefore, y’-- 97 and/z’=/2. This will allow significant savings in
the computations.

Last, when starting from a real initial guess, only real corrections are computed.
Therefore, the imaginary part of the eigenvalue should be perturbed if convergence
ot a complex eigenpair is to be made possible. In practice, we have done this when
real arithmetic does not lead to convergence after a prespecified number of corrections.
A 2x2 real matrix whose eigenvalues are complex is a simple example of when
perturbing the imaginary part of the eigenvalue is necessary.

3. Deflation. When Newton’s method is applied to solve the eigensystem of a
matrix H, two distinct initial guesses may possibly converge to the same eigenpair of
H. In fact, a naive implementation ofthe algorithm in 2 may result in many eigenvalues
being found multiple times and, consequently, some eigenvalues not being found at
all. To avoid this unwanted situation, we included a deflation step in our algorithm
that is designed to obtain further zeros.

Assume that when Algorithm 2.1 is applied to the n x n matrix H (we will assume
for simplicity that it has no multiple eigenvalues) the eigenpair (x, A) of H is obtained
more than once, i.e., the algorithm converges to (x, A) from several distinct initial
guesses (Xoi, Aoi), i= 1 r, r > 1. There exist two classes of methods for finding
the additional eigenpairs of H. The methods of one class produce an (n- 1)x (n- 1)
matrix H’ such that r(H’)=tr(H)-{A}, and then Algorithm 2.1 is applied to H’
starting from r- of these initial guesses. In this case, if the algorithm converges, then
it will do so to eigenpairs different from (x, A) since A is no longer in the spectrum.
Methods of this type will be discussed in 3.1 and 3.3. The other class of methods
will reapply Algorithm 2.1 to the original matrix H starting from r-1 of the initial
guesses mentioned above, but will force convergence away from (x, A) by ensuring, at
all steps, that the current eigenvector forms a nonzero angle with x. A method of this
type will be discussed in 3.2.

A common drawback of all of these methods is that they tend to serialize the
computation. However, it has been our experience that the need to deflate arises
infrequently: less than 5 percent of the time in our tests.

3.1. Deflation using elementary transformations. We now describe one possible
deflating similarity transformation. We assume that H is an unreduced upper-
Hessenberg matrix, A is an eigenvalue of H, and x is the corresponding eigenvector.



PARALLEL ALGORITHM FOR NONSYMMETRIC EIGENVALUE PROBLEM 547

Since we are assuming H to be upper-Hessenberg with no zeros on the subdiagonal,
then x," 0, and the elementary transformation M --[ei,..., e,’_l, x] i.e.,

(4) M

1 X

1 x,’-i

0 x.
is nonsingular. The inverse of this matrix is

--X1/X," I(5) M-l=
1 -x,’_l/X,’"

1/x,, /
It is easy to see that M-ix e., Now we let

(6) /_it M-1HM.

It is.easy to verify that is unreduced and upper-Hessenberg, and that the last column
of H is Ae,’. Furthermore, the leading principal submatrix of order n- 1 of/, which
we will call H’, is upper-Hessenberg, has the property that

cr(H’) o’(H) {X},

and differs from the leading (n 1) x (n 1) principal submatrix of H in the last column
only. In fact, if we let h,’_l be the last column of the leading principal submatrix of
H of order n-1, then it is straightforward to verify that the last column of H’ is
h,’_l- h,’.,’_lx’, where

\Xn--1/Xn/
The strategy we have just described is given in [19] and applies regardless of whether
the eigenpair (x, A) is real or not. However, when (x, A) is real we get a real matrix
H’. In the case when (x, A) is not real, the last column of H’ alone is not real since,
as we remarked earlier, the other columns are those of a leading principal submatrix
of H. Hence the leading principal submatrix of H’ of order n- 2 is real. Also, in this
case the complex conjugate of (x, A), (2, A) is an eigenpair of H, and therefore A is
an eigenvalue of H; a corresponding eigenvector is

.,l--Xl(n/Xn)

M-I
,’-1

2,’/

Since o’(H’)= or(H)-{}, is an eigenvalue of H’, and a corresponding eigenvector
is the vector 2 of length n- 1, whose components are the first n- 1 components of a
scalar multiple of M-12
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where 2- -1. This is due to the special structure of/. Now recall that H’ has no
zeros on the subdiagonal, and so we know that the last component of is nonzero.
Note that : is real. We can carry out a deflation that produces a matrix H" of order
n- 2 with the property that

o-(H") o-(H’)-{X};

in the same way, we obtained H’ from H using the elementary transformation of order
n-l:

1 "1

Xn

From a previous remark about this deflation strategy, we know that H" differs from
the leading principal submatrix of H’ of order n- 2 (which is real) in the last column
only. The last column of H" is h’n_2 -hn_l,,_zX", where h’,_2 is the last column of the
leading principal submatrix of H’, and x" is the vector whose components are the first
n- 2 components of )7. Since all of the quantities involved are real, H" is real.

We remark here, as can be readily realized, that H’ (or H") is quite cheap to
obtain in practice once an eigenpair of H is available. It requires O(n) operations
consisting of a vector normalization, a scalar-vector multiplication, and a vector-vector
addition. However, the conditioning of the matrix M might raise concern. Indeed,

cond (M)= [[MII[[M-[[ max ([x[)max \[x.[,]’
which can be large if x, << xi. Having noted this, it is clear that the ill-conditioning of
M can be easily detected, and therefore one of the more stable (and costlier) methods
that we introduce next and in the following sections can be used.

It is possible to prevent the ill-conditioning of M from bearing on the algorithm
by avoiding a similarity transformation. More precisely, the eigenvalue problem we
want to solve can be thought of as a generalized eigenvalue problem, Hx ABx, with
B L We want to find tr(H)= o’(H, I). Now we know that given any nonsingular M
and N,

tr H, I) tr NHM, NM).

Given a particular eigenpair (x, A), we would like to choose M and N in a way that
solves the problem we set for ourselves at the beginning of this section, namely, we
want to reduce the problem to one where A is no longer in the spectrum. A closer look
at the similarity transformation (6) reveals that its deflating property is due to the fact
that M-ix e,. But then M-1 is not the only matrix that can be used to accomplish
this. In fact, the matrix N can be chosen to reduce x to a multiple of e, N DM-,
where D is the diagonal matrix with the entries

d, 1, if Ix, I/Ix, l<- 1,

d, =-x,,/xi iflxil/lx,l> 1,

i.e., D is chosen so that all the entries in N are less than or equal to one. Then we have

H’ 0
NM(7) NHM=

0 a y’
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with h A/6. Also, tr(H’, D’) tr(H, I) -{h}, and therefore, by this transformation, h
has been "removed" from the spectrum. Working on the solution of a generalized
eigenvalue problem from this point on will not generally cause any dramatic increase
in the cost of the algorithm, mainly because D’ is diagonal. A Newton step with this
problem involves the following computation:

(8) A Ai + ; X xi + y,e 0

where ri AiD’xi-Hxi Clearly, the previous computation involves an O(n) increase
in the cost of one step: this comes from the multiplications by D’. The details on how
(8) is derived are given in 9. If A is complex, then after deflating A and its conjugate, the resulting matrices H’ and D’ are generally complex. This is the major drawback
of this method.

Finally, we mention another approach that can be of interest when the similarity
transformation (6) involves a very ill conditioned M. This approach consists of inter-
changing two components of x and the corresponding columns and rows in H so that
the last component of x is large enough. More precisely, let Xs be the largest component
of x (in absolute value), and let P, be the matrix obtained from the identity matrix
by permuting the nth and sth columns. Then (P,x, A) is an eigenpair of the matrix
P,HP,, since

(P.HP.)(P.x)=AP.x.

Now scale the vector P.sx so that the last component is 1 and call that vector . Then,
as above, the elementary transformation

M:

0
can be used to deflate the matrix P.HP.. The fact that here P.HP. is not upper-
Hessenberg is of no consequence. In fact, we can make the following general statement:
Given any matrix A of order n, and any eigenpair (x, A) of A, then a matrix Q satisfying

Q-ix el or Q-ix en

can be used to deflate A, in the sense that

Q-1AQ [Ael, B1] or Q-1AQ [B2, Ae,],

respectively, where B1 and B2 are n (n- 1) matrices.
Having thus deflated the matrix P.sHP.s, the leading principal submatrix of order

n-1 of

(9) M-1P,,sHP,,sM

(call it H’) has all the eigenvalues of H except A (if A is simple). However, H’ is not
generally upper-Hessenberg, and therefore will be reduced back to Hessenberg form
before applying Newton’s iterations; this is meant to save on the cost of factorizing
the Jacobian when solving the linear systems arising at each step of Newton’s iteration.
Note that it is only the trailing diagonal submatrix of order (n s + 1) (n s + 1) of
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H’ that needs to be reduced and that if s n 1 or s n, then H’ is upper-Hessenberg.
Moreover, s need not be chosen so that xs is the largest component of x (in absolute
value). Indeed, since the size of the matrix to be reduced to upper-Hessenberg form
increases when s approaches 1, it is more advantageous to choose the largest s for
which the ratios xi/xs are moderate. We wish, therefore, to define a threshold for
the size of these ratios on the basis of which s will be determined.

Let H be the computed form of the matrix in (9). In [19, Chap. 9], Wilkinson
established that if Ilxll_-< 1, then the eigenvalues of H are the exact eigenvalues of a
matrix H’ satisfying

IIH-/’11 Ilrll+ (n 1)e,

where r is the residual Ax-Hx and e is the machine epsilon. With no assumptions
on the infinity norm of x, this inequality becomes

(10) H -/’I1 r + (n 1)11 x .
Since, in our algorithm, our computed eigenpairs have residuals on the order of
n HI1, we propose that H I1.

In addition to destroying the structure of the matrix, this last method of deflation
suffers from the fact that in the case when the eigenvalue to be deflated is nonreal,
the resulting matrix H’ is complex, and therefore will considerably increase the cost
offinding subsequent eigenpairs if a Newton process is restarted from a real initial guess.

3.2. Deflation with help from the left eigenvector. The method we introduce now
is different in spirit from the ones in the previous section, in that no attempt is made
to modify the matrix.

Assume that (x, A) is an exact eigenpair of H and that A is simple Hx Ax. No
assumption is made about the remaining eigenvalues of H.

Let (x, X) be such that

where the right-hand side is the Jordan canonical form of H. Now set

Then it is clear that y
that

H is a left eigenvector of H corresponding to A and furthermore

yHx =0.

This property can be used to modify Newton’s method to avoid convergence to the
eigenpair (x, A) a second time. Indeed, given A, we can compute the left eigenvector
y corresponding to it, and use it to confine the current eigenvector to the range R(X)
of X. Therefore, we can expect to converge to an eigenvector linearly independent of
x and hence corresponding to a different eigenpair (since (x, A) was assumed to be
simple). When (x, A) has already been computed once, our algorithm for avoiding it
then consists of the following major steps.
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Compute the left eigenvector yH corresponding to A, with Ilyll=--1; Given
the current eigenpair (z,/x) compute the Newton correction from Algorithm
2.1; Let z’ be the approximate eigenvector obtained after adding the Newton
correction to z; choose the next eigenvector z" as"

z"=(l-yyn)z’.

In the last step we are just projecting z’ onto R(X). We note that when this algorithm
is applied, it could happen (as with all the deflation methods we are describing) that
we obtain another eigenpair of H, (x’, A’), that was already computed. Then the process
must be restarted and z" will be obtained from z’ by a projection onto R(X’), where
X (x’, X’), in order to avoid both (x, ) and (x’, A’); this will require the computation
of the left eigenvector corresponding to A’ as well.

It is obvious why the known eigenpair must be simple for the algorithm just
outlined to work. If A is multiple, then left eigenvectors are no longer necessarily
orthogonal to X. In fact, the algorithm will be adversely affected if the eigenvalue A
is ill conditioned, i.e., if y"x is very small. Indeed, in this case, if the current eigenvector
z--ax + Xv, where v is a vector of length n- 1, then

(I-yy)z z-(yIz)y ax + Xv-(ayx)y z,

showing that z is hardly modified by the projection and therefore suggesting that the
algorithm will not necessarily prevent a second convergence to (x, ,).

The algorithm generalizes to the case when , is multiple in the following way.
Let V be a right invariant subspace corresponding to ,. Let (V, V) be such that

V, Vc)_IH( V, Ve) (Jx Oj)0

where the right-hand side is again the Jordan canonical form of H. Ja is the Jordan
block corresponding to A; since H is assumed to be unreduced, there can be only one
such block. If we set

then clearly U is a left invariant subspace corresponding to I, and furthermore,

U"V =0.
This last property will allow U" to be used in much the same way as the left eigenvector
was used earlier. However, the practical usefulness of this method is restricted to the
case when the eigenvalue , is simple. Indeed, the problem of determining the invariant
subspace associated with a multiple eigenvalue , is an extremely difficult one and can
be prohibitively expensive.

This method in its simplest form (using the left eigenvector) adds O(n2) work to
the cost of finding one eigenpair distinct from (x, ,). This is the cost of computing the
left eigenvector corresponding to ,; the cost of a single projection is O(n).

3.3. Deflation with orthogonal transformations. We present now a very stable
method for obtaining an upper-Hessenberg matrix H’ with the property that it has all
the eigenvalues of H except for , [19]. We assume for now that the eigenpair (x, A)
is exact.

The strategy consists of n-1 major steps, where at each step a new zero is
introduced in the last column of H-,I starting from the bottom. The configuration
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at the beginning of the rth step looks like

with zeros in the last r- 1 components of the last column. The rth step then consists
in a post-multiplication by Gr, where Gr is the (possibly complex) rotation in the
plane (n-r, n) designed to annihilate the (n-r, n) element

/1

Sr Cr

where IlCr]12+ ]]Sr]l 2= 1. This post-multiplication will affect columns n-r and n only,
and therefore will not disturb zeros previously introduced in the last column. At the
(n- 1) step, G,_, which is constructed to zero the (2, n) element, will also zero the
(1, n) element. Indeed, assume that after the (2, n) element has been zeroed we have
some value a in the (1, n) position; then we have

(H AI) G1 Gn-

Now if we develop the determinant of this matrix by the last column we get

det [(H AI)G, G,,_,] abl bn_l,

where br is the rth subdiagonal element of (H-AI)G... G,,_"

det[(H-AI)G,... G._,] det (H-AI) =0,

since (det (Gr) 1) for r 1,..., n 1. But br 0 for all r, since we have assumed that
H had no zeros on the subdiagonal and since post-multiplication by a Gr can only
increase the modulus of a subdiagonal element in H-hi. Thus we must have a 0,
and therefore, at the end of the n- 1 steps just described, the last column is zero. Let
us set G1... G,_ to simplify the notation. Then

-=n=Gn ...Gnn--1

and it is straightforward to verify that the zeros of the last column of (H-AI) will
be preserved when it is premultiplied by qd-1, because the successive premultiplications
by Gf, r- 1,..., n- 1, will preserve those zeros. Therefore, the last column of

I2I cH H AI) + AI
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is equal to Aen. The eigenvector of corresponding to A is en. Note, however, that
H is not upper-Hes.senberg in this case. Indeed, nonzero elements will be introduced
in the last row of H; in fact,

This is not disturbing since if H’ is the leading principal submatrix of of order
n-1, then H’ is upper-Hessenberg and tr(H’)--tr(H)-{A}.

If A is a multiple eigenvalue of H of (algebraic) multiplicity m, then A is an
eigenvalue of H’ of multiplicity m- 1.

So far we have assumed that the eigenpair (x, A) is exact.. In practice, (x, A) will
only be approximate, in the sense that Hx-Ax- r is of the order of the machine e.

In this case, roundoff errors will generally prevent G,_I from annihilating the (1, n)
entry. In fact, the accuracy of the computed eigenvalue A will come into play. If A
corresponds to an ill-conditioned eigenvalue of H, then it is possible that A will be a
rather poor approximation of the exact eigenvalue. As a consequence, the (1, n) entry
might not be negligible at all, and examples do exist where this is indeed the case 19].
A way around this difficulty is to construct the plane rotations G1,..., Gn_l in a way
to reduce the vector x to en and then apply the corresponding similarity transformation
to H. Inequality (10) from 3.1 holds when this is done (with obvious modification
in the definition of H’). However, this will generally result in introducing nonzero
entries below the subdiagonal of H and therefore H needs to be reduced to upper-
Hessenberg form again. We refer the reader to [3] for an example of such an algorithm;
the generalization of that algorithm to the case where the eigenvalue to be deflated is
complex is straightforward.

In addition to the difficulty just mentioned, the deflation with plane rotations
suffers from the fact that the deflated matrix will be complex if the eigenvalue to be
deflated is complex. Indeed, it is unfortunately not true that when an eigenvalue and
its complex conjugate are deflated by this method, the resulting matrix is real.

Example 3.1. When the two complex eigenvalues of the 4 x 4 upper-Hessenberg
matrix

0.2190 -0.0756 0.6787 -0.6391
-0.9615 0.9032 -0.4571 0.8804

0 -0.3822 0.4526 -0.0641

0 0 -0.1069 -0.0252

are deflated using plane rotations as just described, we obtain

1.1593-0.0000i 0.0000/ 1.0129i 0.0000/0.0000i 0.0000/0.0000i

0.0000-0.3053i 0.1740-0.0000i 0.0000/0.0000i 0.0000/0.0000i

-0.1534-0.3540i 0.5717/0.0112i 0.1082-0.4681i 0.0000/0.0000i

-0.4640+0.1988i 0.2187-0.3465i 0.3964/0.0611i 0.1082+0.4681i

After the deflation, we will be working with the upper 2 x 2 block of H’ which is clearly
complex.
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3.4. Remarks on identifying duplicate eigenvalues. We have already remarked that
the computed eigenpairs from our algorithm are the exact eigenpairs of a nearby
matrix. Under those conditions [9],

IA Ael <--IIEIIIIs(,e)l,
where E is the error in the matrix, and IS(Ae)I is the condition number of the exact
eigenvalue he of the original matrix H. When he is ill conditioned, we can expect
unpredictably large errors (compared to the tolerated size of the residual) in the
computed approximations to he and therefore in the duplicates, if any. Identifying
these duplicates becomes a rather daunting task: in particular, they will not be detected
if their difference is compared to tol introduced earlier. Conversely, it can happen that
under certain conditions the tolerated size of the residual will be much larger than the
distance between certain exact eigenvalues and therefore between certain computed
eigenvalues. In this case, it could happen that distinct computed eigenvalues will be
declared as duplicates if their difference is compared to tol.

Example 3.2. We illustrate this last case with the following matrix:

H 2 10-7

0 2 101

The tolerated size of the residuals for this matrix as chosen in our algorithm is
tol IIHIle > 10 -6. Therefore, if we decide to declare as duplicates those eigenvalues
whose difference is less than tol, then the first two distinct eigenvalues of H will be
declared as duplicates.

The problems we have just raised do not have easy solutions [10], and indeed,
more research is needed here.

3.5. Conclusion regarding deflation techniques. As we pointed out earlier, the need
to deflate arises less than 5 percent of the time in our tests. Our method of choice has
been the method of deflation using elementary transformations introduced in 3.1.
This method is indeed the least expensive among all those we have discussed. Also,
the resulting deflated matrix is in upper-Hessenberg form and is real when a pair of
complex conjugate eigenvalues has been deflated.

4. Defective case. Our being a nonstationary iteration (the iterating map is not
fixed), it is not easy to analyze the behavior of the successive approximations. We try,
however, to address this problem in this section with a particular emphasis on the case
when either the matrix H or the modified matrix Ho is defective, i.e., when either one
of these matrices does not have a complete set of eigenvectors. As we remarked earlier,
an eigenvalue of H (with no zeros on the subdiagonal) can only have geometric
multiplicity one, and there H is defective whenever it has a multiple eigenvalue. An
eigenvalue of Ho, on the other hand, can have geometric multiplicity one or two. In
what follows, n is the order of H.

The connection between Newton’s method and inverse iteration is well known
[16]. We derive this relationship in a way that motivates the subsequent analysis: We
let J be the Jacobian of the map Fs at (x, A) defined in 2,

J= er
and we assume that xs 1. The order of the Jacobian is n 4-1. Then

TJ Jo 4- en+ V
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with

and

V es en+l

Assume that Jo is not singular; this is true if and only if A is not an eigenvalue. Assume
also that J is not singular. The correction to (x, A) is computed in the following manner:

where r Ax-Hx. Using the Sherman-Morrison formula [9], we can write j-1 as

j-l (Jo + e,,+, v)-’ Jl
1 + vTj-len+l

Therefore, letting b(), we have,

(11) (Y)=J-b=J-b
It can be easily checked that

and that

jlen+lV Tj-l.

1 + vTjlen+I
j-l en+l

Jie,,+i=
1

where (H-AI):=x. Now, if we let (xl, A) be the next eigenpair, we have from (11)
and the subsequent equalities:

Furthermore,

1 + vTJ- e,+

vTj-lb -1

1 +vTJ- en+l s
and so finally we see that our scheme reduces to the following: Given (x, A), compute
the next iterate (xl, A1) via

1 1
(12) (H-AI)=x, Xl=-Z-x,

Xs
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4.1. Case when H is defective. When the algorithm is expressed as in (12), we can
readily see some of the difficulties that arise when the matrix H is defective or almost
defective, which is generally more likely due to roundoff errors. These problems are
similar to the kind of problems that we face with the application of inverse iteration.
More precisely, assume that H is almost defective with xl,..., xn as a complete set
of eigenvectors. Let A1,...,/l be a cluster of eigenvalues of H and suppose that the
initial approximate eigenvalue A corresponds to one ofthese. The eigenvectors Xl,. Xl
corresponding to these eigenvalues are then almost linearly dependent. In general, the
eigenvector corresponding to A can be expected to converge to the space generated
by xl,..., x. As the eigenvalue A approaches the cluster, however, continued correc-
tions to the eigenvector cannot be expected to refine it. We refer the reader to the
particularly lucid account in 16] for a justification of these claims. Solving as in inverse
iteration (see INVIT [17]) is a possible way around this problem. Computing the
residual with extended precision arithmetic is also an obvious approach, and has been
successful in practice.

When approaching a singular solution, Newton’s method loses its quadratic
convergence rate. We will prove later (Theorem 5.1) that the Jacobian is singular at
multiple eigenpairs. Therefore, we can expect slower convergence when multiple
eigenpairs or almost multiple eigenpairs are the target: this is indicated in Fig. 1 by
the large number of iterates separating the initial guesses from the converged values
for an almost-defective matrix.

Recall the rate of change of A that we derived in 2:

We wish to caution against hastily drawing conclusions about the sensitivity of the
eigenvalues of a defective matrix to our dividing process from this expression. Indeed,
as an extreme case which will help to illustrate our point, the eigenvalues of a defective

0.6
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-0.2

-0.6

".0 .. ".. ......

-0.4 -0.2 0 0.2 0.4 0.6

real part

FIG. 1. The behavior ofthe algorithmfor an almost defective 25 x 25 matrix. The crosses are the eigenvalues

of the original matrix; the stars are the initial guesses; the circles are the eigenvalues computed by our algorithm"
the dots are the iterates arising in Newton’s iterations.
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matrix can remain virtually unchanged after a zero has been introduced in the sub-
diagonal. An example is the 2 x 2 matrix

After the dividing process we have

The starting eigenpairs are then ((), 1) and ((o), 1). The second of these is, of course,
the exact eigenpair. Now, even though the first starting eigenvector is orthogonal to
the desired one, the equations arising during the first of Newton’s iterations can be
solved in such a way that the desired eigenvector is produced from the first step: zero
pivots must be replaced by small numbers on the order of the machine unit roundoff
(as is done in inverse iteration; see INVIT [17]).

Finally, we mention that the deflation process can contribute to the improvement
of the condition of the eigenvalues. Indeed, if A and A’ are pathologically close (and
fairly distant from the rest of the eigenvalues), then by deflating A, A’ will have a better
condition number as an eigenvalue of the resulting matrix. Indeed, A’ is no longer part
of a cluster.

4.2. Case when Ho is defective. It can happen in this case (e.g., if H is nondefective)
that the initial dividing process would leave us with a number of initial approximations
that is smaller than n. In this case, random eigenvectors are used to complete the set
of initial eigenvectors. Furthermore, whatever eigenpairs we have can be extremely
poor approximations to the desired ones. An extreme situation is illustrated by the
matrix

0 0 0 1

1 0 0 0
H=

0 1 0 0

0 0 1 0

No matter where the zero is introduced on the subdiagonal, the resulting matrix
has zero as its only eigenvalue, and we only have two initial approximations to the
four distinct eigenpairs of H, namely,

0 0

1 0

0 0

0 1

if the zero is introduced in the (3, 2) position.
Furthermore, the Jacobian is exactly singular at each of these initial approxima-

tions. Indeed, the Jacobian at

0

1

0

0
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0 0 0 1 0

1 0 0 0 -1
0 1 0 0 0

0 0 1 0 0

0 1 0 0 0

which is clearly of rank four, since the first and the last columns are linearly dependent.
Similarly, it can be seen that the Jacobian at

0

0

0

1

is also singular. A remedy to this situation is to perturb the initial guess zero by a
small amount, thereby making the Jacobian nonsingular. Indeed, this has been success-
ful in practice. The problem in this case, as in most other similar cases, results from
the particular structure of the matrix. In order to obtain further eigenvalues, we need
to deflate the matrix each time a new eigenpair is computed which makes the algorithm
almost serial.

4.3. Known failures. Some matrices of the structure mentioned at the end of 4.2
(companion-like matrices), provided us with the only cases where the algorithm failed
in practice to converge to the desired eigenpairs, i.e., failed to produce eigenpairs with
small residuals after a fixed number of iterations. When these matrices were subjected
to random orthogonal similarity transformations, however, and then reduced back to
upper-Hessenberg form, the dividing process provided us with much better initial
approximations and, indeed, the algorithm converged for all initial approximations.
We are certainly not advocating this as a general viable scheme: we want to emphasize
the fact that it is the structure of the matrix that caused the poor approximations and
the failures, and not some inherent difficulty with the spectrum of these matrices.

5. Convergence. In 2, we mentioned that computing an eigenpair of H reduces
to computing a zero of

The Jacobian of Fs at (x, A) is

Hx AxFs(x, A)= ex-1]"

{D,(Hx-Ax)D(,,F(x, A) \ Dx(er 1) D,(eT -1) =\ eT

where Dx(F) denotes the derivative with respect to x of the function F. In this section,
we give sufficient conditions for the convergence of our procedure. The result is a
version of the Kantorovich theorem as it applies to our case.

THEOREM 5.1 (Wilkinson). Assume that (x, A) is an exact zero of Fs. Then

is singular if and only if A is multiple.
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Proof. Let us assume first that A is a multiple eigenvalue of H and that x is the
corresponding (exact) eigenvector. Then there exists a nonzero vector y such that

yH(H-AI)=O and ynx=o;
y is simply a left eigenvector of H corresponding to A. Thus (yHO) is a nonzero vector
and

er
=0.

This proves that the Jacobian is singular.
Now, conversely, if

is singular then there exists a nonzero vector () such that

But then v=0 and (H-II)v=x. If =0, then v is nonzero since (,) 0, and so
v is an eigenvector that is linearly independent of x, since x 1 and
is a multiple eigenvalue in this case. If 0, then v is also nonzero; if it were zero
then we would have

x=(g-av=(-aO=O,
and hence x 0, contradicting our assumption on x. But (H- II)v (H- II)x 0,
and thus v is a nonzero vector that has grade 2. Therefore, I is multiple in this case
as well.

Remark. Since we are assuming that H is upper-Hessenberg and unreduced, an
eigenvalue can only be nonderogatory, i.e., the associated eigenspace has dimension
one.

The previous result applies to the Jacobian at a zero of F. We wish to know more
about the Jacobian at those approximations arising during Newton’s iteration before
convergence to an eigenpair.
ToM 5.2. Assume that (x, ) is not a zero of F. en

is singular if and only if at least one of the following is true:
(1) is an eigenvalue ofH and has an eigenvector whose sth component is zero.
(2) x belongs to the space generated by (c,..., Cs_, c+,..., c), where c is the

ich column ofH-II ( may or may not be an eigenvalue).
Proo Assume first that (1) is true and let y be an eigenvector, y 0. Then ()

is clearly in the null space of the Jacobian. If (2) holds and x=(H-II)y with y=0,
then () is in the null space of the Jacobian.

Conversely, if the Jacobian is singular then there exists a vector () such that,
H-II

This implies that

(N-I x, e2y =0,
and clearly y 0. We now consider two cases according to whether is zero or not.
If is zero, then I is an eigenvalue with corresponding eigenvector y; therefore, we
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are in case (1). If/ is not zero, then/x and hence x is in the range of H AI; therefore
we are in case (2) since Ys 0. Note that A may or may not be an eigenvalue in this
last case. D

Remarks. The theorem tells us that more often than not, a singular Jacobian is
an indication that the current eigenvalue has already converged, and this has been our
experience indeed. The singularity of the Jacobian is also an indication of an ill-
conditioned eigensystem. In fact, if we accept that the current eigenvector was moving
in the "right" direction, then if it satisfies condition (2) of Theorem 5.2, we can say
that the eigenvalue is acting like a multiple one since the eigenvector is also in the
range of (H-hi). In practice, we have not encountered a situation where condition
(1) applied. If we accept again that the eigenvector was moving in the right direction,
then condition (1) implies that the eigenvalue is acting like an eigenvalue of geometric
multiplicity more than one (since xs 1), which is impossible since the matrix is
unreduced.

The second derivative of Fs is a constant bilinear operator with norm equal to 2.
In fact,

F(x, )=
0 0 0

Suppose now that our procedure is started with initial guess (Xo, ho). We now give
sufficient conditions for the convergence of our procedure with the given initial guess.
Let us first introduce

K--llF’-l(xo, Ao)ll
and

where (Xl, A1) is the first iterate, i.e.,

(x,, A1)T= (Xo, Ao)T_ F,s-1 (Xo, Ao)F(xo, Ao).
We call (Xo, ho),. (Xk, hk) the sequence of iterates produced by the algorithm. Now
the classical Kantorovich theorem [6] gives the following result.

THEOREM 5.3. If flo--Kc, then the sequence (Xk, hk) converges quadratically
starting from (Xo, ho).

The process can be regarded as starting from any of the iterates (xi, hi), and in
fact it will often converge even when the conditions of the theorem are not satisfied
at (Xo, ho). These conditions will then be met for some (xk, Ak) at which stage conver-
gence becomes quadratic.

6. Parallel algorithms: Details and performance. It is fairly straightforward to see
from 2 how to obtain a parallel algorithm. We discuss here certain details. The given,
generally dense, matrix is first reduced to upper-Hessenberg form using a parallel
blocked algorithm. Next comes the partitioning phase or "divide." This phase amounts
to constructing a binary tree with each node representing a partition into two subprob-
lems. It has been our practice to partition the matrix into a number of subproblems
(at the lowest level) equal to the number of processors available on the target machine.
Each of these problems may be spawned independently without fear of data conflicts;
the computation at this level (the lowest) consists of calls to the EISPACK routine
HQR2. The tree is then traversed in reverse order with Newton’s method applied at
each node, using the results from the children as initial approximations. Note here
that the computation at a node does not have to wait for both children to complete
in order to start: as a matter of fact, it can start as soon as one child has computed
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one eigenpair of a subproblem. In order to stress this point, we mention here that this
is quite different from the situation in the symmetric case [7], where information from
both children is needed before computations can start at the node. However, in practice,
we have allowed computations to start at a node only after at least one child has
completed; the need to check for duplicate eigenvalues and deflate if necessary has
imposed further synchronization.

The algorithm has been implemented on computers with a shared memory and
computers with distributed memory architectures.

6.1. Shared memory implementation. So far we have used SCHEDULE [8] to
implement the algorithm on shared memory computers. SCHEDULE is a package of
FORTRAN and C subroutines designed to aid in programming explicitly parallel
algorithms for numerical calculations. An important part ofthis package is the provision
of a mechanism for dynamically spawning processes even when such a capability is
not present within the parallel language extensions provided for a given machine.

6.2. Distributed memory implementation. The current implementation on dis-
tributed memory machines requires that the matrix be stored on each processor. This
obviously puts rather severe constraints on the size of problems that can be solved.
With this implementation however, communication is needed only during the deflation
phase. This implementation is best described through the contribution of a particular
processor. Suppose that we have four processors at our disposal, Po,..., P3, and that
accordingly the matrix H has been divided into four subproblems, Ho,..., H3, that
their common size is n/4, and that they occur in this order on the diagonal of the
matrix. We describe now the contribution of P2 by steps"

1. Call HQR2 to solve for the eigensystem of the matrix H2.
2. Refine the output from step 1 to get 1/2 the number of (i.e., n/4) eigenpairs of

the matrix H1/2

where H1/2 is a submatrix of H.
3. Refine the output from step 2 to get z the number of eigenpairs (i.e., n/4) of

the matrix H.
As can be readily realized, no communication between processors is ne’eded except

for checking for eigenpairs to which convergence occurred from more than one initial
approximation. For example, the eigenpairs of HI/2 are generated on P2 and P3, and
therefore we need to check for duplicate eigenpairs (on each processor separately,
which requires no communication, and across both, which requires communication).

We are currently developing another implementation where blocks of columns of
the matrix are stored on different processors. This storage scheme has been dictated
to us by the need to call HQR2 at the lowest level. Indeed, to call the serial HQR2
requires that contiguous columns of the matrix reside on the same processor. Therefore,
storage schemes more advantageous for linear system solving, such as wrap mapping
of columns or rows, could not be used. The communication between processors for
this second implementation is more intensive. Communication is needed when solving
the linear systems arising in Newton’s iterations as well as for the deflation phase.
Also because ofthe storage scheme, we can expect the processors to become successively
idle during the factorization of the Jacobian and the back solve for the correction.
However, we have implemented an efficient scheme where the Jacobian is repartitioned
by rows before the back solve takes place: the "reshuffling" of the submatrices takes
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place between processors that became idle after doing their part of the Gaussian
elimination.

7. Work estimates. We assume in this section that we are given a real dense matrix
A. Then, the first task in our algorithm is to reduce A to an upper-Hessenberg matrix
H. This requires 10n3/3 operations (plus lower-order terms) if elementary transforma-
tions are used, since these matrices are to be accumulated.

The dividing process is now applied to H. Assume that n 2"r for some m >_-1,
where r is not necessarily relatively prime to 2. In order to simplify the subsequent
analysis we will assume that the dividing process produces submatrices of equal size,
namely half the order of the original matrix. If we repeat the dividing process rn times,
we end up with 2" matrices of size r, each of which is upper-Hessenberg. A submatrix
of size n/2 obtained in the dividing process will be referred to as a matrix at the level
i. The matrix H itself is at the level 0, and the r matrices referred to above are at the
level m. Thus we have m + 1 levels in total. Let p’= 2" be the number of submatrices
at the lowest level, and p the number of processors; we will assume that p 2q, q <_- m.
The cost of finding the eigenpairs of a (Hessenberg) matrix at the lowest level (by the
QR algorithm) is roughly 18 (nip’)3. This figure is very approximate and assumes,
among other things, that two QR steps are needed before a real or two complex
conjugate eigenvalues are identified, and that the matrix has an equal number of real
and complex eigenvalues [9]. Let sl n/2 be the size of one matrix at the level I. Let
kl be the average number of iterations needed to get one eigenpair of a matrix at the
level I. kl depends on the matrix and on its size, of course. We will make the following
simplifying assumption, however: kl k, 0,..., m, i.e., we assume that the average
number of steps required for convergence is the same at all levels. Our experience
with the algorithm suggests that this is a realistic assumption as long as the size of the
submatrices remains moderate. If the number of levels is increased to the point where
we are left with small submatrices (less than 20 20, say), then kl becomes significantly
larger as increases (for very small matrices it can be more than 10 on the average).

The cost of computing one correction at the level is roughly 6s/. Indeed, one
Newton iteration involves the solution of a linear system that is upper-Hessenberg,
but for possible nonzeros in the last row, the order of this linear system is Sl+ 1.
Therefore, two multipliers at most must be computed per column and, when updating
the matrix, each of these will be used in 2(Sl d- 1--i) multiplications and additions,
where is the index of the column. The factorization of the Jacobian requires 2s
operations in addition to O(s) operations (including divisions and comparisons). The
forward solve is O(Sl) work and is negligible. The backsolve requires s operations
and computing the residual requires another s operations. Therefore, for a real current
approximation, one correction comes at the cost of4s. For a complex current eigenpair,
this becomes 16s since the dominant operations are a roughly equal number of
multiplications and additions. Since, as we indicated in 2, only one of a conjugate
pair of complex eigenpairs must be corrected, we can assume that 8s operations are
required for correcting a complex eigenpair. Assuming again that the matrix has an
equal number of real and complex eigenvalues, our estimate for the amount of work
required for computing one correction at the level becomes 6s/2 operations.

We shall use nip initial guesses to start nip Newton processes on each processor.
We now have the following work estimate on one processor, assuming that all processors
share equally the cost of all the stages of the algorithm

Wp-
3p

+ 18 + 6 ks+2--,
/=0 p
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where lOn3/3p is the processor’s contribution to the reduction of the original matrix
to upper-Hessenberg form; 18 (p’/p’)(n/p’) is the cost of applying the QR algorithm
to p’/p matrices of size nip" m-1 6(n/p)ks is the cost of solving k linear systems1=0

with matrices of size Sl, repeating this for nip initial guesses and for l=
0,..., rn 1; 2n3/p is the processor’s contribution to the computation of the eigenvec-
tors ofthe original dense matrix A once those ofH have been computed. The expression
for the work can be rewritten as

Wp -- + -;5+--1-
But p’--2" and therefore p,2= 4,, and hence

(13) Wp=--- --+8k+(18-8k) 4--
where for ease of reference we redefine the various parameters: n is the order of the
matrix, p is the number of processors, k is the average number of Newton iterations
needed before an eigenpair is accepted, and rn is the number of zeros introduced on
the subdiagonal.

The cost of getting the eigenvalues and eigenvectors by the QR algorithm is 15n
[9]. A reasonable value for k is 3; however, there are cases when k is 2 or less. There
are also cases where k is larger than 3, mostly with matrices of small order or defective
matrices.

It is easy to verify that for k 2 and for rn 1 (one split) the model for the cost
of the algorithm predicts that a sequential implementation of our algorithm is faster
than EISPACK’s Real General (RG). Our model predicts that a sequential implementa-
tion of our algorithm is slower than RG for problems where k equals or exceeds 2
(see Fig. 2). Here are some sample values of Wp, assuming that k 3 and p p’= 2’,
which means that the original problem is subdivided into a number of problems equal
to the number of available processors.

p= 128-> Wp 0.2291n3; p= 1024-> Wp 0.0286n 3.
Here we have assumed that the problem is large enough to allow the efficient use of
that many processors. Note that the ratio of the work estimate from our model to the

10

FIG. 2. Variation of the coefficient of n in work estimate model in terms of the number of steps k, with
m and p (see expression for work).
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work estimate of QR is independent of n. This is due to the simplifying assumption
on k made at the beginning of this section. That assumption has in effect "hidden"
the dependency on n of the coefficient of n in our model. Figures 2, 3, 4, and 5 show
plots of the work estimate for various values of the parameters involved.

We note, finally, that the cost of our algorithm will increase when the matrix or
the subproblems obtained in the divide process are ill conditioned (see 4 and [12]).
Furthermore, repeated deflations will also contribute to an increase in the cost.

8. Numerical results and performance. In this section we present the results of the
implementation of the algorithm on a number of machines. The serial version of the
code is available through NETLIB where it is called "nonsymdc."

The same algorithm has been run on the IBM RS/6000-550, the Alliant FX/8,
the Intel iPSC/2, and the Intel iPSC/860. We compared our results to those of HQR2
from the EISPACK collection. We have used randomly generated upper-Hessenberg
matrices in these tests, with entries uniformly distributed between -1 and 1; deflation
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29

28.8

28.6

28.4

28.2

27.8
10

FIG. 3. Variation of the coefficient of n in work estimate model in terms of the number of splits m, with
k 3 and p (see expression for work).

FIG. 4. Predicted speedup over QR in terms of number of splits m, with p 2 and k 3 (see expression

for work).
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FIG. 5. Predicted speedup over QR in terms of the number ofprocessors p, with m log2p and k 3 (see
expression for work).

was not performed. The storage requirement for our algorithm in a serial implementa-
tion is 4n2+ O(n), which is twice the storage requirement for a serial implementation
of HQR [17].

Table 1 provides the results from the IBM RS/6000-550 implementation. The IBM
RS/6000-550 is a single-processor computer with a RISC-based architecture. In the
last column we have given the number of distinct eigenvalues that was computed by
our algorithm (the test matrices had no multiple eigenvalues); some eigenvalues were
found multiple times. Each matrix was divided into two subproblems, i.e., only one
zero was introduced on the subdiagonal.

In an implementation on a shared memory machine, the storage allocated to the
Jacobian (in serial mode) is multiplied by the number of processors used; this is meant
to prevent concurrent write to the same memory locations. Table 2 provides some
results from the Alliant FX/8 implementation. The Alliant FX!8 is a parallel machine
with eight vector processors.

TABLE
Results on IBM RS/6000-550.

Order HQR2 D&C Ratio HQR2/D&C Distinct

100 1.04 1.12 0.93 99
200 9.31 9.18 1.01 196
300 34.1 28.1 1.2 293
400 94.0 65.3 1.4 395
500 196 136 1.4 490
1000 1741 992 1.7 1000

TABLE 2
Results on Alliant FX/8.

Order No. of procs. Levels Ratio HQR2/D&C

100 2 1.7
4 2 2.4
8 3 4.0
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The results on the Alliant were generally disappointing. The storage scheme for
the Jacobian that we used on that machine seems to have inhibited the compiler’s
vector optimizations. HQR2, running on a single processor, was vector optimized.

Table 3 provides some results from the Intel iPSC/2 implementation. The largest
size used was dictated by the memory capacity of a single node.

Table 4 provides some results from the Intel iPSC/860 implementation. We observe
here that the speedups realized by our algorithm over the QR algorithm do not remain
linear for a large number of processors. This is due to the fact that our algorithm is
much less efficient on small matrices, and we had to work with small matrices when
the number of processors became large. For example, with a matrix of order 600 and
using 64 processors, matrices of average size 20 had to be solved on each node at level 5.

TABLE 3
Results on iPSC/2.

Order No. of procs. Levels Ratio HQR2/D&C

100

200

300

1.22
2 2.2
4 2 3.7
8 3 6.0

16 4 8.2
1.16

2 2.2
4 2 3.5
8 3 5.2

16 4 9.1
1.25

2 2.2
4 2 3.2
8 3 6.3

16 4 9.8
32 5 13.2
64 6 21.3

Order

TABLE 4
Results on iPSC/860.

No. of procs. Levels Ratio HQR2/D&C

100 1.15
2 1.9
4 2 3.3
8 3 5.1

400 1.24
2 2.4
4 2 3.2
8 3 6.0

16 4 8.4
600 8 3 7.5

16 4 13.5
32 5 23
64 6 32
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9. The generalized eigenvalue problem. We show here how the ideas behind our
algorithm can be used to solve the generalized eigenvalue problem.

9.1. Basic algorithm. Given an upper-Hessenberg matrix H and an upper-
triangular matrix U,

0
v=

0
we want to solve the generalized eigenvalue problem

(14) Hx )t Ux.

Without loss of generality, we can assume H to be unreduced and U to be nonsingular
since otherwise the problem reduces to a smaller problem. Then our algorithm general-
izes easily. Indeed, set

Ho= H- e+e[,
and consider solutions of (or approximations oD
(15) Hox A Ux,

as initial approximations to the sought eigenpairs. More precisely, solving (15) reduces
to solving

Hx A UlX and H22x A U22x.
Let us denote these solutions by (, A1),..., (,, A,) (we have n solutions because
of our assumption that U is nonsingular). These can be used to construct initial
approximations (x,A),..., (x,,A) to the eigenpairs of the original generalized
eigenproblem in much the same way we did in the case U I. More precisely, we take

if i E tr(Hll, Ull), and

if )tie 0"(H22 U22 (appropriate number of zeros in each case).
Finally, solving the generalized eigenvalue problem (14) above is the same as

solving the problem

Hx A Ux O, L(x) l,

where L(x) is a scalar equation, which we take to be a normalizing condition: erx 1.
Then for each initial eigenpair (xi, Ii), successive corrections can be computed via

e
a - a "JI- X X + y,

where

t’i A Ux Hx

A possible stopping criterion for this scheme is the condition

Hxi li Uxi =<f(  )11H U
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where f(n) is a modest function of n. It is easy to see that starting from two complex
conjugate initial guesses the algorithm will compute complex conjugate corrections,
therefore allowing savings similar to those in the case U--L

9.2. Deflation in the generalized case. The method of deflation presented in 3.1
generalizes to this case in the following manner. Let Hx ,,X Ux (of course, in practice,
we only have an approximate eigenpair). Then it is true that if w Ux then wn 0.
Indeed, if w, 0, then it can be shown that w is zero using the fact that H is unreduced.
U being nonsingular implies that x is zero, which is not true.

Let

and

We know that or(H, U) is the same as o-(NHM, NUM) for any nonsingular M and
N. For our purposes, we take

M=[el,...,e,,_l,X]

and

N--[el,... en-1, U].

Then it is easy to verify that we have

(16) NHM NUM
ce "Y 0

where H’ is upper-Hessenberg, U’ is upper-triangular, and

(17) / =;.

In fact, in this particular case we have 3’ A and 6 1. Clearly,

(H’, C’) (H, U)-{X}.

Therefore, having "removed" A from the spectrum we can get further eigenpairs. We
note that, just as in the case U =/, H’ and U’ are very cheap to obtain once N has
been determined. Indeed, H’ differs from the n- 1 n- 1 principal submatrix of H
in the last column only, whereas U’ is the n- n- 1 principal submatrix of U. The
computation of N requires a matrix-vector multiply.

It is also easy to verify that deflating two consecutive complex conjugate eigenpairs
results in real H’ and U’.

The condition number of N might raise concern. We have

cond (N) max (Iw, I)
It is therefore easy to detect an ill-conditioned N. We propose to handle this situation
in the generalized case in the following manner. Let D be a diagonal matrix with its
diagonal elements di defined by

di 1, if =< 1,

di
w,,

if
Iw,
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Then, clearly,

tr(DNHM, DNUM) or(H, U),

since D is nonsingular. The multiplication by D cancels all the large entries in the
last column of N. It is easy to see that (16) and (17) are satisfied when the premultiplica-
tion is done with DN instead of N. The disadvantage of having to premultiply by D
is that after the deflation of two complex conjugate eigenpairs, the resulting H’ and
U’ might still be complex.
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ON ROW RELAXATION METHODS FOR LARGE CONSTRAINED
LEAST SQUARES PROBLEMS*
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Abstract. This paper addresses the question of how to construct a row relaxation method for solving
large unstructured linear least squares problems, with or without linear constraints. The proposed approach
combines the Herman-Lent-Hurwitz scheme for solving regularized least squares problems with the Lent-
Censor-Hildreth method for solving linear constraints. However, numerical experiments show that the
Herman-Lent-Hurwitz scheme has difficulty reaching a least squares solution. This difficulty is resolved by
applying the Riley-Golub iterative improvement process.

Key words, row relaxation methods, large unstructured least squares problems, linear constraints,
iterative improvement of regularized solutions
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1. Introduction. This paper presents a row relaxation method for solving con-
strained least squares problems of the form

minimize 1/211Ax-bll 2

(1.1) subject to a/Tx -> b for rn + 1,..., s

and afx=bi fori=s+l,...,t,

where denotes the Euclidean norm. Here and henceforth, A is a real rn x n matrix,
b=(bl,...,b,,)TR’, and x=(xl,...,xn)rRn denotes the vector of unknowns.
ai, i= m+ 1,..., t, are given vectors in E", and bi, i= m+l,..., t, are given real
numbers. The rows of A are denoted by a/r, 1,..., m, and the x n matrix whose
rows are a f, i= 1,..., t, is denoted by/.

The term row relaxation method refers to an iterative scheme whose basic iteration
is composed of a sw.eep along the rows of/. This type of method is suitable for
problems in which A is large, sparse, and unstructured. In particular, it was proved
to be a useful tool for handling large linear systems that arise in the field of image
reconstruction from projections. In this field, it is possible to avoid storing A. Instead,
the nonzero entries of the ith row are newly generated from the experimental data at
each iteration. For this reason these methods are also called row generation methods
or row action methods (see Censor [2]). Perhaps the most famous method of this kind
is the method of Kaczmarz 11 ], which was rediscovered under the name ART (algebraic
reconstruction technique) in the field of image reconstruction from projections (e.g.,
Gordon, Bender, and Herman [7] and Herman, Lent, and Rowland [8]). This scheme
is aimed at solving a consistent linear system of the form

(1.2) Ax=b,

and its basic iteration is composed of rn steps where the ith step, 1,..., m, considers
the ith equation. Let x denote the current estimate of the solution at the beginning of
the ith step. Then the change in x during the ith step is

wa,(bi- afx)/afa,,
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where 0< w <2 is a preassigned relaxation parameter. Note that when w= 1, the
current point is projected onto the hyperplane {ulaTu b}. Another interpretation of
this scheme lies in the following observations. The dual of the minimum norm problem

minimize 1/211xll =
(1.3)

subject to Ax b,

has the form

(1.4) maximize bTy-1/211AYll =,
and if y* solves the dual, then ATy* solves the primal. It is also easy to verify that y*
solves the dual if and only if it solves the system

(1.5) AATy b.

Maximizing the dual objective function by changing one variable at a time results in
the Gauss-Seidel method for solving (1.5). Moreover, let the sequence {Yk} be generated
by applying the successive overrelaxation (SOR) method to solve this system, and let
the sequence {Xk} be obtained by applying Kaczmarz’s method, using Xo ATyo as the
starting point. Then the equality

(1.6) Xk ATyk

holds for all k (e.g., Bj/Srck and Elfving [1]). The relationship between Kaczmarz’s
method and the SOR method ensures that the sequence {Xk} always converges. If (1.2)
is solvable then the limit point solves this system. Furthermore, if the starting point
belongs to Range (AT), then the limit point solves (1.3). However, when the system
to be solved is inconsistent, the limit point is quite arbitrary and the method of Kaczmarz
fails to provide a solution to the corresponding least squares problem

(1.7) minimize 1/21lAx-b[[ 2.

See Tanabe [14] and Dax [3] for a detailed explanation of this phenomenon.
Example 1 in 5 illustrates the inefficiency of Kaczmarz’s method as a means for
solving least squares problems. This raises the question of how to construct a modified
Kaczmarz’s method that is able to approach a least squares solution of an inconsistent
system of linear equations.

One way to resolve this difficulty is to consider the regularized least squares problem

(1.8) minimize [[xll 2 + 1/2llAx- bI[
where e is a positive constant. Let x R and y Rm denote the minimum norm
solution of the extended linear system

(x)(1.9) [A,v/-I] =b.
Y

Then x provides the unique solution of (1.8). Moreover, since the extended system
is solvable, it is possible to approach x and y by applying Kaczmarz’s method on
(1.9), which results in the method of Herman, Lent, and Hurwitz [9].

Tikhonov and others introduced the method of regularization as a means for
improving the stability of ill-posed problems (e.g., Tikhonov [15] or Tikhonov and
Arsenin [16]). In particular, it is a useful tool for handling unstable data-fitting
problems. These are problems that result in an inconsistent system of linear equations
Ax b, such that small changes in the data (i.e., the elements of A or b) cause large
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changes in the minimum norm solution of (1.7). Recall that a point x " solves (1.7)
if and only if it solves the normal equations

(1.10) ArAx=Arb.
Consequently, the minimum norm solution of (1.7) is defined as the unique vector x*,
which solves the problem

minimize 1/211xll =
(1.11)

subject to ArAx =Arb.
Assume that we have an a priori estimate Zo of the solution of (1.7). Then it is possible
to stabilize the solution by adding the term 1/2e IIx-zoll to our objective function. Also,
there is no loss of generality in shifting the origin to be Zo. This results in a problem
of the form (1.8), which is usually referred to as standard regularization or Tikhonov’s
regularization.

The behavior of the regularized solution x as a function of e is easily inspected
by applying the singular value decomposition (SVD) of A. Let U "" and V
be orthogonal matrices such that

a USVr,
where SE is a diagonal matrix. Define p=min {m, n} and let r denote the rank
of A. Then, S is assumed to have the form

where

and

S diag {o’1,..., o.p},

o’1 o2 ->. => o’r > 0,

o’i=0 for i=r+l,...,p.

The columns of U and V are denoted by ul,..., u,, and vl,..., v,, respectively. Now
it is easy to verify that

(1.12) x* (u/rb/o’i)vi
i=1

and

(1.13) x= E ,(uT/b/’i)vi,
i=1

where

This presentation shows that instability is related to the presence of small nonzero
singular values, while regularization dampens the effect of singular values, which are
smaller than x/7. Further consequences of (1.13) are the limits

(1.14) lim x x*,

(1.15) lim x =0,

and the observation that, as e moves from zero to infinity, x changes continuously
from x* to 0.
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The limit (1.14) suggests that by choosing a small value of e, the method of Herman
et al. [9] is capable of providing a good estimate of x*. However, as our experiments
illustrate, in practice, this idea does not always work. The reason for this discrepancy
lies in the equivalence between Kaczmarz’s method and the SOR method for solving
(1.5). This relationship indicates that the method of Herman et al. [9] is equivalent to
the SOR method for solving the system

(1.16) (AAT + eI)y b.

Hence, for small values of e, the two methods actually coincide in the first iterations.
The smaller the e, the larger the number of iterations in which the two methods follow
a similar path, and this may prevent the Herman-Lent-Hurwitz scheme from approach-
ing x* within a reasonable number of iterations.

The remedy proposed in this paper is based on the following idea. We have seen
that one justification for solving the regularized problem is the existence of an initial
estimate Zo. However, when the regularized problem is solved we obtain a new estimate,
z. Hence, by shifting the origin to z, we obtain an improved regularized problem
and an improved solution z2. Similarly, z2 can be used to generate z3 and so forth.
The basic iteration of this process is as follows: Given Zk, we define

(1.17) bk --b-Azk
and solve the regularized least squares problem

(1.18) minimize 1/2ellxll2+1/211Ax-bkll 2.
Then the next point is defined as

(1.19) Zk+=Zk+Xk,

where Xk denotes the unique solution of (1.18).
The above iterative improvement process is due to Riley [13] and Golub [6], who

considered it in the context of factorization methods for dense linear systems. An
equivalent way to write this process is

Zk+ HZk -i- h,(1.20)
where

and

h=(ATA+eI)-IATb

H e(ATA + eI)-.
The last equality enables us to express H in the form

H VDVT

where D is a diagonal matrix,

such that

and

D diag {dl,..., dn },

di =e/(o+e) for i=l,...,r,

di=l for i= r+ l,..., n.

Golub [6] has used these relations to show that if Zo =0, then

(1.21) Zk E (1 dk)(u/rb/o’i)vi,
i:1
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and the sequence (Zk) converges to x*, the minimum norm solution of (1.7). Yet the
fact that (1.20) describes a linear stationary iterative process enables us to extend this
result in the following way. Since H is convergent and symmetric, and the system

(1.22) (I-H)x=h

is solvable, the sequence (Zk always converges, and the limit point solves this system.
Moreover, if Zo Range (I-H), then the limit point is the minimum norm solution
of this system (see Dax [3, Corollary 6]). Now the definitions of h and H imply that
x solves (1.22) if and only if it solves (1.10), and that Range (I-H)-Range (AT). In
other words, the sequence {z} converges to a point that solves (1.7), and if Zo
Range (AT), it converges to x*, the minimum norm solution of (1.7).

Let , denote the limit point of the sequence {Zk}. The optimality conditions of
(1.18) imply the equality

(1.23) eXk -AT(AZk+1-- b).

This relation shows that Zk+ -- Range (AT) and yields the inequality
2(1.24)

Hence, if the iterative improvement process stops at a point Zk+ that satisfies

where 6 is a small positive constant, we obtain the inequality
2(1.26)

which can be used to estimate the relative error in the computation of . In particular,
when Zo "- O, we conclude from (1.21) that

(1.27)

and (1.26) leads to

(1.28) IlZk+, II/11 I1--/.
Let Us return to the question of how to construct a row relaxation method that is

able to find a least squares solution of an inconsistent linear system. If e is not too
small, then the SOR method for solving (1.6) enjoys a fast rate of convergence, and
the Herman-Lent-Hurwitz scheme is likely to provide a good estimate of Xk, the
solution of (1.18), within a few iterations. This opens the way for practical implementa-
tion of the iterative improvement process as a row relaxation method. However, as
equality (1.21) shows, a large value of e slows down the convergence of the iterative
improvement process. The success of the combined method depends, therefore, on a
proper choice of e that ensures a reasonable rate of convergence for both methods
(see Table 1).

In the following sections we show that similar ideas can be used to construct a
row relaxation method for solving constrained least squares problems. The properties
of regularized problems of this kind are briefly discussed in 2, while 3 considers
the corresponding iterative improvement process. Analysis of the constrained case
requires a different approach, since now the SVD of A is not quite so helpful. The
basic tool for handling large systems of linear inequalities is the method of Lent and
Censor 12], which can be viewed as a row relaxation version of the method of Hildreth
[10]. This scheme is discussed in 4, in which we propose a modification that enables
it to solve regularized constrained least squares problems. Combining the modified
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Lent-Censor-Hildreth scheme with the iterative improvement process results in a row
relaxation method that is able to solve large problems of the form (1.1). Finally, in

5, we provide numerical experiments that demonstrate the feasibility of our ideas.

2. Regularization of constrained least squares problems. The regularized form of
(1.1) is defined as

minimize

(2.1) subject to

and

aT>=b for i=m+l,...,s,

af--b for i= s+ l,. t,

where, as before, e is a given positive constant. In this section we show that the basic
properties of (2.1) are similar to those of (1.1). It is assumed here that the feasible
region is not empty, and this ensures that both (1.1) and (2.1) have solutions. The
minimum norm solution of (1.1) is the unique vector x* that solves the problem

minimize 1/211xll
subject to IIAx- bll <-- IIAz- bll

(2.2)
afx>=bi fori-rn+l,...,s,

and afx=bi fori=s+l,..,t,

where z denotes a solution of (1.1). We shall start by answering the question: what
happens when e tends to zero?

THEOREM 1. Let {ek} be a sequence ofpositive numbers such that

(2.3) lim ek =0,
kc

and let Xk denote the solution of (2.1) that corresponds to e ek. Then

(2.4) lim Xk X*.
kc

and

Proof The definitions of x* and Xk imply

IIAx*-bll IIAx-bll

llxll=+1/2llAx bll<1 e--llx*ll +1/2llAx*-bll.
Hence, by combining these inequalities we obtain

-.llx.ll 2 +1/2[[axk bll=< ===llx*ll /1/21lax-,ll
and

(2.5) Ilxll IIx*ll.
That is, the sequence {Xk} is bounded and has at least one cluster point, say . Therefore,
since (2.2) has a unique solution, it is sufficient to show that x*.

Let {xj} be a subsequence of {Xk} such that

(2.6) lim xj =.
j-cx3
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Then, since each xj is a feasible point, is feasible. Similarly, the inequality (2.5) implies

(2.7) [lll--< IIx* II.
Hence, the proof is concluded by showing that solves (1.1).

Let be a feasible point, and let Y() denote the set of all the points

Y (Y,+, Y, Ys+l, y,) r

such that

y=>0 and y(a.r, -b)=O fori=m+l,...,s.

Then solves (1.1) if and only if there exists Y() such that

(2.8) AT(A:-b) =.T,
where is the (t-m)x n matrix whose rows are a f, i= m + 1,..., t. (These are the
well-known Kuhn-Tucker optimality conditions.) Similarly, the optimality conditions
of (2.1) indicate that for each x; there exists a point y; Y(x;) such that

(2.9) x+A(Ax-)= Ay.
It is also easy to verify that the limit (2.6) implies the existence of an index j such that

(2.10)

A further use of (2.6) gives

(2.11)

and

(2.12)

yje Y() forj>-j.

lim exj =0

lim/ry Ar(A- b).
j-oo

Therefore, by the well-known projection theorem, there exists a point Y() that
solves the least squares problem

"Tminimize 1/21la y ar(a-b)ll 2

(2.13)
subject to y e Y(),

while (2.10) and (2.12) imply that solves (2.8).
The arguments we have used in the above discussion are easily modified to establish

the following assertions.
TI-IZOF,M 2. Let {ek} be a sequence of numbers such that

(2.14) lim ek
k-oo

and let xk denote the solution of (2.1) that corresponds to e ek. Then

(2.15) lim Xk i,

where denotes the unique solution of the least distance problem

minimize 1/211xll 2

(2.16) subject to afx >- bi for m + l s,

and a x= bi for s + l, t.
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THEOREM 3. Let {ek} be a sequence ofpositive numbers such that

lim ek E,
k-x

and let Xk denote the solution of (2.1) that corresponds to e ek. Then

lim
k-c

where x denotes the solution of (2.1).
Summarizing our results, we conclude that as e moves from infinity to zero, x

changes continuously from to x*.

3. Iterative improvement under constraints. This section considers the iterative
improvement process as a tool for solving constrained least squares problems of the
form (1.1). The basic iteration of the modified process is carried out as follows. Given
Zk, we define

bl k)--- bi- a/Tzk, i= 1,..., t,

and calculate Xk, the unique solution of the problem

minimize 1/2e x = + & Ax bk
=

(3.1) subject to afx=vi>h(k fori=m+l,...,s,

and afx=blk fori=s+l,...,t,

where

(3.2) bk b- azk bk) b))
Then the next point is defined as

(3.3) Zk+I=Zk+Xk.
The above definitions imply the inequality

AZk b[[
which shows that the sequence {IIAZk--bll 2} is monotonic decreasing, and

(3.4) lim Xk 0.
k-

Another justification for applying this process lies in the following observation.
THEOREM 4. Assume that the sequence {Zk} has a clusterpoint . Then solves (1.1).
Proof. Let {zj} be a subsequence of {Zk} such that

(3.5) lim zj =.
Then, since each z is a feasible point, is feasible. On the other hand, the optimality
conditions of (3.1) imply that for each k there exists a vector Yk Y(Zk/I) such that

(3.6) eXk+AT(AZk+l--1)=,7"yk.
Hence, by combining (3.4), (3.5), and (3.6), we obtain the limit

(3.7) lim ry Ar(A-I),
joc

where {y} denotes the subsequence of {Yk,} that corresponds to {zj}. Another con-
sequence of (3.5) is the existence of an index j such that y Y() for allj -> f. Therefore,
the least squares problem (2.13) has a solution Y() that satisfies (2.8), which
proves that solves (1.1).
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COROLLARY. If (1.1) has a unique solution, then the sequence {Zk} converges to
this point.

4. A row relaxation method for regularized constrained least squares problems. The
original method of Hildreth 10] is designed to solve certain types of convex quadratic
programming problems. Later, Lent and Censor [12] have suggested a row relaxation
version of Hildreth’s method that is aimed at solving least distance problems ofthe form

minimize 1/2[[xll
(4.1)

subject to afx_->b for i= 1,..., m.

The basic iteration of the Lent-Censor scheme is similar to that of Kaczmarz’s method,
but here, in addition to the primal variables, the algorithm stores and updates dual
variables. Let x and y (y,..., y,,) r ,, denote the current estimates of the variables
at the beginning of the ith step of the kth iteration, 1,..., m, k--1, 2,.... Then
the ith step is carried out as follows"

(a) Calculate 8 -min {Yi, w(a/x bi)/aiai}
(b) Set x := x + tai and y := Yi at- t%

The symbol := denotes arithmetic assignment. That is, y := y + 6 means "set the new
value of y to be Yi at- t." The starting points must satisfy

(4.2) x Ary
and

(4.3) y>=0,

and these relations are kept throughout the iterative process. The motivation behind
the previous scheme lies in the observation that the dual of (4.1) has the form

minimize 1/211 A ryll =- bry
(4.4)

subject to y => 0,

and if solves the dual, then the vector Ar provides the unique solution of (4.1).
Note that when w 1, the value of provides the solution ofthe one-parameter problem

minimize f(O)--1/2llA(y+ Oe,)ll-b(y+ Oe,)
(4.5)

subject to y + 0 _-> 0,

where e denotes the ith column of the m x rn unit matrix. It is also easy to verify that
-w(afx-b)/afa is the change of y during the ith step of the SOR method for
solving the system

(4.6) AAry=b.

Therefore, the updating rule of the dual variables can be viewed as a modified SOR
method in which the variables are restricted to stay nonnegative. The discussion in
Lent and Censor 12] provides an interesting geometric interpretation of this method.
Moreover, let Xk denote the current estimate of the primal variables at the end of the
kth iteration and assume that the feasible region is not empty. Then it is shown there
that the sequence {Xk} converges, and the limit point solves (4.1).

The adaptation of the Lent-Censor scheme to handle equality constraints is done
in the following way. Consider, for example, a linear equality of the form arx bi.
Then by writing this equality as two inequalities, afx_> bi and -afx-> -b, we obtain
that the corresponding dual variable Yi is not restricted to stay nonnegative. Hence,
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in this case, there is no need to store and update yi, and the ith step of the Lent-Censor
scheme coincides with that of Kaczmarz’s method"

(a) Calculate 6 -w(afx- hi)labial.
(b) Set x := x + 6ai.

In other words, the Lent-Censor scheme is essentially an extended version of
Kaczmarz’s method, which enables us to handle inequality constraints. The observation
that the Hildreth method can be extended to include linear equalities, in the manner
described above, is also made in Elfving [5], where it is shown that this extension does
not ruin the convergence properties.

The implementation of the Lent-Censor scheme to solve regularized problems of
the form (2.1) is based on the following observation, which is a straightforward
extension of Lemma 2 of Herman et al. [9]. Let the vectors R and R" provide
the minimum norm solution of the system

(4.7b) aix>-bi for i=m+l,...,s,

(4.7c) afx=bi fori=s+l,...,t.

Then solves (2.1).
The minimum norm solution of (4.7) can be obtained by applying the Lent-Censor

scheme to solve this system. The basic iteration of the resulting algorithm is as follows.
For 1,..., m the ith step coincides with Kaczmarz’s method for solving (4.7a):

(a) Calculate 6 =-w(a/x+/ yi--bi)/(aTiai + e).
(b) Set x:=x+6ai and yi:=y+6v/-:.

For rn + 1, s the ith step coincides with the Lent-Censor scheme for solving
(4.7b):

(a) Calculate 6 -min {Yi, w(afx- bi)/afai}.
(b) Set x := x + 6ai and Yi := yi + 6.

For i= s + 1,..., the ith step coincides with Kaczmarz’s method for solving (4.7c):
(a) Calculate 6 -w(a/x bi)/afai.
(b) Set x := x + 6a.

The algorithm may start with any pair of points x n and y t that satisfy

(4.8) x--(a/yi)/x/--+i=l
i=rn/l

aiYi

and

(4.9) yi>--O for i-- m+ 1,..., s,

and these relations hold throughout the iterative process. Note that the algorithm does
not store and updates the values of ys+l,..., yt. Let xk denote the current estimate of
the solution at the end of the kth iterations. Then the convergence properties of the
Lent-Censor scheme indicate that the sequence {xk} converges, and the limit point is
the unique solution of (2.1).

The above scheme enables us to implement the iterative improvement process that
has been described in the previous section. In practice there is no need to calculate
the exact solution of (3.1), and z/l is obtained from z by applying a few iterations
of the row relaxation scheme. The justification for this shortcut lies in the observation
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that Theorem 4 remains valid when the requirement that Xk solve (3.1) is replaced by
the following three conditions.

(b) lim dk 0, where dk denotes the distance between Zk and the feasible region.
k-c

(c) For each k, there exists a vector Yk g(xk+) such that

lim IleXk + AT(AZk+l--b)--,iTykl =0.

5. Numerical results. In this section we present the results of some preliminary
experiments with the regularization method, the method of Kaczmarz, and the iterative
improvement technique. The regularization method refers to the scheme described in
the previous section for solving (4.7). However, when solving an unconstrained problem
it reduces to the method of Herman et al. [9]. The iterative improvement technique
has been obtained from the corresponding regularization method by shifting the origin
toward the current solution every ten iterations, leaving the vectors x and y in their
current positions. The implementation of these methods has been carried out with
various values of e. The starting point in our experiments is always the origin point,
i.e., Xo 0 and yo 0. No attempt has been made to find an optimal relaxation parameter,
and all the runs have been executed with w- 1.

The test problems are generated by using a matrix A that has 1000 rows and 3000
columns. Each row of A has only three nonzero elements that have random locations.
That is, the column indices of the nonzero elements are random integers between 1
and 3000. The values of the nonzero elements are random numbers from the interval
[-1, 1]. (The random number generators are of uniform distribution.) Let

denote the sum of elements in the ith row of A, where e--(1, 1,..., 1)T 3ooo. All
the test problems have n 3000 unknowns, but the number of equations and constraints
changes from problem to problem (see the following examples). The definition of the
right-hand-side vector ensures that the point x*-e solves the problem. The results of
our experiments are given in Tables 1-5, while Table 6 provides the corresponding
starting values.

TABLE
Solving an inconsistent system of linear equations.

The value of (] Ax/-bll2-I Ax*-bll2)/llAx*-b[I

Method K 10 K 20 K 40 K 80 K 160

Regularization, e 100
Regularization, e

Regularization, e 10-2

Regularization, e 10-4

Regularization, e 10-6

Kaczmarz’s method
Iterative improvement, e

Iterative improvement, e 0.5
Iterative improvement, e 0.1
Iterative improvement, e 0.05
Iterative improvement, e 0.01

.379E .379E .379E .379E .379E

.426E0 .426E0 .426E0 .426E0 .426E0

.818E0 .612E0 .358E0 .132E0 .193E-

.112El .112El .111El .110El .107El

.l13E1 .l13E1 .l13E1 .l13E1 .l13E1

.l13E1 .l13E1 .l13E1 .l13E1 .l13E1

.426E0 .856E- .126E- .180E- 2 .299E- 3
174E0 .224E- .248E- 2 .342E- 3 .534E- 4
.101E0 .106E- .273E- 3 .437E- 5 .174E- 6
.310E0 .945E- .949E-2 .191E-3 .126E-6
.818E0 .632E0 .371E0 .138E0 .203E-
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TABLE 2
Solving a constrained least squares problem with inequality constraints.

Method

Values of objective function (upper) and constraints violation (lower) after
K iterations.

K= 10 K=20 K=40 K= 80 K= 160

Regularization, e 100

Regularization, e

Regularization, e 10-2

Regularization, e 10-4

Regularization, e 10-6

Iterative improvement, e

Iterative improvement, e 0.5

Iterative improvement, e 0.1

.795E0 .795E0 .795E0 .795E0 .795E0

.789E-3 .104E-5 .182E-11 .426E-13 .426E-13

.213E0 .211E0 .211E0 .211E0 .211E0

.322E-1 .826E -3 .986E-6 .426E-13 .426E-13

.712E-1 .671E -1 .595E -1 .479E-1 .336E -1

.796E0 .750E0 .685E0 .558E0 .366E0

.751E -1 .757E-1 .756E-1 .755E-1 .752E-1

.757E0 .747E0 .747E0 .747E0 .747E0

.751E-1 .757E-1 .756E-1 .755E -1 .752E -1

.756E0 .747E0 .747E0 .747E0 .747E0

.213E0 .687E-1 .142E-1 .210E-2 .262E-3

.322E-1 .197E-1 .264E-3 .201E-4 .218E -5

.l15E0 .205E-1 .290E -2 .314E -3 .487E -4

.130E0 .316E-1 .486E-3 .327E-4 .799E-5

.561E -1 .316E-1 .956E -2 .628E -3 .775E-5

.560E0 .308E0 .959E-1 .684E-2 .106E-3

TABLE 3
Solving a constrained least squares problem with equality constraints.

Method

Values of objective function (upper) and constraints violation (lower) after
K iterations.

K= 10 K=20 K=40 K= 80 K= 160

Regularization, e 100

Regularization, e

Regularization, e 10-2

Regularization, e 10-4

Regularization, e 10-6

Kaczmarz’s method

Iterative improvement, e 100

Iterative improvement, e

Iterative improvement, e 0.1

.295E-3 .173E -3 .262E-4 .717E-6 .600E-9

.142E0 .587E-1 .999E-2 .289E-3 .242E-6

.367E-2 .217E-3 .289E-4 .792E-6 .735E-9

.160E0 .645E-1 .l13E-1 .345E-3 .321E-6

.382E-1 .413E -1 .459E -1 .497E -1 .446E-1

.106El .101El .905E0 .725E0 .444E0

.337E-1 .338E-1 .339E-1 .343E-1 .349E-1

.lllE1 .lllE1 .ll0E1 .ll0E1 .ll0E1

.336E-1 .336E-1 .336E-1 .336E-1 .336E-1

.lllE1 .lllE1 .lllE1 .lllE1 .lllE1

.336E-1 .336E-1 .336E -1 .336E -1 .336E-1

.lllE1 .lllE1 .lllE1 .lllE1 .lllE1

.295E-3 .195E-3 -.160E-3 .194E-4 .117E-6

.142E0 .537E-1 .602E-1 .831E-2 .471E-4

.367E -2 -.l18E -2 -.190E -3 .195E -4 .195E-6

.160E0 .597E-1 .631E-1 .912E-2 .858E-4

.472E-1 .429E-1 .168E-1 .107E-2 .413E-5

.731E0 .407E0 .207E0 .277E-1 .567E-3
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TABLE 4
Solving a constrained least squares problems with mixed constraints.

Method

Values of objective function (upper) and constraints violation (lower) after
K iterations.

K= 10 K= 20 K=40 K=80 K= 160

Regularization, e 100

Regularization, e

Regularization, e 10-2

Regularization, e 10-4

Regularization, e 10-6

Iterative improvement, e

Iterative improvement, e 0.5

Iterative improvement, e 0.1

.124E- .123E- .121E- .121E- .121E-

.142E0 .587E .999E 2 .289E 3 .242E 6

.752E 2 .448E 2 .430E 2 .427E 2 .427E 2

.160E0 .646E- .113E- .345E- 3 .321E-6

.489E- .495E- .501E- .512E- .439E-

.778E0 .782E0 .819E0 .714E0 .437E0

.479E- .483E- .485E- .486E- .488E-

.910E0 .909E0 .905E0 .899E0 .886E0

.478E- .482E- .483E- .483E- .483E-

.912E0 .912E0 .912E0 .912E0 .912E0

.752E-2 -.182E-3 .150E-3 .561E-4 .226E-6

.160E0 .467E- .631E- .931E- 2 .992E- 4

.197E- -.623E- 3 -.187E-3 .196E-4 .229E-6

.201E0 .744E .657E- .998E- 2 .127E- 3

.484E- .416E- .163E- .106E-2 .497E-5

.731E0 .356E0 .159E0 .276E- .490E- 3

TABLE 5
Solving a consistent system of linear equations.

Method

The value of IIAx-bll

K= 10 K=20 K=40 K=80 K= 160

Regularization, e 100
Regularization, e

Regularization, e 10-2

Regularization, e 10-4

Regularization, e 10-6

Kaczmarz’s method
Iterative improvement, e 0.1
Iterative improvement, e 0.05
Iterative improvement, e 0.01
Iterative improvement, e 0.005
Iterative improvement, e 0.001

.963E3 .963E3 .963E3 .963E3 .963E3

.200E3 .200E3 .200E3 .200E3 .200E3

.536E0 .282E0 .256E0 .254E0 .254E0

.334E0 .326E .105E -2 .639E- 4 .355E- 4

.334E0 .325E .982E 3 .263E 4 .822E 6

.334E0 .325E- .982E- 3 .263E- 4 .817E- 6

.113E2 .l15E1 .152E0 .228E- .221E-2

.400El .287E0 .300E- .284E-2 .638E-4

.536E0 .625E- .742E- 2 .896E-4 .134E- 6

.487E0 .836E- .174E- .228E- 3 .152E- 5

.443E0 .l16E0 .238E- .445E- 3 .103E-4

TABLE 6
Starting values at x0 0.

Example Example 2 Example 3 Example 3 Example 5

Objective function
Constraints violation

.400E 140E0 100E 100E .993E3
.270E .270E .270E
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Example 1" An inconsistent system of linear equations. This example considers a
system of 1000 equations. The first 500 equations have the form

a/x 0.5o’i, 1,..., 500,

while the other equations are

a/rx 1.5o’i, i= 1,..., 500.

Example 2: A constrained least squares problem with inequality constraints. This
problem has the form

500

minimize Y (a fx i)2
i=1

subject to a/x=>fli for i- 1,..., 500,

where

a min {0, ri },

and/3i satisfies the rule: /3i- ri when o’i >_-0, and/3i 2o-i when ri < 0. The results of
this problem are given in Table 2. Here, the objective function value parameter refers
to the ratio

(a/rxk--ai)2- E (a/x* ai
i=1 i=1 /li=l

while the constraints violation is defined as

max {max {0,/3i--afXk}}.
1__<. i<__500

Example 3: A constrained least squares problem with equality constraints. In this
example, the problem to be solved has the form

500

minimize Y (a/Tx ti)2
i----1

subject to ax=o’i for i= l, 4, 500,

where ai 0 for 1,..., 500. The objective function value is defined as in the previous
example, while the constraints violation parameter is simplified to be

max
1i500

Note that any point that satisfies the constraints is also a solution of the constrained
least squares problem. This explains why the regularization method manages to solve
this problem when e is large (see Table 3).

Example 4: A constrained least squares problem with mixed constraints. Here we
solve the problem

5OO

minimize Y (a/x ai)2

i=1

subject to afx_->tri foriP

and afx tri for N,
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where

a 0, 1,..., 500,

P { i] 1 =< -< 500 and tri -> 0},
and

N { 1 <= <_- 500 and o-i < 0}.
Here again the objective function value parameter is defined as in Example 2, while
the constraints violation parameter is modified to be

max {max {0’ ’ aTxk}’ max laTxk rl}iP iN

Example 5: A consistent system oflinear equations. Although the proposed iterative
improvement technique is aimed mainly at solving inconsistent and constrained prob-
lems, it is also interesting to watch its behavior when solving a consistent system.
Therefore, the last example considers the solution of the system

a/TX tri, 1,..., 1000.

6. Conclusion. The results of our experiments clearly illustrate that the regulariz-
ation method has difficulty reaching a least squares solution. Yet, when e is properly
chosen, the iterative improvement process shifts the computed solution toward a least
squares solution and overcomes this difficulty.
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PRECONDITIONING THE LANCZOS ALGORITHM FOR SPARSE
SYMMETRIC EIGENVALUE PROBLEMS*
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Abstract. A method for computing a few eigenpairs of sparse symmetric matrices is presented and
analyzed that combines the power of preconditioning techniques with the efficiency of the Lanczos algorithm.
The method is related to Davidson’s method and its generalizations, but can be less expensive for matrices
that are fairly sparse. A double iteration is used. An effective termination criterion is given for the inner
iteration. Quadratic convergence with respect to the outer loop is shown.

Key words, eigenvalues, sparse matrices, Lanczos, preconditioning, Davidson’s method
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1. Introduction. We consider the problem of computing a few eigenvalues and
eigenvectors of a large, sparse, symmetric matrix. It is assumed that factoring the
matrix is impractical due to its size and sparsity structure. A method is presented that
incorporates both the technique of preconditioning and the Lanczos algorithm. A
double iteration scheme is used. The outsideloop updates a certain preconditioned
matrix; the inside loop applies the Lanczos algorithm. An effective termination criterion
is given for the inner loop. This method can be very efficient if the matrix is fairly
sparse and an approximate inverse is easily available.

This section briefly discusses background material on eigenvalue techniques and
on preconditioning. Section 2 presents the method. Section 3 gives convergence results
including asymptotic quadratic convergence with respect to the outer loop. Section 4
gives examples and looks at some implementation details. Comparisons are made with
other methods.

Krylov subspace methods are popular for both eigenvalue problems and linear
equations problems. Krylov subspaces are used by the Lanczos algorithm [11], [19]
for eigenvalues and by the conjugate gradient method [2], [9], 10] for linear equations
(see [7, p. 523] and [18] for the relation between the methods). Both methods have
convergence problems if the distribution of eigenvalues is unfavorable. The Lanczos
algorithm has difficulty if the desired eigenvalues are not well separated from the rest
of the spectrum. The conjugate gradient method needs the spectrum to be somewhat
separated from zero. Convergence of the conjugate gradient method is often improved
by preconditioning (multiplying the matrix equation by an approximate inverse) [1],
[3], [8], [13].

It would also be, desirable to improve the convergence of the Lanczos algorithm
with preconditioning, but this is not straightforward. Preconditioning can be applied
indirectly to eigenvalue problems by using the preconditioned conjugate gradient
method to solve equations for inverse iteration, the Rayleigh quotient iteration [12],
[22], or shift-and-invert Lanczos [6], [20].

Davidson’s method [4] and the generated Davidson (GD) method [15], [17] give
a more direct approach to preconditioning eigenvalue problems. Suppose eigenvalues
are sought for the matrix A. Then these methods generate a subspace with the operator
(M-pI)-l(A-pI), where p is the latest approximate eigenvalue obtained by the
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Rayleigh-Ritz procedure [19]. In Davidson’s method, the operator M is D, the main
diagonal of A. For the GD method, M can be any approximation to A. M-pI is in
effect a preconditioner for A-pL Let (A, z) be the desired eigenpair. Asymptotically,
the subspace produced by these methods resembles a Krylov subspace generated by
(M-,I)-I(A AI). The operator (M-AI)-I(A-AI) has one eigenvalue at 0 with z
as the associated eigenvector. The rest of the spectrum tends to be compressed around
1 by the preconditioning. This makes 0 well separated, and convergence is rapid toward
z (see [17] for more detail).

The GD method is more expensive per iteration than the Lanczos algorithm. There
is the cost of the preconditioning and also the cost of the Rayleigh-Ritz procedure.
Full orthogonalization must be done. Davidson’s method is often applied to problems
for which the main expense is the matrix-vector products, and thus any reduction in
the number of iterations is worthwhile. For other problems, particularly those where
A is quite sparse, the orthogonalization costs are significant. Restarting reduces the
expense but slows down the convergence.

A method is desired that could be preconditioned and could take advantage of
the Lanczos recurrence. One possibility involves using the Lanczos algorithm to build
the subspace for GD [16, pp. 71-83]. The Rayleigh-Ritz expense can be reduced by
a factor of five. However, a double iteration is used and the cost still grows as the size
of the subspace increases. In the next section, another method is presented that uses
preconditioning and the Lanczos algorithm. The difference is that in this method the
Rayleigh-Ritz procedure is not done with respect to A. A double iteration is again
used, but the costs of order n are fixed as the subspace grows.

2. The Preconditioned Lanczos (PL) Algorithm. Preconditioning the Lanczos
algorithm was suggested by Scott [21] as a special case of a method for generalized
eigenvalue problems, but it was not investigated, and the algorithm has not been given
before for the standard eigenvalue problem. Our purpose here is threefold. We establish
important convergence results. Scott’s results [21] do not take into account precon-
ditioning or early termination of the inner iteration. Second, we implement the method
and show that it is useful. Third, we derive the method showing its connection with
the Davidson and GD methods. This is important because it gives insight into why
the method is effective and because Davidson’s method is well known among quantum
chemists.

The GD method uses the operator N(p)=(M-pI)-l(A-pI) to generate a
subspace, but it uses the operator A in the Rayleigh-Ritz procedure for extracting
approximate eigenvectors from the subspace. However, since N(/9) has an eigenvector
approximating one of A, the Rayleigh-Ritz procedure with a fixed N(/9) is also useful
for computing an eigenvector of A. It is necessary to restart the Rayleigh-Ritz occasion-
ally with a new/9, because the eigenvector of N(/9) is only an approximation. We use
this idea, but transform N(p) to a symmetric operator so that the Lanczos algorithm
can be applied. A positive definite preconditioner is required, so we replace M-pI
with Mk. The algorithm is called the PL Algorithm.

THE PL ALGORITHM. Given a vector Xo, compute Po xAxo/XXo, and FOR
k=0, 1, 2,..., DO 1 to 5

1. Choose Mk to be a positive definite matrix approximating A-pkI, and let LkL
be its Cholesky factorization.

2. Define Wk L-(A pkI)L- r.
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3. Run the Lanczos iteration with Wk and starting vector L[Xk, until the smallest
Ritz value is bounded away from zero by the residual norm 19, p. 260]. Letting
Ok be the smallest Ritz value and Yk be the corresponding Ritz vector of unit
length, this stopping test is --Ok > WkYk- OkYkl["

4. Let Xk+ L- 7"yk.
5. Set Pk+ X+IAXk+I/XLIXk+I Pk -I- Ok/X+lXk+
The operator Wk =--L-(A-pkI)L-r is related to M-(A-pkI) by a similarity

transformation. And M-(A-pkI) has an eigenvector approximating an eigenvector
of A. By applying the Lanczos iteration to Wk, computing a Ritz vector, and then
transforming it back, we get Xk+, an approximate eigenvector of A. The Rayleigh
quotient flk+l of Xk+ is an approximate eigenvalue. The residual norm [19, p. 69] of
(Pk+l, Xk+I) with respect to A can be monitored to determine a stopping point for the
PL iteration.

The main cost of the method is in the Lanczos loop. A matrix-vector product with
A is required and systems of linear equations in Lk and L[ are solved. So it is important
for the Lanczos iteration to converge quickly. The spectrum of Wk, or equivalently of
M-I(A pkI), is the determining factor. Here the preconditioning improves the eigen-
value distribution just as it does for the GD method. The early termination test in step
3 of the PL Algorithm also reduces the number of Lanczos iterations. In the following
section it is shown that the early termination test does not significantly impair the
convergence of the outer iteration.

3. Convergence of PL. For convergence, the preconditioner does not need to be
an accurate approximation. If there is boundedness, then the sequence {Pk} in the PL
Algorithm converges to an eigenvalue of A at an asymptotically quadratic rate. First,
convergence of Pk to an eigenvalue is shown.

THEOREM 1. Assume that both Mk and M- are uniformly bounded in norm. Then

Pk converges to an eigenvalue of A.
Proof. First we will establish the equality asserted in step 5 of the PL Algorithm.

(1)

Pk+l xL,Ax+,/xL,x+,

Pk +(LTyk)T(A--pI)L-Tyk/X+lXk+I

p+yWzY/ r
Xk+lXk+l

pk nt_ Ok/ T
Xk+lXk+l

Next we will show that Ok is nonpositive, so that from (1), {Pk} is a nonincreasing
sequence. The (1, 1) element of the tridiagonal matrix T that is generated by the
Lanczos iteration is the Rayleigh quotient of the starting vector LXk with respect to

Wk. It can be seen that this Rayleigh quotient is zero, since flk xAXk/XXk" Using
Cauchy’s interlace theorem, Ok is less than or equal to zero, since Ok is the smallest
eigenvalue of T.

The sequence of pk’S is bounded below by the smallest eigenvalue of A. Therefore,

Pk converges. Let the limit be r, and let ek Pk--7".
Because by assumption M is bounded in norm, so also is L1. The vector Yk is

of unit length, so X[+Xk+=(L-ryk)TL-Tyk is bounded. From (1),

(2) IOkl Pk pk+,)X#+,Xk+, <- ekX#+,Xk+l.

Therefore, Ok converges to zero. But Ok is within the residual norm bound of some

eigenvalue of Wk, say tog. Because of the stopping test for the Lanczos iteration in
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step 3 of the PL algorithm, (.Ok is within [Okl of Ok and so within 2[ Okl of zero. Therefore,
tOg converges to zero.

Since Wk has an eigenvalue converging to zero, WII goes to infinity. Since

wlll- IIL[(A-pkI)-lLkll <= IILffll II(A-pkI)-lll IILII,
and IIZll and IiZll are bounded, Ok must be converging to an eigenvalue of A, and
the proof is complete.

The theorem does not say which eigenvalue Pk converges to, but it is extremely
likely to be the smallest one. For this not to be the case would require that each starting
vector of the Lanczos iteration have a very small component in the direction of the
eigenvector associated with the smallest eigenvalue of Wk.

Let Pk converge to A. The next theorem shows that this convergence is asymptoti-
cally quadratic. The "big O" notation will be used" /3 y+ O(e) implies I/3- y] _-< ce
for c>0.

THEOREM 2. Assume that both Mk and M- are uniformly bounded in norm. Then
Pk converges at an asymptotically quadratic rate.

Proof Using the definitions of Wk and Yk,

T(A-pkI)Xk+l- LkWkLk Xk+ LkWkyk

L Wv Ov) + Ov].

Because of the stopping test in step 3 of the PL Algorithm and the fact that Yk is a
unit vector,

(3)
II(a-pgI)x+ <--IItll[ll Wv- 0v / 10l [lygll]

<-211Lll10l.
Let the residual vector of Xk+ with respect to A be rk+l"

r/ II(a Pk+lI)Xk+l ! x/ II.
Using first the minimal residual property [19, p. 12], then (3),

--< 211L IOl/llx/ll.
With (2) and the fact that IItll is bounded and IIx/ll is bounded away from zero,
we have

(4) IIr+ll o(e).

Let Yk be the gap between Pk and the nearest eigenvalue of A other than A. This gap
approaches a nonzero constant because Pk converges to A. By the Kato-Temple
inequality 19, p. 222],

With (4), this becomes

p+,=+o(),

and we have quadratic convergence. U

4. Implementation and examples. Here examples are given and comparisons are
made with other methods. First, some implementation details are discussed.



PRECONDITIONING THE LANCZOS ALGORITHM 589

On the choice of preconditioner, one possibility is to pick M to be a portion of
A. Then factor M- Pk! in LDLT fo;m, and let Mk equal LIDILr. Small pivot elements
during the factorization should be changed. Another approach is to let Mk be M-rI,
where tr is an estimate of the smallest eigenvalue of A and is below the spectrum of
M. A powerful preconditioning..approach is to use incomplete factorization [8], [13]
of A- trL Here it is important that A-o-I be positive definite. Even then, adjustment
of small or negative pivot elements may be necessary for a stable factorization. The
symmetric successive overrelaxation (SSOR) [9] preconditioner is another possibility.

If more than one eigenvalue is desired, a form of deflation can be used. The
eigenvalues that are already computed can be shifted out of the way. For example,
once (A1, Z1) has been computed, A--pkI can be replaced by A-pkI+TZlZ, where
y is large enough to shift A1 away from the other desired eigenvalues. The shifting
should be kept as small as possible to comfortably achieve this, because a large shift
and the effect of M could possibly produce a large eigenvalue for Wk. This would
slow the convergence of the Lanczos loop. The starting vector for finding the second
eigenvalue can be determined while the first eigenvalue is being computed. At some
point, the second Ritz vector of Wk can be computed and multiplied by LT. In the
examples that follow, the starting vectors for interior eigenpairs are calculated once
the residual norm for the previous eigenpair reached two-thirds in orders of magnitude
of the desired accuracy.

An additional stopping test is applied in the Lanczos loop to terminate early if it
is likely that the desired accuracy has been attained. This is done by comparing the
improvement in the residual norm with respect to Wk of the Ritz vector in the Lanczos
loop with the improvement needed in the residual norm with respect to A of the
approximate eigenvector. (The Lanczos loop is terminated when the log base 10 of
the ratio of the residual norms of Ritz vectors at the beginning and current point of
Lanczos is less than the log of the ratio of the residual norm of Xk to the specified
residual tolerance, divided by a safety factor of 0.9 times the ratio of logs of improve-
ments in residual norms for the previous k.) In our testing, this check for early
termination helps the method avoid extra computation.

Example 1. The first test matrix is A Diag (1, 2, 3,..., 1000). For the precon-
ditioner, let M Diag (10.1, 10.2, 10.3,..., 110) and Mk M--pkI. The starting vector
is (1, 1/2, 1/3,..., 1/1000) . The smallest eigenvalue and eigenvector are computed.
The requested residual tolerance is 1 10-8. Table 1 gives the results of the PL method.
It lists the number of iterations in the Lanczos loop (this is the size of the Krylov
subspace generated and also the number of matrix-vector products with A), the new
approximate eigenvalue Pk+l, and the residual norm. It shows the expected quadratic
convergence. The total number of iterations is 88. The standard Lanczos algorithm
requires 194 iterations for the same task. So the preconditioning cuts the number of

TABLE
PL for Example 1.

4.55 24.2
0 3 1.67 4.5

8 1.064 1.0
2 13 1.00035 0.101
3 25 1.0000000058 0.56E- 3
4 39 1.0000000000 0.76E- 8

k Iterations /gk+ Residual norm
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iterations in half. With better preconditioning, this can be improved. For example,
with M Diag (1.1, 1.2, 1.3,..., 101), the PL Algorithm converges in only 30 total
iterations.

Next we compare three methods that use preconditioning: the PL Algorithm, the
GD method, and the Rayleigh quotient iteration (RQI) [12], [22] with preconditioned
SYMMLQ [18] in the inner loop. The GD method has a limit of 40 on the size of the
subspace because of the orthogonalization costs. The RQI uses termination criterion
in SYMMLQ of RTOL Min {0.01 rl[, rll3}, where rl[ is the residual norm at the
previous step of RQI. The choice of termination criterion can affect the convergence
a great deal, especially when the starting vector for RQI is not accurate. Three matrices
with increasing difficulty are used. Let A Diag (1, 1 + 8, 1 + 28,..., 1 + 998, 2 + 998,
3+99,..., 901+998), for 8 1, 0.1, and 0.01. M is as originally defined. Table 2
gives the total number of matrix-vector products used for each of these methods. For
the toughest problem (8 --0.01), the PL Algorithm is much better than the GD method.
Not only are fewer iterations required, but each iteration is considerably less expensive.
The PL Algorithm has the advantage of being able to cheaply generate large subspaces,
and for difficult problems, large subspaces are needed. The PL Algorithm also has an
advantage when storage is limited and the vectors spanning the subspace must be
stored on disk, because the GD method accesses these vectors at every iteration.

TABLE 2
Preconditioning methods.

Method

Number of matrix-vector products
Matrix Matrix Matrix
6 6 0.1 0.01

PL 88 247 555
GD 69 309 1584
RQI 99 333 582

The PL Algorithm and RQI are fairly comparable in this example. This is not
surprising, since the two methods do resemble each other. The main difference is that
the PL Algorithm has an eigenvalue problem in the inner loop instead of a linear
equations problem. RQI does not require storage of the vectors spanning the subspace
and has easier deflation. But the PL Algorithm has the advantage of being more reliable
in converging to the smallest eigenvalue. To illustrate this with the first matrix (6 1.0)
and starting vector (5, 5, 5, 5, 5, 1/6, 1/7, 1/8,..., 1/1000) r, RQI converges to the
fifth eigenvalue. The PL Algorithm still converges to the first eigenvalue. Of course, it
is well known that to insure convergence to a particular eigenvalue, RQI needs a good
starting vector or an implementation that combines it with inverse iteration.

The shift-and-invert Lanczos method with the preconditioned conjugate gradient
method can also be used, but we have not found it to be competitive. For one
implementation with early termination of the inner conjugate gradient iteration, 893
iterations were required with the matrix =0.1. However, there is probably a better
implementation.

Example 2. This and the next example use matrices from the Harwell-Boeing
sparse matrix collection [5]. The matrices selected are quite sparse and have small
eigenvalues that are not well separated. The first matrix is SHERMAN1, from oil
reservoir simulation. The dimension is 1000, and it has seven nonzero bands with
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half-bandwidth of 100. The six smallest eigenvalues are 0.000323, 0.00102, 0.00111,
0.00151, 0.00192, and 0.00205, and the largest is 5.04.

The elements of the starting vector are selected randomly on the interval (0, 1).
The computations are performed on an IBM 3090-170J computer using double precision
arithmetic. The Lanczos algorithm is restarted every 250 steps and the GD method
every 40. The small eigenvalue problems generated by these methods are solved with
EISPACK routines, though an iterative method such as subspace iteration [19] might
be better. The small problem is solved at the end of each 250 iterations of Lanczos,
at every step for GD (as is required), and for PL at each of the first seven iterations
and then at multiples of five. A few steps of inverse iteration are needed at the start
of RQI. We let/9 =0 for the first three outer iterations, then switch to regular RQI.
The preconditioner for all methods is from incomplete factorization [13] of A, with
no fill-in allowed.

First, the smallest eigenpair ofthe matrix is computed with residual norm tolerance
of 1 x 10-8. Table 3 lists the total number of matrix-vector products (MVPs) with A,
along with the time in CPU seconds. The preconditioning methods need far fewer
iterations than the Lanczos algorithm. The PL Algorithm is the fastest method, even
though the GD method requires fewer iterations.

TABLE 3
Harwell- Boeing matrices.

SHERMAN SHERMAN NOS6
One eigenpair Five eigenpairs One eigenpair

Method MVPs Time MVPs Time MVPs Time

Lanczos 750 7.6
PL 61 1.2 487 9.3 987
GD 39 2.2 149 9.7 6920
RQI 221 4.2

16.7
346

Next the five smallest eigenpairs are computed. PL uses 3’ 0.01 to shift computed
eigenvalues. The results are not very sensitive to the choice of y. (For example, with
3’ 0.002, 445 matrix-vector products are needed, while PL with 3’ 0.1 uses 533.) The
PL and GD methods require about the same amount of time. The simple Lanczos
algorithm with restarting has difficulty calculating these eigenvalues. A deflation scheme
is possible, but it might be better to use a block Lanczos method [6] or out-of-core
storage to avoid restarting. RQI is implemented with p =0 for the first three outer
iterations for each eigenvalue and with a small Raleigh-Ritz procedure [19] applied
to the last five approximate eigenvectors to get each new starting vector. RQI finds
the first, third, fifth, second, and ninth eigenvalues and uses 2001 total matrix-vector
products. A different implementation might help, but this appears to be a difficult
problem for RQI.

Example 3. Here we use a structural engineering matrix of dimension 675 called
NOS6 in Simon’s LANPRO collection [5]. The starting vector has entries distributed
randomly on the interval (-1, 1), and the residual tolerance is 1 x 10-4. The two smallest
eigenvalues are 1.0000153 and 1.0000254, which are extremely close considering that
the matrix has elements of size 4 x 106. The maximum size subspace for the Lanczos
algorithm and for the Lanczos iteration of PL is 350, while GD again uses dimension
40. The results for computing one eigenvalue are given in Table 3. The PL Algorithm
is more than 20 times faster than GD. The Lanczos algorithm shows little sign of ever
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finding the smallest eigenvalue. RQI is implemented with initial steps ofinverse iteration
using/9 0 until the Rayleigh quotient is less than 1.00002, but it also cannot find this
eigenvalue (it never switches from inverse iteration to RQI). In another test with p 1
initially, RQI converges in 1961 total iterations and 30.2 seconds. So even with an
extremely accurate initial estimate of the eigenvalue, RQI is slower than the PL
Algorithm.

5. Conclusion. Like the Davidson and GD methods, the PL Algorithm uses precon-
ditioning to accelerate the convergence. However, the expense per iteration is reduced
by applying the Lanczos iteration. A double iteration scheme is used. The inner iteration
is terminated early for efficiency, but convergence is still asymptotically quadratic with
respect to the outer loop.

The PL Algorithm can significantly reduce the expense of computing eigenvalues
and eigenvectors of some matrices. It is most useful for sparse matrices, for difficult
problems, and for computing only a very small number of extreme eigenpairs.

We conclude with some possibilities for further research. If an eigenvalue estimate
tr is known, A-pkI can be replaced with A-trI in step 2 of the PL .Algorithm, for
the first few outer loops. Also, the method might be more robust if the Xk vectors are
saved and combined using the Rayleigh-Ritz procedure with A. This would not be
too expensive if only the last few Xk vectors are used. Finally, an interior implementation
14] of the Lanczos loop might allow computation of more than one eigenvalue without

using deflation. This also might allow computation of several eigenvalues at a time if
estimates are known of the desired eigenvalues.

Acknowledgments. The authors would like to thank the referees for many sugges-
tions that considerably improved the paper.
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Abstract Although Hermite functions were widely used for many practical problems, numerical experi-
ments with the standard (normalized) Hermite functions 0n(v) worked poorly in the sense that too many
Hermite functions are required to solve differential equations. In order to obtain accurate numerical solutions,
it is necessary to choose a scaling factor a and use 0n(av) as the basis functions. In this paper the scaling
factors are given for functions that are of Gaussian type, which have finite supports I-M, M]. The scaling
factor used is maxo__<j__<N{yj}/M, where {Yj}=0 are the roots of ON+l(/)) and N+ is the number of the
truncated terms used. The numerical results show that after using this scaling factor, only reasonable numbers
of the Hermite functions are required to solve differential equations.

Key words, spectral method, Hermite functions

AMS(MOS) subject classifications. 65M70, 33C25, 35K05

1. Introduction. The normalized Hermite functions are

x/2.n!H,,(v) exp

where the H,,(v) are the usual (unnormalized) Hermite polynomials. For physical
problems posed on v (-o, o) (i.e., infinite domain), a variety of spectral techniques
have been developed in recent years. These include the use of Fourier series combined
with domain truncation, sine function, Hermite functions, and algebraically mapped
Chebyshev polynomials. Previous results for these techniques are summarized, for
example, in Boyd [5, Chap. 14]. Many researchers have noticed that the close connection
of Hermite functions to physics makes them a natural choice of basis functions for
many fields of science and engineering. Numerical applications include many problems
in continuum mechanics (see, e.g., [3]), particle physics (see, e.g., [9], [15], and [17]),
tropical meteorology, and oceanography (see, e.g., [2], [8], and 14]). Also, one reason
for using Hermite spectral methods is that the Hermite system has some very attractive
properties from the numerical point of view. For example, in a recent paper, Weideman
[19] showed that the spectral radii for the first and second Hermite differentiation
matrices are O(x/-) and O(N), respectively, where N+ 1 is the number of truncated
terms used. This places rather weak stability restrictions on the Hermite method. For
example, if we consider the standard heat equation, then a maximum step size in the
time direction oforder O(N-1) is required, whereas for Fourier and Chebyshev methods
it is of order O(N-2) and O(N-a), respectively. In the actual calculations this means
that we need not even consider implicit time integration methods with the Hermite
method. A theoretical study of the Hermite method for the heat equation is given in
a recent paper, 11 ], which is concerned with the stability and convergence properties
of the method.

Although the Hermite spectral methods have some attractive properties, the direct
spectral approach may not produce good approximations. In the practical calculations,
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it is necessary to choose a scaling factor a since we can always use q,, (av) as the basis
set for any finite a. This freedom does not exist for a finite interval, but after a change
of scale in v, an infinite domain is still an infinite domain. It was pointed out by Boyd
[4]-[6] that a should increase with the truncated terms used, but the theory of choosing
an optimum scaling factor is still incomplete. In this paper, we study how to choose
a proper scaling factor for a class of functions that decay at infinity at least like
exp (-pv2) for some positive constants p (i.e., Gaussian type). Solutions of many
practical problems behave like Gaussian-type functions at infinity, for example, the
diffusion equations for heat flow and the Fokker-Planck equations for particle physics
(see, e.g., [10] and [17]). The idea underlying our approach is the following: In using
spectral collocation methods we choose a scaling factor a which depends on the ratio
of the maximum root of HN/I(V) and the length of the finite support of the function.
The usual method for dealing with the infinite interval is simply to truncate (-c,
to a finite interval I-M, M]. The scaling factor a is chosen so that all of the collocation
points are within I-M, M]. The numerical results show that after using the scaling
factor, reasonable numbers of Hermite functions are required to resolve a Gaussian-type
function.

2. Hermite collocation methods. For a Gaussian-type function f, we have the

which is equivalent to

(2.2) f(v/a)= a.q,(v), [vl<c,

where a is a positive constant. The spectral method of order N is to approximate the
function f using the first N + 1 terms in the expansion series, i.e., the coefficients
{a,}=N+l are set equal to 0. Therefore, we have the spectral approximations

N

(2.3) fN(v/a)= Z a,,(v).

When solving differential equations, we need to relate the coefficients of the derived
function to those of the original function, as given by

N N

(2.4) f((v/a)= 2 a,(v) 2 a.(v)
n=O n=O

Using the recurrence formulas of Hermite functions we can obtain that

(2.5) a1)=(- a,_, +n + 1 an+l),

2

(2.6) a=((n-1)na,_-(Zn+l)a,+(n+l)(n+2)a,+),
with a, 0 whenever n < 0 or n > N.

In pseudospectral methods, the optimum pseudospectral points are the roots of
Hu+l(V), which are denoted by {Yj}=o with the order yo> y >’" > yu. Assuming
that (2.3) is satisfied at the collocation points, we have

(2.7) fu E a,,(yj), OjN.

(2.1) f(v) ., a,,d/,,(av), Ivl <,
n=0

expansion
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Noting that
N

(2.8) E q,(%)q,(Yj) C,6o, 0 <- i,j<= N,
n=0

N

(2.9) Ci [,(%)]2, 0<= i=< N,
n=0

we obtain from (2.7) that

(2.10) a. =oEfN q’. (Y), O-<_ n _-< N.

The above relations between {a,} and {fN(yj/a)} give a simple evaluation of the
derivatives of fN(v) at the points {yj/a}0. Once {fN(Yj/a)}=o are known, the
coefficients {a,}=o can be obtained by (2.10). Then, the first and second deriva-
tives of fN at points {yj/a}=o can be computed by (2.4)-(2.6). A higher order of
derivatives can be obtained in a similar way. If {a,}=o are given, the function fN(V)
is computed by

N

(2.11) fN(V)= Z ann(aV).
n=0

3. The scaling factor. Suppose that the function f has a finite support [-M, M],
i.e., f(v)---O for Iv[> M. In order to compute {an}=o by (2.10), we need to use
information from the interval I-M, M] only, since outside this region the function is
almost zero and will not contribute much to an. This simple motivation suggests that

(3.1) -< M, for all 0 _-<j _<- N.

The above condition is satisfied by choosing

(3.2) a aN max {%}/M= yo/M.
0_--<j N

Since Yo" (see, e.g., [1]), we obtain that

(3.3) aN ,---,/M.
The Hermite spectral methods were rejected before because of their poor resolution
properties. Gottlieb and Orszag [12] investigated the rate of convergence of Hermite
series by considering the expansion of the sine functions. They found that to resolve
p wavelengths of the sine function requires O(p2) polynomials. In the case when the
function decays rapidly, we need to consider the sine functions which oscillate rapidly
in a finite interval (i.e., Ivl-<-Const.). Consider

(3.4) sin (pD): c2n+lH2n+l(V),

where

(3.5) eZn+l (-1)
"p

2n+1 exp (-p2/4)
22"+(2n + 1)!

for n 0, 1,.... Using the asymptotic expansion of Hn (v) ],

(3.6) Hn(v)"exp (v2/2) (1/2n)!COS x/2n+l v-- ner
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and Sterling’s formula

(3.7) n!,--, nn+/2 exp (-n),

we obtain the asymptotic behavior of the nth term of the right-hand side of (3.4) as

(3.8) term’"2/ n exp (n-p/4+v/2).

It can be seen from the above equation that if n p/4 then the nth term behaves like
exp (v/2)/, which is in general not small. That is, to resolve p wavelengths of
the sine functions requires more than 0.25p Hermite functions. This result is similar
to that observed by Gottlieb and Orszag [12]. However, if we use the scaling factor
c of the form (3.2), i.e., if we expand

(3.9) sin (pv)=

with au o, then the nth expansion term is of the asymptotic form

(3.10) term 4n
exp n-4+

Noting that 2N, we obtain

(3.11) term4nN 8nNeXp 1-8nN exp

The right-hand side of the above equation decays exponentially when n N p. This
result shows that using the scaling factor can reduce the number ofrequired polynomials
to the best possible case. The above analysis is only given for the expansion in Hermite
polynomials, but similar behavior can be seen for the expansion in the normalized
Hermite functions (in this case, if the function has a finite suppo [-M, M], then
N Mp). To see this, we expand

(3.12) cos (pv) exp (-v) 2 aO(v).

The coecients {a}=o are obtained by using (2.10) and the numerical curve is given
by (2.11). It can be seen from Fig. 1 that, after scaling (i.e., o/3), 20 and 30
expansion terms give good approximations to the function cos (pv)exp (-v) with
p 20 and p 30 (noting that the function cos (pv) exp (-v) is an even function and
the number of the expansion term is N/2 since the odd terms are zero). However,
approximations without scaling (i.e., 1) require more than 100 terms in the case

p 20; see Fig. 2. Fuhermore, in Figs. 3 and 4, we have plotted the absolute values
of the even coecients in (3.12) (noting that the odd coeNcients are zero) as a function
of n in the case p 20. In these two figures a log scale was used. Since 0(v) O(n-/4),
the nth term of (3.12) is small only when its coeNcient is small. Figure 3 suggests that
in order to have the nth term less than 10 -3, for all n > N, we need about 25 expansion
terms (i.e., N 50) when the scaling factor is used. However, Fig. 4 shows that about
140 expansion terms are required for the conventional expansion (i.e., 1).

Many practical problems are required to approximate the distribution function
of the form exp (-pv) with moderate and large values of p, for example, the heat
equations with Gaussian-type initial distribution with small viscosity coecients, and
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FIG. 1. (a) Hermite spectral approximation forf( v) cos (20v) exp (-v2) with N =40 and ce 70/3" (b)
Hermite spectral approximation for f(v) cos (30v) exp (-v2) with N 40 and a 3’0/3.

the Fokker-Planck equations with small thermal velocity (cf. 17]) or with small particle
response time (cf. [10]). Since

(3.13) exp (-pv2) Y c2.q2.(v),
n=0

where

(3.14) c2,, -/2_,,(2n) (p +1/2 n!

we obtain the asymptotic behavior of the nth term of the right-hand side of (3.13) as

1 (p)_- i)(3.15) termn n-
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FIG. 3. The even coefficients of the Hermite expansions for f(v) =cos (20v) exp (-v2). (a) N= 50 and
3/o/3. (b) N 60 and a To/3-

The above result is bad" for large p about O(p) terms are required. This can be seen
from the following. Since

(3.16) 1 <_- lim 1 =-, for all x_-> 1,- e

then only when n >-N Cp with a positive constant C (which is quite large),

1
(3.17) term,---,v/nTrp e c

However, when applying the scaling technique to the same function, we obtain

(3.18) exp (-pv2)
n=O
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FIG. 4. The even coefficients of the standard Hermite expansions (i.e., a=l) for f(v)=
cos (20v) exp (-v2), N 350.

with aN yo/M, as given in (3.2). The asymptotic form of the nth term is

(3.19) term. --pp av +
which yields that

(3.20) term,
nvrpM2 M2p/N+

If p is large, then M can be chosen as one. If n-> N, the right-hand side of (3.20)
decays rapidly to zero when N>= C(p/N+1/2) with a positive constant C"

term, 1
p/N +

(3.21) _-< 1 -p/N+

The requirement N >-C(p/N+1/2) is satisfied when N O(x/). In Figs. 5 and 6 we
consider a test function f(v)=exp (-2v2)+exp (-20v). It can be seen from Fig. 5
that after scaling ten expansion terms (again, since the function f is an even function,
the number of expansion terms is N/2) give a good approximation. However, Fig. 6
shows that approximations without scaling need more than 50 expansion terms.

4. Numerical applications. Consider the eigenvalue problem [3, p. 126]

(4.1) -u"(v)+ V4U(V) U(V).

By the WKB method, the solution of the above equation has the asymptotic behavior

(4.2) u(v) exp (-[v[3/3).
It is obvious from (4.2) that u---0 if Iv _-> M- 5. In order to obtain accurate solutions
of (4.1) efficiently, we need to choose the scaling factor a To where yo

maxo_<j=<N {yj}, with yj the roots of HN+I(Y). Since the solutions of (4.1) are even
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FIG. 5. Hermite spectral approximation for f(v) =exp (-2v2) +exp (-20v2), with o 3’0/2 and N 20.

functions, only N/2 expansion terms are required in the actual calculations. For
N =60, we predict that the scaling factor a 10.16/5.0 2.0. Birkhoff and Fix [3] used
Galerkin’s method with 30 Hermite functions (i.e., N =60) to solve (4.1). They found
that the standard Hermite functions (i.e., without scaling) gave the first 18 eigenvalues
to only three decimal places, whereas using a scaling factor a 2.154 gave the same
eigenvalues to 10 decimal places. That is, an increase of 10 -7 in accuracy is obtained.
They obtained the optimum scaling factor through trial and error (the procedure
requires a considerable amount of computer time), but the present work provides an
accurate scaling factor in a very simple way.

Finally, we apply the scaling technique to the one-dimensional heat equations.
The numerical methods for heat equations have been studied extensively in the past
(see, e.g., [16] and [18]). Consider the equation

(4.3)
Ot Ov

where u is the viscosity coefficient. If an initial temperature distribution is known, then
the problem is to determine the temperature distribution at later times. If the viscosity
coefficient is a constant and the initial distribution is given as

(4.4) u(v, 0) exp

then the exact solution of (4.3) and (4.4) is

1

1) ( v2),(4t+ 1)
(4.5) u(v, t)=v/ru(4t + exp.
Problem (4.3), (4.4) has been chosen since it has an analytic solution and this allows
us to compare our numerical results with the exact solution (4.5). We use the pseudo-
spectral method introduced in 2 to compute the numerical solutions. The numerical
procedure can be applied to more complicated initial distributions and to variable
viscosity coefficients. It can be seen from the previous section that the Hermite spectral
methods work well for moderate values of ,, but about O(1! ,) expansion terms are
needed when , is small. However, if we apply the scaling technique, then fewer terms
are required. To illustrate this, we shall consider the case when , =0.01.
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Let U(t)=[U(yo/a, t),..., u(yc/a, t)] r. Then (4.3)maybe semidiscretized as

dU
(4.6)

dt
vD(2) U’

where D(2) is the second-order differentiation matrix, which can be computed by (2.4),
(2.6), and (2.10). When an explicit method is used to integrate (4.6) in time, the
maximum allowable time step needs to satisfy

(4.7) At O vsr(-D(2)
where sr(D2)) denotes the spectral radius of the matrix D2). Since sr(D2)) O(aN)
(see [19]) and N O(x/-i/u) (see 3), aN O(x/), we obtain At O(1). This suggests
that the time-step size can be independent of N when u is small, which is unlike the
finite difference methods 16] and the particle methods 18]. Figure 7 gives a comparison
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FIG. 7. Comparison between the exact (lines) and numerical (marks) solution for the diffusion equation
at different times. (a) At =0.1 and N 24; (b) At =0.01 and N 24.
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between the exact solution and the numerical results. The solution domain is [vl =< 1
and N is 24 (which corresponds to 12 expansion terms, since the solution is an even
function). Figure 7(a) shows that even for a quite large step size, At =0.1, stable
numerical results can be obtained. The results differ only slightly from those obtained
by using a smaller time-step size (see Fig. 7(b)). The numerical results are obtained
by using the forward Euler method with constant time-step size At.

5. Discussions. The method presented in this paper can be used in solving differen-
tial equations with solutions that decay exponentially as v-> . The idea of using a
scaling factor can also be extended to other spectral methods for unbounded intervals,
for example, Laguerre spectral methods (see, e.g., [13]) and rational spectral methods
(see, e.g., [7] and [19]). It is known that Hermite spectral methods cannot handle
functions that decay algebraically with v, but Laguerre and rational spectral methods
are appropriate in approximating slowly decaying functions (see, e.g., [5]). It is expected
that the use of Laguerre or rational spectral methods with a similar scaling technique
can approximate solutions of some practical problems (e.g., problems in [7], [8],
and 13]).
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ACCELERATED MULTIGRID CONVERGENCE AND
HIGH-REYNOLDS RECIRCULATING FLOWS*

A. BRANDTt AND I. YAVNEH$

Abstract. Techniques are developed for accelerating multigrid convergence in general, and for
advection-diffusion and incompressible flow problems with small viscosity in particular. It is shown
by analysis that the slowing down of convergence is due mainly to poor coarse-grid correction to
certain error components, and means for dealing with this problem are suggested, analyzed, and
tested by numerical experiments, showing very significant improvement in convergence rates at little
cost.

Key words, multigrid, incompressible flow, acceleration
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1. Introduction. Classical multigrid methods were originally developed for el-
liptic partial differential equations and systems. For such problems these methods
have proved to be extremely efficient, enabling solution to the level of discretiza-
tion errors in just a few minimal work units, so that the total work invested in the
solution grows linearly with the number of variables, and usually at most several
dozen operations per variable are required. When applied to nonelliptic and singular
perturbation problems such as high-Reynolds flows, however, performance seems to
deteriorate significantly, due in part to the fact that the solutions become more com-
plex (e.g., boundary layers and characteristic directions along which high-frequency
data may propagate to large distances). But poor multigrid behavior is exhibited
even in simple problems with smooth solutions when the partial differential operator
is nonelliptic (or has a nonelliptic component).

To learn how to treat the various troubles that appear in flow problems, it is
necessary to distinguish them. One of the main distinctions that must be made is
between entering flows, in which the flow enters through some boundary and follows a
well-defined general orientation, and recirculating flows. In the former, relaxation can
be made to resolve smooth components, and thus act (in part) as a solver and not just
as a smoother in the multigrid solution process. Highly efficient multigrid solutions to
problems of this type are demonstrated in [7]. The purpose of the present study is to
show how to improve performance greatly in recirculating flows and other problems,
in which relaxation significantly resolves only nonsmooth error components.

The main tool used in analysis and prediction of the performance of multigrid
algorithms is local mode analysis (see, e.g., [2]). For elliptic partial differential systems
it was shown in [4] that, under reasonable assumptions, the predicted performance can
indeed be obtained for general domains by adding some processing, for negligible cost,
at and near the boundaries. Hence, boundary effects may be neglected in the basic
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analysis of multigrid solvers for elliptic problems. This is not the case in problems that
are nonelliptic or have nonelliptic components, such as incompressible flows at high-
Reynolds numbers. In such problems, high-frequency boundary data may propagate
far into the domain, and it may be necessary to include boundary effects in the
analysis (see [7]). However, when dealing with shear-driven recirculating flows we are
once again in a position that is similar to the elliptic case with respect to boundary
effects, since cross-stream behavior is determined by the (elliptic) viscosity terms no
matter how small they may be (see [6]). For such flows the infinite-space local mode
analysis is again useful.

Slow convergence of multigrid cycles can generally be traced to (at least) one
of two major causes: poor smoothing or poor coarse-grid approximation to the fine-
grid problem. Smoothing, which is reducing the amplitude of high-frequency errors
that cannot be treated on the next coarser grid, is dealt with extensively in most
publications on multigrid solvers for incompressible flows (see, e.g., [2] and [5]). Here
we address the’ problem of poor coarse-grid corrections, which may require specialized
methods that depend on the cause of the problem. When the poor approximation
is caused by a local factor, say, some singularity in the boundary, the proper course
is usually to employ local methods such as extra relaxation in the vicinity of the
singularity (see [1] and [4]). But sometimes, in particular in high-Reynolds flows,
the coarse grid fails to approximate the fine-grid problem well enough for certain
components throughout the domain. Frequently, the best course of action then is to
simply disregard this seemingly poor behavior, since those components, which are
poorly approximated by the coarse grid, do not in turn approximate the differential
solution well (see [2] and [3]). If, however, one is interested in obtaining good algebraic
convergence and not just rapid convergence to a good approximation of the differential
solution, special techniques must be employed, to accelerate convergence.

Consider as our model problem the constant-coefficient advection-diffusion equa-
tion:

(1) Ldu --e/u + au 0,

where / is the Laplacian operator and e is a positive constant. Suppose that this
equation is discretized by some finite difference scheme Lhad of order q on a uniform
grid of mesh-size h whose orientation is general (and therefore choosing x to be the
characteristic direction results in no loss of generality). The resulting discrete set of
equations is solved by starting with some initial approximation to the discrete solution
on the fine grid h (grid with mesh-size h) and iterating with the usual multigrid cycles.
Soon one finds that (for vanishing e) the residual norms are reduced at best by an
amplification factor of I 0.5q by each cycle, even. if the number of relaxation sweeps
per level and the cycle index (defined below) are chosen to be quite large. The reason
for this slow-down has been shown to be poor approximation of smooth characteristic
components by the coarse grids. This property has already been explained in [3]. We
return to it here, and in another context in [7], and present methods for treating the
problem.

As usual, when researching the advection-diffusion equation, our object is to learn
how to treat the Navier-Stokes equations. Since these exhibit similar behavior, we
conclude that the problem of poor coarse-grid correction studied here is the main cause
for the poor convergence rates of flow problems as well. Hence, although the analyses
below are all done for the advection-diffusion equation, numerical experiments also
include the incompressible flow equations, and indeed the behavior is seen to be
influenced similarly by the methods proposed.
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In 2 and 3 the two-level and multilevel cycles are analyzed, and it is shown why
the usual multigrid cycles exhibit poor convergence rates. In 4 it is shown by analysis
and numerical examples that significant acceleration of convergence can be obtained
at virtually no cost by overweighting some of the residuals that are transferred to
the next coarser grid. In 5 a method of employing defect corrections within the
multigrid cycle is introduced, and it is shown by analysis and numerical experiments
that this method can be combined in various ways with residual overweighting to
greatly improve the multigrid cycle’s performance. The ultimate modified W cycle
that is developed enables an asymptotic reduction of the error by a factor of nine
per cycle in its two-level version for the first-order discretized advection-diffusion and
incompressible Navier-Stokes equations, rather than the factor of two that is yielded
by the usual two-level cycle. This performance is almost matched in the multilevel
cycle as well, and here the improvement is still more dramatic, since the usual cycle’s
performance is shown to deteriorate rapidly as the number of levels grows. Conclusions
and remarks are given in 6.

The accelerated multigrid analyses and methods developed in-this article can be
straightforwardly generalized to other cases in which multigrid convergence deterio-
rates due to poor coarse-grid corrections for some smooth components.

2. Two-level infinite-space local mode analysis. In order to have a clear
and quantitative understanding of the slowing down of multigrid convergence due to
poor coarse-grid correction, we will analyze here a multigrid cycle leaving out some
irrelevant aspects: we will treat only smooth components, and hence neglect the effect
of intergrid transfers, and employ the first differential approximation (FDA; see [11],
[3], and [2, 7.5]) to the difference equations. We will also assume for simplicity
that the diffusion coefficient e tends to zero, which is indeed the case for which the
multigrid performance is usually the worst. The FDA approximation to a qth-order
discretization of Lad then has the form

(2) Lhad --ehaTq+- (Ox, Oy) + aOx

where the first term on the right-hand side represents the first truncated term in the
discretization of Lad. Tq/l is a polynomial of degree q / 1 of the form

(3)
q+l

Tq+l (Ox, Oy) aj O 0+l-j,
j=o

and h O(hq) h and the coefficients aj are determined by the particular discretiza-
tion and angle between the characteristic direction and the grid. For example, in the
case of the usual first-order upstream discretization, the FDA is

ha[ (cos3 -t- sin3 )0xx + sin 2(sin cosLhad - + 1/2 sin 2(sin + cos )0yy + aOx,

where is the angle that the characteristic direction x forms with the grid. (This is
obtained by writing the artificial viscosity of upstream discretization in the coordinates
of the grid, and transforming to the characteristic coordinates x and y.)

Consider an error component on the fine grid h given by

(4) vh ei(1+’)
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Generalization to higher dimensions is straightforward, and the following analyses
apply directly. The residual due to this error is

(5) rh _Lad h --,had(W, W2) e(x+)

^hwhere Ld is called the symbol of Lhd (see also [2]). The correction problem solved on
the coarse grid H is

(6) rLady

yielding

^h
(7) V

H Lad vh^HLad
Denoting

C(l d2)-- ahd(l’2)
^HLoe(Ol,O)

we obtain that the two-level amplification factor u of the fine-grid error, defined as
the ratio of the new fine-grid error (after the correction vH has been added) to the
original error vh, is given by

Vh -- VH(8) (wl,w2) vh
1 C(wl,w2).

From (2), (3), and (8), for a qth-order discretization of the advection-diffusion oper-
ator, we obtain

(9) Y(021, W2) 1 ehT+(iw, iw2) + iw
eHTq+ (iwl iw2) + iw

For most smooth components (and small mesh-sizes) this amplification factor
is close to zero, and multigrid convergence can hence be expected to be essentially
as good as allowed by the smoothing rate and the number of relaxation sweeps per
level. But consider smooth characteristic error components, which are smooth (and
therefore nearly unaffected by any local-type relaxation), but much smoother in the
characteristic direction x than in the cross-characteristic direction y. For such com-
ponents, wl/w2 << 1, and their amplification factor is therefore much larger. In the
limit of components which only vary in the cross-characteristic direction, we obtain
that the two-level convergence factor tL, which is defined as the maximal (in absolute
value) over all the frequencies defined on the grid, is given by

(10) tL (0,w2) 1- eh 1- 0.5
H

Asymptotically the poorly corrected characteristic components become dominant,
and the error norm is reduced at best by a factor of i 0.5q, even with two-level cycles.

3. Multilevel local mode analysis. The multigrid cycle index / is defined
as the number of times a correction from the next coarser grid is taken by each
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intermediate level in calculating its solution, before that solution is used to correct
the error on the next finer grid. Thus - 1 is the index of the so-called V cycle,
and /- 2 is the index of the W cycle. Actual multigrid cycles need to employ a
fairly small cycle index , if the total work is to grow only linearly with the number
of variables: in d dimensions, - must be smaller than 24. Let us therefore determine
by analysis the expected multilevel amplification factor of an error component whose
two-level amplification factor 1- C is assumed to be independent of the mesh-size.
This simplifying assumption is only valid for the extreme cases where, in (9), wl
vanishes, in which case C equals eh/e2h , 0.5q, or where Tq+ vanishes, in which
case C equals one. This is appropriate here since these extreme cases determine the
worst-case amplification factor. Moreover, this analysis of the multigrid cycle is not
restricted to the advection-diffusion equation.

Consider a multigrid cycle that is implemented on n/ 1 levels numbered 0, n,
with n denoting the finest grid. For each error component there corresponds a "solu-
tion level" i on which it is sufficiently nonsmooth so as to be eliminated efficiently by
relaxation (or perhaps direct solution in the case i 0). To simplify, we assume that
every error component is eliminated completely on its solution level, but that on all
finer grids it is unaffected by relaxation. Let us denote by u-i(C) the level-n am-
plification factor of an error component, whose two-level amplification factor is 1 C
and whose solution level is i, in a multigrid cycle with cycle index -/. Let k- n- i.
Under the assumptions above, we have for k 0

(11) u0 -0,
and for k 1

(1:) c,
regardless of /(the latter is simply the two-level cycle by definition). For 1 < k _< n
the residual problem is transferred to the next coarser grid (level k-1), and multigrid
cycles (in which the corresponding amplification factor for that component is uk-)
are performed. As a result, the error in the solution to the coarse-grid problem is
reduced by a factor of (k-1). This approximate correction is now transferred back
to the fine grid, but multiplied by C (since even the exact solution to the coarse-
grid problem only yields C times the required correction). This yields the following
recurrence equation:

(13) uk 1 C. [1 (uk-)] u + C(/]k-1)"1’ 1 <_ k <_ n.

3.1. Properties of the multilevel cycle. In the following discussion we con-
sider only real values of C, since C is real in both extreme cases of the advection-
diffusion equation: when the coarse-grid correction is worst, and when it is best. This
assumption will greatly simplify the discussion. Also, it is of course unnecessary to
consider nonpositive real values for C, since these would imply that the coarse grid
does not approximate the corresponding components at all, in which case special
measures need to be taken.

Remark 1. The fixed points of (13) are solutions of

(14) u 1 C(1 u).

u 1 is a fixed point for every 7. When C < 1 it is the only one in the case of a V
cycle (/= 1). W cycles (/= 2) have a second fixed point at u (1 C)/C.
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PROPOSITION 1. For every k >_ 1,

(15) uk 1 Ck

Proof. By induction: v 1- C, and by (13) and the induction hypothesis,

Ul
k i- C+ C(I- Ck-l) i- Ck

Conclusion. The convergence rate of the multigrid V cycle deteriorates rapidly as
the number of levels grows, unless C is close to 1. In particular, the V cycle is clearly
unsuitable for the advection-diffusion equation, even with first-order discretization.

PROPOSITION 2. For all 0 < C < 1 and all positive k and %

0 _< < < 1.

Proof.
hypothesis,

By induction: 0 < u 1-C < 1, and by (13) and the induction

,-c. [,- <,

and

(18) /]+1 /] C" [(b’$) ’7 --(1]$--1)"7] > O.

PROPOSITION 3. For all 0 < C < 1, vk2 tends to the smaller of the two fixed points
(1 and(1- C)/C) as k tends to infinity.

Proof. For k _> 0, by (16) we have

(19)

The proof follows from this and Proposition 2.
Conclusion. Proposition 3 implies that u2

k tends to one when 0 < C <_ 0.5. Thus,
the convergence factor of the W cycle for the advection-diffusion equation with first-
order discretization tends to one as the number of levels tends to infinity.

We reiterate that this analysis assumes that relaxation is of a local type, and
therefore has a negligible effect on all components that are smooth on the scale of
the grid on which they are relaxed. A different situation may arise in cases such as
entering flow problems, which are studied in [7]. When relaxation is performed in
downstream ordering in such problems, it no longer has a purely local effect. Indeed,
for the advection equation with upstream differencing, if relaxation is carried out in
downstream ordering, it performs as a solver and not just as a smoother. Convergence
of the advection-diffusion equation is discussed in [8], and much better rates than the
ones predicted by our analysis are obtained. But the model problems are precisely of
the entering flow type, and at least some of the relaxation sweeps are carried out in
downstream ordering. This point, however, which explains a number of phenomena
in the numerical results that are obtained there as well as in other publications, and
which is the key to further achievements with much more complicated schemes, seems
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to have been overlooked. Also, in some flow problems, the actual Reynolds number in
the regions of recirculation are very much smaller than the nominal values (because
the velocities in these regions are small), and somewhat better performance may then
be found (e.g., in [10]).

4. Method of overweighted residuals. A very simple and almost cost-free
approach to accelerating convergence is the method of overweighted residuals (OWR).
The idea, which is reminiscent of the method of successive overrelaxation (SOR), is
to improve the coarse-grid correction to the error in the fine-grid approximation by
multiplying the residuals that are transferred to the coarse grid by some constant /
between one and two. Clearly, y should not be too large, since those components that
usually receive the proper correction are now overcorrected. It is best to determine an
optimal overweighting factor , which will depend on the number of levels employed.

4.1. Two-level single-parameter optimization. Let denote the minimal
C over all the frequencies defined on the fine grid (for the advection-diffusion case,
-0.5q). Then the poorest (largest) corresponding error-amplification factor in the

usual two-level cycle (with - 1) is 1- , whereas the best amplification factor is
zero. When the residuals are multiplied by the factor /, however, the two extreme
error-amplification factors are now given by 1 -r/ and 1 -r/(by (6-8)). Due to the
monotonicity of these terms, the optimal two-level overweighting factor /t is obtained
when

(20)

and therefore

2
(21) h +"
The two-level convergence factor decreases accordingly from 1- to

(22) 1
1 .
1+

The two-level convergence factor of the advection-diffusion equation (with vanishing
diffusion coefficient) employing first-order discretization, for example, improves from
0.5 to 0.33 with -4/3.

4.2. Multilevel single-parameter optimization. Propositions 2 and 3 imply
that the components that converge most slowly, for a fixed C in (0,1), are those
whose solution level is the lowest (k- n). When the number of levels is large, the
amplification factor of such errors by a W cycle tends to (1 C)/C when C is between
one half and one. For the overcorrected components in a cycle with an even cycle index, however, we have the following.

PROPOSITION 4. For all 1 < C < 2, even % and k >_ 1,

_< c-

(24)

Proof. By induction: For k _> 1

C-l_[-k+
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but

(2) c + c + c() > 0,

and alternatively

() c 1 (1 c + c()) > (c 1) c(c 1) > 0,

where in (26) the first inequality is trivial for k 1 and is due to the induction
hypothesis for k > 1, and the second is due to the range of C.

Conclusion. The components that converge most slowly when 1 < C < 2 are
those that are corrected on the second-finest level (k 1), and the convergence factor
for such overcorrected components is at least as good as the two-level rate when - is
even. This is true in particular for the W cycle (- 2). Hence, the optimal multilevel
overweighting factor Y,z for the W cycle is obtained when

(27)
1

I
yielding

(28) .z -’/.
This value is valid only when Tim ( 2. For <_ 0.25 the multilevel convergence factor
must tend to one as the number of levels grows. The W-cycle multilevel convergence
factor u,t of the advection-diffusion equation with vanishing diffusion coefficient and
first-order discretization thus improves from 1 to /- 1 0.41, with the optimal
overweighting factor mZ

With a finite number of levels, the optimal overweighting factor is reduced some-
what, yielding slightly better convergence rates. It is thus possible to calculate the
optimal overweighting factors for each level. These start with 4/3 for the second-
coarsest grid and increase until they tend to V as the grid becomes finer. However,
there is not much practical gain in doing such careful optimization, since on very
coarse grids the assumptions made in the analysis are rather poor anyway, and also
the optimal quickly tends to x/. One can thus uniformly use the overweighting
parameter ] v/.

4.3. Two-level multiparameter optimi.ation. In the optimizations describ-
ed above we have considered only a single cycle, and therefore only a single over-
weighting parameter ]. But since we are dealing with asymptotic convergence rates,
it is implied that several cycles are performed. Also, since (at least) W cycles need
to be employed, more than one cycle per level is performed. This suggests using sev-
eral different overweighting factors in order to further reduce the error-amplification
factor. This is a special case of polynomial acceleration, and the optimal choice of over-
weighting factors, which is calculated with the aid of Chebyshev polynomials, yields
optimal Chebyshev acceleration (see, e.g., [9]).

Consider a smooth error component for which the ratio between the fine-grid and
coarse-grid symbols is C, _< C _< 1. Suppose that m two-level cycles are performed,
where the residuals in the jth cycle, j 1,..., m, are overweighted by a factor of
The factor by which the error is amplified in this process is given by

m

(29) [um(c)]m YI(1 ]jc),
j--1
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where ’(C) is the average amplification factor per cycle. Assuming, as above, that
the extreme eigenvalues of the two-level operator are 0 and 1 , the optimal poly-
nomial (C), i.e., the one for which the maximal absolute value over all C’s in the
interval is minimized, is given by

1- )

where Tm is the Chebyshev polynomial of degree m, given by

cos(m cos- x), 1 _< x 1,
(31) Tm(X)

cosh(mcosh_ x), 1 < x

(see [9] for the general development). By (29) the optimal j’s are the inverses of
the zeros of , which can eily be calculated from (31). For m 1 the optimal
overweighting factor is indeed in (21), and for m 2 the two optimal factors are
given by

2
(32) YJ= 1+’

j=l,2.

The average amplification factor per cycle of the error is given by

(11
For the advection-diffusion equation with first-order discretization ( 0.5), the

single-cycle optimization (m 1) thus yields a twlevel convergence factor of 0.33
per cycle shown above. Twcycle optimization (m 2) yields an average twlevel
convergence factor of 0.24 with the optimal overweighting factors of 1.079 and 1.745,
and the ymptotic (infinite number of cycles) average twlevel convergence factor
with optimal overweighting factors is 0.17. With second-order discretization (
0.25) the single-cycle optimization yields a twlevel convergence factor of 0.60 per
cycle with 1.60. Twcycle optimization yields an average twlevel convergence
factor of 0.47 with the optimal overweighting factors of 1.123 and 2.779, and the
ymptotic average twlevel convergence factor with optimal overweighting is 0.33.
However, large overweighting factors are unlikely to be useful in practice, if only
because the corresponding amplification of nonsmooth error components means that
much better smoothing is then required.

An automatic acceleration method, which would not require a priori analysis, is
conceivably useful. However, since the ultimate goal is to employ at most one or
two cycles per level in the solution process, methods whose usefulness relies on the
execution of many cycles are unlikely to be truly efficient.

4.4. -cycle optimization. In a multigrid cycle with cycle index there are
overweighting factors to be chosen for the visits to the next coarser grid at each
level. Consider again a smooth error component for which the ratio between the fine-
grid and coarse-grid symbols is C, C 1. Then, if the overweighting factors j
are chosen independently of the level, the error amplification factor of cycles on
level i + k is given by the recurrence equation
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(34) (Uk) H [1-C (1- (uk-))]
with

=0.

Again a recurrence equation is obtained, for which i is a fixed point. The optimization
of the y’s generally needs to be done numerically. The optimal overweighting factors
for the W cycle with 0.5 (e.g., for first-order approximations to the advection
equation) are 1.085 and 1.843, yielding a convergence factor per single W cycle of
0.27, whereas the single-parameter optimization yields 0.41.

4.5. Numerical experiments. Numerical experiments were carried out with
the advection-diffusion equation, discretized by second-order central differences with
an added first-order isotropic artificial viscosity term discretized by the five-point star
(the importance of the isotropy of the viscosity coefficients is elaborated upon in [6]).
The problem solved was

-eAu + sin(ry)cos(rx) ux cos(ry) sin(rx) uy O,

over the unit square. The results reported here were obtained with Dirichlet bound-
ary conditions and exact solution zero, in order to allow a very large number of
cycles without encountering roundoff errors. The algorithms were tested with smooth
nonzero solutions as well, and nearly identical performance was observed until (double-
precision) roundoff errors were encountered. Since the physical viscosity coefficient e

was taken to be zero, the coefficients of the equation are very small at and near the
stagnation point (1/2, 1/2). When residuals are transferred with some averaging, such as
the usual full-weighting that was used in these calculations, the right-hand side on
the coarse grid in these regions may be much larger than the coefficients, resulting in
reduced performance or even instability. This is best overcome by using averaged co-
efficients in the calculation of the artificial viscosity. Here we determined the artificial
viscosity by adding the absolute value of the coefficient at the point of discretization
with weight to those of the four nearest neighbors with weights , and multiplying
this weighted average by as usual. This averaging introduces only an O(h3) change
in the usual artificial viscosity.

The asymptotic convergence factors of the dynamic residuals with various over-
weighting factors are presented in Table 1 along with the predictions of the analyses
presented above. The fine mesh-size for the two-level results is 1/64. The multilevel
results were obtained with four levels, the finest mesh-size being 1/128, and the ana-
lytical prediction refers to a four-level (not infinite-level) cycle, and is calculated from
(13). The optimal is then 1.40--slightly smaller than the infinite-level optimum of

The multilevel results were calculated with a W(2,1) cycle (a W cycle with two
pre- and one postrelaxation per level), and it was verified that increasing the num-
ber of relaxation sweeps per level results in only a negligible improvement in the
performance, so that indeed three sweeps per level reduce the high-frequency error
components sufficiently, and the convergence rate is determined by the coarse-grid
correction.
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TABLE 1
Asymptotic residual convergence factors of numerical calculations for the advection-diffusion

(AD) equation and incompressible Navier-Stokes (INS) equations are compared with analytical pre-
dictions for various single overweighting ]actors 1. Two pre- and one postrelaxation sweeps were

employed.

Two-level Multilevel

Analytical Numerical Numerical Analytical Numerical Numerical
prediction AD INS prediction AD INS

1.00 0.50

1.10 0.45

1.20 0.40

1.30 0.35

1.33 0.33

1.40 0.40

1.50 0.50

0.50

0.45

0.39

0.34

0.33

0.38

0.45

0.49

0.45

0.40

0.33

0.69

0.62

0.55

0.47

0.68

0.6i
0.54

0.46

0.54

0.45

0.33 0.44 0.44 0.46

0.40 0.40 0.40 0.51

0.51 0.50 0.50 0.63

The experiments were repeated with the incompressible Navier-Stokes (INS)
equations in two dimensions, over the unit square with a square of side 0.25 re-
moved from its center. Both the inner and outer squares’ sides were aligned with the
grid. Dirichlet boundary conditions for the velocities were specified at the inner and
outer boundaries. The velocities normal to the boundaries were all made to vanish.
The tangential velocities at the inner boundaries were set to zero as well, but the
tangential velocities at the outer boundaries were prescribed to be

Vtan sin rs,

with s varying from 0 to 1 along each side of the outer square, and Utah driving the
flow in the clockwise direction. These conditions and this domain yield a smooth
flow with closed streamlines and almost no boundary layers. We chose such a flow
because boundary layers constitute a separate problem that needs to be treated by
its own specialized methods. Slow convergence due to poor resolution on coarse grids
is unrelated to the problem of poor convergence of certain smooth components, which
is examined here.

The cycle parameters chosen were the same as for the advection-diffusion (AD)
equation tests. The discretization used in [5] and [2] was employed with first-order
isotropic artificial viscosity, and the Reynolds number solved with was 10-6, so that
the physical viscosity was everywhere negligible relative to the artificial viscosity.
This is implied by the analysis (and verified by experiments) to be the most difficult
case with respect to rate of convergence. Adding physical viscosity, while fixing the
overweighting factors, always resulted in improved convergence rates.

Now the number of cycles performed was limited by the double-precision roundoff
errors. Distributive Gauss-Seidel relaxation with red-black ordering (see [2]) was used
throughout. These results are also listed in Table 1 and compared with the analytical
prediction for the AD equation.

The numerical results match the analytical prediction very closely. The only
exceptions are INS multilevel results with large y’s. These, and also the corresponding
results in Table 2, indicate greater sensitivity to large overweighting factors in the
solution of the system.
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Note that only the momentum equation residuals need to be overweighted. This
is due to the fact that the continuity equation contributes an elliptic component (the
Laplacian operator) to the system, for which overweighting is unnecessary. This point
has been verified by two-level analysis of the linearized incompressible flow equations.

Experiments were also carried out with the advection-diffusion problem using two
different y’s. The average two-level convergence factor was 0.34 with the theoretically
optimal two-level overweighting factors, and the average multilevel convergence factor
was 0.43 when two prerelaxation sweeps and one postrelaxation sweep were employed.
The large overweighting factors apparently cause problems. One of these is that over-
weighting undesirably amplifies high-frequency residuals as well as low-frequency ones,
so more smoothing is necessary. Also, since the coarse-grid correction is improved,
still more smoothing is required in order to reduce high-frequency errors sufficiently
for the smaller convergence factor. Indeed, better performance was obtained when
the number of relaxation sweeps per level was increased. With two prerelaxation and
two postrelaxation sweeps, the convergence factor attained with the two-level cycle
was 0.26 (rather than the theoretical 0.24), and the multilevel factor was 0.37 (rather
than the theoretical 0.27). It seems that the assumptions of the analysis are no longer
valid, since now intermediate eigenvalues also figure in the convergence rates, and
these are neither real nor grid independent.

It is possible to find somewhat smaller overweighting factors that may provide
improved results. This requires either a more sophisticated analysis that takes into
account high-frequency phenomena, or numerical experimentation in the form of an
automatic acceleration process. But in view of the results presented below, this does
not seem to be the most profitable course.

5. The defect-correction W (DCW) cycle. The method of defect-correction
iterations is a well-known tool for obtaining solutions with high-order accurate oper-
ators that are unstable, and that therefore cannot be used directly. This method can
be embedded into the multigrid cycle as a means of accelerating convergence.

The basic defect-correction method is as follows. Suppose we wish to obtain an
approximate solution to some equation

(36) Lu- f
with suitable boundary conditions. We would like to use some finite difference op-
erator L2h for approximating the differential operator L on a grid with mesh-size h,
but cannot use it directly, say, due to problems of instability. Instead, we use another
(usually lower-order) operator L1h, which is stable, and we hope to approach the L2h
approximation via the following iterative process:

(37) h h fh LhhuhLl ui + (Lhl 2 -1,

where i _> 1 is the iteration number and Uoh 0. Here again the h superscripts denote
functions and operators defined on grid h. If this process converges, it must clearly
converge to the solution with the operator L2h. In elliptic cases the convergence is
usually fast for smooth solution components, in terms of which Lh is indeed a good
approximation to L2h, while the slow convergence of nonsmooth components may
actually be an advantage, since for them Lh may be better than L2h.

A form of this defect-correction process can be used for accelerating the con-
vergence rate when it is slowed down by the poor coarse-grid correction to certain
components. We present this technique here as employed in a W cycle, but the gen-
eralization to greater cycle indices is straightforward.
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The two-level correction scheme DCW cycle for the solution of the discrete prob-
lem

(38) Lu f
is defined as follows:

1. Start with some initial approximation to Uh on the fine grid h. Smooth the error
corresponding to this approximation by some number of relaxation sweeps, obtaining
h.

2. Transfer residuals to the coarse grid H, and solve the first coarse-grid problem

(39)

where the H superscripts denote operators and functions defined on the coarse grid
and IhH is some transfer operator from grid h to grid H.

3. Calculate and add to the right-hand side a defect-correction term, and solve
the second coarse-grid problem:

(40)

where L/ is some approximation to Lh on grid H, which is significantly better than
LH, as explained below.

4. Interpolate and add the correction v2
H to fih, and smooth this new approxima-

tion with some number of relaxation sweeps.
The operator L/ used in (40) is some higher-order grid H approximation to the

fine-grid operator Lh, which is not used directly, e.g., because it cannot be smoothed
efficiently. For example, if Lh and LH are first-order upstream discretizations of
the advection operator on grid h and H, respectively, then they can be viewed as
second-order central difference approximations with added artificial viscosity that is
proportional to the mesh-size. LhH can then be chosen to be a central-difference
discretization plus artificial viscosity with coefficients that correspond to grid h, all
discretized on grid H. This is then a second-order approximation to Lh. More gener-
ally, if Lh is an approximation of order q on grid h to the differential operator L, and,
similarly, LH is a qth-order approximation to L (and Lh) on grid H, then LhH can be
any operator on grid H which is (at least) a q + lst-order approximation to Lh.

The step described in (40) is an attempt to improve the correction yielded by the
coarse-grid operator. An alternative view comes to light when LHvlH is subtracted
from both sides of (40), yielding

(41)

Viewed thus, the DCW acts as two cycles, except that the visit to the fine grid
between the cycles has been skipped, and the process of adding Vl

H to the initial fine-
grid approximation and recalculating the residuals is approximated on the coarse grid
instead. This viewpoint will later be useful in the analysis.

The multilevel DCW correction cycle is similarly defined, except that the coarse-
grid problems are not solved exactly, but rather by a similar DCW cycle (each) on the
coarser grid. This is done recursively, and only on the coarsest grid are the problems
solved exactly. Note that the cycle index is two (W cycle), which is the reason for the
name DCW.
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5.1. DCW with FAS. The DCW cycle can of course be implemented with the
full approximation scheme (FAS), but it is important to note that the defect correction
process must be applied only to the correction given by the first "leg" of the W cycle,
and not to the full solution. As in the usual FAS algorithm, (39) is now replaced by

(42) LHuf LHh -rH

where / is some transfer operator from grid h to grid H, which need not be the
same as I/. Equation (40) is replaced by

(43) LHuH2 LHhHh -rH -[-(LH L)(uH1 hHh).
Finally, u2

H -/-/?h is interpolated and added to h as in the usual FAS multigrid
cycle. It is easy to verify that for a linear problem this process is equivalent to the
correction-scheme two-level DCW cycle.

5.2. Two-level local mode analysis. We analyze the DCW cycle by the same
infinite-space analysis employed in the previous sections, again assuming that the
factor that determines the rate of convergence is the coarse-grid correction of smooth
error components, whereas high-frequency error components are reduced sufficiently
by relaxation. Also, intergrid transfers are again neglected, and the FDA is employed.

Suppose the current error in our approximation to the solution of (38) is

(44) V
h ei(wlx+w2y)

The corresponding first coarse-grid problem for the correction is then

(45) LHvl
H --Lhvh

Let C- C(wl,w2) h(wl,w2)/,g(w,w2), as in the previous sections. Now

Vl
H _Cvh

and the second coarse-grid problem, following (41), is

(46) Lg(v2H vH) --nhvh(1 C),

where no distinction has been made between the actual fine-grid operator Lh and
its coarse-grid approximation LhH, since the two are equivalent under the FDA. The
solution to (46) is

-c(1 C)v

and the error-amplification factor u after the correction has been added to the fine-grid
solution is

h vhv,,o + vH (1 C)(47) u=
vh vh

This result is quite expected from the point of view of skipping the fine grid.
That is, under the present simplifying assumptions the error-amplification factor per
cycle is the same as that per two regular cycles as calculated in 2. In particular,
the predicted two-level convergence factor per cycle for the first-order discretized
advection-diffusion equation is 0.25.
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5.3. Multilevel local mode analysis. Following the notation of 3 and the
fine-grid skipping viewpoint, we find that, for the multilevel DCW cycle, the one-
dimensional map describing the error-amplification factor k (see derivation of (13)
with /- 2 for the regular W cycle) is given by

(48) uk [1 C(1 k-1)] 2

for k > 0, with u0 0. " is omitted in the notation, since we are only considering a
W cycle. Observe now that (48) could also have been obtained from (13) with 9’ 2
by squaring both sides and substituting uk and uk-1 for (u2k)2 and (u2-)2. So the
multilevel DCW cycle is seen to be equivalent to two regular W cycles under the
sumptions of this analysis.

Conclusion. The convergence factor of the multilevel DCW cycle for the advection-
diffusion equation with first-order discretization (( 0.5) tends to one the number
of levels tends to infinity.

5.4. Combining the DCW cycle with OWR. We have seen that the DCW
cycle itself does not solve the problem of poor convergence rates when the number
of levels is very large, although the rate is squared for a given number of levels. A
natural approach is to try to incorporate residual overweighting into the DCW cycle.

5.4.1. -optimization. The proper way of applying residual overweighting in
the DCW cycle is again best seen from the fine-grid skipping point of view. So
considered, it is clear that not only do the residuals need to be multiplied by the
overweighting factor y, but so does the term -Lv in (41), which approximates
the term that would have been added to the fine-grid residual had the fine grid
been visited. By (47), the resulting twlevel error-amplification factor with single-
parameter overweighting is given by

(49) v (1 )2,

where is again the minimal Lh/Lg.
The optimal y is of course the same that for the regular cycle given in (21)

and, by (22), v with the optimal twlevel overweighting factor is given by

0 ut 1 +
This yields a very satisfactory wlevel convergence factor per cycle of 0.11 for the
first-order discredited advecion-diffusion equation.

The optimal multilevel overweighting factor m is also the same for the regular
W cycle ((-1/), and the multilevel convergence factor, following (27)-(28), is

(1

For the first-order discretized advection-diffusion equation, 0.5 and Vm 0.17.
Multiparameter optimization is also performed in the ce of a regular cycle.

5.5. Defect-correcting for finer levels. In the DCW cycle presented above,
the defect corrections were all used to improve the approximation to the problem on
the next-finer grid. But since it is only the finesgrid problem whose solution is
sought, and not those of the intermediate grids, fter convergence may be obtained
by employing operators of a much finer grid in the defect-correction stage. Clearly
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this will not affect two-level performance, since then the finest grid is used in the
defect correction anyway, but multilevel performance may be improved.

Many schemes are possible, and we consider here the ultimate one of using the
operator of the finest grid in all the defect corrections. Under the assumptions of
the present analysis, in which the effect of relaxation is disregarded, this scheme is
equivalent to employing double discretization (see [2]) within a W cycle. (In the dou-
ble discretization method, all the residuals are calculated with the fine-grid operator,
but since the initial solution on intermediate levels is zero and the effect of relaxation
is disregarded, it does not matter which operator is used on the first leg of the W
cycle.) Since now the scheme used on each grid depends on the finest mesh-size, or
rather on the ratio of the current mesh-size to the finest one, the multilevel local
mode analysis produces a family of recurrence equations rather than just one. Let
k n i again denote the difference between the finest level n and the solution level
i, and let j,k denote the error-amplification factor at level i A-j when the finest
level is n- A-k. Suppose that the error in the approximation to the equation on
level i A-j is vj. Then the first leg of the DCW cycle produces a correction v of
-C(1 j-l,k)v, as in the .regular W cycle, but the second leg now produces an ad-
ditional correction v-1- v- of C(1- -’k)[--1 A-ck-j+l(1- tfi-’k)]v, rather
than C(1 J-’k)[--1 / C(1 J-’k)]vJ of the usual DCW cycle, since the ratio of
the symbol of the operator on level i -4-j- 1 to that of the finest-level operator is
Ck-j+1. Hence, J,k is given by

(52) y,k 1 2C(1 j-l,k) + Ck-j+2(1 j-l,k)2,

for j _> 1 with 0,k 0.
From (52) it is clear that for large values of k some of the J’k’s may be quite

large in absolute value. But these only express the error-amplification factors for
intermediate grids, which are unimportant, because the purpose of the algorithm is
to reduce the error on the finest grid as efficiently as possible. The only interesting
value is therefore 12k’k, which is given by

(53) uk’k (1 Ck)2

This result can be proved from (52) by fixing k and performing an induction on j to
show that the appropriate binomial expansion is obtained when j k. The proof is
omitted due to its length and its irrelevance to the main theme. However, the result
is again clear from the fine-grid skipping point of view, although now all the levels
that are finer than the solution level are skipped. The correction on the solution
level is only Ck times the required correction, but 2k visits are made to this level, in
agreement with (53).

PROPOSITION 5. The maximal 1]k’k over all N C N 1 and k > 1 tends to e-1

.for 0.5 and to 1 for 0 < < 0.5.
Proof. For a fixed k and 0 < C < 1, tk,k in (53) decreases monotonically as C

increases. Therefore, the maximum is obtained when C . Also, for all k _> 1 and
0<<0.5,
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(54)

k+l,k+l

2k (1 2). k / 2k+2)
2

1-_- > 1.

Hence, the maximal b’k’k is obtained when k -+ oo, and is given by

lim(1--k)2 lim e_(2)__ 1, 0<{<0.5,
() l]ml

k--oo k-+cxa ( e-l, 0.5.

Conclusion. The present DCW cycle yields an error-amplification factor of e-1

with a multilevel cycle for the first-order discretized advection-diffusion equation.

5.5.1. Combining defect corrections for the finest level with OWR.
From (53) it may seem that the method of overweighted residuals cannot be profitably
combined with defect corrections for the finest level since, if C > 1, 12k,k diverges as
k -+ oo. Suppose, however, that the residuals are all transferred with an overweighting
factor of , and the defect-correction term is also multiplied by this factor (rather than
by r/k-j+1, as is implied by the fine-grid skipping viewpoint). This yields the following
recurrence equation for the error-amplification factors j,k (compare with (52)):

(56)

PROPOSITION 6. For all 0.5 _< C _< 1 and all k >_ 1, (56) with the optimal
two-level overweighting factor r] 4/3 satisfies

(57) pk’k(C) < ’*(1)= .
Rather than attempting the difficult task of proving Proposition 6 directly, let us

note again that in the present algorithm the solution level can be viewed as solving
directly for the correction for the finest grid, rather than for its next-finer grid. But
it only yields Ck of the required correction per visit (multiplied by some coefficient
that depends on the overweighting factor ). Therefore, pk,k, which is a polynomial
in C with coefficients that depend on r/, can also be written as a polynomial in Ck.
Let us define accordingly

(5s) k,k(Cg) de___f .]k, (C)

#k, also describes the .amplification factor of the fine-grid error, but in units of the
solution-level correction, rather than the finest-level correction. Therefore, it satisfies
a recurrence relationship similar to (56), but with C replaced by 1. In particular,
#j,k #,j for all 1 _< j _< k, yielding the recurrence relationship

(59) #k’k(ck) [1 r(1 #k-l’k-l(ck))]2
for k > 1, with

(60) #l’l(ck) (1 riCk) 2
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From this relationship it is fairly straightforward to prove Proposition 6, since the
conditions that #k,k must satisfy can be traced back to sufficient conditions on #1,1,
which can be shown by induction to be satisfied. We omit the proof since it is irrelevant
to the main issues and somewhat lengthy.

Conclusion. Under the present assumptions the optimal two-level convergence
factor of 0.11 is attainable with a multilevel cycle.

5.6. Numerical experiments. Numerical experiments were carried out with
the same problems as for the method of OWR (4.5). The fine mesh-size in the
two-level experiments was again 1/64, and four levels were employed in the multi-
level cycles, the finest mesh-size again being 1/128. The same discretizations were
employed.

The operator L/ was chosen to be a central-difference approximation (to the
advection operator), plus artificial viscosity with coefficients that approximate (to
second order) the viscosity coefficients corresponding to grid h.

The results with the regular DCW cycle, as described in 5.4 with various over-
weighting factors r/, appear in Table 2. Two prerelaxation and two postrelaxation
sweeps were performed, and the experiments were repeated with three pre- and three
postrelaxations (results in parentheses).

TABLE 2
Asymptotic residual convergence factors of numerical calculations for the AD equation and

INS equations, solved with a DCW cycle, are compared with analytical predictions for various single
overweighting factors 7. Two (three) pre- and two (three) postrelaxation sweeps were employed.

Two-level Multilevel

Analytical Numerical Numerical Analytical Numerical Numerical
prediction AD INS prediction AD INS

1.00

1.10

1.20

1.30

1.33

1.40

1.50

0.25

0.20

0.25

0.20

0.24 (0.24) 0.48

0.38

0.16 0.16 0.21 (0.20) 0.30

0.12 0.11 0.21 (0.19) 0.22

0.11 0.11 0.21 (0.16) 0.20

0.16 0.12 0.24 (0.20) 0.16

o. o.o 0.28 (0.25) o.5

0.48

0.39

0.30

0.22

0.20

0.15

0.20

0.47 (0.46)

0.39 (0.39)
O.Ze (O.Z3)
0.29 (0.27)
0.30 (0.26)
0.33 (0.29)
0.0 (0.50)

The numerical performance of the advection-diffusion solver again matches the
prediction well. Performance obtained with large overweighting factors is somewhat
better than predicted, especially when more relaxation sweeps are carried out. The
reason for this is that, when is larger than 4/3, the slowest components to converge
have the second-finest level as their solution level. For these components, relaxation on
the finest grid still has a nonnegligible effect, since their frequencies are fairly high. On
the other hand, when is smaller than 4/3, the slowest-converging components have
solution levels that are very coarse, so that even if relaxation on their next-finer grid is
very effective, the overall improvement in the convergence rate is very small. Results
with the incompressible flow equations were not quite as good as predicted, although
a very significant improvement was observed. These results improve further if a small
amount of extra artificial viscosity is added, yielding a more effective smoother. When
the viscosity coefficients are increased by 40 percent, for example, the asymptotic
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residual convergence factors with y 4/3 and six relaxation sweeps per level improve
to 0.14 (two-level) and 0.24 (multilevel). Of course, there is then a corresponding loss
in accuracy, and the cost of performing more sweeps instead must be weighed against
the cost of using slightly greater viscosity with a correspondingly finer grid to regain
accuracy. Once again, as in the results listed in Table 1, greater overweighting factors
than 4/3 yielded poorer results.

The multilevel experiments were repeated with the improvement of correcting
the defect for the finest level, as introduced in 5.5. The results are compared with
those predicted by numerical analysis of (56) in Table 3. Again, two (three) pre- and
two (three) postrelaxations per level were performed. The numerical results match
the predictions well for the advection-diffusion equation, although a total of four re-
laxation sweeps per level (with the present smoother) did not suffice to reduce the
high-frequency errors enough. As more and more levels are used, the assumption of
the analysis, that the only significant difference between the coarse-grid operators and
the fine-grid ones is in the artificial viscosity, becomes poorer and poorer, since the
correction level may be much coarser than the finest level. Hence, somewhat better
results can be obtained by defect-correcting just a few levels up, and not all the way to
the fine-grid operator. An optimal strategy may be worked out experimentally. The
INS performance once again lags behind somewhat, but a highly significant improve-
ment is shown, which is again increased by adding some artificial viscosity. When this
viscosity is increased by 40 percent, the asymptotic residual convergence factor with

4/3 and six relaxation sweeps per level improves to 0.18. Once again, there is of
course a loss of accuracy, which would require a correspondingly finer grid to offset.
A slight further increase can be obtained by defect-correcting just a few levels up,
rather than for the finest level.

TABLE 3
Asymptotic residual convergence factors of numerical calculations for the AD equation and INS

equations, solved with a DCW cycle with defect corrections, calculated by the finest-grid operator, are
compared with analytical predictions for various single overweighting factors , which are calculated
numerically from (56). Two (three) pre- and two (three) postrelaxations were employed.

prediction
Numerical

AD
Numerical

INS

1.00

1.10

1.20

1’ .30
1.33

1.40

1.50

0.37 0.36 (0.36) 0.36 (0.36)
0.23 0.23 (0.23) 0.28 (0.28)
0.16 0.16 (0.14) 0.26 (0.23)
0.12 0.15 (0.i0) 0.29 (0.21)
0. 0. (0.0) 0.3 (0.2)
0. 0.0 (0.13) 0.3 (0.3)
0.25 0.31 (0.21) 0.80 (0.67)

6. Conclusions and remarks. Methods of acceleration of multigrid conver-
gence have been developed, analyzed, and tested, the numerical results mostly match-
ing the predictions of the analyses well. With the optimal method of combining resid-
ual overweighting and defect corrections within the W cycle, a multilevel convergence
factor of about 0.2 has been obtained for the incompressible flow equations, and 0.1 for
the advection-diffusion equations with first-order discretization. We note that large
overweighting factors may show poorer behavior than expected for the Navier-Stokes
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solver, unless supplemented by extra relaxation sweeps. Some work may be saved by
varying the number of sweeps per level.

Although the analyses and experiments were carried out for the case of vanishing
diffusion coefficients, the methods apply to finite-viscosity calculations equally well.
The optimal parameters are then reduced, and the results improve accordingly, but
using the optimal parameters calculated herein will still yield convergence factors
that are at least as good as in the vanishing-viscosity case. This has been verified
experimentally, the convergence factors actually improving, even with the present
optimal overweighting factors, apparently due to improved smoothing. Finally, these
methods can also be used with anisotropic viscosity as in upstream differencing.

The methods as presented here are of quite limited value when used directly with
second-order accurate discretization. Very large overweighting factors need then be
applied, which also amplify high-frequency error components. An approach that ap-
pears promising is to employ overweighting in conjunction with upstream discretiza-
tion and downstream ordering of relaxation. Early results with the advection-diffusion
equation (with closed streamlines) have been successful, but only very simple examples
have so far been attempted, and this approach requires extensive research.

Acknowledgment. We wish to thank Dr. KeeN Venner, presently of the Weiz-
mann Institute, for suggesting the particular averaging scheme used in the numerical
experiments, and for verifying most of the numerical results reported with indepen-
dent calculations.
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SOLUTION OF ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL
EQUATIONS BY CELL DISCRETIZATION*

JOHN GREENSTADTt

Abstract. The cell discretization algorithm is applied in a straightforward manner to a few very
simple elliptic systems of partial differential equations. The discrete approximant of the solution
depends, as usual, on sets of coefficients of intracell basis functions, one set for each cell. The
usual transformation to new variables, one subset associated with interfaces and the other with
cells, is easily generalized to the multivariable case. This renders the calculation almost entirely
cellwise independent, and therefore readily parallelizable without special reorganization. The residual
dependency in the calculation is in the solution of the system of equations for the interface vriables.
Because of the small sizes of all the equation systems for the uncoupled discrete variables, Gauss
elimination was used throughout to solve them. Results for a simple gradient-divergence system,
the Cauchy-Riemann equations, the Stokes problem, and the clamped-plate problem are shown in
graphic form.

Key words, cell discretization, elliptic differential equation systems

AMS(MOS) subject classifications. 65N30, 65N35

1. Introduction. In [4], the treatment of a nonselfadjoint elliptic partial differ-
ential equation (PDE) by the cell discretization (CD) method was described. We shall
show here how that treatment may be generalized to handle systems of PDEs and
show a few simple computed examples of the application of the resulting algorithm.

The standard equation of this type for a single function of x in a domain D (in
Rn) with boundary F is

(1.1) v. (. re) + . v +c d,

where all coefficients may depend on the coordinates and the double arrow over a
indicates that it is a diadic (here assumed to be positive-definite symmetric). The
boundary condition assumed to hold on F is

0(1.2) P(s) (s) + Q(s) --n (S) R(s),

where the argument s indicates that the point which it labels is on F; points in D
are denoted by x, y, etc. The left-hand side of (1.2) may be regarded as the result of
a so-called trace operator/g on the function (x) to produce a function of s defined
on F.

We shall generalize this equation by first assuming that there are N unknowns
{1, 2, Cg}, and that they satisfy the equations

N

/=1

for c 1,2, ..., N. This form includes most of the linear systems which are impor-
tant in applications.

Part of the CD algorithm is the partitioning of the domain , in which the
equations are satisfied, into a set of disjoint (open) subdomains {-1, ’2,..-, ’g}
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which, with their boundaries, together cover f. The boundary of f is denoted by F
and the interface between contiguous cells, e.g., fk and fm, is denoted by [’km. It
was pointed out in [3] that all of the interface conditions in all problems (when they
are linearized) may be written in the form

(1.4)
P()() +Q() -6-n () R()

P()(*) + Q() On () R(),

in which the various trace operators are defined with reference to their own cells only.
This means that we may treat fk as if it were in isolation, and the interface conditions
on its bounding faces as if they were boundary conditions on Ck. We follow the plan,
therefore, of generalizing (1.2) on the boundary of a single cell, and assume that

(1.5) E Pc/3(s)/3(s) + Qc/3(s) --n(S) R(s)
/3=1

with c-- 1, 2,..., C, the number of boundary conditions. Note that C need not be
equal to N.

2. The variational process. Because of the first-order derivative terms in (1.3),
it is convenient, as in [4], to introduce paired variables, primal and dual, instead ofjust
one self-dual variable. We denote these by {pa(x)} and {/)da(X)}, respectively. A
functional whose variation with respect to the Cd leads to (1.3) as the Euler equation
is

(2.1)

with - r b and with dda undetermined. (For conciseness, we often suppress the
primal-dual subscripts, where the context suffices to reduce ambiguity.)

As we shall see, it is feasible to carry through the entire treatment of the many-
variable case in a much-simplified manner by grouping the set {pa} into a single
vector Cp. The same is done with {d}, and all other sets of variables depending on
the indices a, fl, 7, etc. We thus define

(2.2) {)pa} "-+ Cp, {da} -- Cd, -a/3} *, {ga/3} "- b
{c/3} c, {dp} --. dp, {dda} -- dd,

which are all matrices or vectors in the matrix sense. However, and g are also a
diadic (matrix) and a vector, respectively, in the geometrical sense. These must be
kept conceptually distinct; hence, when we write, e.g., gT, the transpose refers to the
matrix aspect only. With this understanding, (2.1) may be condensed to
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(2.3) + (c + v. ) Cp } dt

which we integrate by parts (Green’s formula) to obtain a more convenient form to
be used later:

(2.4)

(2.5)

To condense the notation for (1.5), we first define the trace operator L/c to mean

and the whole collection can be written

(2.6) / R,

with

(2.7a)

and

F/6

(2.7b)

Note that L may also be written

R1

(2.8) Ltb P(s)(s) + Q(s)0

where P and Q are (C N) matrix functions of s.
If we define the vector Lagrange multiplier

p1(8)

(2.9) Ap(8) /p2(8).
pC(8)



630 JOHN GREENSTADT

with a similar definition for ,d(8), the augmented functional (I) which incorporates
the boundary conditions becomes

(2.10) (I) (I)0 -- A {/p)p Rp } dF T Ap {/dCd Rd } dF.

F F

To derive the constrained primal Euler equation, we vary /)d, denoting its varia-
tion by tied. The result is (cf., for example, [1])

(2.11)

which must vanish for a stationary (I). Note that we have taken the matrix transpose
of the last integrand for convenience later on.

The term .. v is often called the coderivative of and, for the Laplace
operator, is the standard normal derivative. We shall denote it by O)/Ona. The
expression . -’, we shall denote by n. Note that O)/Ona is a linear combination of
the gradients of several (possibly all) of the functions {Ca}. The relationship is

(2.12) 0
On a v.

3. Analysis of boundary conditions. We start by introducing new variables
to replace and its normal derivative. We have made a necessary distinction between
the coderivative and the ordinary normal derivative (or, in any case, whatever kind of
normal derivative is defined for use in the imposed boundary conditions). Let us use
the more compact notation of having Ca mean the coderivative based on the diadic, and of having Cn mean the imposed normal derivative. We wish to replace (s)
and Cn(s) by new variables a(s) and T(S) by means of a linear transformation.

This transformation is based on the matrices P(s) and Q(s) which we first ar-
range as a single composite matrix [P, Q] with C rows and 2N columns. We assume
that this matrix has full row rank, ensuring that the boundary conditions are linearly
independent. It is then possible, by column combinations (i.e., elementary transfor-
mations from the right) to reduce [P, Q] to a simple form. If the product of all the
transformations is denoted by Y--a (2N 2N) nonsingular matrix--then we have

(3.1) [P, Q] Y [I, 0],
where I is a unit matrix of order (C C). The matrix Y can be partitioned as follows:

and Y can in turn be inverted to yield back [P, Q] as well as the submatrices R and
S. The complete matrices then satisfy
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It is important to note that all these relations hold, by construction, for all s on
F. Also, if 2N C D, then the orders of the various matrices are as follows: P, Q
are (C x 2N); R, S are (D x 2N); J, g are (2N x C); and L, M are (2N x D).

The new variables are introduced by

so that a is a vector function of length C and T is a vector function of length D, while
and Cn are both of length N. The inverse of (3.4) is

To proceed further with the analysis of the boundary conditions, we assume that
the Euler equation holds in the interior, so that the integral over t in (2.11) may be
ignored. Since we shall be varying the dual quantities, we can also ignore the other
volume integral. The remaining terms relate to the surface only, so we shall denote
what remains of the functional by (I)s, which is

dF

dF.

F

Here we treat the simplest case when )pn /)pa, and substitute for and Ca in
terms of a and -. The result is

(s (aJ’ + Tfi K ) [Lpap + MpTp + b,(Jpap + KpTp)] dF

r

+ A (a -R Idr+ A,(a -R Idr.
F r

The result of varying ad is just a formula for Ap, but varying Td yields a consistency
condition, which is

(a.8)
K [Lpap + MpTp + rb,(Jpap + KpTp)]

K(Lp + TbnJp)ap + K(Mp + qb,Kp)Tp
-: Apap + BpTp O.

Since this is an identity in a and T, the two terms must vanish individually. This
means, first, that

(3.9) Bp 0.

ap may be evaluated by varying Ad in (3.7). The result is

(3.10) (rp Rp.
Hence, it is only necessary to have

(3.11) ApRp O.

Conditions (3.9) and (3.11) constitute a concise test as to whether the "nullification"
of a conflicting induced boundary condition by means of a boundary correction is
necessary.

Appropriate modifications must be made in case
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4. Construction of the nullifier. We shall follow the treatment in [5], but
we shall keep track of the matrix relationships among the quantities arising in the
many-variable case. We first adjoin to (I)s another surface term (I)N

(4.1) (I)* (I)S (I)N,

where

(4.2) ON =-- I N(ap, Tp, ad, Td) dr.

F

The arguments of N (the "nullifier") are all vector variables.
When Td is varied, the effect on O* is

(4.3) 5(I)* 5Td (Aap + BTp) elf 5Td dF.

F F

Hence, for a stationary (I)*, we must have

(4.4)
ON
OTd

Aryp + BTp.

Similarly, it not hard to see that ON/Opd O. Hence, it is clear that

(4.5) N Td
T (Aap + BTp) + X(ap, Tp, ad),

where X is an arbitrary function of its arguments. A particular choice of X will serve
to symmetrize N in some cases. This choice yields

(4.6) N TdTAap + adTATTp q- TdTBTp.
For a selfadjoint problem with y , we have ad ap and Td Tp, SO interchanging
the primal and dual variables has no effect. N is therefore symmetric.

Finally, we wish to restore the original variables and Cg. This can be done
most compactly by using the trace operator/g and two new ones: A’ and J;. These
are defined follows:

(4.7) a PC +
so that N becomes

(4.8) N (XdCd)TA(blpCp) + (bldCd)TAT(XpCp) + (XdCd)TB(XpCp).
The nullifier is rather more complicated when Cn Ca.
5. Discretization. In the CD method, the boundary (and interface) conditions

are imposed by the moment collocation process. For a single variable and a single
boundary condition, a set of weight functions {w(s); a 1,... ,n} is chosen. They
are linearly independent and are capable of approximating any function in an appro-
priate class if L is large enough. (A system like this is called a Schauder basis.) For
a single variable, we impose the collocation by forcing L moments of the boundary
condition to vanish:

f w.(s){ R} (s)dr 0, a 1,..., L.
F
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With primal and dual labels, (5.1a) should read

Wd(S) (s)dF 1,..., L,0,

(5.1b) r

-R}() =0, 1,..., L.
F

When there are C boundary conditions, and C > 1, we need correspondingly
more sets of weight functions, one set for each boundary condition; e.g., {wc(s);
1,..., L(c); c 1,..., C} with the corresponding discrete boundary conditions

(5.2) fw{u R} dr 0; a 1,..., L(c); c 1,..., C.
F

Combining this with (2.5), we obtain

0.

F =1

Following the usual procedure, we would now substitute a linear combination of bis
functions for . However, since we have N distinct ’s, we may define N separate
bis sets {,(z);, 1,..., M(a); a 1,... ,Y) and set

Substituting this into (5.3) yields

}(. [_( u ( er o.
F =I =I

To simplify the equations somewhat, we shall not always indicate the dependence
of L on c and of M on . We shall also not exhibit the arguments x and s, but leave
their determination to the context. We then have

r r

If we define the arrays

w,(s) [,,,] (s)dr(s),

(.)
R l()R()dr(),

J



634 JOHN GREENSTADT

then (5.6) takes the simple form

The next simplification in notation is to combine c and n into one "global" index,
n*. To do this, we enumerate c, t in the sequence

(5.9) {(1, 1), (1, 2),..., (1, L(1)), (2, 1), (2, 2),...,
(2, L(2)),..., (C, 1), (C, 2),..., (C, L(C))},

while

{a*} {1, 2,3,...,L*}.

This equation is an attempt to show that the composite index a* runs directly from 1
to L*, the global collocation count, while the pair (c, n) runs in the sequence shown.
In like manner, we collect (a, tt) into one index #*, which runs from 1 to M*, the
global basis index count. In this way, we can condense (5.8) to

(5.10)

which, in turn, can be written in terms of global matrices and vectors:

(5.11) UO R O,

where U is an (L* x M*) matrix, and 0 and R are vectors of, respectively, M* and
L* elements.

Next, we return to (I)0, and substitute the expression (5.4) for into (2.1). We
get

where

(5.13)

Tda# :-- f Cpa# dda df,

Tpa# :- / Cda# dpa dgt.

By combining a and # into #* and/ and u into u*, (5.12) becomes

(5.14)
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With this system of labeling, S and T play the same roles for several variables as
do their counterparts in the single-variable case [4]. Therefore, we can go through all
the standard procedures, always understanding that the modified labeling is in force.
In particular, we can write

(5.15) (I)0 OSOp Opd

The completed functional, incorporating the boundary conditions is

_= ese, -eT. + [Ve R] + ,Op Td T [gdOd Rd],

and the discrete equations are

(5.17)
OOd
O
OOp

Op Tp -[- VdT,p 0,

Od To + Vd 0.

We note again that the orders of the various quantities are S:(M* M*); 0:(M* 1);
T:(L* 1); U:(L* M*); A:(L* 1).

We next construct the auxiliary matrices Vp, Vd, Zp, and Zd of the following
orders: Vp and Vd are (M* n*) and Zp and Zd are (M* J*), where J* M* L*.
They have the properties

(5.18)
u.v.=uv=L
U,ZD=UZd =0,

zsv vsz o.

The dominant terms in the number of standard floating-point operations needed to
compute Vp and Zp for each cell are 3M.3 + L*2M 2L*M.2. We emphasize again
that these calculations for a given cell are independent of those for any other cell. We
use these matrices to transform from 0p and d to new variables tip, rid, Pp, and Pd
as follows:

(5.19) Op Vpo’p -[- Zppp, Od Vdad "+- ZdPd.

The a’s are (L* 1) and the p’s are (J* 1). This transformation serves two im-
portant purposes: (1) It simplifies the boundary condition so drastically that it can
almost be eliminated; (2) It decouples the a’s and p’s so that they can be solved for
completely independently. The latter is very important, in that it makes almost all of
the calculations independent from cell to cell (as we shall see later) and hence makes
the calculations almost completely parallelizable without any extra manipulation.

To show the first effect, we substitute for 0 in (5.11) (both primal and dual
variables satisfy the same relation):

UO R U (Va + Zp) R UVa + UZp- R
I.a+O.p-R=a-R=O,

which yields a trivially simple solution for a.
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Next, we substitute from (5.19) into (5.16) with the result

(I) [Yd(Td + ZdPd]T S [Yp(Tp + Zppp]

-[Vpcrp @ Zppp]TTd --[VdCYd W ZdPd]TTp
--)dT [tip Rp] + A [qd Rd]

T T  y:Syp p +   yhSZppp + Syp p + p Z SZppp
--[Vpffp + Zppp]rTd -[Vdad + ZdPd]rTp

and we then have, for the primal discrete equations,

0
0ffd

VSVpffp + VSZppp VTp + Ap O,

O z SVp p + z SZp,p- o,

with a like set for the duals. We can now see that were it not for the third set of
relations in (5.18), the a and p would be coupled, but by the use of (5.18), we decouple
them and have

(5.23)
VdTSVpo’p VdTTp + p O,

ZSZppp Z’Tp O,

with a similar set for the duals. As we shall see later, this decoupling can be carried
through when there are multiple cells. The equations for p are always cell-by-cell.

It is important to note that, while the distinctness of the several ’s is maintained
for the 0’s, the transformation vitiates this distinctness, so that it is no longer possible
to associate any component of a or p with any particular . In this sense, the equations
in discrete form are solved "all together" and not one-by-one.

6. The multicell case. Once the various quantities in the multivariable case
have been relabeled and coalesced into cellwise global assemblies, the treatment of the
multicell case follows (formally) almost exactly the treatment of the single-variable
multicell case. We therefore reproduce the treatment in [4], indicating when the
present case differs from that one.

We partition ft into K subdomains or cells, {tl, f2,..., ftg}. Between any two
contiguous cells, say, fk and ftm, we have an interface Fkm. In cell discretization, if
two cells are not contiguous, they are not neighbors. Each cell, say, fk, will now have
a boundary made up of more than one segment; we can label these segments by using
the notation {m[k]} to represent the set of labels for those cells which are contiguous
neighbors of fk, say Bk in number.

The vector function Cp(X) now becomes an ensemble of representations

one for each cell:

(6.1)

{)pk X Opk }

)pk(X) {)pka(X); Ol 1, N}

}Cpkatt(X) Opkatt; O 1, N
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with a similar formula for the dual. The functional (I)0 is now given as the sum of
integrals over the cells

k: fl(6.2)

which combined with (6.1) becomes

(6.3) 0 E {Ok Sk Opk OPTk Tdk OkTpk }’
k

with Sk, Tpk, and Tdk given by (5.13), except that the formulas are evaluated for each
cell.

For each interface Fkm, we may have a separate set of (primal and dual) weight
functions {Wkm;c(8)} and, of course, a separate set of (primal and dual) trace oper-
ators. By way of example, the arrays calculated by (5.7) become

Vpkm;c,a -- f Wdkm;c(8) [Upkm;caCpk;a] (s)dr(s),

(6.4) r

Rpkm;c =-- / Wdkm;c(S)Rpkm;c(8) dF(s),
F

with a like set for the duals. Without going into more detail, it is sufficient that the
multicell interface conditions corresponding to (1.4) are

(6.5)
with U, 0, and R all appropriate cellwise global arrays. The special case when an
"interface" is really a boundary segment is included by assuming that all quantities
associated with the exterior of f vanish identically (as discussed in [2]).

The complete discretized functional is then

(6.6)

In order to pass from 0 to a and p, we must find the appropriate V’s and Z’s. We
note first that cell fk, for example, has not one boundary segment, but Bk. What we
have previously referred to as a "global" array is, in fact, defined for each boundary
segment Fkm[k of k. Specifically, the Bk global matrices {Ukm[k]} may be collected
into a "superglobal" Uk (with only one subscript) whose rows are the assembled rows
of all of the individual coefficient matrices, each associated with a single face of fk.
Thus,

(6.7)

Gml
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We have assumed Lm moments on rkm, and M coefficients {0k-}, so that Ukm is
an (Lm x M) matrix. U, therefore, is in turn an (L* x M) matrix, where

We assume, as usual, that Uk is nondegenerate, i.e., it has full row rank (requiring
that L* _< M), so that we can construct a superglobal Vk and a Zk using the
procedure given in 5. The result is an (M L:*) matrix Vk and an (M J*)
matrix Zk, where J* M L*. We again have

UV I,
(6.9)

UZ =0,

with the understanding that the foregoing relations hold for primal and dual quanti-
ties. In addition, of course, we adjust the V’s for each cell so that

(6.1o) vgsz o, zsv, o.

Remembering that these are superglobal matrices, we now repartition each Vk into
a set {Vkm[k]} of submatrices, each with the same number of columns as the corre-
sponding Ukm[k] has rows. Thus, matching (6.7), we have

(6.11)

Zk remains a matrix associated with as a whole, and not with any particular face
or faces. These new matrices satisfy the following relationships based on (6.9):

(6.12) UkpVkq 5pqI, UkpZk 0,

for bothprimal and dual, and

(6.13) VdTkmSkZp O,

We are now ready to change variables. With the exception that the matrices are
superglobal, as opposed to merely global, the treatment is identical to that in [4]. The
transformation corresponding to (5.19) is

(6.14) Ok y Vkp(akp + Rkp) + ZkPk,

where the summation is, as the notation expresses, over the labels of the contiguous
neighbors of fk. When we apply the discrete trace operator Ukm to Ok, we obtain

u.o u,.v,(, + R,) + UZ,

(6.15) ,(, + R,) + 0.p
,[k]

qkm Rkm

with a matching reduction for UmkOm. Equation (6.5) then reduces to
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or

(6.17) akin

for primal and dual quantities.
Next, we substitute (6.14) into (6.5) (with a change of index names) to obtain

the rather lengthy result:

with

K

( E [(aa,q 2f_ (pp,q

__
(ap,q "J" constant]

q--1
K K

q=l q=l
r=l r=l

VdqrSqZpqOpq -- OdqZlqSqVpqr(Tpqrand the understanding that the double summations are only over values of q and r
that label contiguous neighbors.

We can ignore the constant part because we are going to differentiate (I) with
respect to the variables a and p. It is very advantageous to decouple a and p, so that
the discrete equation for one will not involve the other. We shall see that this will
confer the very attractive feature of being able to do almost everything cell-by-cell,
as mentioned already in 5. The term interfering with this is (I)p,q, so we must make
this vanish. All that is necessary is to choose the V’s so as to satisfy

(6.22) V,.SqZpq O, TZqqUpqr O.

Bearing in mind that r labels only the contiguous neighbors of tq, i.e., the faces
of tq, it is clear that the conditions (6.22) refer to each individual cell q in turn.
Hence, we can treat each cell exactly as in 5, i.e., group the {Uqr} into one matrix,
find the appropriate V and Z, and repartition the V, etc. Note also that the matrices
chosen in this way cause the bracket in (6.20) to vanish.

To condense the formulas, we define

(6.23) Hqrs VqrSqVpqs, Aq =_ Z’qSqZpq,
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and

(6.25)
Then we have, for (I),

HqrsRdqs
s[q]

gpq
_
Z"qTpq

TJdq ZpqTdq.

K

[O’dqrGpqr + Gqr(Tpqr
q:l [q] r[q]

(6.26) +pqAqppq pqJpq Jqppq
K K

+ +
qml ql
=I

To obtain the discrete equations for a and p, we first differentiate with respect to
Pdk. (With the changed indices, it is much eier to follow the procedure correctly.)
We obtain, for the primal,

(6.27) AkPpk Jpk.

Obviously, each Pk can be found for k independently of any other cell. This part of
the solution can therefore readily be parallelized.

We next differentiate with respect to adkm. The result is

(6.28) Hkmapk apkm + (pkm pmk) O.

The antisymmetry of the interface conditions is reflected in the antisymmetry of the
combined A terms. We make use of this important fact to eliminate the A’s. We
interchange k and m in (6.28) and add the result back to (6.28). The A terms cancel
and we are left with

[k] []

The block diagonal part may be extracted from (6.29) by withdrawing the term
with s[k] m from the first sum and the term with s[m] k from the second. Since
ffpmk ffpkm we get

(6.a0) A+ H+ H G Gp 0

with

(6.a1) A H+H,
and the primes on the summations mean that the km and mk terms are left out.
Equations (6.27) and (6.a0) are the discrete equations to be solved. hisw done by
Gaussian elimination, since all of these equation systems are small for the problems
to be dscussed.
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7. Numerical tests. All the problems are set within the square (-1 <_ x _<
1;- 1 _< y _< 1). Unless otherwise indicated, it is divided into four equal square cells.
All the problems were run with three or four moments per boundary or interface
condition, because experience has shown that this generally gives good results for
two-dimensional problems. The number of degrees of freedom within each cell was
chosen so as to remove interface condition degeneracies. The basis functions and the
weights were Legendre polynomials.

PROBLEM 1. A gradient-divergence problem. One of the simplest systems equiv-
alent to Laplace’s equation is

(7.1) 0* + vp 0, v- 0

in two dimensions. By taking the divergence of the first equation and subtracting
the second, it is clear that p satisfies Laplace’s equation. We can compare the re-
sults of solving a suitable boundary value problem in two different ways: as a single,
second-order PDE, or as the system (7.1). It is not always clear what the interface
conditions should be for the latter problem, even when those for the former are very
well established. In this case, the single-variable problem serves as a good guide to
the system problem.

To begin, we assume p to be equal to the real part of the analytic function z3+1.hz,
i.e., p x3- 3xy2 + 1.5x, and set the Dirichlet boundary conditions accordingly. The
interface conditions are that p be continuous (in the weak sense of having the first
four moments of the discrepancy vanish) across the interfaces. Similarly, the first four
moments of the solution on the boundary must match those of the boundary data.

There are 36 degrees of freedom in each cell (seventh degree), of which 4 x 4 16
go to satisfy the boundary and interface conditions. The remaining 20 are free to
make the representation of the unknown solution satisfy the PDE within each cell as
closely as possible. The discrete equations (6.27) for the latter variables are therefore
20 in number for each cell and are independent of each other, as shown in 6. The
degrees of freedom on each interface are four in number, so that there are 4 x 4 16
equations (6.30), also independent of the intracell equations. Thus, as indicated at
the beginning of this section, the equations systems are all small and are easily solved
directly. The solution comes out exactly.

The simplest functional whose primal Euler equation is (7.1) is

(7.2) (I)0 -= f {Yd" (gp + Vpp)+ pd(V" gp)} dt,

and the simplest interface condition is to require the continuity of p, as for the single-
variable case. Also, the value of p is specified on the boundary as before. With these
specifications in the computer program, the solution found is shown in Fig. 1. The
result is very poor, and can obviously be related to the lack of smoothness across the
interfaces.

The difficulty is that, while in the single-variable case the variational process gives
rise to induced (natural) interface conditions (as discussed in [3]), the system (7.1) is
first-order, so that it is possible to have no induced interface conditions, as happens for
(7.2). The reason for this is suggested by (2.4), in which an induced surface condition
is shown, but only if 0, which is not the case for (7.2), since no derivative of a
dual variable appears. To remedy this, an alternative form for the functional may be
chosen, e.g.,
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FIG. 1. Gradient-divergence problem. Solution with simplest functional.

(7.3) (I)0 --= / {Yd" (gp / Vpp) Vpd" gp}dD,

which causes a surface term containing pdVpn to be induced on each side of each
interface. The difference between these terms for cells k and m, for example, can
be shown to vanish (in a particular sense; see [4, 6]). Roughly, it means that on
Fkm, Pdk(Vpk)n --5Pdm(Vpm)n. If, therefore, Pdk "-5Pdm, then (Vpk)n (Vpm)n.
Thus the normal component of Vp is made weakly continuous across Fkm and this,
in turn, is equivalent to making Opp/On weakly continuous across Fkm, as for the
single-variable case.

The result of the computation bears out this reasoning, p again comes out exactly,
and looks as shown in Fig. 2. The sizes of the equation systems are as follows: the
number of degrees of freedom per cell is 3 x 28 84, of which 4 x 4 16 are used
up on perimeter constraints, leaving 68, which is the size of the equation system in
each cell. Since there are four constraints per interface, there is a total of 4 x 4 16
equations (6.30).

A set of boundary data (a zig-zag function) for which an exact solution is unknown
leads to a solution of (7.1) shown in Fig. 3. The reference solution of the Laplace
equation differs by about 1 percent.

PROBLEM 2. The Cauchy-Riemann equations. This system of first-order equa-
tions in the variables (u, v), which may represent the real and imaginary parts of a
complex function, characterizes the analyticity of that function. It is one of the sim-
plest (but also one of the most difficult) elliptic systems in two variables and is, in
fact, the principal part of a canonical form for all linear elliptic first-order systems in
two variables. The equations are
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FIG. 2. Gradient-divergence problem. Solution with altered functional.

FIG. 3. Gradient-divergence problem. Solution with zig-zag boundary conditions.

Ou Ov
(7.4)

Ou Ov
0 / 0

Ox Oy Oy -x
As is done in fluid dynamical studies, it is also useful to consider the couple

(u,-v) as a vector u which, because of the second equation of (7.4), is the gradient
of a potential function (x, y). Thus
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0(7.5) u-" "Ox -v
Oy

The first equation, in turn, results in satisfying Laplace’s equation. For this equa-
tion, appropriate boundary conditions are that or O/On (or a linear combination of
the two) are to be equal to some boundary data. Since we wish to treat (7.4) strictly
as a system in terms of u and v, we must choose a Neumann condition involving
O/On for the boundary condition. We note that since u re, we have

(7.6) 0
0-- =n.v=.=w,

so that u is to be specified on the vertical sides of ft, and -v on the horizontal sides.
As regards the interfaces, the same considerations apply; we must require that the
normal component of be (weakly) continuous across each interface.

The first, very simple problem tried has the solution u x, v y, i.e., the real
and imaginary parts of the complex variable z. The boundary conditions are

(7.7)
(-, ) -, (, u) ,
v(x,-1)---1, v(x, 1)--1.

The solution is exactly the correct one: (u, v) (x, y).
The next problem is to find the solution (u, v) (x2 y2, 2xy), which represents

the real and imaginary parts of z2. The boundary conditions are

(7.8) u(- 1, y) 1 y:, u(1, y) 1 y2,
v(x,-1) -2x, v(x, 1) 2x.

The solutions for u and v are unfortunately incorrect; they are shown in Figs.
4(a) and 4(b).

Various alternative ways of posing the problem were tried in an effort to make
it give the right answer. Both u and v were forced to be weakly continuous across
the interfaces, small additional terms were added to the equations, the terms in the
functional were changed so as to induce interface conditions, and various alternative
forms of the boundary conditions were applied. The only alteration that yielded the
correct answer was the addition of a small multiple of the Laplacian of each variable
to the corresponding equation. The actual system solved was

Ou Ov Ou Ov
(7.9) ev:u -t

Ox Oy O, -ev:v + y + -x O,

with e 10-5, and this yielded the correct solution to 10 figures. It is not clear why
this should be so, but it has been noticed that the presence of at least one singular
diagonal block Ak, is enough to give rise to an incorrect solution. Adding the second-
order terms prevents this from happening. The correct solution is shown in Figs. 5(a)
and 5(5).

The orders of the intracell and interface linear systems were 30 and 12, respec-
tively. (Of course, there were four intracell sets.)

PROBLEM 3. The Stokes problem. The linearized Navier-Stokes equations for
the flow of an incompressible fluid are (see, e.g., [6])

(7.10) v2g+ vp v. O’- 0,
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FIG. 4(a). Cauchy-Riemann equations. Solution for u with no additional terms in functional.

FIG. 4(b). Cauchy-Riemann equations. Solution for v with no additional terms in functional.
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FIC. 5(a). Cauchy-Riemann equations. Solution for u with additional terms.

FIG. 5(b). Cauchy-Riemann equations. Solution for v with additional terms.
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with the velocity g specified on the boundary. The pressure p is determined to within
an additive constant.

The simplest functional was tried initially, viz.,

(7.11) (I)0 f {V0*d V’p -b gd" vpp df.

The double-dot symbol between the two (diadic) gradients of the primal and dual
velocities means that the two gradient operators are first dotted together, followed by
the two velocity vectors (this is the same as the double contraction of the four-index
tensor formed from the derivatives of gd and

The first case attempted calls for 0’p (1, 1) on the boundary. There is no con-
dition on pp. (Corresponding boundary conditions are applied to the dual variables.)
As usual, the question arises as to what the proper interface conditions should be.
The most obvious choice is again to apply the same kind of conditions at the interface
as are applied at the boundary of a single domain. Therefore, the two components
of gp are made weakly continuous across the interfaces. (The same condition is ap-
plied to gd.) This choice yields the exact solution for the velocity components, viz.,
vp (1, 1) throughout f.

On the other hand, the pressure, which should have the value p(x, y) x
constant, has nothing to force it to be continuous across the interfaces, so it comes out
as shown in Fig. 6. By adding the appropriate constant to each of three cells, so as
to relate them properly to the first, the global solution can be made continuous. This
is not, however, a satisfactory solution. We might force weak continuity of p across
the interfaces, but this results in three boundary conditions for each internal cell face,
and this is too many. A resolution of this dilemma is to induce the constraint on p by
changing the second term of the functional (7.11) into its adjoint, as was done with
(7.3). The result is

(7.12) (I)0 f {Vgd" Vvp (V" gd)Pp + pdV" gp} df,

so that the induced surface term resulting from the variation of the dual quantities is

(7.13) s I-vdnppdF.
F

The usual variational interface argument shows that if iVdn is continuous across
the interface, then so is pp. Hence, since continuity of Vdn is imposed (the dual
variables have the same interface and boundary conditions as the primal), pp should
be weakly continuous. However, as Fig. 7 shows, this is not enough to give the correct
solution. It was also necessary to add a small multiple of p to the second equation of
(7.10). This combination of the altered functional and the small added term yields
the correct continuous solution pp, as shown in Fig. 8, besides giving the correct result
for the velocity, all to six figures, when the multiple of p was 10-7.

Using this same setup of functionals and constraints, a somewhat more compli-
cated example was tried. The boundary data were represented by cubic and quadratic
polynomials, and care was taken to maintain the incompressibility at the corners,
where the v-derivatives involved can actually be calculated from the given functions.
Four moments were used in the collocation, in order to match the cubic boundary
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FIG. 6. Stokes problem, fiat velocity. Pressure solution with simplest functional.

FIG. 7. Stokes problem, fiat velocity. Pressure solution with corrected functional.
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FIG. 8. Stokes problem, fiat velocity. Pressure solution with corrected 3unctional and additional
terms.

data functions. The results for the velocity components are quite smooth, as can be
seen in Figs. 9(a) and 9(5). The pressure is very sensitive to even slight irregularities
in the velocity components, because it is related to their derivatives, but the result
for the pressure is still satisfactory, as can be seen in Fig. 9(c).

The orders of the intracell and interface linear systems were 39 and 24, respec-
tively, except for the wavy case, which required more moment collocations. In that
case, the orders were 84 and 32.

PROBLEM 4. A clamped plate. Our last example consists of the solution of the
equation

(7.14) vau=d
with d-- 1, and subject to the boundary conditions

Ou =o,
with the second condition representing the clamping. In order to make the equations
for the problem conform to (1.3), we introduce the auxiliary variable v and replace
(7.14) by

(7.16) v2u + v 0, -v2v -d,

for which the simplest functional (in primal-dual form) is

(7.17) (I)0 / {VUd" VUp - VVd" VVp -- UdVp -- vdd} d.F
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FIG. 9(a). Stokes problem, wavy velocity, u-solution with corrected functional and additional
terms.

FI(. 9(b). Stokes problem, wavy velocity, v-solution with corrected functional and additional
terms.
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o

FIG. 9(c). Stokes problem, wavy velocity. Pressure solution with corrected functional and
additional terms.

With these choices, the solution is not correct. Figure 10 shows the result for
Up with four cells and three moments on each interface, and with a sixth degree
polynomial in each cell. On the other hand, when the equations (7.16) are reordered,
we obtain the accurate result for up shown in Fig. 11. (In the last two figures, the
ordinates have been rescaled to improve the appearance of the plots.)

The argument for exchanging the equation order is basically that the functional
(7.17) is not unique, depending as it does on the association of the first equation in
(7.16) with Ud and the second with Yd. Reversing the order of the equations amounts
to interchanging Ud and Vd in the functional.

A rough idea of the error can be inferred by noting that the maximum value of
u over the plotting grid is .020237 for the 4-cell case and .020245 for a 16-cell case
(with otherwise all parameters the same), yielding a difference of .000008.

The orders of the intracell and interface linear systems for the four-cell case were
48 and 24, respectively.

8. Conclusions. The cell discretization algorithm has proved successful in solv-
ing several quite different model problems involving systems of equations in more
unknowns than one. The treatment of the discrete equations involves grouping the
degrees of freedom (the O’s) for all of the unknowns into one global array for each cell,
and transforming this vector to the usual two sets of auxiliary unknowns (the a’s and
the p’s) without associating them with particular unknowns. By this means, the usual
auxiliary matrices (V’s and Z’s) can be constructed in a straightforward manner so
that the a’s and p’s are completely decoupled, and can be solved for separately. It
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FIG. 10. Clamped-plate, u-solution. Wrong equation ordering.

FIG. 11. Clamped-plate, u-solution. Correct equation ordering.

follows that the calculation can be parallelized almost completely with no artificial
reshuffling of the variables.

Gauss elimination was used to solve the linear systems of equations for the intra-
cell and interface variables with satisfactory results because the equation systems for
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these problems are all of modest size. A few unexpected complications arose, mostly
due to the singular nature of the original problems. It was found necessary to add
small additional terms to the original equations in order to render the discrete equa-
tions less degenerate. The question of what is the correct functional corresponding
to a given (nonselfadjoint) set of PDEs therefore remains open. Moreover, a careful
selection of the interface conditions was found to be necessary, coupled with the appro-
priate choice of terms in the functional used. However, there was nothing unnatural
or bizarre in these choices.

Although the problems solved were very simple ones, they still contained some
challenging complexities. It is encouraging that the CD method was capable of solving
them without any basic modification. The major shortcoming of the computer pro-
gram used for these computations is the absence of the capability of using "special"
representations (e.g., nonpolynomial, general algebraic, and transcendental functions)
for the solution approximations, which are nonlinear in the degrees of freedom. (This
shortcoming has since been remedied.)
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Abstract. The problem of computing good graph colorings arises in many diverse applications,
such as in the estimation of sparse Jacobians and in the development of efficient, parallel iterative
methods for solving sparse linear systems. This paper presents an asynchronous graph coloring
heuristic well suited to distributed memory parallel computers. Experimental results obtained on
an Intel iPSC/860 are presented, which demonstrate that, for graphs arising from finite element
applications, the heuristic exhibits scalable performance and generates colorings usually within three
or four colors of the best-known linear time sequential heuristics. For bounded degree graphs, it
is shown that the expected running time of the heuristic under the P-RAM computation model is
bounded by EO(log(n)/log log(n)). This bound is an improvement over the previously known best
upper bound for the expected running time of a random heuristic for the graph coloring problem.

Key words, distributed memory computers, graph coloring heuristics, parallel algorithms,
random algorithms, sparse matrices

AMS(MOS) subject classifications. 65F10, 65F50, 65Y05, 68Q22,68R10

1. Introduction. The determination of the chromatic number of a general graph
is a well-known NP-hard problem [4]. However, a number of practical problems require
the determination of nearly optimal graph colorings. For example, it has been shown
[3] that the problem of directly estimating a sparse Jacobian by finite differences with
a minimum number of function evaluations is equivalent to a graph coloring problem.
Also, it has been shown [10] that the minimum number of parallel steps in the solution
of the triangular systems involving incomplete Cholesky factors can be obtained by a
matrix reordering derived from the solution of a graph coloring problem. Thus, the
development of an effective parallel heuristic is of great practical, as well as theoretical,
interest.

This paper presents an asynchronous graph coloring heuristic well suited to dis-
tributed memory parallel computers. Our heuristic consists of two phases: an initial,
parallel phase that uses a random heuristic, followed by a local phase that utilizes one
of several good sequential coloring heuristics. The initial phase maintains the good
expected running time bounds obtained for a Monte Carlo algorithm for determining
a maximal independent set [8]. In fact, for bounded degree graphs, we show that
an upper bound for the expected running time of our heuristic under the P-RAM
computation model is EO(log(n)/log log(n)). This bound is an improvement over
the previously known best upper bound of EO(log(n)) for a random heuristic.

To illustrate the performance of this heuristic, we present experimental results
obtained on an Intel iPSC/860. The results demonstrate that, for graphs arising from
finite element applications, the heuristic exhibits scalable performance. In addition,
for these problems the heuristic is shown to generate colorings usually using no more
than three or four more colors than the best linear time sequential heuristics.

This paper is organized as follows. In 2 we introduce a new Monte Carlo heuris-
tic that eliminates the need for global synchronization of the processors and allows
for the more efficient use of data structures. We prove, in 3, that under the P-
RAM computational model the expected running time of the asynchronous heuristic
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1992. This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under contract W-31-109-Engo38.
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affords an improvement over the upper bound for a Monte Carlo algorithm based on
finding maximal independent sets. A distributed memory implementation of the asyn-
chronous heuristic is detailed in 4. In 5 we present and discuss experimental results
obtained on the iPSC/860. Finally, in 6 we discuss possible avenues for improving
the heuristic.

2. An asynchronous parallel graph coloring heuristic. In this section we
introduce a graph coloring heuristic suitable for asynchronous parallel machines. First,
we review the graph coloring problem. Consider the symmetric graph G (V, E)
with vertex set V, with IV n, and edge set E. We say that the function a V
(1,..., s} is an s-coloring of G, if or(v) a(w) for all edges (v, w) e E. The minimum
possible value for s is known as the chromatic number of G, which we denote as x(G).

The question as to whether a general graph G is s-colorable is NP-complete [4].
It is known that unless P NP, there does not exist a polynomial approximation
scheme for solving the graph coloring problem [4]. In fact, the best polynomial time
heuristic known [6] can theoretically guarantee a coloring of only size c (n/log n) x(G),
where c is some constant.

Given these pessimistic theoretical results, it is quite surprising that, for certain
classes of graphs, there exist a number of sequential graph coloring heuristics that
are very effective in practice. For graphs arising from a number of applications, it
has been demonstrated that these heuristics are often able to find colorings that are
within one or two of an optimal coloring [3], [7].

V’- V;
For i 1,...,n do

Choose a vertex vi from V’;
a(vi) smallest available consistent color;

v’\
enddo

FIG. 1. A sequential greedy coloring heuristic.

It is known that an optimal coloring can be obtained with a greedy heuristic if
the vertices are visited in the correct order [1]. The basic structure of the greedy
heuristic is shown in Fig. 1. The only aspect of the sequential heuristic that must
be specified is the rule for choosing the vertex vi. Many strategies for obtaining
this vertex ordering have been proposed. One of the most effective heuristics is the
saturation degree ordering (SDO) suggested by Brlaz [2]. The SDO vertex ordering
is defined as follows. Suppose that vertices vl,..., vi- have been chosen and colored.
Vertex vi is chosen to be a vertex adjacent to the maximum number of different colors
in the vertex set (v,..., vi-}. Note that this heuristic can be implemented to run
in time proportional to ’vey deg2(v), where deg(v) is the degree of vertex v.

A modification of the SDO heuristic is the incidence degree ordering (IDO) intro-
duced by Coleman and Mor6 in their work [3] on using coloring heuristics to obtain
consistent partitions for sparse Jacobian estimation. The IDO vertex ordering has
the advantage that its running time is a linear function of the number of edges. To
describe the IDO heuristic, we again suppose that vertices v,..., vi- have been cho-
sen. Vertex vi is chosen to be a vertex whose degree is a maximum in the subgraph of
G induced by the vertex set {Vl,..., vi-1} (.J {vi}. This heuristic can be implemented
to run in time proportional to Yvev deg(v), or O(IEI) time.
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Unfortunately, these heuristics are essentially breadth-first searches of the graph
and, as such, do not represent scalable, parallel heuristics. To do better, one notes that
if the vertices v and w are not adjacent in G (i.e., are independent in G), then these
vertices can be colored in parallel. Thus, a heuristic for determining an independent
set in parallel could be adapted to a parallel coloring heuristic. This observation
motivates the parallel coloring heuristic shown in Fig. 2.

V’ V;
While V’ q} do

Choose an independent set I from V’;
Color I in parallel;
V’-V’\I;

enddo

FIG. 2. Outline of a parallel coloring heuristic.

The problem of determining an independent set in parallel has been the focus
of much theoretical research. An approach that has been successfully analyzed is to
determine an independent set, I, based on the following Monte Carlo rule. Here we
denote the set of vertices adjacent to vertex v by adj(v).

1. For each vertex v E V’ determine a distinct, random number p(v).
2. v e I p(v) > p(w), for all w e adj(v).

In the Monte Carlo algorithm described by Luby [8], this initial independent set is
augmented to obtain a maximal independent set. The approach is the following. After
the initial independent set is found, the set of vertices adjacent to a vertex in I, the
neighbor set N(I), is determined. The union of these two sets is deleted from V’,
the subgraph induced by this smaller set is constructed, and the Monte Carlo step
is used to choose an augmenting independent set. This process is repeated until the
candidate vertex set is empty and a maximal independent set (MIS) is obtained. The
complete Monte Carlo algorithm suggested by Luby for generating an MIS is shown
in Fig. 3. In this figure, we denote by G(V’) the subgraph of G induced by the vertex
set V’. Luby shows that an upper bound for the expected time to compute an MIS
by this algorithm on a CRCW P-RAM is EO(log(n)). The algorithm can be adapted
to a graph coloring heuristic by using it to determine a sequence of distinct maximal
independent sets and by coloring each MIS a different color. Thus, this approach will
solve the (A / 1) vertex coloring problem, where A is the maximum degree of G, in
expected time EO((A / 1)log(n)).

I-;
V’ V;
G’G;
While G’ q) do

Choose an independent set I’ in G’;
I //, I’;
X- t2 N(I’);
V’-V’\X;
a’ a(y’);

enddo

FIG. 3. Luby’s Monte Carlo algorithm for determining a maximal independent set.
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A major deficiency of this approach on currently available parallel computers
is that each new choice of random numbers in the MIS algorithm requires a global
synchronization of the processors. A second problem is that each new choice of random
numbers incurs a great deal of computational overhead, because the data structures
associated with the random numbers must be recomputed. In Fig. 4, we present an
asynchronous heuristic that avoids both of these drawbacks. The heuristic is written
assuming that each vertex v is assigned to a different processor and the processors
communicate by passing messages.

Choose p(v);
n-wait- 0;
send-queue
For each w E adj(v) do

Send p(v) to processor responsible for w;
Receive p(w);
if (p(w) > p(v)) then n-wait-- n-wait -t- 1;
else send-queue -- send-queue U (w};

enddo
n-recv 0;
While (n-recv < n-wait) do

Receive a(w);
n-recv- n-recv -}- 1;

enddo
a(v) smallest available color consistent with the

previously colored neighbors of v;
For each w send-queue do

Send a(v) to processor responsible for w;
enddo

FIG. 4. An asynchronous parallel coloring heuristic.

With the asynchronous heuristic the first drawback (global synchronization) is
eliminated by choosing the independent random numbers only at the start of the
heuristic. With this modification, the interprocessor communication can proceed
asynchronously once these numbers are determined. The second drawback (com-
putational overhead) is alleviated because with this heuristic, once a processor knows
the values of the random numbers of the vertices to which it is adjacent, the number
of messages it needs to wait for can be computed and stored. Likewise, each pro-
cessor computes only once the processors to which it needs to send a message once
its vertex is colored. Finally, note that this heuristic has more of the "flavor" of the
sequential heuristic, since we choose the smallest color consistent with the adjacent
vertices previously colored.

One should be concerned that the expected running time of this heuristic is com-
parable to the expected running time of the heuristic based on the MIS Monte Carlo
algorithm. In the next section, we show that under the P-RAM computational model,
one is able to obtain an improvement over the upper bound for the expected running
time of the MIS algorithm.

3. Expected running time of the asynchronous heuristic. In this section
we derive an upper bound for the expected running time of the heuristic presented in
Fig. 4 under the P-RAM computational model. Most of the practical problems we are
concerned with are generated from local, physical models. Thus, the maximum degree
of the associated graphs is independent of the size of the system. It is reasonable,
therefore, to consider the model problem of a graph G with n vertices and bounded
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degree A. Since we assume that A is bounded, the previous work by Luby [8] shows
that a random heuristic for the (A/1) vertex coloring problem can be accomplished on
the P-RAM model in EO(log(n)) time. As discussed above, this heuristic is based on
a synchronous random algorithm for determining a sequence of maximal independent
sets.

To analyze the running time of our heuristic, we make the following observations.
First, for the sake of comparison, we note that this heuristic can also be considered
synchronous. Second, we assume that each vertex v E V chooses a unique independent
random number p(v). Define a monotonic path of length t to be a path of t vertices

{vl,v2,...,vt} in G, such that p(vl) > p(v2) > > p(vt). We have the following
lemma.

LEMMA 3.1. The running time of the P-RAM version of the asynchronous heuris-
tic is proportional to the maximum length monotonic path in G.

Proof. We assume that the asynchronous heuristic can be made synchronous
by including a global synchronization point in the receive and send loops (i.e., all
processors that have messages to send, send them; all available messages are received;
and then the processors synchronize). Since each vertex has degree at most A, the
number of messages to be received and sent by each processor is bounded by this
constant. Under the P-RAM computational model we can assume that messages are
sent between processors in constant time. Thus, the running time of the heuristic is
proportional to the number of these synchronized steps.

It is clear that the number of steps is at least as long as the longest monotonic
path in G. If the number of steps were longer, there would exist some step where the
random number of a processor was greater than all its neighbors, yet for some reason
it did not send its messages. Hence, we have that the running time of the heuristic is
proportional to the maximum length monotonic path. D

To analyze the expected running time of the heuristic, we need to construct an
upper bound to the probability of the existence of a monotonic path. We construct
this bound in two parts, first by finding a bound on the number of paths of length
t, and then by determining the probability that a path is monotonic. The following
lemma gives a bound on the number of paths of length t in the graph G.

LEMMA 3.2. The number, ?(t), of different paths in G of length t is bounded by

<  zx(zx- 1)

Proof. This bound can be obtained by induction. For t 2, the number of paths
is at most nA. Now suppose the lemma holds for paths of length t- 1. Consider
some vertex v and all paths of length t 1 starting from this vertex. Each of these
paths ends at some vertex w. Because an extension of this path cannot return along
the edge it used to get to w, there are at most A- 1 ways to extend this path.
Multiplying the bound for the number of paths of length t 1 by A 1 yields the
desired result. [:]

Let X be the random variable equal to the maximum length monotonic path in G.
Since the random numbers assigned to the vertices are independent, the probability
that a path of length t is monotonic is (l/t!). Let P{X t} be the probability
that the maximum length monotonic path is t. This probability is bounded by the
probability that there exists a monotonic path of length t. Including the bound given
in Lemma 3.2, we find

7(t) nA(A- 1)-2
(3.2) P{X t} <_ <_

t!
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THEOREM 3.3. The expected value of the maximum length monotonic path, EX,
is bounded by

(3.3) EX <_ T / (A- 1)g

for any K, where T is the minimum integer satisfying

(3.4) T! >_ nA(A- 1)T-K-1 exp(A 1).

Proof. The expected value of X is given by

EX tP{X t}.
t=2

For any integer T >_ 2 we have that

n

(3.6) EX <_ T + tP{X t}.
t=T+l

Thus, we can include the bound on the probability given in (3.2) to obtain

EX < T / y tnA(A 1)t-2
t=T+I

nA - (A- 1)(3.7)

nA (A- 1)T< T + exp(A- 1)(A 1) T

If we choose T to be the minimum integer such that

(3.8) T} nA(A 1)T-K- exp(A 1),

we have that the expected maximum length monotonic path is bounded by

(3.9) EX <_ T / (A- 1)g. 0

As a corollary, we are able to achieve a bound in terms of n for the expected
running time of this algorithm. To prove this corollary, we require the following short
lemma.

LEMMA 3.4. The inequality

)> 2/
sr el/12V/

holds for r >_ s >_ 1.
Proof. First, we recall the Gamma function identity

(3.11) r! r r(r)

and the formula

(3.12)
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which holds for x _> 1 and for 0 < O(x) < 1. For r _> 1, we compute the lower bound

(3.13) F(r)_> / (r)re
by setting 0 0 in (3.12). Thus, we have the bound

(3.14)
r’ ( )--2" > 2V r r

8r 8e

We set 1 in (3.12) to obtain an upper bound for the Gamma function and assume
thatr_>s_>l. We letr =r/sandfind

(a.l)

_> (r(r’)e-,/-v]
->- (r(’)44)

Combining (3.14) and (3.15), we obtain the desired bound

r!
16)

The Gamma function is not monotonic for x _> 1. However, it is monotonic for
slightly larger x, for example, x _> 23-. To avoid this lack of uniqueness, we define the
function F+ (y) max{ x IF(x) y }, which is well defined for y _> 1. We now prove
the following corollary to Theorem 3.3.

COROLLARY 3.5. For A >_ 2, the expected number of steps, EX, for the random
heuristic is bounded by

V/(A 1)
+2.

Proof. Choosing K 0 in Theorem 3.3 and subtracting one from T in equation
(3.4), we have the following inequality:

(T-l)! nA
exp(A-1)(3.18) (A- 1)T-1 -< (A- 1

We assume that (T- 1) _> (A 1) _> 1, and by Lemma 3.4 we have

(3.19) V/2r(A- 1)
e- T- 1 <e.,r

_
1 (- 1)-1
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Combining the bounds in (3.18) and (3.19), we obtain

(3.20) r (AT- 1) < x/e, ( nA )a--1 X/ (/k- i)
Using the asymptotic inverse to the Gamma function defined above, we obtain the
bound

(-- i)

Because we have chosen K 0, by Theorem a.a we have that EX 5 T + 1. Thus,
consistent with our original sumption that T A, we have the desired bound for
EX,

(-1) +"

By using he lower bound for he Gamma function obtained by choosing
0() 0 in (a.l) we noge that, for fixed , his bound is ympotically
EO(log(n)/log log(n)). his bound is an improvemen over he EO(log(n)) upper
bound obgained by Luby [8].

Number
of

Steps

20-

15-

10-

0
0

lOgl0(n)

FIG. 5. Bound obtained by choosing K -1 for the expected value (o) versus experimental
average (o) for regular, A 4, graphs.

The bound given in Theorem 3.3 yields a surprisingly close fit to what we have
observed in practice. In Fig. 5, we compare the bound for EX with our experimental
results for regular graphs of degree 4. In the plot the open circles are the observed
average number of steps for the asynchronous heuristic as a function of the base 10
logarithm of n. The closed circles are obtained from the bound given in Theorem 3.3,
where we have chosen K -1. The points are obtained by choosing a value for T
and then solving (3.4) for the largest n that satisfies the inequality.

As a final note, we emphasize that, although the heuristics described above have
a random component, their behavior in practice is essentially deterministic. In the
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above analysis, note that the probability that there exists a monotonic path of length
greater than t asymptotically decays faster than exponentially. Thus, the bounds
on the expected running time hold with very high probability. In addition, Luby [8]
gives a prescription for converting his Monte Carlo MIS algorithm into a deterministic
algorithm with the same running time. Hence, these heuristics are fundamentally
different from those based on simulated annealing. Although the simulated annealing
algorithms can be shown to ultimately obtain optimal solutions, running time bounds
comparable to those above do not exist.

4. A medium grain heuristic for distributed memory computers. Our
primary interest is the development of a heuristic suitable for distributed memory
computers. In this section, we describe how the asynchronous Monte Carlo heuristic
presented in the preceding section can be combined with the heuristics that have
been successful on sequential machines. Using this approach, in the next section we
experimentally demonstrate that for certain classes of problems the performance is
scalable.

Consider a distributed memory computer with p processors. We assume that the
vertices of the graph G (V, E) are partitioned across these processors by the sets
{V1,..., Vp}. Let the function r" V -* (1,..., p} return the number of the partition,
or processor, to which each vertex is assigned. We define the edge separator ES to be
the set of edges ES c_ E where the edge (v, w) e ES r(v) r(w). In addition,
we define the set of global vertices to be the vertex set VS, where a vertex is in this
set if and only if the vertex is an endpoint for some edge in ES. Let the set of local
vertices VL be the set V \ Vs. Finally, denote by VS and V/L the vertex sets VS N V
and VL N V.

The following theorem shows that it is possible to decompose the asynchronous
heuristic into two parts, the first part to color the global vertices, and the second
part to color the local vertices. We show that the vertex labeling obtained by piecing
together these colorings is a coloring for G. In this theorem we denote the subgraph
of G induced by the vertex set V by G(V).

THEOREM 4.1. Let as be a coloring for G(VS). This coloring, restricted to VS,
can be independently extended to a coloring ai for the subgraph G(V). If we define
the function a by a(v) a(v), where v E V, then a is a coloring .for G.

Proof. Consider the vertices V on processor i. We assume that vertices VS are
consistently colored when the random heuristic colors G(VS). Thus, only the vertices

V/L remain to be colored on this processor. By definition, the vertices V/L can be
connected only to vertices in V. Because VS has been colored, the vertices V/L may
be colored independently from any other vertices in V. By the same observation,
we note that if the coloring chosen for each V/L is consistent for G(V), then these
colorings combine to form a consistent coloring for the entire graph.

From Theorem 4.1, we observe that the parallel graph coloring problem can be
accomplished in two phases:

1. Color G(VS) using the asynchronous Monte Carlo heuristic.
2. On processor i, color G(VL) given as(VS) using a sequential heuristic.

A subtle point is that we need the Monte Carlo algorithm to generate independent sets
in the graph Gs (VS, Es), not the graph G(VS). Note that Gs is a sparser graph
than G(VS), since Gs does not contain edges (v, w) where v, w e YS but (v) (w).
Such edges are included in G(VS). We use the notation As A(Gs) and ns



A PARALLEL GRAPH COLORING HEURISTIC 663

Determine VS, vL; {Partition vertices}
color-queue ;
For each v E VS do (Set up queues for separator vertices}

n-wait (v) 0;
send-queue (v) ;
For each edge (v, w) ES do

Compute p(w);
if (p(w) > p(v)) then n-wait(v) n-wait(v) -1;
else send-queue (v) - send-queue (v)

enddo
if (n-wait (v) 0) then

color-queue - color-queue [3
enddo
Seq-color (a, color-queue); {Color any vertices in VS not}
n-colored color-queue I; {waiting for messages}
Pack-and-send (a, color-queue, send-queue);
color-queue ;
While (n-colored < IvSI) do

Receive msg;
For each w msg.vertex-list do

a(w) msg. vertex-color,
For each v msg.vertex-adj do

if (n-wait (v) 0) then
color-queue - color-queue U {v};

enddo
enddo
Seq-color (a, color-queue); {Color subsets of VS once required
n-colored n-colored +]color-queue I; {messages are received}
Pack-and-send (a,color-queue, send-queue);
color-queue ;

enddo
Seq-color (a, VL ); {Color local vertices last

FIG. 6. A distributed memory parallel coloring heuristic for the ith processor.

Thus, we have/ks </X(G(VS)), and the bounds detailed in Theorem 3.3 depend on
the values of/ks and ns.

In Fig. 6 we outline the complete distributed heuristic to be executed by the ith
processor. The heuristic calls two procedures: Seq-color and Pack-and-send. Given a
partial coloring of vertices stored in the array a and a list queue of local vertices to be
colored, Seq-color(a, queue) colors these vertices with a sequential heuristic (such as
the IDO heuristic discussed earlier). The procedure Pack-and-send sends the vertices
in queue and their colors a to nonlocal, adjacent vertices on other processors with
lower random numbers. For vertex v this set is stored in the array send-queue(v),
which is initialized at the beginning of the heuristic.

The ability to pack vertex information into messages allows for the optimization
of interprocessor communication. For example, messages sent between processors
can be packed to overcome the high message startup cost on machines like the Intel
iPSC/860. The data structure msg that a processor receives contains a packed list
of vertices, their colors, and the vertices assigned to the receiving processor to which
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they are adjacent. As before, the number of nonlocal vertices that must be colored
before vertex v is computed at the beginning of the heuristic and stored in n-wait (v).

One last optimization to note is that if the pseudo-random number generator
used to determine p(v) depends only on the vertex number, then these values do
not need to be sent between processors. Instead, each processor can determine these
values locally, and the overhead involved with this interprocessor communication can
be avoided. This optimization is included in the initialization section of Fig. 6.

5. Experimental results. We have implemented the heuristic described in Fig.
6 in the C programming language on a 64-node Intel iPSC/860. In this section we
present results obtained with this implementation. One of our main objectives is to
demonstrate the scalability of this heuristic consistent with the definition given in [5].
Thus, we would like to show that, for a fixed number of vertices per processor, the
running time of the heuristic is only a slowly increasing function of the number of
processors used.

To achieve this objective, we have chosen test problems whose sizes can be easily
scaled and that are also representative of problems encountered in applications. The
problems we consider are generated from finite element models of structures and from
finite difference schemes for two- and three-dimensional regular domains.

We consider two sets of structures problems; both are modeled by using three-
dimensional, hexagonal linear elements, where the nonzero structure of the resulting
assembled sparse system is used as a test matrix. The problems in Problem Set I
are obtained from a model of a long rectangular beam of varying lengths, seven-by-
seven finite elements thick, with the degrees of freedom constrained at both ends.
The problems in the Problem Set II are generated from a model of a multistoried
building of varying heights with constraints applied by elimination of the bottom
layer of vertices.

For these two problem sets the vertex to processor assignment was made by
assigning to each processor contiguously numbered blocks of columns based on an
initial numbering. These blocks consist of nip columns, where n is the order of the
matrix and p is the number of processors. The initial numbering of the columns
is chosen such that nearby nodes in the finite element models are generally close
in number. Thus, this matrix partition scheme roughly corresponds to a physical
partition.

In Tables 1 and 2 we show the sizes of the problems contained in these two sets.
The number of vertices in the graphs is listed in the column labeled n, the number
of edges is listed under m, and the maximum degree of the graph is shown under A.
The number of colors used by a sequential implementation of the IDO heuristic and
the SDO heuristic is given in the columns labeled XIDO and XSDO.

We also consider two sets of problems arising from standard finite differencing
schemes for regular domains. In Table 3 we show the sizes of the test problems
generated for the nine-point stencil on a square, two-dimensional domain. For these
problems the domain is partioned into subsquares of equal size, resulting in equal
numbers of vertices being assigned to each processor. To keep the aspect ratio of the
subsquares the same as the problem is scaled, we change the size of the problems by
a factor of four as the problem is scaled. In Table 4 we show the sizes of the test
problems generated for the 27-point stencil on a cubic, three-dimensional domain.

1in our case, the running time will increase with problem size according to the slowly growing
function given in Theorem 3.3.
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TABLE 1
Problem Set I.

Problem n m A IXIDO IXSDO
CUBE1 1,701 46,623 72 21 18
CUBE2 3,888 113,304 72 20 18
CUBE4 8,262 246,666 72 20 19
CUBE8 17,010 513,390 72 21 19
CUBE16 34,506 1,046,838 72 21 19
CUBE32 69,498 2,113,734 72 21 19
CUBE64 139,482 4,247,526 72 21 19

TABLE 2
Problem Set II.

Problem n A, X,DolXsDol
SKY1 6,270 145,554 75 19 19
SKY2 12,540 298,751 76 21 20
SKY4 25,080 605,145 76 21 21
SKY8 ’50,160 1,217,933 76 21 21
SKY16 100,320 2,443,509 76 21 21
SK32 200,640 4,894,661 76 22 22

Again, equal numbers of vertices are assigned to each processor because the domain
is partioned into subcubes of equal size. For these problems the problem size increases
by a factor of eight as the problem is scaled.

TABLE 3
Problem Set III.

Problem n m ]A]x,DOlXSDO
9PT1 2,500 19,404 8 5 4
9PT4 10,000 78,804 8 5 4
9PT16 40,000 317,604 8 5 4
9PT64 160,000 1,275,204 8 5 4

Scaling results obtained for Problem Sets I-IV are shown in Tables 5-8. For the
results presented in these four tables, the partitioning ensures that the average number
of vertices per processor, (n), is essentially constant. The number of processors used
is listed in the column labeled p. The number of vertices and maximum degree of Gs
are given under ns and As, respectively. The maximum time in seconds used by a
processor in coloring Gs is given under Ts. TL is the maximum time in seconds used
by a processor to solve its local coloring problem. The average number of messages
sent by the processors is listed under (Nmsg). Also shown are ;s, the number of colors
used in coloring Gs, and , the number of colors used to color the entire graph. For
these results the IDO heuristic is used to solve the local coloring problems.

Note that although we used the incidence degree heuristic to solve the local color-
ing problem for GL, for the results presented in Tables 5-8, one could also employ the
more expensive saturation degree heuristic. Recall that the SDO heuristic requires
the colors used to color adjacent vertices to compute the saturation degree of each
vertex. This information has already been communicated to each processor prior to
the coloring of GL; therefore, the SDO heuristic can be used to color GL without ne-
cessitating any additional interprocessor communication. In Tables 9-12, we present
the results for the parallel heuristic modified in this manner.



666 MARK T. JONES AND PAUL E. PLASSMANN

TABLE 4
Problem Set IV.

Problem n m A XIDO XSDO
27PT1 2,197 48,456 26 12 11
27PT8 17,576 421,400 26 12 12
27PT64 140,608 3,511,656 26 13 12

TABLE 5
Parallel coloring results for Problem Set I, IDO used to solve local problem.

Problem P (n) ns Asl Ts TL (Nmsg) 12S 2
CUBE1 1 1701 0 0 0.000 0.330 0.0 0 21
CUBE2 2 1944 486 27 0.076 0.368 6.5 14 21
CUBE4 4 2091 2,136 66 0.273 0.379 20.2 24 26
CUBE8 8 2126 5,436 66 0.541 0.376 28.6 24 25
CUBE16 16 2157 11,975 69 0.531 0.375 36.1 25 26
CUBE32 32 2172 25,004 70 0.488 0.378 37.8 27 27
CUBE64 64 2179 51,031 70 0.588 0.381 39.0 26 26

TABLE 6
Parallel coloring results for Problem Set II, IDO used to solve local problem.

Problem P (n) ns Asl Ts TL (Nms) Is
SKY1 2 3,135 1,518 59 0.226 0.417 31.5 21 23
SKY2 4 3,135 3,624 65 0’.408 0.408 118.2 23 24
SKY4 8 3,135 7,836 65 0.572 0.420 152.2 22 24
sKY8 16 3,135 16,260 65 0.584 0.412 166.8 23 25
SKY16 32 3,135 33,108 65 0.582 0.410 174.1 24 25
SKY32 64 3,135 66,804 65 0.583 0.408 177.4 25 26

TABLE 7
Parallel coloring results for Problem Set III, IDO used to solve local problem.

Problem P <n> ns Asl Ts TL I(Nm)lSll
9PT1 1 2,500 0 0 0.000 0.084 0.0 0 5
9PT4 4 2,500 396 5 0.015 0.089 3.2 4 7
9PT16 16 2,500 2,364 5 0.017 0.090 5.1 5 7
9PT64 64 2,500 11,004 5 0.028 0.089 5.1 5 7

TABLE 8
Parallel coloring results for Problem Set IV, IDO used to solve local problem.

Problem P (n) ns Asl Zs TL (Nmg) IS
27PT1 1 2,197 0 109 0.000 0.183 0.0 0 12
7}TS S ,17, a,7: 0.1a 0.17 S:.a la
27PT64 64 2,197 43,272 19 0.270 0.176 179.9 15 17

TABLE 9
Parallel coloring results for Problem Set I, SDO used to solve local problem.

Problem P (n> ns ASI Ts TL [<Nmg>[S[
CUBE1 0 0 0.000 6.167 0.0 0 181 1701
CUBE2 2 1944 486 27 0.077 7.630 6.5 14 18
CUBE4 4 2091 2,136 66 0.274 7.675 20.2 24 25
CUBE8 8 2126 5,.136 66 0.550 7.722 28.6 24 25
CUBE16 16 2157 11 .975 69 0.536 7.577 36.1 25 25
CUBE32 32 2172 25,004 70 0.498 7.771 37.8 27 27
CUBE64 64 2179 51,031 70 0.593 7.732 39.0 26 26
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TABLE 10
Parallel coloring results for Problem Set II, SDO used to solve local problem.

Problem p (n) ns AS TS TL (Nms$) S
SKY1 2 3,135 1,518 59 0.233 6.361 31.5 21 22
SKY2 4 3,135 3,624 65 0.415 6.130 118.2 23 24
SKY4 8 3,135 7,836 65 0.578 6.357 152.4 22 23
SKY8 16 3,135 16,260 65 0.584 6.097 166.9 23 24
SKY16 32 3,135 33,108 65 0.585 6.141 174.2 24 25
SKY32 64 3,135 66,804 65 0.588 6.018 177.4 24 25

TABLE 11
Parallel coloring results for Problem Set III, SDO used to solve local problem.

Problem P (n) ns Isl Ts TL I<Nm)lsll
9PT1 1 2,500 0 0 0.000 0.364 0.0 0 4
9PT4 4 2,500 396 5 0.015 0.407 3.2 4 6
9PT16 16 2,500 2,364 5 0.025 0.405 5.1 5 7
9PT64 64 2,500 11,004 5 0.028 0.403 5.6 5 7

TABLE 12
Parallel coloring results for Problem Set IV, SDO used to solve local problem.

Prblem P (n) ns i1 Ts T (Nm,) Is
=;PT 0 0 I0.000i1.   ] 0.0 0 Illl
2;PT8 8 12,19;I 3,;52 10. 261 . 401 82.4
27PT64 64 2,197 43,272 19 0.275 1.618 179.3 15 1161

The results shown in Tables 5-12 demonstrate the scalable performance of the
heuristic: for a fixed number of nonzeros per processor, the time required by the global
and local phases is essentially constant [5]. Note that as the size of Gs increases, the
average number of messages sent per processor gradually increases. By maintaining a
reasonable average message size, the high communication overhead on the iPSC/860
can be partially amortized. Also, note that by using the SDO heuristic to solve the
local coloring problem, a slight improvement in the total number of colors can be
obtained. However, the SDO heuristic is significantly more expensive than the IDO
heuristic in solving the local coloring problem.

In Tables 13 and 14, we fix the number of processors at 32 and examine the effect
on the performance of the heuristic by varying the number of nonzeros per processor.
For these results we use the IDO heuristic to solve the local coloring problem.

Overall, the number of colors required is relatively constant, even though the
percentage of the vertices in Gs varies dramatically. To some extent this effect can
be explained by noting that even though the relative size of Gs is increasing, the
local structure of the separators is essentially the same, since the separators arise
from physical partitions of a regular domain. In Table 14, when the relative size of
Gs does became small enough to allow As to decrease, the number of colors used
to color Gs, (s, decreased. Finally, we note the good performance of the heuristic,
both in terms of the number of colors used and execution time, as the size of the local
problems becomes quite small.

6. Concluding remarks. We have presented a new parallel graph coloring
heuristic well suited to distributed memory computers. Experimental results demon-
strate that this heuristic is scalable and that it produces colorings usually requiring
no more than three or four more colors than the best-known linear time sequential
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TABLE 13
Parallel coloring results for Problem Set I, p 32.

Problem (n) ns ]As Ts TL (Nms) Is 2
CUBE1 53 1,701 71 0.061 0.003 6.4 24 26
CUBE2 122 3,888 70 0.127 0.009 16.1 25 27
CUBE4 258 8,217 70 0.202 0.020 32.8 25 28
CUBE8 532 15,561 70 0.309 0.056 56.5 26 29
CUBE16 1,078 28,842 69 0.385 0.138 82.5 28 30
CUBE32 2,172 25,0’04 70 0.488 0.378 37.8 27 27
CUBE64 4,359 25,166 70 0.573 0.853 38.7 25 27

TABLE 14
Parallel coloring results for Problem Set II, p 32.

Problem (n> ns [As TS TL (gms) )S
SKYI 196 6,270 64 0.128 0.011 23.0 23 25
SKY2 392 11,313 65 0.212 0.043 45.7 25 26
SKY4 784 18,012 65 0.396 0.081 74.3 24 25
SKY8 1,568 22,716 65 0.432 0.199 104.4 24 25
SKY16 3,135 33,108 65 0.582 0.410 174.1 24 25
SKY32 6,270 28,272 24 0.491 0.988 106.3 21 24

heuristics. We have also shown that under the P-RAM computational model, this
heuristic has an expected run time bounded by EO(log(n)/log log(n)).

This parallel heuristic takes full advantage of locality in the generation of the
graph. For example, if the graph is generated by the assembly of a structures model
or obtained from the spatial decomposition of a physical model, the asynchronous
random phase of the heuristic can efficiently color the global separator. After the sep-
arator is colored, the remaining problem decomposes into independent local coloring
problems. The only constraint on these local colorings is that they be consistent with
the coloring determined for the separator. Thus, any sequential heuristic can be used
to solve each of these local coloring problems simultaneously.

For many problems a physical partition can be used to generate a good vertex to
processor assignment. When the determination of a partition is not straightforward,
a partitioning heuristic would have to be used. For example, recent advances in
the automatic partitioning of three-dimensional domains [11] or in spectral dissection
methods [9] could be employed. We note that a partitioning that maintains locality
is advantageous, although not essential, to the performance of the parallel heuristic.
The heuristic requires only that the number of vertices assigned per processor allow
for good load balancing.

An interesting observation is that even if the coloring obtained for the separator
uses more colors than a good sequential heuristic, the separator subgraph is usually
sparser than the entire graph. Thus, when coloring the denser local subgraphs, some
of the difference between the parallel and sequential heuristics in the number of colors
used for the separator subgraph can be offset by the use of a good sequential heuristic
to color the remaining local subgraphs.

Finally, motivated by the following observation, we note a possible avenue for
improving the heuristic. When one observes the distribution of colors produced by
the heuristic, one often sees very few vertices using the highest colors. For example,
when coloring the graph 27PT8 on eight processors, the results in Table 12 show
that 15 colors were required by the parallel algorithm, but only 12 by the sequential
algorithm. However, the number of vertices using the colors 15, 14, and 13 were
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2, 12, and 70, respectively. An interesting topic for further research might be the
introduction of a postprocessing step that would attempt to recolor these few vertices
with lower color values, and thus decrease the total number of colors used.
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A CHOLESKY UP- AND DOWNDATING ALGORITHM FOR
SYSTOLIC AND SIMD ARCHITECTURES*
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Abstract. This paper presents an algorithm for maintaining Cholesky factors of symmetric
positive definite matrices under arbitrary rank-one changes. The algorithm synthesizes Carlson’s up-
dating algorithm, and the downdating algorithm recently suggested by Pan to arrive at an algorithm
which is both simple and allows for the pipelining of up- and downdates (in any order). On an array
of O(n2) processors, the algorithm allows an n n matrix to be updated at a cost per update that
is independent of n. Implementation results on the 1024-processor AMT DAP-510 emphasize the
simplicity and practicality of the proposed scheme.

Key words. Cholesky factorization, updating, downdating, systolic algorithm, SIMD algorithm
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1. Introduction. Given a symmetric positive definite matrix A, an important
factorization of A is the Cholesky factorization

A RTR
where R is upper triangular. In many applications, it is desirable to recalculate the
Cholesky factorization after A has been changed by a rank-one modification

t A + ZZ
T RTR :l= zzT.

Calculating the new factorization for A + zzT is known as the updating problem;
recomputing A- zzT is called the downdating problem (see [5] for an overview).

Our work was mainly motivated by the recursive least squares filtering problem [1].
In that setting, one has to rapidly calculate a sequence of Cholesky factors R(k) of
rank-one modified matrices

(R(k))TR(k) RTR+alzlzT --...akZkZ, ffj e {-1, 1),k 1,2,

Typically, k is much larger than n, the dimension of R, and often the R(k)’s must
be calculated in real time. Hence we would like to design a systolic algorithm where
we maintain the Cholesky factor R() using O(n2) processors, while update vectors
zj are streaming through the processor array. To minimize the time per update, we
would further like to overlap the processing of different updates so that processing
of a new update vector can start at every time step. By pipelining the processing of
updates in this fashion, the computation of R() is completed in O(n + k) time steps,
so that on the average a rank-one modification requires constant time.

The standard updating algorithm in LINPACK and the less well known one by
Carlson [4] can easily be pipelined when a sequence of updates occurs. These algo-
rithms are based on Givens rotations and operate on the upper triangular R in one
pass from top to bottom.
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Unfortunately, this is not the case in the LINPACK downdating algorithm orig-
inally due to Saunders [10]. That algorithm completes the downdating task in two
passes: a triangular solve that processes R from top to bottom, and then a set of
Givens rotations that process R from bottom to top.

Recently, Pan proposed a variant of the LINPACK algorithm [8] that is at least as
stable as the one in LINPACK but more economical and operates R only once--from
top to bottom. In this paper, we show that by suitably combining Pan’s downdating
algorithm with Carlson’s updating algorithm, we arrive at an algorithm that

employs only orthogonal transformations, thereby avoiding the potential stabil-
ity problems associated with hyperbolic transformations [1],

allows the pipelining of any sequence of rank-one modifications, and
is simple and well suited for systolic arrays and SIMD machines.

The simplicity of the algorithm, together with its low complexity, is its main virtue:
the computation is extremely regular, data flow is straightforward, and no "special
cases" arise. As a result, an efficient implementation of the algorithm on systolic
arrays and SIMD machines is an easy task which does not require tricky coding.

We also mention that in most applications, and in particular in recursive least
squares, the update of the Cholesky factor is usually followed by an equation solve.
Pan and Plemmons [9] suggested a scheme to update the inverse of the Cholesky
factor directly. A MIMD implementation of this scheme is described in [6]. This so-
called "co-variance approach" is attractive since it replaces the triangular solve by a
matrix-vector multiply. We chose here to consider the update of the Cholesky factor
(the so-called "square root approach"), since it avoids potential stability problems
with ill-conditioned factors, and because of the availability of efficient algorithms to
handle the triangular solves on SIMD machines [11], [12].

In the next section, we present the up- and downdating algorithm that computes
arbitrary sequences of rank-one modifications in a pipelined fashion. In 3 we consider
the implementation of our algorithm on a massively parallel SIMD machine. Because
our algorithm is simple, we are able to derive a very short and efficient program
implementing our algorithm. Experiments on the 1024-processor Active Memory
Technology DAP-510 parallel computer confirm the practicality and efficiency of our
approach. Lastly, we summarize our results.

2. A pipelined algorithm for arbitrary up- and downdates. Let

R=

rn
be the Cholesky factor of an n x n symmetric positive definite matrix, where r is
the jth row of R. Furthermore, let

z

be the vector determining the rank-one update or downdate.
Carlson’s algorithm [4] for calculating T, TTT RTR + zzT, and Pan’s algo-

rithm [8] for calculating T, TTT RTR- zzT, are summarized in Figs. 1 and 2.
If one juxtaposes the algorithms in this fashion, it becomes apparent that there

is a lot of commonality between them:
the calculations for the aj’s and z(J)’s are identical,
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fo := 1; z() := z
For j 1,2,...,n do

:=

z(J) :=

tj :=
end do

J-)/r

z(j-l) cjrj

+

FIG. 1. Carlson’s updating algorithm.

o "= 1; z() := z
For j 1, 2,...,n do

Cj :’-

:=

z(J) :=

tj :=
end do

JJ-1) /rjj

z(j-) cr
(j?’j Olj z(j)/j) / j--1

FIG. 2. Pan’s downdating algorithm.

the calculations for the/j’s differ by only a sign, and
the calculations for tj share the factor aaj/(j_lj), where a 1 for update

and a- -1 for downdate.
As a result, one can easily merge the two algorithms to arrive at the algorithm

shown in Fig. 3. Again the triangular factor R is overwritten with the updated factor
T. When a 1, it is identical to Carlson’s algorithm; when cr -1, it is identical to
Pan’s algorithm.

o := 1; z() := z
For j 1,2,...,n do

,(j--l),
j :-- qj /?’jj

g/ 2 2

z(j) Z(j-l) o.r.
if(a ==-1) then { downdate }
tj := ([Jj //j-1)rj - (T(oj /(/j/j-1))z(j)

elseif (a +1) then {update }
+

end i-
end do

FIG. 3. Algorithm for up- and downdating.

Recall that our objective is to calculate the Cholesky factorization of

(R(k))TR(k) RTR -b (rl z1 zT1 " (TkZkZ, a e {-1, 1},k 1,2,...

for k >> n in n + k steps. To that end we have to overlap the processing of different
updates so that processing of different updates can start at every time step. Specifi-
cally, we wish to achieve the situation depicted in Fig. 4. Let us assume that initially
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r r r r r 1 1 1 1 1 2 2 2 2 2
0 r r r r 0 r r r r 0 1 1 1 1
0 0 r r r == 0 0 r r r == 0 0 r r r
0 0 0 r r 0 0 0 r r 0 0 0 r r
0 0 0 0 r 0 0 0 0 r 0 0 0 0 r

3 3 3 3 3 4 4 4 4 4 5 5 5 5 5
0 2 2 2 2 0 3 3 3 3 0 4 4 4 4
0 0 1 1 1 0 0 2 2 2 0 0 3 3 3
0 0 0 r r 0 0 0 1 1 0 0 0 2 2
0 0 0 0 r 0 0 0 0 r 0 0 0 0 1

FIG. 4. Pipelining up- and downdates.

R R() is stored in the processor array, as is indicated by the "r" entries. In the
first time step, we update the first row of R to that of R(1) as shown in the second
matrix of Fig. 4. Here (as in the following snapshots) a row of R(j) is denoted by
j’s. computed. In the next time step, we then compute the first row of R(2) and the
second row of R(1) and so on. Thus, after k steps, the processor array would contain
(from top to bottom)

(1)

where

(rk))T
r(2k-1) T

(k-n+l)\T
trn

R(J)

is the Cholesky factor after j up- and downdates have been performed.
Since our algorithm processes R in one pass from top to bottom, it is amenable to

a pipelining implementation along the lines of Fig. 4. If we have O(n2) processors, we
can dedicate j processors to computing the jth row of the updated R for j 1,..., n.
As a result, the update of an ry stored in a processor row takes constant time, and
a new update vector z can be processed at every time step. We mention that this
algorithm does compare favorably with other approaches to up- and downdating, in
particular those based on hyperbolic rotations (see, for example, [2], [3], [6], [8]; these
articles contain further pointers on the rather substantial literature on this subject).

3. Experimental results. To demonstrate the practicality of our algorithm, we
implemented it on an Active Memory Technology 1024-processor DAP-510 computer
at Argonne’s Advanced Computing Research Facility.

The DAP consists of a 32 x 32 array of one-bit processors and operates in SIMD
mode driven by a 10-MHz clock (for an architecture overview, see [7]). The 32-bit
arithmetic (applied to 1024 numbers at the same time) requires on the average 850



674 C.H. BISCHOF, C.-T. PAN, P. T. P. TANG

cycles for an add, 920 cycles for a square root, 1400 cycles for a multiply, and 1950
cycles for a divide. Communication primitives are very efficient. For example, a
"spread" operation that turns a vector

X

into a matrix

requires only 170 cycles. The DAP is not a powerful machine in terms of Mflops,
but since arithmetic is performed in a bit-sliced fashion, an implementation can easily
be custom tailored to specific bit lengths. That capability, together with its small
power and space requirements, makes it an interesting machine for real-time embedded
signal-processing applications.

The DAP can be conveniently programmed in DAP-Fortran, which contains ex-
tensions to Fortran that allow one to express operations on whole matrices and vectors
with ease. Apart from the "spread" operation, we also use the "diag" primitive to
extract the diagonal of a matrix in a vector, and the "shift_down" primitive, which
returns

for a vector x and works in an analogous fashion for matrices. Because of the SIMD
nature of the machine, operations on matrices and vectors are to be understood el-
ementwise, in other words, C A B implies cij aij bij. Operations can be
restricted to certain elements in a matrix or vector by using a so-called mask, which
is an array of logical values that is true where an operation is to be applied. For two
masks, maskl and mask2, say, that partition a given array, we use the U notation if
a matrix is composed out of disjoint pieces, e.g.,

C A(maskl) B(mask2),

to stress the fact that no arithmetic is performed. In the description of the algorithm
we use the "not" function to generate such complementary partitions.

It is easy to translate the algorithm in Fig. 3 into an efficient program for an SIMD
machine such as the DAP. The program is shown in Fig. 5; to be consistent with the
previous notation, we refer to matrices by upper-case roman letters, vectors by lower-
case roman letters, and scalars by Greek letters. Built-in functions are denoted by
bold type. The array R contains the updated Cholesky factor in the staggered form
as in (1); Z contains the updated vectors z(); s contains the a’s and b the ’s; and
mask_down is a mask indicating which rows are being updated and which are being
downdated.
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Z- 0; s--0; b---1; mask_down- false;
for j-- 1,2,... do
Z(1, 1: n) zj; s(1) aj; b(1) I;

j" true, ira -1;mask_down(l) false, otherwise.
b_previous b; Z_previous Z;
a diag(Z)/diag(R);
b sqrt(b_previous .2 / s (a .2));
Z Z_previous -spread(a) R;
a_bar s a/(b b_previous);
b_bar =(b(mask_down) U b_previous(not(mask_down)))

/(b_previous(mask_down) U b(not(mask_down) );
Z_bar Z_previous(spread(not(mask_down) U Z(spread(mask_down));
R spread(b_bar) R + spread(a_bar) Z_bar;
shift_down(a,b,s,mask_down) shift_down(Z);

end do

FIG. 5. SIMD program for computing rank-one Cholesky updates in a pipelined fashion.

The simplicity of the algorithm is crucial to allow for such a short program.
Particularly beneficial is the fact that we have only one if-statement whose branches
perform the same operations (on different data). Remember that on an SIMD machine
the branches of an if-statement

If (c) then a else b endif

are executed sequentially. First, all processors evaluate c, then the processors for
which c evaluated to "true" evaluate a, and then the processors for which c evaluated
to "false" evaluate b. If a and b contain arithmetic (which is expensive), the program
is slowed down considerably. In our setting, statements a and b contain only data
moves (which are much faster than arithmetic), since the update of R requires the
same arithmetic operations (two multiplies and an add). Thus, if we ignore the time
for data moves, one time step in our algorithm requires one square root, three adds,
three divides, and eight multiplications. It is also easy to see that in one pass through
the loop we compute (in parallel) n2 + 5n multiplies, n2 + n adds, 3n divisions,
and n square roots, and hence our SIMD algorithm does not compute any redundant
floating-point operations compared to the sequential version.

The execution time of some experiments with matrices of size 32, 64, and 128
(computed with 32-bit floating-point arithmetic) is shown in Fig. 6. Here we generated
random vectors zj and alternated between up- and downdates. The straight lines
confirm that the time per update is indeed constant: It is 2.9 milliseconds for 32 x 32
matrices, 5.9 milliseconds for 64 x 64 matrices, and 16.9 milliseconds for 128 x 128
matrices. Since we are limited to a fixed-size processor array (instead of having O(n2)
as we assumed so far), the execution time does increase with problem size. Once n
is greater than 32, matrices are folded onto the smaller 32 x 32 processor array, so
one would expect the execution time to increase with (n/32)2. In reality we do not
see such growth, since we are using the hardware more efficiently when working with
larger matrices: For 32 x 32 matrices we are only using half the available processors,
for a 128 x 128 matrix we have 16 32 x 32 tiles, only four of which are triangular; all
others are full.

4. Conclusions. Building on the work of Carlson [4] and Pan [8], we developed
a stable algorithm for maintaining Cholesky factors of symmetric positive definite
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0
0

n=128 ..............................................................................
n=64.......................

20 40 60 80 100 120 140

Number of Updates

FIG. 6. Execution time as a function of the number of updates performed.

matrices under arbitrary rank-one modifications (as long as they maintain positive
definiteness). Each rank-one modification requires only n2 multiplications and n2

additions; and, for the most part, the computation of up- or downdates involves the
same operation. As a result, one can easily pipeline different rank-one updates to
arrive at an algorithm that on a systolic array or massively parallel SIMD machine
requires constant time per update.

The new algorithm is well suited for signal processing applications. Its compu-
tational complexity compares favorably to that of other approaches, it avoids the
potential stability problems associated with hyperbolic rotations, and as our imple-
mentation on the 1024-processor AMT DAP has shown, an efficient implementation
on an SIMD machine or systolic array can be easily obtained.
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INDEX REDUCTION
IN DIFFERENTIAL-ALGEBRAIC EQUATIONS

USING DUMMY DERIVATIVES*

SVEN ERIK MATTSSONt AND GUSTAF SDERLIND$

Abstract. A new index reduction algorithm for DAEs is developed. In the usual manner, parts
of the DAE are differentiated analytically and appended to the original system. For each additional
equation, a derivative is selected to be replaced by a new algebraic variable called a dummy derivative.
The resulting augmented system is at most index 1, but no longer overdetermined. The dummy
derivatives are not subject to discretization; their purpose is to annihilate part of the dynamics
in the DAE, leaving only what corresponds to the dynamics of a state-space form. No constraint
stabilization is necessary in the subsequent numerical treatment. Numerical tests indicate that the
method yields results with an accuracy comparable to that obtained for the corresponding state-space
ODE.

Key words, differential-algebraic, index reduction, dummy derivative, constraint stabilization,
solution invariant, automatic differentiation

AMS(MOS) subject classification. 65L05

1. Introduction. We shall develop a new index reduction technique for differ-
ential-algebraic equations (DAEs)

(1.1) F(t,x,) =0.

We assume that the problem is solvable [4], with a unique, smooth solution when
supplied with an appropriate number of consistent initial conditions. The index of
the problem equals the minimum number of times that all or part of (1.1) must be
differentiated with respect to t in order to determine as a continuous function of x
and t [4] and is assumed to be constant along the solution. In addition, F is assumed
to be sufficiently differentiable to allow the proposed index reduction technique. For
alternative definitions of the index, cf. [11] or [14].

It is well known that it is numerically difficult to solve a high-index DAE. Index
reduction methods provided in the literature (see, e.g., [4, p. 33]) can be used as
a remedy. However, it is often less satisfactory to solve the underlying ordinary
differential equation, or UODE, that has been derived from the DAE through index
reduction. The reason is that the set of solutions to the UODE is larger than the
corresponding set of solutions to the original DAE; the algebraic relations of the DAE
are only implicit in the UODE as solution invariants. Unless linear, these invariants
are generally not preserved under discretization. As a result, the numerical solution
drifts off the algebraic constraints, often leading to instabilities [10]. Consequently,
so-called constraint stabilization techniques have been devised [1], [3], [12].

To avoid such difficulties, one may try to obtain a low-index formulation, with
a solution set identical to that of the original problem. This can be achieved by
augmenting the system as the index reduction proceeds: all original equations and
their successive derivatives are retained in the process. The result is an overdetermined
but consistent index-1 DAE. Like invariants, however, consistency is generally lost
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when the system is discretized. Therefore, special projection techniques are required
for the numerical solution (see, e.g., [8] or [9]). Related approaches using least-squares
projections have been used in [2], [51, and [6].

The index reduction technique proposed in this paper, which was outlined in
[16], overcomes the latter complication by introducing a new dependent variable for
each new equation generated in the reduction process. This generates an augmented,
determined index-1 DAE from the original problem. The method is related to classical
reduction to state-space form; the remaining dynamics of the problem is represented
by a selection of its original variables, forming a (local) UODE. The other variables
are solved for in terms of the UODE states. The technique is applicable to large
classes of problems and can be practically implemented, using symbolic or automatic
differentiation [13], [18].

We shall outline our method in a simple example. Consider the DAE problem

(1.2a) & y,

(1.2b) -- z,

(1.2c) x---- f(t).

This is an index-3 derivative chain with solution x f(t), y ](t), and z ](t). It
may be thought of as prototypical for prescribed-trajectory problems in mechanics,
where one wants to calculate the (usually generalized) forces required for the system
to accomplish the desired action. In such an application x, y, and z would represent
position, velocity, and force per unit mass, respectively, and f(t) is the prescribed
trajectory for the system.

A sufficient condition for the index to be at most 1 is that we are able to solve
for the highest-order derivatives in the system, i.e., 5, , and z. This is obviously
impossible in (1.2). Differentiating (1.2a) once and (1.2c) twice yields, after reordering
equations and variables,

(.c") ](),

(1.2b) z ,
which is index 1. Here (1.2a) denotes the derivative with respect to t of (1.2a).

Now, consider the overdetermined but consistent system obtained by augmenting
the original system by the successive derivatives of (1.2a) and (1.2c):

(1.3c) x f(t),
(1.3c’) ](t),
(1.ac")

u
(1.3a’)
(1.3b) z .
For each differentiated equation appended to the original system, we need one "new"
dependent variable to make the augmented system determined rather than overdeter-
mined. This is achieved by replacing one derivative from each differentiated equation
by a new algebraic variable. Thus we eliminate 51 by substituting a dummy deriva-
tive x" for 51 wherever it occurs in the system (1.3). Although x" =_ b, the dummy
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derivative is a purely algebraic variable and is not subject to discretization. Similarly,
we replace & by x and by y. We have chosen this notation for the dummy deriva-
tives to directly indicate what they represent and how they were introduced into the
augmented system.

We have thus obtained the augmented but determined system

(1.4a) x--

(1.4b) .’=
(1.4c) x’= ](t),
(1.4d) y x’,
(1.4e) y’ x",
(1.4f) z y’.

This purely algebraic (hence index-l) system is mathematically equivalent to (1.2).
No initial conditions can be imposed, and no discretization is required for its numerical
solution. The system is nonsingular since it is possible to solve algebraically for the
six unknowns x, x, x’, y, y, and z. Although this example is rather special, it
demonstrates an important aspect of the new reduction technique: that the system
can be solved numerically without discretizing all derivatives.

In the following sections we shall describe how to proceed in the general case. We
first show how to obtain the appropriate differentiated system and then how to select
dummy derivatives to make the augmented system determined. We shall also deal
with pivoting of the selected set of dummy derivatives, before presenting numerical
results.

2. Differentiation and permutation of equations. For notational conve-
nience, we shall rewrite (1.1) as an operator equation

(2.1) 9Vx 0.

The dependent variables may appear algebraically or differentiated up to q times. We
assume that for some p _> q the ]Rn-valued function x Cp. Similarly, x Cp-q is
an ]Rn-valued function.

Let D d/dt denote the differentiation operator, and let qn denote a
multi-index (, 2,..., n)T. Then we define D diag(D,..., D). We let
#(’) INn denote a multi-index such that D(:)x are the highest-order: derivatives

appearing in the DAE, i.e. -() is the highest-order derivative of xj that appears inxj
$-x 0.

2.1. Structural properties and permutations. Following [4, p. 21], we call
a property of a matrix a generic or structural property if it holds almost everywhere
in a neighborhood of the particular values of the nonzero entries of the matrix. A
matrix A is structurally nonsingular if and only if there exists a permutation P1 such
that PA has a nonzero diagonal, often referred to as a maximum transversal or an
output set. A structurally singular matrix is also singular, but the converse is not true.
Similar definitions for a nonlinear system g(v) 0 are obtained by requiring that the
system’s structural Jacobian can be permuted to obtain a nonzero diagonal. Likewise,
we call the DAE problem (1.1) structurally nonsingular if there is an output set when
we consider x to be unknown and do not distinguish algebraic and differentiated
appearances of x.
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We shall make use of block lower triangular (BLT) partitioning in order to de-
compose a problem into subproblems. By means of a simultaneous row and column
permutation of P1A, the matrix is transformed into QTp1AQ PAQ, a BLT ma-
trix with the same nonzero diagonal elements as PIA. Output assignment and BLT
partitioning are standard techniques in sparse matrix analysis; cf. [7].

2.2. Differentiations. For a structurally nonsingular DAE ’x 0, it is always
possible to find a differentiated problem Gx DVx 0 with u finite, such that the
differentiated problem is structurally nonsingular with respect to its highest-order
derivatives D(g)x. Pantelides’s algorithm (cf. [17]) intended for finding consistent
initial values for a DAE, establishes the minimum number of times each equation has
to be differentiated, i.e., it finds the minimal u(’). His algorithm also constructs the
output set of interest automatically, and in the structural analysis step we need only
construct the desired BLT partition.

By definition, the problem ’x 0 is index 0 if it uniquely determines the highest-
order derivatives D()x, with all #j(’) > 0, as continuous functions of t and lower
derivatives. If the same condition holds with some #j(’) 0, it is Index 1. The
fact that it is not possible to solve uniquely for the highest-order derivatives does not
imply that the index is greater than 1: consider the simple index-1 problem:

+= 1, x-y=O.

Thus Pantelides’s algorithm may call for an unnecessary differentiation step (here
it would suggest differentiating the second equation once, resulting in an index-0
system) but it is simple to remove such superfluous differentiations. Whether this
should be done or not depends on if one prefers to be able to solve for the highest-
order derivatives or to reduce the index to 1 while introducing as few new variables
as possible.

In our algorithm below, we must be able to solve for the highest-order derivatives.
We defer comments on the singular case to 4.

2.3. Differentiation, permutation, index reduction algorithm. The index
reduction procedure for x 0 consists of the following steps:

1. If the problem is structurally singular, then return an error message.
2. Differentiation. Use Pantelides’s algorithm to obtain

() vcto (Y) e ,
(b) a differentiated problem Gx ’Vx 0 with ’ D(Y)",
(c) an output set for ’x 0 with respect to its highest-order derivatives

D()x as unknowns.
3. Permutation. Since P.Q PDV(Y:)PTP:Q DP(Y)P.Q, BLT parti-

tioning with respect to unknowns D(g)x yields the permuted
(a) undifferentiated problem 7-/y 0 with Tl PQ and y QTx,
(b) differentiated problem 7-[Py 0 with -/P’ PQ, i.e., (7-/)

P(’), and the latter problem is BLT with respect to its highest-order
derivatives DQT(g)y.

4. Index reduction. Select derivatives to be replaced by dummy derivatives,
blockwise as indicated by the BLT partition. If unable to select one dummy
for each differentiated equation (singular case), manipulate original equations
using information from differentiated equations and restart at step 1.

In the rest of this paper we will focus on the central index reduction step, i.e.,
how to select dummy derivatives. Note (cf. Step 4 below) that this relies on finding a
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nonsingular submatrix, implying that this step is numerical/mathematical as opposed
to the two structural steps of differentiation and permutation. To simplify the notation
we will without loss of generality view the BLT partitioned problem as our original
problem, i.e., "- 7-/.

3. Selection ofdummy derivatives. Consider the differentiated problem {x
’x 0 in BLT form. For notational simplicity, let gi 0 represent the ith block:of
{x 0, let zi denote the vector of highest-order derivatives of the unknowns associ-
ated with that block, and note that dim zi dim gi. Let fi 0 be the corresponding
block of the original problem -x 0. We make the following assumptions:

A1. Gx ’x 0 is in BLT form.
A2. The equations in each block have been sorted in descending order with respect

to number of differentiations, i.e., l(g) >_ 2(gi) _>’".
A3. The Jacobian Ogi/Ozi evaluated at the current point on the solution has full

rank (the singular case will be discussed later).
To obtain an equivalent index-1 problem, the reduction algorithm constructs a

sequence of 1 (gi) / 1 problems indexed by a superscript [j].

3.1. Index reduction algorithm.
Step 1" Set z] zi; g](z]) - gi(zi); G]= Ogl]/ozl] Ogi/OZi; j +-" 1.

Step 2: If gJ] 0 has no differentiated equations, go to Step 6.

Step 3: If gJ] 0 has m differentiated equations, let hj] 0 denote its m first

equations. The Jacobian Hj] Ohm.]/Oz] then equals the first m rows of

G.j], due to the sorting with respect to number of differentiations.

Step 4: Next, select m columns ll,..., lm of H}j] to make a square, nonsingular ma-

trix Mj]. Selected columns indicate derivatives to be replaced: from the m

equations h.] 0 we select the m components of 2J]= (-[J] z[j] )Tz"i,ll i,lm

to be replaced (in Step 6) by dummy derivatives.

Step 5: Now decide how to use the predecessor of h.j] 0, denoted by D-h.j] 0,
thus omitting the last differentiation. New candidates z}j+] for possible
replacement are D- 2Jl, i.e., derivatives of one order less than those selected

in Step 4. The components of 2] are all highest-order derivatives in hj] 0
and are differentiated at least once. Hence, they represent derivatives of the
original unknowns x, implying that D-j] is well defined. The Jacobian

Og}J+11 O~[J+1] M}J]/ i as will be shown later. Thus, set

g[j+ll lh.Jl [j+ll _[Jl [j+ll MJlD- z D-i Gi j,--j+l,

and repeat from Step 2.
Step 6: Let ki j. We now obtain an index-1 formulation of fi 0 by collecting

all original and all differentiated equations:

In all equations, introduce a unique dummy derivative for each derivative
selected in Step 4 (i.e., the variables given by k],..., }11), to replace that
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derivative wherever it occurs. The system now consists of the original equa-
tions fi 0 and the sequence of differentiated equations leading to gi 0.
The unknowns are the original ones and the newly introduced all-algebraic
dummy derivatives.

Before proving that the algorithm converts f 0 to an equivalent index-1 for-
mulation, let us first consider its application to a simple linear problem.

EXAMPLE 1. Let our problem ’x 0 be defined as

(3.1a)
(3.1b)
(3.1c)
(3.1d)

Xl -- x2 -- Ul (t) O,
x + x + x + u(t) O,
x + 2 + xt + u(t) O,

21 -- 2 -- 3 + 54 -- u4(t) O,

where the urn(t) are known forcing functions. The differentiated problem Gx 0 is

(3.1a")
(3.1b")
(3.1c’)
(3.1d)

1 - 2 -- 1 (t) O,
1 -- 2 -- 3 -- fi2(t) O,
1 -- 3 -- 4 -- t3(t) O,

21 + 22 + 3 - 4 - u4(t) O,

which was obtained by differentiating (3.1a) and (3.1b) twice and (3.1c) once. The
vector of highest-order derivatives in Gx- 0 is Zl (21 22 23 54 )T.

Block triangularization results in a single block, gl (x) Gx, and the differentiated
problem is index 0, since the Jacobian with respect to the highest-order derivatives

(a") 1 1 0 0
Og GII= (b") 1 1 1 0
Ozl (c’) 0 0 1 1

(d) e 1 1 1

is nonsingular. This matrix is set up in Step 1. Throughout the steps of the index
reduction, we indicate at the Jacobians which equations and variables are presently
being considered. The reduction process essentially takes G1] and successively deletes
rows and columns. The proper choice of dummy derivatives is deduced during this
process.

We have three differentiated equations, and Step 3 gives

(a") ( 1 1 0 0)HI11= (b") 1 1 1 0
(c’) 0 0 1 1

At Step 4 we have two possibilities to select a nonsingular submatrix of H]; columns
1, 3, and 4 or columns 2, 3, and 4. Let us take the first alternative:

21 23 a

M11]
(a") ( 1 0 0)(b") 1 1 0
(c’) 0 1 1
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Thus we use (3.1a"), (3.1b"), and (3.1c’) to replace the derivatives 51, 53, and 54.
Then, at Step 5 we prepare for the next cycle and consider the predecessor of the
present subproblem, omitting one differentiation:

51 53 X4

(b’) 1 1 0
(c) 0 1 1

Now j 2, and we repeat from Step 2. Since we still have differentiated equations,
Step 3 yields

51 53 X4

H2], (a’)(1 0 0)-(b’) 1 1 0

At Step 4 we have to select the two first columns, and we obtain

M2]=(a’) (1 0)(b’) 1 1

Thus we use (3.1a’) and (3.1b’) to replace 51 and 53. Step 5 therefore results in

Xl x3

G3]= (a) (1 0)(b) 1 1

Since there are no differentiated equations, we go to Step 6 and collect the pieces.
To get a simple and clear notation, we let x denote the dummy derivative that is
substituted for 511, and similarly for other derivatives.

(3.2a) xl + x2 + ul (t) O,
(3.2b) Xl -- X2 -- X3 "+- u2(t) 0,

(3.2a’)
(3.2b’)
(3.2c)

X + 52 +/t (t) O,
X "+- 52 - X "4- 62(t) 0,

Xl "+- X3 -- X4 -" Ua(t) 0,

(3.2a")
(3.2b")
(3.2c’)
(3.2d)

!!
Xl -+- 2 - l(t) 0,

!!x -- 2 -+" x3 -+-/2(t) 0,
x -- x3 -- x -+-/t3(t) 0,

2xi’ + + + + 0.

x’ x’! x" and x2 which are allThe nine unknown variables are Xl, X3, Xi, 3, X4, 1, 3, Xi’
algebraic except for x2, which appears differentiated twice.

The problem is now index 1, with the equations ordered as in Step 6. It is BLT
with respect to its highest-order derivatives. The first block consists of the equations
from the last loop of the selection procedure, which gave (3.2a) and (3.2b), from
which we can solve for x and x3. The second block consists of the equations from the
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second-to-last loop, which gave (3.2a’), (3.2b’), and (3.2c), from which we can solve
x, x, and xa. The third and last block consists of the equations from the first loop,
which gave (3.2a"), (3.2b"), (3.2c’), and (3.2d), from which we can solve x’, 5}2, x,
and x.

3.2. Proof of index reduction. We shall outline proofs of the crucial parts of
Steps 4, 5, and 6.

Step 4: First we will prove by induction that one can select a nonsingular matrix

Mj] at Step 4. By assumption A3, G1] has full rank. If G.j] has full rank and there
are differentiated equations, then Hj] has full rank. Hence it is possible to select a

1] M] G[+llsquare nonsingular submatrix Mj] Defining G.j+ then implies that
has full rank. By induction it follows that it is possible to select a full rank matrix

Mj] each time we arrive at Step 4.

Step 5: Next, we show the formula Gj+l] Mj] at Step 5. It implies that
1]G.]- Ogj]/Ozj] Consider the element p, q of G?+ We have

-1 _[j]/oqD-l,[j]Gi,pq i,p i,q

and for the same element of Mj] we have

M[Jl
i,pq Orti,p/(TZi,q (]gi,p/OZi,lq"

The formula G[.j+l] M}j] now follows directly from the fact that for any differentiable
function e(t, v), Oe(t, v)/Ov O(t, v, i)/Oi.

Step 6: We shall now show that the problem generated by the algorithm is at most
index 1. We first consider the reduction of a block. The equations are g(z) 0
with

g=

Considered as an algebraic problem, gi (zi) 0 is BLT, where we can take the jth
block to consist of the equations gJ] 0 with the unknowns z}]. Since the Jacobian
0[] is nonsingular, we can solve for all the unknowns z*. The variables of
z[/] -[J] selected for replacementare of two categories. First, zj] contains the variables zi
in Step 5 of the jth loop. The remaining variables clearly represent highest-order
derivatives of the old variables x in the problem generated by the algorithm. Thus z*
contains all the highest-order derivatives of the problem generated by the algorithm,
and since we can solve for them, the problem is at most index 1.

Finally, consider the complete problem. Sort the block subsystems gJ] 0 with
respect to descending order of the index j, and with respect to descending order of
the index i. The unknowns zj] 0 are sorted similarly. The resulting problem is
then BLT with nonsingular blocks. Consequently, the complete problem is at most
index 1. [:]

The original problem and the problem resulting from the algorithm are mathe-
matically equivalent in the sense that they have identical solution sets in the original
(undifferentiated) dependent variables x. Original algebraic equations are still explic-
itly present. The advantage of the index reduction technique proposed here is that it
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excludes some derivatives from discretization; by treating the dummy derivatives as
algebraic variables, the problem of inconsistency due to discretization is eliminated.

3.3. Removing superfluous differentiations. As was mentioned in 2, Pan-
telides’s algorithm differentiates some problems to index 0 and others to index 1. If
the differentiated problem is index 0, the number of dummy derivatives introduced
can be decreased by reintroducing some of them as ordinary derivatives. This also
reduces the total number of equations accordingly. The procedure is to modify Step
6 in the following way:

1. Do not include the equations of ^[1] 0, which are differentiated.

2. Do not replace the corresponding selected components 1] with dummy deriva-
tives, but replace them with the first-order derivative of the representatives for their
predecessors, D-I1], some of which may be dummy derivatives.

EXAMPLE 2. Let us again consider the problem discussed in Example 1. The
differentiated problem (3.1) is index 0, since it contains no algebraic variables. This
implies that we can obtain a smaller index-1 formulation by disregarding the most
differentiated equations, i.e., (3.2a"), (3.2b"), and (3.2c’). The corresponding highest-
order derivatives/1, /3, and 54 are not replaced by dummy derivatives, but with
dXl/dt, dx3/dt and 54, respectively. The problem then becomes

z + z + u (t) 0,

Xl + z + z + u(t) 0,

(3.3a’)
(3.3b’)
(3.3c)

+ + 6 (t) 0,

+ + + 6 (t) 0,

Xl + x’ + x4 + u(t) 0,

(3.3d) + + + + o.

The six unknowns are xl, x3, x x’3, x4, and x2, which are all dynamic except for the
two algebraic variables xl and x3. The problem is index 1, since by differentiating all
but the last equation once, we obtain an index-0 problem. D

This technique may also be applied to some problems that Pantelides’s algorithm
differentiates to index 1, viz., if the differentiated problem contains index-0 subprob-
lems. Such subproblems may then be treated as in Example 2.

4. Pivoting of dummy derivatives. The algorithm described above assumes
that the Jacobian with respect to the highest-order derivatives of the differentiated
problem 9rVx 0 is nonsingular. If the Jacobian is singular, a more detailed anal-
ysis is required. It should be noted that the index reduction algorithm given above
transforms the original system locally to index 1. Clearly, it could happen that the
Jacobian becomes singular along the solution trajectory. The singularity may be due
to a (locally) inappropriate selection of dummy derivatives. Therefore, this selection
must, in general, be dynamic; i.e., we must be prepared to "pivot" the selection of
dummy derivatives.

EXAMPLE 3. The inevitable pendulum. Consider a planar pendulum of mass m
and length L. In Cartesian coordinates, the equations of motion are

(4.1a) x2 + y2 L2 0,
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(4.1b)
(4.1c)

mY, 4- (A/L)x O,

rn 4- (A/L)y 4- mg O,

where g is the gravitational constant and A is the force in the string; the index is 3.
Applying Pantelides’s algorithm, the length constraint is differentiated twice:

(4.1a)
(4.1a’)
(4.1a")

x2 4- y2 L2 0,
2x5 4- 2y 0,

2xY, 4- 252 4- 2y 4- 22 0.

Thus, the differentiated problem is

(4.1a")
(4.1b)
(4.1c)

2xY, + 252 + 2y) + 22 0,
mY, + (A/L)x 0,

mij + (A/L)y + mg O.

The Jacobian J of the differentiated problem with respect to the highest-order deriva-
tives(Y, ) A)Tis

2x 2y 0 )J m 0 x/L
0 m y-/L

Since det(J) -2m(x2 4-y2)/L -2mL, the differentiated problem is index 1 if and
only if m = 0 and L = 0. In this case, the index reduction algorithm gives

HI1] =(a") (2x 2y 0).
Neither x nor y is necessarily nonzero for all times. Due to the length constraint,
however, they are not simultaneously zero. By choosing MI1] (2x) when Ixl > lYl
and MIll= (2y) otherwise, we obtain a well-conditioned MI1].

Consider first the case Ixl > lYl. Selecting F1] (2x) implies that the differenti-
ated length constraint will be used to replace Y, and 5, and we obtain

(4.2a’)
(4.2a")
(4.2b)

X
2 4- y2 L2 0,
2xx + 2y 0,

2xx" + 2x2 + 2y) + 22 0,
mx" + (.X/L)x O,

mfl + (A/L)y + mg O.

When Ixl lyl, we select F}1]= (2y). We then obtain the index-1 problem

(4.3a)

(4.3a’)
(4.3b)
(4.3c)

x2 4- y2 L2 0,
2x5 + 2yy 0,

2xY, + 252 4- 2yy" + 2y2 0,
mY, + (,k/L)x O,

my" + (,k/i)y + mg= O.
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Changing the decision as to whether (4.1a’) and (4.1a) should be used to replace 51
and & or ) and , can be interpreted as a pivoting operation, and we refer to it at as
dummy pivoting. From this example, it can be seen that dummy pivoting corresponds
to a (locally necessary) change of mathematical models; cf. [15]. Switching from one
model to the other is a simple operation, since in the augmented index-1 problem
we solve also for the dummy derivatives. The initial values necessary to continue
the numerical integration with the new model are readily available, and the need for
restarting the integration can usually be avoided. D

A very simple first approach to handle dummy pivoting is to make a selection
at the start and use the resulting equations as long as the numerical DAE solver is
able to function properly and pivot only when necessary. In general, however, it is

preferable to pivot so that the matrices Mj] remain well conditioned. It is therefore
desirable to have a rather close integration of the index reduction method and the
numerical DAE solver. This suggests that index reduction computations should be
incorporated into the solver, rather than being considered as a separate preprocessing
tool.

EXAMPLE 4. Lagrangian equations of motion. The Lagrangian equations of the
first kind for a constrained mechanical system are written as a second-order equation:

(4.4a) M(p)i5 F(p,) GT(p),
(4.45) 0 g(p),

where p is an n-vector representing the system’s position, M is the nonsingular mass
matrix, F represents applied forces, and A is the m-vector of Lagrange multipliers
associated with the m constraints (4.4b), assumed to have a full-rank constraint matrix
G(p) Og/Op. Thus the system has n- m degrees of freedom, and the system of
equations (4.4) is index 3. Two differentiations of the constraint equation results in

(4.4a) M(p) F(p, [9) Gr(p)A,
(4.4b) 0 g(p),
(4.4b’) 0 Gib,
(4.4b") 0 (15 + GIS.
Here ( Gib, where G is the Frchet derivative of G with respect to p. We can
solve for the highest-order derivatives i5 and , since the regularity assumptions imply
that GM-GT is regular. Selecting dummy derivatives implies choosing m dummies
among the n variables lb, and m among i5, using (4.4b’) and (4.4b"). Then we have a
total of n+3m equations, n+m original variables p and A, and 2m dummy derivatives
(selected elements of i5 and i5). The application of dummy derivatives to the Euler-
Lagrange equations is similar to the method of generalized coordinate partitioning.

It is also instructive to apply the index reduction algorithm to the corresponding
first-order system

(4.5a) ib v,
(4.5b) U(p)i F(p, v) GT(p)A,
(4.5c) 0 g(p),

where the n-vector v represents velocity. Applying Pantelides’s algorithm now requires
also that (4.5a) is differentiated once, and as before, the resulting differentiated prob-
lem is second order. Apart from the same dummies as those selected in (4.4), one will
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have to select n dummy derivatives v’ . However, this variable merely accounts
for a trivial action of substitution and can immediately be eliminated. If a first-order
system is required, it can easily be obtained after a few more similar operations; it is
identical to the first-order system that can be obtained from (4.4).

Let us finally comment on the singular case. Then, if the index of the differen-
tiated problem is greater than one, it is, at least in principle, possible to derive an
equation in which none of the unknown highest-order derivatives appears. However,
since we need the whole sequence of differentiated equations, we shall manipulate the
original, undifferentiated system so that the corresponding differentiated problem has
the desired structure with a nonsingular Jacobian.

EXAMPLE 5. A singular system. Consider the following problem [4, p. 23]:

(4.6a) & + t9 f,
(4.6b) x + ty f2.

The problem is solvable, and the unique solution is x f2 t(]2 f), y ]2 f.
Pantelides’s algorithm differentiates the second equation once and yields

(4.6a) & + t9
(4.6b’) & + t9 + y

It is not index 1, since it is singular in & and .
The approach is now to consider the most differentiated equations and use them

and their predecessors to eliminate variables in the other original equations. Equation
(4.6b’) depends on & and . Try to solve (4.6b) for x or y. Solving for x, we obtain
x f2 ty and & ]2 y t. Substitution into (4.6a) yields y ]2 fi, in which
neither & nor appears. Let this equation replace (4.6a) and consider

(4.7a) Y ]2 fl,
(4.7b) x + ty f2

as the new original problem. The modified problem is then simpler than the original
problem. In this particular case, it is algebraic, hence index 1, and can be solved
immediately.

The example above demonstrates a more difficult type of index reduction. In con-
trast to the operations performed by the index reduction algorithm of 3, problems
having a rank-deficient Jacobian with respect to the highest-order derivatives will also
require that equations be solved symbolically or seminumerically. As the example in-
dicates, this typically entails using an elimination process of Gaussian type. The index
reduction algorithm of 3 will reveal whether such a process is necessary. However,
we consider developing a full treatment of singular systems beyond the scope of this
paper.

5. Numerical results. We shall now present numerical results for the pendulum
problem of Example 3 using the well-known solver DASSL. The numerical solution
for various formulations is discussed in [4, pp. 150-157]. There, the evolution of the
pendulum equations is computed for a short time interval covering less than a full
period. Here we are concerned with the stability and numerical drift of constraints
and invariants, thus requiring simulations long enough to reveal secular effects; in
all cases, the problem was run for well over a hundred periods. In all the numerical
results we use g 1, m 1, and L 1.



INDEX REDUCTION USING DUMMY DERIVATIVES 689

In the discussion below, we follow the convention in [4] that the positive direction
of the gravitational force is opposite to the direction of the y-axis in the Cartesian
coordinate system. Note, however, that for their numerical results to be correct [4,
pp. 155-157], we must assume that they have accidentally switched the direction of
the y-axis, cf. the obvious misprint in the state-space equation (6.2.5) in [4, p. 151].

The state-space form of the planar pendulum equations is

g
(5.1) + sin 0,

where x L sin and y -L cos o. This model will be used as a reference model
for comparing the numerical results.

Besides studying how well the length constraint is preserved in the numerical
solutions, it is also of great interest to study the invariant total energy E, which is
the sum of the kinetic energy and the potential energy. The rest state ( 0, b 0)
is taken as the reference level with E 0. This gives

mL2(a2E - / mgL(1 cos ).

A numerical solution should preserve the energy and keep E constant within numerical
accuracy. The expression for the energy can also be used to calculate the amplitude
M of the oscillations.

We shall study two cases:
1. Small oscillations with (0) 0.1 and b(0) 0.0, which gives the amplitude

M 0.1, period time T 6.29, and energy E 1 cos 0.1.
2. Large oscillations with (0) r/2 and b(0) -1.0 as used in [4], which gives

an amplitude M 2r/3, period time T 8.63, and energy E 1.5.
The first case is almost linear, whereas the second, with its large amplitude, is

strongly nonlinear and will require four dummy pivotings per full period. Whenever
DAEs are solved below, the initial conditions are taken to be consistent.

The two problems will be solved for the following formulations:
a. State-space reference model (5.1).
b. Differentiated index-1 model (4.1a"), (4.1b), (4.1c).
c. Stabilized constraint index-2 model [4, pp. 154-155].
d. Dummy derivative index-1 model (4.3), case 1, and (4.2)-(4.3) for case 2.
In all cases the problems were run for 1000 units of time corresponding to ap-

proximately 159 periods in case 1, and 116 periods in case 2. Tolerance levels were
kept sharp; the parameters ATOL and RTOL in DASSL were taken to be 10- for
all components of the solution except for the model c, which cannot be solved with
such requirements unless a looser tolerance is used for the two Lagrange multipliers
and #. These tolerances were set to 10-2, which effectively corresponds to excluding
these algebraic variables from the error tests; cf. [4, p. 156]. Numerical Jacobians
were used.

The results for case 1 are displayed in Table 1. Apart from run statistics, we show
the deviation AE in total energy at the end of the integration interval, and similarly
the deviation AL in the length constraint. E-drift and L-drift refer to the drifts in E
and L, respectively. Note that the length constraint is explicitly present in models c
and d, but it is only an implicit invariant in model b. Thus, model b shows a drift,
and the deviation in the table refers to the error at the end of the integration interval.
For models c and d, there is no drift and the error corresponds to typical deviations
throughout the integration. The energy, on the other hand, is an implicit invariant in
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all four models, resulting in a quite regular drift. For model b, the drift is quadratic
in t, whereas the other models exhibit a linear drift. It is to be noted that the drift
is less pronounced for models c and d than for the state-space model a.

Results for case 2 are shown in Table 2. Here model d yields the most accurate
results, with an energy drift approximately four times smaller than for a, and 25 times
smaller than for model c. From the efficiency point of view, the state-space model
a is clearly preferable. However, given the rather significant difference in accuracy
between models c and d, the modest performance disadvantage of model d seems to
be of minor importance.

The results reported here are typical for the pendulum problem. A few other
problems from applications in mechanics and electrical engineering have also been
tried with good results using the dummy derivative technique.

TABLE 1
Numerical results for small oscillations (case 1) with models a-d.

Model steps f-evals Jac. AE E-drift AL L-drift
a 19323 38654 19 -2.9.10-7 linear
b 26451 56157 85 3.3.10-6 quad. -3.5.10-6 quad.
c 26697 54774 337 -1.5.10-7 linear 10-11 none
d 27338 62167 1291 -1.1.10-7 linear 10-11 none

TABLE 2
Numerical results for large oscillations (case 2) with models a-d.

Model steps f-evals Jac. AE E-drift AL L-drift
a 44267 88524 27 -2.9.10-6 linear
b 68933 222313 28997 2.2.10-3 quad. 1.6.10-3 quad.
c 84087 203850 6545 1.9.10-5 linear 10-1 none
d 108731 240161 4800 7.9.10-7 linear 10-11 none

6. Implementation aspects and conclusions. When the proposed index re-
duction technique is to be implemented, there are two main possibilities. One could
either perform all operations completely using symbolic computations in a prepro-
cessing step, or one could employ automatic differentiation [13], [18] to obtain a close
integration of the index reduction process and the subsequent numerical treatment.
The latter approach seems particularly attractive, since in the augmented system,
function evaluations corresponding to differentiated equations must be performed us-
ing analytical derivatives that must be continually reevaluated. In addition, the sub-
sequent numerical solution could take advantage of analytical Jacobians. The choice
of differentiation technique is probably the most important decision in an implemen-
tation of the reduction method. The most important difference between symbolic and
automatic differentiation is that the latter can be applied directly to the subprograms
defining the DAE. Thus, neither a symbolic representation of the equations nor a code
generation step is needed, making automatic differentation much more favorable in
our context.

A second important issue is the choice of the matrices Mj] by selecting m linearly
independent columns from Hj]. We should aim for well-conditioned matrices, and
hence the columns should be selected carefully. An obvious approach is to use a Gram-
Schmidt procedure to successively find a set of "maximally" linearly independent
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columns. However, this approach will depend on the choice of the initial column
selected, and it will generally not be possible to find the optimal set.

As far as the practical issues of dummy pivoting are concerned, it is required
that one monitors the condition of the matrices M]. Dummy pivoting corresponds
to replacing one or more columns of Mj] by new columns from Hjl. It is as yet
unclear how this can be carried out inexpensively in large systems. Most likely, it is
more demanding to continually monitor the condition than to actually perform the
pivoting operation. It should be noted that well-conditioned matrices Mj] are needed
to ensure that the selected dummy derivatives cancel the exact amount of dynamics
in the augmented DAE system, leaving only what corresponds to the dynamics of a
state-space form. If the selection is rank deficient, there is a risk that the numerical
integration method will get stuck in a singular point. Such effects can readily be seen,
e.g., in the pendulum problem; if one inappropriately uses (4.2) for small amplitudes
(i.e., when Ix << lY[), it may very well happen that the integration method cannot
get past x 0.

In many cases of practical interest, one will not need a complete automatic re-
duction procedure, but only the handling of dummy derivatives. Thus, the structure
(4.4) is common to all systems described by the Lagrangian equations of the first kind.
Therefore, it is sufficient in such applications to select dummy derivatives properly.

The merits of the index reduction technique proposed in this paper lie in the fact
that the dummy derivatives are identified and excluded from discretization. As a
result, one avoids "over-discretization" of the DAE, and the differentiations inherent
in a high-index DAE are carried out analytically rather than numerically. Since the
algebraic equations are still present in their original form, there will be no numerical
drift away from the solution manifold of the DAE, thus eliminating the need for
constraint stabilization. As for invariants that are implicit in both the DAE and the
state-space ODE (e.g., energy), the drift is very similar in both formulations. To sum
up, the numerical experiments show that, by using the dummy derivative formulation,
an accuracy comparable to that of solving a state-space formulation of the problem
is obtained. Thus the technique may be considered a viable alternative not only to
constraint stabilization, but even to state-space formulations whenever the latter are
difficult to obtain.
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Abstract. The training problem for feedforward neural networks is nonlinear parameter esti-
mation that can be solved by a variety of optimization techniques. Much of the literature on neural
networks has focused on variants of gradient descent. The training of neural networks using such
techniques is known to be a slow process with more sophisticated techniques not always performing
significantly better. This paper shows that feedforward neural networks can have ill-conditioned
Hessians and that this ill-conditioning can be quite common. The analysis and experimental results
in this paper lead to the conclusion that many network training problems are ill conditioned and
may not be solved more efficiently by higher-order optimization methods. While the analyses used
in this paper are for completely connected layered networks, they extend to networks with sparse
connectivity as well. The results suggest that neural networks can have considerable redundancy in
parameterizing the function space in a neighborhood of a local minimum, independently of whether
or not the solution has a small residual.
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1. Introduction. Some neural network techniques are, in a strictly mathemati-
cal sense, an approach to function approximation. As with most approximation meth-
ods, they require the estimation of certain (possibly nonunique) parameters which are
defined by the problem to be solved [14]. In neural network terminology, finding those
parameters is called the training problem, and algorithms for finding them are called
training algorithms. This nomenclature comes from analogy with biological systems,
since a set of inputs to the function to be approximated are presented to the network,
and the parameters are adjusted to make the output of the network close in some
sense to the known value of the function.

Feedforward neural networks use a specific parameterized functional form to ap-
proximate a desired input/output relation. Typically, a system is sampled resulting
in a finite set of pairs (t, T) E ][P X ] where the first coordinate is a position in p-
dimensional space and the second coordinate refers to the assigned value for the point.
The feedforward neural network function, also from ]P H ]l, has a set of parameters,
called weights, which must be determined so that the input and output values as given
by the sample data are matched as closely as possible by the approximating neural
network. The neural network function for the ith input pattern (i 1, 2,..., m) can
be written succinctly in the form

(1) F-F(ti,x),

where ti is a p-dimensional input vector, and where x E ]n is the weight vector of
parameters to be determined. The form of the function F(t,x) for a feedforward
network is presented and derived in 3. Let the desired value (or output) for the ith
input be denoted by T. A common formulation of the training problem is to find
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values of x such that the norm of f(x) (fl(x),f2(x),...,fm(x))T is minimized,
where fi denotes the residual between the value of the approximating function and
the desired value

fi(x) F(ti, x) Ti.

Often the/2-norm is used in the minimization of such a function, and we obtain a
least squares problem

(2) I]f(x*)ll2 min Z fi(x)2"
XER

A numerical minimization algorithm is applied to this equation in order to find a
suitable x*. This minimization is called training.

The current interest in using feedforward neural networks for pattern recognition
problems has revealed that the training algorithms are computationally time consum-
ing for a large class of algorithms [17]. Examples of these algorithms are backprop-
agation (which can be classified as a steepest descent algorithm), conjugate gradient
algorithms, and other nonlinear optimization algorithms for parameter estimation.
However, little research has been directed into the question of understanding why the
training algorithms are slow to converge on neural networks even though the underly-
ing techniques often perform very well for other problems. This paper addresses the
question of why these algorithms converge slowly by showing that rank-deficiencies
may appear in the Jacobian for a neural network, making the problem numerically ill
conditioned.

Except for pattern search methods, the convergence properties of optimization
algorithms for differentiable functions depend on properties of the first and/or second
derivatives of the objective function [9]. For example, steepest descent explicitly
requires the first derivative to define its search direction, and implicitly relies on the
second derivative whose properties govern the rate of convergence. When optimization
algorithms converge slowly (or not at all) for neural network problems, this suggests
that the underlying derivative matrices are numerically ill conditioned. The obvious
questions to ask in this case are:

Will using a higher-order method help avoid this problem? For example, will a
quasi-Newton or Newton method reduce the number of iterations?

Is the mathematical formulation of the training problem the "correct" one? For
example, by changing the parameterization or scaling of the problem, can the training
algorithm be made more rapidly convergent?

Is the difficulty of solving the training problem an intrinsic feature of the neural
network itself, and not an artifact of the problem formulation and chosen training
algorithm?

The proliferation of neural network techniques makes it impossible to answer these
questions for all types of networks and all types of problems the networks are to solve.
This paper concentrates on one type of network, a multilayer feedforward network,
and one type of problem, approximating indicator functions of sets in the plane. These
choices were made because multilayer feedforward networks are commonly used by
researchers and the classification problem is one for which neural nets are potentially
suitable; see [3], [15], and [8]. Furthermore, the training problems examined here are
primarily overdetermined, that is, the number of training data points is greater than or
equal to the number of network parameters. This seems to match the intended usage
of neural networks, since for problems such as speech recognition or classification
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problems the amount of training data available exceeds the number of parameters
that can be accommodated in a practical neural network. The results, however, also
seem to apply to underdetermined problems.

It is important to observe that the rank-deficiency shown and explained in the
subsequent analysis is independent of the size of the residual. Therefore, the fact that
a network configuration cannot exactly "solve" a classification problem does not mean
that the network parameterization is parsimonious or not redundant. In fact, rank-
deficiency is an indication that redundancy does occur locally. As a simple example,
consider using m polynomials of degree n or less, n < m, to perform a least squares
fit on m-t- 1 or more data points in general position: the residual will generically
be nonzero, but the function class is inherently overparameterized. This redundancy
is usually considered an advantage of neural networks, allowing some degree of fault
tolerance.

In this paper we will first review nonlinear least squares problems; second, we
will describe further the neural network problem and show general properties of the
Jacobian for a feedforward neural network; and finally, we will investigate the Jacobian
and Hessian for some examples. The analytic results about the Jacobian show that
it can be rank-deficient in certain situations that can be enumerated. We then show
that this rank-deficiency actually occurs in a number of experiments. For methods
that use Hessian information explicitly, the rank-deficiency or ill-conditioning of the
Jacobian still plays a role because the Jacobian part of the Hessian is dominant. We
emphasize that this paper deals only with the least squares formulation of a training
algorithm, and that all the results obtained are for this class of problems.

2. Review of nonlinear least squares. The material in this section establishes
notation and describes the difficulties imposed by a rank-deficient or ill-conditioned
Jacobian. We define the rank and the condition number of a matrix A E lq (1 _> q)
by the singular value decomposition A UVT, where uTu Ii, vTv Iq, and

E Rq is a diagonal matrix diag(al,a2,... ,aq) with al _> (T2

__ __
aq

_
0. A

has rank r < q if ar+l aq 0 and ar 0. The degree of rank-deficiency of A
is q r. The condition number of A is a(A) a/ar, and A is ill conditioned if
a(A) is "large." Except in special cases, in practice it is rare to find singular values
exactly equal to zero, and numerically determining r is difficult (see, for example,
Figs. 6-8). Because of this the numerical examples of this paper will take q r, but
the analytic descriptions will also discuss the q < r case. Note that if ar+,..., aq > 0
are all very small relative to a, A is close to being rank-deficient of degree at least
q-r.

Letting (x) 5 f(x)II 2 in (2), the gradient of is

(3) V(x) J(x)Tf(x),
and the Hessian matrix of is

m

(4) g(x) J(x)Tj(x) + fi(x)Hi(x),
i--1

where [Jij] Ofi/Oxj is the Jacobian matrix of f(x) and Hi(x) is the Hessian matrix
of the component function fi(x). For convenience, the explicit dependence on x
will sometimes be omitted by writing H jTj + im= filli, etc. Algorithms for
minimizing (x) usually take advantage of the special structure of V(x) and H(x);
the reader is referred to [5] for a survey of such algorithms.
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A given point x* is a critical point of if V(x*) 0, and x* is a local minimum
only if all the eigenvalues of H(x*) are nonnegative. One of the weaknesses of com-
monly used neural network training algorithms is the failure to check the obtained
"solution" for optimality, except in the trivial consistent case where f(x*) -0. Op-
timization methods for solving the nonlinear least squares problem generate a search
direction p and a stepsize ( from the current iterate x. The search direction and step-
size are usually chosen so that (x+p) < (x). Table 1 shows the search directions
used by some common optimization methods, assuming that J is full rank.

TABLE 1
Search directions used by various optimization methods.

Algorithm Search direction

Steepest descent
Conjugate gradient

Newton
Gauss-Newton
Levenberg-Marquardt
Quasi-Newton

_jTf
_jTf + f, with
15- previous search direction
f a scalar
_(jTj

_
fiHi)-ljTf

_(jTj)-
_(jTj + pki)--l jTf
_(jTj T Bk)-ljTf
Bk satisfying a quasi-Newton condition

2.1. Local convergence. The local convergence properties of the methods in
Table 1 depend on the size of the residual f(x*) and the rank and condition number of
H(x*), the Hessian at the solution. Steepest descent has a q-linear rate of convergence
(see [11] for a definition of q-linear) with an asymptotic error constant proportional
to (a- 1)/(a / 1), where a is the condition number of H(x*) [9]. Conjugate gradient
methods generally have a linear rate of convergence, but their behavior depends on
the definition of the conjugacy scalar as well as the frequency of restart, i.e., reini-
tialization of the algorithm [13]. Quasi-Newton methods have a superlinear rate of
convergence if, roughly speaking, H(x*) is nonsingular and the matrices Bk are chosen
so that jTj + Bk approximates H(x*) along the search directions; see [4] for a more
detailed description of both quasi-Newton methods and their convergence properties.
Newton’s method has a quadratic rate of convergence, provided that the Hessian is
nonsingular at x*. The other methods have local convergence properties that can be
seen by considering them as approximations to Newton’s method. For example, if the
residual is zero at x*, then H(x*) jT(x*)J(x*) and the Gauss-Newton method
shares the quadratic convergence rate of Newton’s method if J(x*) is full rank. Un-
der the same conditions the Levenberg-Marquardt method has quadratic convergence
when the Pk in Table 1 is zero; in practice, Pk is chosen to provide better global conver-
gence. When the residual is large, however, Gauss-Newton and Levenberg-Marquardt
methods have a linear convergence rate.

2.2. Global convergence. Minimization algorithms can spend the majority of
their time in finding a neighborhood of the solution in which local convergence the-
orems apply, so the local convergence rate is irrelevant if the algorithm fails to enter
that neighborhood or if it is extremely small. Note the critical dependence of all of
the methods in Table 1 on the Jacobian J; each simply multiplies the fundamen-
tal search direction _jTf by some matrix estimating second-order information (for
steepest descent the matrix is I) except for the conjugate direction, which has a linear
combination of the current and previous vectors _jTf as its search direction. The
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search directions for the Newton or Gauss-Newton methods are ill defined when the
Hessian is singular or the Jacobian is not full rank, respectively, but the Levenberg-
Marquardt parameter Pk and the quasi-Newton matrix Bk are normally chosen to
assure that their respective search directions are well defined. Unfortunately, if J or
the Hessian are rank-deficient or ill conditioned at many of the iterate points, the
methods can actually perform worse than steepest descent, which in turn can fail to
converge in finite precision arithmetic.

2.3. Regularization. When J is rank-deficient or ill conditioned, these algo-
rithms can be generalized by two common regularization approaches. The first re-
places J with Jr UFrVT, where r diag(al,a2,...,ar,0,... ,0), J UVT

is the singular value decomposition of J, and r is an estimate of the rank of J as
discussed above. However, the computational determination of r is a difficult prob-
lem, and can have a dramatic effect on the resulting search direction (see the example
in [6, p. 136]). Furthermore, the resulting search direction has nonzero components
only in a subspace of dimension r. When r << n and the subspace changes slowly
from iteration to iteration, the method can fail to make sufficient progress to a min-
imum. Methods for circumventing this difficulty generally add a component in the
orthogonal complement of the subspace of dimension r to the search direction, as in

[6]. A second regularization approach adds a small multiple - II x of the norm of
the weight vector to the objective function, possibly allowing to change on each
iteration. This restricts the size of the weights, but unfortunately the weights fre-
quently need to be large for accurate learning, i.e., a good least squares solution. So
if is prevented from decreasing to zero the quality of solution can suffer, while if, is decreased to zero eventually the same ill-conditioning problems are encountered.
Nevertheless, the Levenberg-Marquardt algorithm used in 3.4 implicitly uses this
second form of regularization (see [10]), and can provide adequate solutions in many
cases.

For most overdetermined nonlinear least squares problems, these considerations
are minor. Generally the Jacobian is full rank (but ill-conditioning can occur) and it is
only at exceptional points that J is rank-deficient, but even then the rank-deficiency
is small. For neural network problems, however, we show that a large number of
columns of the Jacobian can easily be nearly linearly dependent and so the matrix is
close in 2-norm to a matrix with a large degree of rank-deficiency.

3. Neural network training problems. A neural network consists of three
types of computational elements or nodes arranged in layers: input layer nodes, hidden
layer nodes, and output layer nodes with weighted connections between them. Each
node has several inputs and only one output. A feedforward neural network has
connections between neighboring layers with information flowing only in one direction.
There are no connections within a layer. We further use networks which are fully
connected between layers, that is, every node in a given layer has a directed connection
with all the nodes in the previous layer and in the successive layer. Such a neural
network with two hidden layers is depicted in Fig. 1. The flow of information is
upwards in the figure. The input layer nodes and the output layer nodes are depicted
by triangles, and the hidden layer nodes by circles. All arrows leaving a given node
denote the unique output for the node. A hidden layer node forms its output o by
first forming the weighted sum of its inputs ui,

8 XiU -Xo
i--1
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where the xi, i 0,..., j are called weights and x0 is called an offset. The hidden
node then applies a univariate excitation function a(s) to the weighted sum s and
this value, o a(s), becomes the output of the node. The input layer and output
layer nodes do not apply an excitation function to their inputs. Therefore, the inputs
in Fig. 1 are the same as the network inputs (shown as vl and v2). A more elaborate
description of neural networks in general can be found in [15]. We will next derive
the functional form of the network function.

network output -- f

Qi second layer outputs
X18 X19 weights of 2nd layer outputs

Xl0 X14 second layer nodes
(offsets xlo, x14)

Pj first layer output,----

Xll

Xl x4 X7

X2

XlT"--weights of 1st layer outputs

first layer nodes
(offsets xi, x4, xT)

weights of inputs

inputs

network inputs v2 vl

FI(. 1. A 2-3-2 feedforward neural network with the weights indicated by xi, 1,..., 19. The

oJsets are written inside the nodes (indicated by circles). The quantities Pj and Qi are discussed
in the text.

Let the number of inputs to the network be h, the number of first layer nodes be
p, and the number of second layer nodes be s. The network can then be concisely
labeled as h-p- s and Fig. 1 represents a 2-3-2 network. Let the total number of
training data points be m and the total number of parameters (i.e., weights associated
with the arcs and offsets in the nodes) be n p(h / s / 1) / 2s.

For the ith training data input pattern we write

(4), 4),...,
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and let weights associated with the input layer arcs be x(j-1)(h+l)+l+k, 1 _< j _< p
and 1 _< k _< h, and the offsets associated with the first layer nodes be x(j-1)(h+l)+,
where 1 _< j _< p.

Then we can write for the output of the jth first layer node for the training data
point i

(5) ff(P}i))-- (Z X(j--1)(h+l)+l+k V(ki) ’X(J--1)(h+l)+l)
where a is a sigmoidal or excitation function. Similarly, for the second layer nodes
let the weights on the arcs be xt+(-l)(l+l)+l+j, where t p(h + 1), 1 _< _< s and
1 _< j _< p, and the offsets be xt+(-l)(p+l)+l, where 1 _< _< s. The output of the/th

(6) at ff Xt+(l_l)(p+l)+l+j O’( i)) .. Xt+(l--1)(p+l)+

Furthermore, if the weights on the last layer are x+, where 1 <_ <_ s and
u t + s(p + 1), then the output of the network for training data point i is

(7) F(ti, x)= .x+,v, ).

In this paper we assume that the node on the last layer will not apply an excitation
function to its inputs (this will not make the problem less general but rather avoid
using one extra parameter). The aim is to find the weights on the arcs and the offsets
by minimizing (2) and using some input-output pairs of the patterns that the network
should approximate.

The form of the excitation function can vary. Examples include

1 2
(8) al (x)

1 + e- and ff2(x) -r tan- x.

The functions a(x) and a2(x) are called sigmoidal functions, and their ranges are
(0, 1) and (-1, 1), respectively. Note that both their derivatives approach 0 when
x] >> 1. The general form of these functions can be obtained by making the trans-
formation x ax + , but the ranges of the functions and their general form stay
the same. It h been shown that under very general conditions on the activation
functions, such closes of neural networks in (7) are universal approximators [3].
The main re,on for choosing the two functions in (8) is that they can approximate
the hard delimiter step function and are continuously differentiable. In this paper we
will use a (x), but the method in this paper can be used to derive similar results for
other excitation functions well (including radial bis functions [2], [12]).

3.1. Explicit form of the Jacobian for a twlayer network. The Jacobian
for the multilayer feedforward network problem can be written explicitly using the
notation from the previous section. The Jacobian is a matrix of size m n, where
each row of the Jacobian corresponds to a single training data point. We present
the Jacobian layer by layer and specifically show the components for the arc weights
separately from the offsets. Thus we will present a row of the Jacobian, J, but will
show the row in blocks (the first subscript refers to the training data point i, and the

second layer node for training data point i is
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TABLE 2
Summary of the Jacobian.

Corresponding
Jacobian element Formula unknowns

_,,(+)Ji,(j-1)(h+l)+l a’(Pi)) El Xu+IXt+(l--1)(p+l)+l+J kl First layer offsets

(i) ,p(i), -() First layer weightsJi,(j-1)(hT1)Tl+k Vk
(T

j )El Xu+lgt+(l-1)(p+l)+l+J ,W

Ji,t+(l-1)(pT1)+l xuq-lrt(Qi)) Second layer offset

Ji,t+(/ 1) (p-l-1)+lTj xu+la(pi))a(Ql) Second layer weights

Ji,u+l a(Qi)) Last layer weights

second to the actual parameter or column of the Jacobian). The form of the resulting
Jacobian is summarized in Table 2 and the third column in the table explains the
origin of the term.

We can now write the ith row of the Jacobian (using its inherent block structure)
for the 2-3-2 network in Fig. 1:

Ji,1...3 [xlsxa’(QO) + xgxa’(Q(20)]a’(P(O)(1, vO, v(20)T
Ji,4...6 [x18x12gr’(Qi)) q- x19x16a’(Q(2’))]a’(P(20)(1, v’) v(2’))T

-,,r(i))]a,(p3(i))(1, v) v(2i))T
Ji,10...la ZlSO"(Qi))( 1, (p(li)), (p(i)), (p(ai)))T,
Ji,4...17 Zl’(O(i))(1, o’(P(li)), a(P(i)), o’(P(ai)))T,
Ji,18...19 (o(Qi)), o(Qi)))T.

Here Ji,j denotes the element in the ith row and jth column of the Jacobian.
From the dependency on in each column of J, one row cannot be an exact linear
combination of sets of rows. If there are some linear or near-linear dependencies
between rows or columns in the Jacobian they must arise in some other manner.

3.2. Properties of the sigmoidal. An explanation of the rank-deficiency of
the Jacobian relies on the properties of sigmoidal functions and their derivatives. We
consider the sigmoidal function a(x) a (x) in (8), with derivative

e-gg
a’(x) (1 + e-’)2"

The columns of the Jacobian for the neural network function has terms of the form
a(x), a’(x), a’(x)a(y), and a’(x)a’(y) with constant coefficients. To explain the near
linear dependence between columns of J, we are therefore interested in the quantities

A(x. y) a(x + y) a(x).
C(x. + U)o’(x).

B(x, y) a’ (x + y) a’ (x),
D(x, y) a(x + y)a’(x),

where x e I-p, p] and y e [-5, 5].
Figure 2 contains the graph for A(x, y) for various values of x E [-10, 10] and as

a function of y E [-20, 20]. Note that the differences in the graphs for large values of
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IXl are small. Figure 3 shows the graph for B(x, y) for x e [-10, 10] and y e [-20, 20].
Note that B(x, y) varies slowly with x. It is easy to see that supx,u A(x, y) 1 and

supx,u B(x, y) 0.25 from the properties of a and a’. Similarly, IC(x, Y)I <- 6 and

ID(x, Y)I -< 1/4, for any x and y. We show the form of these functions in Figs. 4 and
5. The upper limits of these functions are not as important as the fact that often the
values of these functions are close to 0 for a large range of x and y.

0.5

o

-0.5

-1
-2o

x=O

x=l

x=-I

x=O

x=l

o

FIG. 2. Function A(x,y) for various x. In the figure we have plotted curves for x
-10, -9,..., 0,..., 9, 10, and three are indicated.

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2

20 -15 -10 -5 0 5 10 1’5 20

FIG. 3. Function B(x, y) for various x. We have used x -10, -9,..., 9, 10 and indicated the
curves for x 5 with + (on the left-hand side of the figure) and x -2 with (on the right-hand
side).
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0.07

0.06

0.05

0.03

0.02

0.01

o
-IO IO-8 -6 -4 -2 0 2 4 6 8

FIG. 4. Function C(x, y) for x -10, -9,..., 9,10. The curves for x -1, 0, and 1 are indicated.

0.25

0.2

0.15

0.1

0.05

0t

-20 -15 -10 0 10 15 20

FIG. 5. Function D(x, y) for x -10, -9,..., 9, 10. The following curves are indicated: x -1
(o), x-- 1 (*), x =-3 (x), and x--3 (d-).

3.3. Rank-deficiency of the Jacobian of a two hidden layer network.
This section analyzes five situations where the Jacobian for a two hidden layer feed-
forward network is ill conditioned or rank-deficient. These results easily extend to a
network with more hidden layers and follow from three simple propositions.

PROPOSITION 3.1. Let B be a submatrix of A consisting of columns of A. Then
(B) <_ (A).

Proof. This follows immediately from a repeated application of [7, Corollary
8.3.3]. F1
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PROPOSITION 3.2. Let A Ix, y] E ]Rn2, and suppose that the angle between
x and y satisfies cos(0) 1 -e .for some e e (0, 1). Then

a(A)_>4e(2_e). Ilxll 2 + Ilyll 2 +2

Proof. As noted before, the singular values of A are the square roots of the
eigenvalues of G AAT. The eigenvalues of G are nonzero and satisfy

1 [xTx d- yTy + %/(xTx yTy)2 d- 4(xTy)2].

Using this and completing the square in a(G) )Imax/)Imin gives

+ u*u +
u*u

mTSince cos(0) ll*ll’i[vll 1 e, (xTy)2 (1 e)2xTx yTy and so

(XTX + yTy)2 1
a(G) 411 -(1 -e)]xTx. yTy 4e(2- e)" X

+ y ll
Proposition 3.2 provides a lower bound on the condition number of a matrix when

two columns are nearly collinear. In fact, if some number of columns of a matrix, say
p, are almost collinear, then one should expect at let p- 1 singular values of the
matrix to be relatively small. Thus the matrix would almost have a rank-deficiency of
p- 1 in such a ce. These claims can be made precise along the lines of Proposition
3.2, but now we sume that the columns are normalized.

PROPOSITION 3.3. Let A [al,...,ap] be an m x p matrix with noalized
columns, so that aa 1 ei for all 1 i, j n, with eii= 0 for i 1, 2,..., p.
Suppose that ei e < 1. Then A has one singular value at least as large as p(1
while the. remaining singular values are no larger than

Proof. By sumption, ATA B- E where B is the matrix of all ones and E
[e]. The eigenvalues of B are p (with multiplicity 1) and 0 (with multiplicity p- 1),
while the eigenvalues of E are no larger than pe by the Gersgorin disk theorem. An
application of the Wielandt-Hoffman theorem [7] shows that ATA h one eigenvalue
Ap satising ]Ap --p] pc, and the other eigenvalues A{ satisfy ]A{] pP. Since the
nonzero singular values of A are the square roots of the nonzero eigenvalues of ATA,
a p(1- e) and a for i: 2, 3,...,p.

The preceding results quantify the following argument. For a Jacobian J to be ill
conditioned, it suffices to have two columns that are nearly dependent. If the cosine
of the angle between those two columns is 1 -e, then the condition number of J is at
let O(e-1/2). If p of the columns of J are nearly multiples of each other (that is,
the cosine of the angle between any pair of the p vectors satisfies cos k 1 -e) and
the columns are normalized, then at let p- 1 singular values of J are O((pe)l/2),
and one is O(pl/2). This implies that J is within pe in the 2-norm to a matrix with
degree of rank-deficiency at let p- 1, which causes difficulties for linear let squares
solvers.

To simplify the notation, define

a(Q) (a(Q()), a(Q()), a(Q(’)))T
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and define the vectors a’(Qr), a-(Pr), and a’(Pr) similarly. We now describe five
cases where conditions internal to the network lead to ill-conditioned and close to
rank-deficient matrices.

Case 1. If for some j, a-(Pj) is a multiple of e (1, 1,..., 1)T, then any pair of
columns in the Jacobian corresponding to an arc and an offset, which have a as
input, on the second layer will produce two identical columns of J. If this holds for K
first layer nodes, then K/ 1 columns of J are identical. Since there are s second layer
nodes, this gives a rank-deficiency of sK. Note that this condition is approximately
satisfied if the angle between e and a(Pj) is small.

Case 2. If a...(Qk) and a._(Q) are multiples of each other then the block of columns
in J corresponding to the parameters of the nodes k and j of the second layer are
identical, producing a rank-deficiency of (p / 1) / (h + 1). Note that this condition
is approximately satisfied if the angle between a.._(Qk) and a’(Qj) is small. The term
p + 1 appears from the second layer nodes (and parameters associated with them),
and the term h / 1 appears from the Jacobian calculated with respect to first layer
parameters. This is shown in (9) for k 1 and j 2:

(9,) Ji,10...13 X18 a’(Qi))(1, a(P}’)), a(P(’)), a(P(ai)))T,
Ji,14...17 x19 a(Qi))(1, a(P(li)), a(P(2i)), r(P(3i)))T.

A rank-deficiency ofp+ 1 4 occurs because the block array [e,a(P1),a(P2),a-(P3)]T
is always identical in Ji,10...13 and Ji,la...7. In general, if rank[a(Q),a(Q2),...,
a(Qs)] L, then the rank-deficiency is (s L) (p + 1 + h + 1).

Case 3. If a_(Pk and a(Pj are multiples of each other then the block of columns
corresponding to the first layer node k of J (i.e., the arcs and offset parameters) is a
multiple of the block of columns corresponding to the first layer node j. Note that
this condition approximately holds if a(Pk) and at(P) have a small angle between
them. As in Case 2 above, the deficiency is h+ 1 because the block array [e, v, V2]T is
repeated in gi,1...3 and Ji,4...6. More generally, if rank[at(P1),a(P2),..., a(P/)] L
then the rank-deficiency from this condition is (p- L)(h + 1).

Case 4. If a-(Qk) and a-(Qj) are multiples of each other then the columns corre-
sponding to last layer parameters k and j are linearly dependent. This is shown in
(10) for k 1 and j 2:

(10) Ji,18...19 --(((Qi)), (T(Qi)))T.
More generally, if rank[a-(Q1), _a(Q2),..., a-(Qs)] L then the rank-deficiency is s- L.

There is also a possible type of dependency in the columns of the Jacobian similar
to Case 4 above, but which in fact rarely occurs.

Case 5. If a_(Pk) and a_(P) are multiples of each other, but a-(Pk) is not a multiple
of e (so that Case 1 is excluded), then the columns corresponding to the arcs k and j
are multiples of each other. More generally, if rank[a-(P1), a_(P2),..., a_(P/)] L then
the rank-deficiency from this condition is (p- L)s.

Finally, note that rank-deficiency can arise in less restrictive ways than indicated
by the hypotheses above. For example, in Case 3 it is only necessary that a(Pk) and

a(Pj) nearly be multiples of each other for those components i with a’(Qi)) and
a(Q()) to be nonzero. Because the derivative of the sigmoidal is close to zero for
arguments outside a small interval I-p, p], this means that the hypotheses of the cases
are effectively satisfied more often.
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3.4. Computational results. We first examine the Jacobian for a network with
random initial weights on all layers and give an example. After that we present the
singular values of the Jacobian and Hessian (4) for some training problems at later
iterations of a Levenberg-Marquardt algorithm.

The singular value decomposition is used to measure ill-conditioning. Although
the rank of J is equal to the number of its nonzero singular values, numerically it
is rare to compute a singular value exactly equal to zero. To avoid the need for
ad hoc numerical determinations of rank, we present all of the singular values for
a given problem. Singular values and eigenvalues were computed using Matlab 3.5
running on a Sun Sparcstation-1. Jacobian and Hessian matrices were computed
with 48-bit mantissa arithmetic, using a form of automatic differentiation (see [16] for
implementation details).

The 2-3-2 network in Fig. 1 has 19 parameters or weights and so the Jacobian
has 19 singular values. Our two-dimensional input space is sampled on a uniform
mesh in [0, 1] 2 with 400 training data points in each case presented, and a maximum
of 2000 function evaluations is allowed in the Levenberg-Marquardt algorithm unless
indicated otherwise. The implementation of the Levenberg-Marquardt algorithm used
here was written by Mor and is available in MINPACK. Note that the initial Jacobian
is independent of the particular problem one is solving, but dependent on the network
and the sample distribution of the input points, ti.

Figures 6 and 7 show the singular values of J for different sets of initial weights
chosen randomly from the intervals (-1, 1) and (-100, 100), respectively. Other com-
monly used intervals differ only by scale from these two. The random seeds were
kept fixed and only the weight interval was changed. The condition numbers of the
Jacobian are of order 107 and 1055, respectively. Hence the condition number of jTj,
used in the Newton-like methods of Table 2, is close to or smaller than the inverse
of the machine epsilon for a 48-bit mantissa computer. As an example of a larger
network, Fig. 8 shows the singular values of the initial Jacobian for four cases for
a 5-7-2 network with weights chosen randomly in the region (-1, 1) and ti sampled
randomly in the cube [0, 1] 5.

From the graphs we can conclude that the Jacobian becomes more ill conditioned
as the norm of the weight vector increases. Considering that the initial conditions
of the Jacobian in Figs. 6 and 7 are not unusual (since often the initial weights are
chosen randomly from these two intervals), the numerical method starts with an ill-
conditioned J. In Fig. 7 the weight vectors have a larger norm on average than in the
other figure of the random weights and are representative of the situation during the
solution process.

Next we will investigate an extreme example for the primary sources of rank-
deficiency in the Jacobian using the notation and classification given in the previous
sections. We use a 2-3-2 network because

the network is simple to visualize (Fig. 1);
the network does not contain too many superfluous nodes, i.e., ones unnecessary

for the solution of the problem and that would create additional rank-deficiency of
the Jacobian;

the network is unlikely to find a good solution since it contains too few nodes.
This allows exploration of behavior far from the optimum. However, this does not
mean that the Jacobian would necessarily be of full rank for an "ideal" network or a
large network.
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FIG. 6. Computed singular values of four initial Jacobians for a 2-3-2 network with weights
chosen randomly from (- 1, 1).
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FIG. 7. Computed singular values of four initial Jacobians for a 2-3..2 network with weights
chosen randomly from (-100, 100).

As an example of the different classes of rank-deficiency, we use the initial condi-
tion in the (dash-dotted) curve in Fig. 7, where the Levenberg-Marquardt algorithm
is allowed to proceed one iteration with a 2-3-2 network. The test figure is a spiral
sampled on an equidistant grid as shown in Fig. 9. The value of the function inside
the spiral swirls is one, and outside the swirls it is zero.

The results are summarized in Table 3. The cosines of the canonical angles
between range spaces are used to measure how closely two blocks J and J2 of columns
of J come to spanning the same space (as is needed for Cases 2 and 3). The method for
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FIG. 8. Computed singular values of five initial Jacobians for a 5-7-2 network.
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FIG. 9. The spiral-problem. The function has value 1 inside the spiral and 0 outside.

computing such cosines is from [1]. When some cosines are close to 1, then range(J1)
and range(J2) are close to sharing a subspace spanned by the corresponding canonical
vectors. The first column of Table 3 lists the first four dependency cases of 3.3. The
second column gives the cosines of the angles between the vectors that determine
rank-deficiency (for example, in Case 2 for a 2-3-2 network the determining vectors
are a(Q) and r(Q2)), the third column specifies the columns of g with a potential
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resultant dependency, and the last column gives the cosine(s) of the angle(s) between
the affected columns. The claims made in 3.3 are that when the angle between the
determining vectors are small, then so are the angles between the affected columns
as occurs for this extreme case. The singular values of columns 10-17 and columns
1-9 of the Jacobian are shown together with the singular values of the full Jacobian
in Fig. 10.

TABLE 3
Example of rank deficiency.

Dependency Determining vectors Affected block Canonical cosines
case and cosine of their angle columns of J for affected cols.

e a_(P1) 10 & 11 0.99324
0.99325 14 & 15 0.99326

e & a_(P2) 10 & 12 0.99930
0.99930 14 & 16 0.99931

0.99766

III

IV

0.99765

’(Q) ’(Q)
0.99995

’(P) :(P)
0.99733

’(pl) (ps)
0.99639

:(P) (Ps)
0.99861

0.99990

10 & 13
14& 17

[10,11,12,13]
&

[14,15,16,17]

[1,2,’3]

[1,2,3]
&

[7,8,9]

[4,5,6]
&

[7,8,9]

18 & 19

0.99765

1.00000
1.00000
0.99998
0.99993

1.00000
0.99901
0.99652

1.00000
0.99852
0.99503

1.00000
0.99986
0.99982

0.99990

Since the conditioning of network Jacobians can be represented succinctly by the
singular values and the specific reason for rank-deficiency can be analyzed using the
procedure above, we now show only the singular values of a few larger problems.

Figures 11 and 12 show the eigenvalues of jTj and the full Hessian for the
spiral problem with a 2-14-7 network at some iterations. The initial weights are
chosen randomly in the interval [-1, 1]. At a solution (Fig. 12) the a0-20-40 ue
for a randomly chosen test set of size 1000 gives an error rate of 13.5 percent. This
criterion assigns 0 to output values in [0,0.40], and 1 to values in [0.60,1]. Values in
[0.40, 0.60] are labeled incorrect. Figure 13 for a 2-16-6 network shows eigenvalues at
the solution (the initial weights are chosen from [-1, 1]). The Levenberg-Marquardt
algorithm appears to be able to obtain an acceptable error norm for this problem for
a large range of networks and initial conditions.

3.5. Determining cosines and rank-deficiency. We have monitored the de-
termining and canonical cosines for some of the cases described above in a number
of test problem configurations. While rank-deficiency of the Jacobian can result from
interactions among columns outside of the groups analyzed separately in Cases 1-5
above, the plots show that the column groups identified above frequently exhibit in-
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FIG. 10. Computed singular values of columns 10-17 (labeled + with dashed line), 1-9 (labeled *
with dotted line), and all columns (labeled o with solid line) of the Jacobian for the example discussed
in the text and Table 3 a 2-3-2 network used for the spiral problem).

"400 20 40 0 80 100 120 140 160

Eigenvalue number

FIG. 11. The computed eigenvalues of jTj (dashed line) and Hessian (solid line with * indi-

cating negative eigenvalues) for the spiral problem with a 2-14-7 network at iteration 1000 (the
error norm was 5.2 10-4).

ternal deficiency as predicted. Moreover, large determining cosines do act as sufficient
conditions for rank-deficiency.

To demonstrate these facts, we have plotted the canonical and determining cosines
for Case 2 in a run of the Levenberg-Marquardt solver. Those cosines as a function
of the iteration number for a 2-3-2 network are shown in Fig. 14.
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.40
0 20 40 60 80 100 120 140 160

Eigenvalue number

FIG. 12. The computed eigenvalues of jTj (dashed line) and Hessian (solid line with * indi-
cating negative eigenvalues) for the spiral problem (same as in the previous figure) at the solution
(iteration 1832 with error norm 4.1 10-5).

-10
0 20 40 60 80 100 120 140 160

eigenvalue number

FIG. 13. Computed eigenvalues of jTj (dashed line) and of the Hessian (solid line, negative
eigenvalues are indicated with *) at the last iteration (error norm 3.4 for 900 training data points
and a maximum of 400 function evaluations) for the spiral problem with a 2-16-6 network. The
40-20-40 rule gives an error rate of 7.1 percent.

Additionally, in Figs. 15 and 16 we show the canonical and determining cosines for
two 2-8-4 networks, with different initial conditions, at the computed solution for each
combination of columns (i.e., six pairs on the second layer). These results suggest that
canonical cosines do explain rank-deficiency of the Jacobian in feedforward networks.
In Fig. 16, Case 2 does not appear and the rank-deficiency comes from other causes.
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Case 2 Cosines; o Marks Determining Cosine
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FIG. 14. The computed cosines for Case 2 for a 2-3-2 network as a function of iteration number.
The determining cosines are marked "o."
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FIG. 15. The resulting nine cosines from Case 2 for a 2-8-4 network shown versus the six pairs
on the second layer. The determining cosines are indicated by "o" and connected with solid lines.

In Figs. 17 and 18 we show the corresponding eigenvalues of the Hessian and jTj at
the solution for these runs.

3.6. The Jacobian for a 2-3 network, with one hidden layer. This section
presents the structure of the Jacobian for a one hidden layer network of size 2-3, that
is, with two inputs and three nodes on the hidden layer. These networks have been
successfully used in many neural network applications [17] and they can be used also
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FIG. 16. The resulting nine cosines from Case 2 ]or a 2-8-4 network shown versus the six pairs
on the second layer. The determining cosine are indicated by "o" and connected with solid lines.
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eigenvalue number

FIG. 17. The computed eigenvalues for the Hessian (solid line with * indicating negative eigen-
values) and jTj (dashed line) at the solution for a 2-8-4 network (see also Fig. 15). The 40-20-40
rule gives the error rate 5.5 percent with a maximum of 400 iterations.

as universal function approximators [3]. The form of the one hidden layer Jacobian is
shown below with a numbering similar to that in Fig. 1.

Ji,1...3 XloCr’(Pi))(1, v:i) vi))T,
Ji,4...6 Xllr’(p(2i))( 1, v:i) v(2i))T,
Ji,7...9 xl2a’(P(3i))(1, v) vi))T,

Ji,lO...12 (a(P(i)), a(P(2i)), a(P(3i)) T.
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eigenvalue number

FIG. 18. The computed eigenvalues for the Hessian (solid line with * indicating negative eigen-
values) and jTj (dashed line) at the solution for a 2-8-4 network (see also Fig. 16). The 40-20-40
rule gives the error rate 15 percent with a maximum of 400 iterations.

The Jacobian for such a system is also likely to be rank-deficient because situations
as in Case 2 appear in the equations. Columns 1-9 of the Jacobian above have the
same three terms in common, i.e., the vector (1, vi), v2(i)), which are multiplied by a
term of the form a(x).

4. Summary and conclusions. In a feedforward neural network the Jacobian
is usually ill conditioned. Since many numerical schemes use it as a basis for their
search direction, any rank-deficiency in the Jacobian causes the algorithm to obtain
only partial information of the possible search directions, and in turn causes long
training times. The rank-deficiency for a two hidden layer network often arises from
the outputs of the second layer nodes because a sigmoidal applied to these outputs
has a limited discrimination capability, especially if the weights for this level become
large. Consequently, for a network with more hidden layers the rank-deficiency can
only increase, but the rank-deficiency for a one hidden layer network could in principle
be less severe.

Our experiments and analyses of partially connected networks and of single hid-
den layer networks do not indicate a significantly better conditioned Jacobian. Use
of partially connected networks may inhibit rank-deficiency somewhat, but cannot
guarantee complete avoidance of the intrinsic problems. A situation where some con-
nections are omitted between two consecutive hidden layers appears in the Jacobian
as the omission of some terms in the sum in (6). The apparent redundancy of a
Jacobian can only be eliminated by a posteriori deletion of nodes and weights in a
problem-specific way, so there would be no effect on the training process itself. Again,
one could still have rank-deficient Jacobians arising in problems with either zero or
nonzero residuals using reduced connectivity networks.

The Jacobian conditioning can possibly be improved by using a different form of
the sigmoidal (i.e., a function with a better discrimination capability). A better initial
condition might cause the Levenberg-Marquardt algorithm to find a solution with a



714 S. SAARINEN, R. BRAMLEY, AND G. CYBENKO

weight vector that has a smaller norm, but practice shows that the weight vector at
the solution has a large norm. The large norm of the weight vector (cf., (5)-(7)) is
one reason that the algorithm causes the a (x)-function to approach its limit zero and
therefore causes rank-deficiency in the Jacobian, as explained in 3.3.

In short, formulating feedforward neural network problems as least squares prob-
lems can cause undue strain on any numerical scheme which uses Jacobians, and a
reformulation of the problem is called for.
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ITERATIVE LINE CUBIC SPLINE COLLOCATION METHODS
FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

IN SEVERAL DIMENSIONS*

A. HADJIDIMOSt, E. N. HOUSTISt, J. R. RICE, AND E. A. VAVALIS

Abstract. This paper presents a new class of second- and fourth-order line cubic spline colloca-
tion methods (the LCSC methods) for multidimensional linear elliptic partial differential equations
with no cross derivative terms. The LCSC methods approximate the differential operator along
lines in each dimension independently and then combine the results into one large linear system.
Expressed in terms of discretization stencils for the operator, these methods have nonzero entries
only in the coordinate directions. The advantage of this approach is that the discretization is much
simpler to derive and analyze. Further, iterative methods are easily applied to the resulting linear
systems, especially on parallel computers. The disadvantage is that the resulting linear system is k
times larger in k dimensions.

Using the simplicity of the methods, iterative schemes are analyzed and formulated in order to
solve the resulting LCSC linear systems in the case of Helmholtz problems. Block Jacobi, extrap-
olated Jacobi (EJ), and successive overrelaxation (SOR) iteration methods are analyzed with the
rates of convergence and the optimum relaxation parameters determined. The simple structure of
the linear system makes these methods particularly suitable for parallel computation. It is shown
that the overall efficiency of the method is attractive in spite of involving such a large linear system.

Experimental results presented here confirm the convergence results for both the discretization
and iterative methods, and indicate that the convergence results hold for problems more general than
Helmholtz problems.

Key words, collocation methods, elliptic partial differential equations, SOR iterative method

AMS(MOS) subject classifications. 65N35, 65N05, 65F10

1. Introduction. In this paper we formulate iterative collocation methods based
on cubic spline piecewise polynomials for approximating the solution u of the second-
order elliptic linear partial differential equation (PDE)

O:u Ou
(la) Lu =_ oi-x +Zix + ’u f in ,

i--1 i--1

subject to Dirichlet or Neumann boundary conditions

(2a) Bu g on 02 boundary of ,
kwhere Bu is u (or Ou/Ox,), fl _-- I],=1 (R)[a,, b,] is a rectangular domain in Rk (the space

of k real variables), and i(< 0),/i, /(_> 0), f, and g are functions of k variables. We
carry out the derivation and analysis only for the Helmholtz problem, with Dirichlet
boundary conditions and constant coefficients, that is

k

(lb) Lu =_ oiD2u + /u f in ,
i--1

(2b) u g on 0.
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The discretization is easily extended to the more general equation (1), but the analysis
is not. Experimental results are given that indicate the behavior proved for this
Helmholtz problem is present for more general problems.

First we formulate the cubic spline collocation discretization scheme that deter-
mines the cubic spline approximations to u along the mesh lines of a uniform partition
of f. Throughout this paper we refer to this scheme as the line cubic spline colloca-
tion (LCSC) method. Following the techniques introduced in [7] and [8], we present
second- and fourth-order LCSC methods for approximating the PDE problem (lb),
(2b). The extension of the LCSC discretization to the more general problem (la),
(2a) is not difficult. The main objective of this paper is to define and analyze iter-
ative linear equation solvers for computing the discrete LCSC approximation of u.
For this reason, we adopt the tensor product formulation [6], [10] of the collocation
equations and analyze the convergence of block Jacobi, EJ, and SOR schemes. It is
worth noticing that the linear system of equations arising from the LCSC method (the
LCSC equations) is nonsymmetric and lacks many of the properties found in Ritz-
Galerkin-type finite element methods. Nevertheless, we derive analytic expressions
for the spectral radius of the corresponding Jacobi iteration matrix, and from this we
determine the convergence ranges and compute the optimal parameters for the EJ
and SOR methods.

This paper is organized as follows. Section 2 includes the formulation of the
second- and fourth-order LCSC schemes. Section 3 presents the formulation of first-
order stationary iterative methods for the LCSC equations and the theoretical study
of their convergence. The computational efficiency of these methods is analyzed also.
Finally, in 4 we present the results of various numerical experiments designed for
the verification of the theoretical behavior of the iterative LCSC solvers. For two
Helmholtz problems in two and three dimensions, the experiments show very good
agreement with the theoretical predictions about the convergence of the discretization
error and the iterative method used. Although the theoretical results presented here
hold for the model problem (lb), (2b), our experimental results indicate that the
behavior of the iterative LCSC solvers on the general problem (la), (2a) is similar. One
of these has -y -10ex+y in two dimensions, the other has al -1, a2 -(x + z),
a3 -(4- x- z), and /=-ex+y+z in three dimensions.

2. The LCSC method.

2.1. Preliminary results. In this section we introduce a notation for the dis-
crete geometric data used to define the space S3,A of cubic splines in k dimensions and
a line collocation approximation of u in S3,zx. Furthermore, we adopt a representation
of the coefficients of this approximation and define an interpolant S of u in S3,zx whose
asymptotic behavior as a replacement of u is used to define optimal LCSC methods.
The approach is to do everything uniformly in all variables so that a tensor product
structure is introduced into the discretization. As is common with spline-based meth-
ods, we introduce one extra point beyond each end of the intervals [ai, bi] defining
the ith side of the domain f. This enlarged interval is then discretized uniformly
with step size hi by Ai {T ai -t- hi; 1,..., Ni / 1 with hi (bi hi)/Ni }.
A complete discretization of f is obtained by taking the tensor product of these dis-

kcretized lines, so the mesh A 1-Ii=l (R)Ai provides an extended uniform partition of
k

T.2 T.k ), for all n e i=1 (R)Ii’f The interior mesh points are denoted by (TI n2,’" n
where Ii {ni 1 _< ni _< Ni 1}. The set of mesh lines parallel to the xi-axis are
denoted by i(ni), where
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indexes these Hek__l (Nt / 1)/(Ni + 1) lines. The mesh points of each set of lines
are represented by the vectors

and these are used as collocation points.
The collocation approximation is made on each set i(ni) of lines using the B

spline basis {B(xi)}NI+ defined on Ai. We let x (Xl,X2,... ,xk) denote a variable

ranging over f and we partition it into x (x,... ,xi-1, xi+,... ,xk), and xi. The
collocation approximation U/A on each line in/:i is represented as follows:

N/I

(3) ux(x) E U(xi)B(xi)"

Observe that (3) is the sum of one-dimensional splines in the xi variable whose coef-
ficients U(xi) are functions of the other k- 1 variables. Note that U(xi) is an array
of size N Hi (Ni + 3), the index/? varies along the ith dimension, and x varies over
the other k- 1 dimensions. Further, this approximation is "redundant" in that there
are k choices for representing ux (x), one for each coordinate direction. This notation
is illustrated in 2.3 with an example for k 3. Throughout, we use the notation
U(ni) or, more simply, Ui(n) or U for the coefficient values

i--1 i+1 k

The LCSC methods considered in this paper are bed on some interpolatory rela-
tions satisfied by the imerpolant S of u in S3,A defined on each line i(ni) by the
interpolating equations

e

and

(5) D2 S D2,UIT, for v 0 and NiT
In (4) and (5) a particular is used, and all of these are combined in the final collo-
cation methods.

The approximation properties of these interpolants are summarized in the fol-
lowing theorem [7], [8]. The analysis of the truncation error for the fourth-order
method involves an operator L’, which is a perturbation of L. Specifically, we intro-
duce Ai, the second-order central difference operator in the ith dimension by setting
Hi (0,..., 0, hi, 0,..., 0) with hi in the ith location, and then

Aif(x) f(x + Hi) 2f(x) + f(x- Hi).

The perturbation PL of L is then the sum over the k dimensions of the second differ-
ences of the second derivatives,

k

_: E
i= hi
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and

U =L+PL.

See [8] for a fuller explanation and motivation of this perttirbation.
THEOREM 2.1. Suppose that u E C6[], the coefficients of L are in C[] and

f, g E C4[]. Then at the mesh points Ti of each line .i, we have

(6) LS f + O(h), 0,..., Ni,

and at the interior mesh points, we have

(7) L’S f + O(h4), g 1,2,...,Ni 1.

Thus the spline S interpolant of u(x) using (4) and (5) satisfies the PDEs Lu f
and L’u f to second- and fourth-order, respectively. This result leads, following
the analysis of [8], to the fact that the approximation u/ (x) defined by (3) and using
the collocation points T, 0,..., Ni has discretization error of second (for L) or
fourth (for L’) order.

2.2. The second-order LCSC method. In this section we present a second-
order line collocation method based on cubic splines. The collocation approximation

ux e S3,zx is forced to satisfy (la) at the mesh points {T}0 of each line 1(nl)
and the boundary conditions (2a) at the end nodal points (T, Tv1). We derive the
discrete equations that determine uk for the Helmholtz equation (lb) and Dirichlet
boundary conditions (2b).

for 0, 1,..., Ni.

The derivation of the corresponding collocation system for (la), (2a), is straightfor-
ward, and our implementation is applicable to this general problem.

From the assumed representation (3) of u, we conclude easily that

(9) D2 UxiUA[T --1 (Hi) 2U(ni) + U+(ni)]/h
and

(10) U 4U(ni) /6k[T -1 (hi) + + US+ (ni)]

at the mesh (collocation) points T for g 1, 2,..., N- 1. First, we observe that the
collocation equations obtained from the boundary conditions and differential equation
at the end points of each line can be explicitly determined as follows:

U 6i
(11)

hf(T)

2h/2f(T) Uil =-U + 2hi f(T)
3ci

2hf(T)U U
6oi N+ N +

30i

The rest of the unknowns are determined by solving the so-called interior collocation
equations, that is, on those lines of i not in 0Q.
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Equations (8) (2 _< g _< Ni 2) away from the boundary can be written as

(12)

For lines next to the boundary, the equations have similar form with appropriately
modified right sides. For example, with i 1, the leftmost equations (corresponding
to xi ai + hi or 1) from the lines 1 have the form

k

-(-2U(n) + U(n))
= h

[U0 (nl) / 4U(nl) / U2 (nl)] f(T).+g
The full matrix form of these equations is given in 3. This complex notation is
illustrated next for the three-dimensional case (k 3).

This discretization has redundant coefficients. There are Hi (Ni-+- 1) coefficients U
for each i, but two are known from (11) at the boundaries so there are g Hi(Ni- 1)
unknowns in each collocation approximation UA (X). This redundancy is handled by
requiring that all these approximations agree on the mesh points, that is

(14) UA=U2 Ukh on the meshA.

For each line, the collocation equations (12)-(14) can be written in the form

k

2T_2{U(ni)} + gT4{U(nl)} =/(T),

where Tm tridiag (1, re, l), and ], are the right sides of (12)-(14) aner the
elimination of the predetermined boundary unknowns (11).

2.3. A three-dimensional example. We illustrate the above derivation for the
ce k 3, where is the unit cube and the operator L isDu+3Du+5Dau-Tu
9. The mesh A h N 4, N2 2, and N3 3. This mesh is shown in Fig. 1, where
the legend describes some details of the example.

The key point is to see that the various lines and sociated arrays T and U are
indexed by the points in the coordinate planes, plus an index along one coordinate
direction. Thus U(ni) is described "the coefficients of the spline approximation
along the i lines for l 0, 1,..., Ni." The same description applies to T with
"coefficients" replaced by "collocation points."

The discretization (8) (at an interior point of the mesh) is of the form

nU +3DU + 5naU 7U f.

Our example grid is too coarse to have an interior point, but we see that the form of
the discretization is a sum of three terms, each term along one coordinate direction
a different representation of the collocation approximation is used for each coordinate.
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x2

FIG. 1. The mesh fork=3, N1 =4, N2 =2, and N3 =3. The sets of lines 2 are indexed
by the 12 points T on the plane at the left. These 12 points also index U(nl) U(’,j2,j3) for

0,...,4, j2 0,..., 2, and j3 O, 3. The collocation points T for 0,...,4 are five
equally spaced points on a line starting at a T point, say (0, ’ 1/2,’r 2/3), and continuing
to a TI point, say (1, "r2, "r23).

2Consider a mesh point Tj (T,71, T], T’3,3) on the line :2 (the jth point on
the line indexed by (nl,.,n3)). Then D2.U2A(t has three nonzero terms, namely, for
those basis functions B(x2) associated with the mesh points on the (nl, n3) line of :2
having indices j- 1, j, j + 1. Similar considerations apply in the other two coordinates

2so the "stencil" for the approximation is as illustrated in Fig. 2. At the point Tj,
2 haswe see the seven-point star "stencil" created, i.e., the collocation equation at Tj

nonzero coefficients for the splint basis function associated with these seven points.
At points next to the boundary, similar stencils are obtained with truncation as the
boundary coefficients are known.

2.4. The fourth-order LCSC method. In this section, we consider the fourth-
order LCSC method which uses high-order approximations of the derivativesDu, j
1, 2. These approximations are defined as appropriate linear combinations of S and
their derivatives at the mesh points [7]. Specifically, we approximate the second
derivatives in the PDE operator (lb), (2b) by the difference scheme

(15)
D2,UA IT (U_2(ni) + 8U_ (hi) 18U(n,)

-[--8U+ (n,) + U+ (n,))/(12h).

The collocation equations corresponding to the mesh points on a line :i away (2 _<
g _< Ni 2) from the boundary are written at the point T as

(16)
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x

’"" X

X

FIG. 2. The "stencil" at an interior created by the LCSC approximation of (8). A line in 1:2
is shown with index (nl,n3). The three x mesh points on this line correspond to basis elements

22 The solid dots in the xl and x2 directions from Tj are similarB(x2) which are nonzero at Tj.
2mesh points on other lines through T.

For lines close to the boundary, we have similar forms with appropriately modified
right sides. More specifically, in the case of line :1(2, 1,..., 1), the corresponding
equations have the form

k

/1 i

(17) .= 12h [8U_ (hi) 18U(ni) + 8U+(hi) + U+(ni)]

U 4U U+I (n)] flTi+

This discretization h redundant coefficients just the second-order LCSC
method does. The same conditions (14) are used to reduce the number of coeffi-
cients to the number of equations. The nature of this discretization is changed from
the previous one in that the stencils have five, rather than three, points along each
coordinate direction.

3. Iterative solution of the interior LCSC equations. In this section we
consider the iterative solution of the interior collocation equations corresponding to
the second- and fourth-order LCSC methods. For the matrix formulation of these
equations, we introduce the notation T tridiag (1,m, 1) and I for the identity
matrix. rthermore, we sume that the ordering for both the collocation equations

and the unknowns in the vector U {Ui(n),n i1 @Ii } is the natural one.

Following the above conventions and notations, the LCSC equations can be written
in the form

k

(18) AiUi(n) -,1,
i=1

where the coefficient matrices are defined by

(19) Ai --- i 1,...,k,
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with

(20) l-+T4 and -22, i-2,...,k.

The matrix t depends on the discretization scheme applied. Specifically, : T-2
for the second-order discretization scheme and 2T0T_2 for the fourth-order

kone. In both cases, the system (18) is underdetermined with 1 1-Ij=I(Nj 1)
equations and k/E unknowns. For its completion, we consider the k- 1 interpolation
equations (14). If we order them according to the ordering of unknowns Ul(n), we
obtain the equations

(21) BiUl(n)/ DiU’(n) lei, i 2,... ,k,

where

(22) \j=l j=k-i-b2

i- 2,...,k.

Most of the components of F are zero, except those that include the effect of the
elimination of the boundary conditions. Collecting together the interior equations (18)
and the auxiliary interpolation equations (21), we obtain the order k/ system of linear
equations

(23)

A1
-B2
-B3

--Bk

A2 A3 Ak
D2

D3

Dk

U F
U2 F2

U3 F3

for the unknown Ui.

3.1. Iterative solution of the LCSC equations. Various iterative solution
methods for the LCSC equations (23) for two-dimensional problems have been consid-
ered in [7] and [8]. In this paper we formulate and analyze the block Jacobi, EJ, and
SOR iteration scheme for the k-dimensional problems (lb), (2b). For the convergence
analysis of these iterative schemes, we denote by p(K) the spectral radius of a matrix
K, w either the extrapolation or the relaxation SOR parameter, and J, J, and/:
the Jacobi, EJ, and the SOR iteration matrices, respectively.

Next we state two very useful lemmas for the analysis that follows. The first
lemma is stated in [13, pp. 107-109], but the proof given here is more general.

LEMMA 3.1. Let the n n matrices Aij, i, j 1,..., k, possess a common linearly
independent set of n eigenvectors y(), 1,..., n, with corresponding eigenvalues

),. Then the eigenvalues of the matrix

(24)

AI,1 A1,2 Al,k
A2,1 A.,2 A2,k

A,k Ak, A,
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are the eigenvalues of the matrices

1,1 ’1,2 1,k

(25) At "’2,1 "’2, ,k = 1,...,n.

() (
"’l,k "’k,2 k,k

a(A) Ua(At), where a(K) denotes the spectrum of a matrix K.
Proof. First we consider the n x n matrix Y [y(1)y(2)... y(n)] whose columns

are the linearly independent eigenvectors y(t),g 1,..., n, and the diagonal matri-

ces Ai,j, i, j 1,..., n, with diagonal elements the eigenvalues A,t of the matrices
Ai,j, i, j 1,..., k. From the invertibility of Y, we conclude that

(26) Ai,j YAi,jY-, i, j 1,..., k.

Furthermore, A can be written in the form

(27) A (I (R) Y)A(I (R) Y)-,

with

(28)

h,l A, Al,k
A:, A,2 A,

hk,1 Ak,2 hk,k

This implies that A and A are similar matrices. Thus it is sufficient to show the
similarity of A and of diag (A1,..., An) with At, g 1,..., n, being given in (25). For
this purpose, we construct the graph G(A) of A (see Fig. 3), where only the diagonal
elements of the submatrices Ai,j are considered, including the zero ones. In view of
G(A), we construct the permutation matrix P such that p,j 1 for (i, j) in the set

{(1, 1), (2, n + 1),..., (n 1, (k 2)n + 1), (n, (k 1)n + 1),

(n + 1, 2), (n + 2, n + 2),..., (2n 1, (k 2)n + 2), (2n, (k 1)n + 2),

((k 1)n + 1,n), ((k 1)n + 2, 2n),..., (kn 1, (k 1)n), (kn, kn)}.

From the construction of P, we have PAPT diag (A,..., An). This completes the
proof of the lemma.

The second lemma to be used later for the eigenvalue analysis of the collocation
coefficient matrix problem is stated as follows.

LEMMA 3.2. Let the n x n matrices Ai, i 1,..., k, possess a common linearly
independent set of eigenvectors y(J),j 1,..., n, with corresponding eigenvalues
(i 1,..., k, j 1,..., n). Then the matrix A =_ A (R) A2 (R)... (R) Ak possesses the nk

linearly independent eigenvectors y() _= y(jl) (R)y(j.) (R)...(R)y(j), where j =_ (j jk

and ji- 1,... ,n, i= 1, .. ,k, and eigenvalues A(j) AJl)A(2J)... A(kj).
Proof. First, using tensor product properties, we can easily verify that Ay(

A()y(). In order to prove the linear independence of the y()’s, we construct the
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FIG. 3. Graph G(A) of the matrix A.

(nk) (nk) matrix Z whose columns are the nk eigenvectors of A in the following
order

Z [y(1) @ y(1) (R)... (R) y(1),y(1) ) y(1) @... ( y(2),...,y(1) y(1) )... @ y(n),

y(1) (R) y(1) (R) (R) y(2) (R) y(1),y(1) (R) y() (R)... (R) y(2) (R) y(2),...,

y(1) (R) y(1) (R)... (R) y(2) (R) y(n),...,y(n) (R) y(n) (R) (R) y(n)].

Applying the tensor product notation, we obtain

(29) Z=Y(R)Y(R)...(R)Y,

where Y [y(t)y(2)...y()]. From the assumed linear independence of
j 1,..., n, we conclude that Y-1 and Z-1 y-1 (R) y-1 (R) (R) y- exist. This
implies the linear independence of the nk eigenvectors and concludes the proof of the
lemma.

For the formulation of the block iterative solutions to the LCSC system (23), we
consider the splitting K- L- M of the coefficient matrix with K diag(A, Du,
na,..., Da), i _= (ii,}, and i _= (Mi,), where the entries of the matrices L and
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M are defined such that

(30)

B ifj=l and i=2 ...,k,
L,j =-

0 otherwise,

-A ifi=l and j=2,.., k,
0 otherwise.

According to the above splitting, the block Jacobi, EJ, and SOR iteration equations
of (23) are defined as follows:

(31) KU(8+1) (L + M)U(8) + F, s 0, 1, 2,...,

(32) KU(+1) (1 w)KU() + w(L + M)U() + wF, s 0, 1, 2,...,

and

(33)
KU(+1) (1 w)KU(8) + wLU(+l) + wMU() +

s 0,1,2,

THEOREM 3.1. The eigenvalues # of the block Jacobi iteration matrix K-I(L+M)
defined in (31) are # 0 of multiplicity (k 2) krIi=l (Ni 1) and pure imaginary given
for the second-order collocation scheme by

(34)

while for the fourth-order scheme by

(35)

where v/:-l,

_
(/T1,...,gk),)s) -4sin2(/jTr/2N/),7j 1,...,Nj 1,j

1,...,k, a?zdfl 7(6-]-/1 ).
Proof. We start by pointing out that To 121 + 7-_2 and T 6I + 7"_2. Hence

the matrices To, Ta, and T-2 have a common linearly independent set of eigenvectors.
Furthermore, in view of (19), (20), and (22), the matrices A,, B,, and D, also have a

kcommon linearly independent set of ]C 1-I= (Ni 1) eigenvectors. The block Jacobi
iteration matrix J g-1 (L + M) {J,j }, associated with the matrix coefficient in
(23), can be described as

(36)
J, 0, {J, 0}= =:,

k k{J, -A-IA}=2 {Ji,1 D:IBi}=2
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Consequently, the Ji,j’s possess the same/C linearly independent eigenvectors. So, if

we denote by A( the eigenvalue of the matrix Ji j associated with the g common
.i,

eigenvector, and use Lemma 3.1, we conclude that

-# Aft) A(-) A(_)
H2 Ha Hk

A(_)
G2

(37) det Ga -- 0

A(!)

where A(D and A(D
Gi Hi are eigenvalues of the matrices Gi := DIBi and Hi :: -AIAi,

respectively, corresponding to the _g common eigenvector. Using Lemma 3.2, (37) gives

(_) A(_)A(_)(_)-2 A(_) A(_)(_)-2 0G2 H2 G H

or

k

We conclude the proof of the theorem by observing that the eigenvalues of the N N
tridiagonal matrix T-2 are given by -4sin2(gr/2(N + 1)),g 1,...,N. (See [14],
[15], or [13].) E]

The spectral radius p(J) of the block Jacobi matrix of the iteration method (31)
is obviously the largest modulus of #(D given in (34) and in (35) for the second- and
fourth-order collocation schemes, respectively. Explicit formulas have been found for
p(J), which are summarized in the following theorem.

THEOREM 3.2. Let us denote by

(38) ]v() := + n(6 + :) (6 + :)-

and by

(39) (12 + )+ 12-j(6 + A)] (6 + )-1:=

with A A) and " O,j 2,... k the expressions appearing in (34) and,’)’I 6
,

(a),, _.(/()) .=-o(/(N)),
1,..., k. Then the spectral radii of the block Jacobi matrices corresponding to the
second- and fourth-order collocation schemes are defined by the following expressions:

(40)
k

p2(j) yj(cj)/yl(81)
j=2

and

(41)
k

p2(j) zj(cj)/z1(81).
j=2
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Proof. First we note that in (34) and (35), aj < 0, Ae) e [cj,sj], and j >_
0,j 1,... ,k. Hence the expressions yj yj(f)), j 1,... ,k, defined in (38) are

positive and independent of each other. So are the zj’s (:= zj(Af))’s, j 1,... ,k)
defined in (39). Therefore, in order to determine the two spectral radii, it suffices
to determine the maximum values of yj, zj, j 2,..., k, and the minimum values of
yl,zl. For the extreme values of y :- yj(A),A E [c,s],j 1,... ,k, we differentiate
yj with respect to A to obtain

Oyj 1 aj<{).
+

Consequently,

(42) maxyj yj(cj), minyi yj(sj).

To determine the extreme values of zj := zj(A),j 1,...,k, we work in a similar
way. This time we have

0A
1 a-A [(6+ A)2 + 36] < 0.
+

This gives

(43) max zj zj (cj), min zj zj (sj).

From the expressions (34), (35), (38), and (39), and the results in (42) and (43), the
expressions (40) and (41) for the spectral radii readily follow. [:l

Remark. From the above theorem, it is easy to conclude that the block Jacobi
iterative method defined by (31) does not always converge. Furthermore, the optimum
block extrapolated SOR method is not an improvement compared to the optimum block
SOR method (see [1], [11], and [5]).

Next we state two well-known theorems which in conjunction with (40) and (41)
allow us to determine the convergence ranges and compute the optimal parameters in
the case of EJ and SOR methods when the spectrum of the Jacobi matrix is purely
imaginary. For their proofs, refer to [2]-[5], and [9], [12], [11], and [5], respectively.

THEOREM 3.3. Let A be the coefficient matrix of a linear system in block parti-
tioning form with square nonsingular diagonal blocks and J the corresponding Jacobi
matrix. If all the eigenvalues of j2 are nonpositive, then, for the convergence of the
block EJ method, we have

2
(44) p(J) < l if O < w <

V/1 + p2(j)[p(j)+ V/1 + p2(j)]

2 p(J)
(45) Wopt

1 + p2 (j)
and p(Jopt) V1 + p2 (j)

THEOREM 3.4. If, in addition to the assumptions of Theorem 3.3, A is block
2-cyclic consistently ordered, then, for the convergence and the optimal convergence
of the block SOR method, we have the following conditions:

2
(46) p(.,)<l ifO<w< 1 + p(J)’
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2
(47) Wopt and

+ +
p(o,) 1 Wopt.

A straightforward comparison of the optimal spectral radii in (45) and (47) leads
to the following theorem.

THEOREM 3.5. Under the assumptions of Theorems 3.2, 3.3, and 3.4 the optimal
SOR method converges asymptotically faster than the optimal EJ method.

For the efficiency of both the serial and parallel iterative solution of the collocation
equations we reorder the system (23) following

(a) the cyclic natural ordering for the unknowns Ui, 2,..., k,

(48) /i

(b) the ordering of (18) according to the ordering of L/l; and
(c) the ordering of each block of auxiliary conditions (21) according to the ordering

of the unknowns
Assume that the matrices Pi are the permutation matrices that reorder the un-

knowns U from the natural ordering to the cyclic natural ordering (48), namely,
L/i PiUi, 1,..., k. In view of this transformation, the new form of (23) is

AI A2P2T A3P3T AkP U F1
-P2B2 P2D2P2T P2U2 P2F2

(49) -P3B3 P303P3T P3U3 P3F3

tkBk PkD P[ Pk"Uk Pk"Fk

The new structure of the collocation coefficient matrix for the second- and fourth-
order scheme in two dimensions is given in Fig. 4.

THEOREM 3.6. Let A and .4 be the coe]flcient matrices in (23) and (49), respective-
ly, D and 7) their block diagonal parts, and J and 7 the associated block Jacobi ma-
trices. We have that fit PAPT and 7 pjpT, where P (I, P2,... ,Pk), and
therefore .4 and A as well as 7 and J are similar matrices.

Proof. The relation .4 PAPT follows easily from the formulation of the method.
For the relation 7 pjpT, we have

,.7 I-

I (diag(I, P2D2P2T,..., PkDkP[))-(pApT),
I (diag(I, P2DP2T,..., PkD;IP[))(pApT),
I- P(diag(I,D,... ,D;1))pT(pApT),
I- PD-APT P(I- D-A)PT pjpT. [:]

In view of the previous theorem and because J is block 2-cyclic consistently or-

dered, the EJ and the SOR theory holds, and the optimal values of the various
parameters of the block EJ and the block SOR methods associated with ,4 are those
obtained for the matrix A in Theorems 3.2-3.5.
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Dxx
xDxx
xxDxx
xxDx
xxD

Dxx
xDxx
xxDxx
xxDx
xxD

Dxx
xDxx
xxDxx
xxDx
xxD
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Dx...
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(a) (b)

FIG. 4. Structure of matrices from the (a) second-order and (b) fourth-order LCSC collocation
methods for a two-dimensional problem. We have N1 N2 6 with the notation D diagonal
nonzero element, x off-diagonal nonzero element, and. zero element.

4. Numerical verification of convergence. In this section we present the
results of some numerical experiments on the convergence properties of the LCSC
method and the iterative solvers. These experiments verify the convergence properties
of the LCSC discretization and the iterative solution methods of 3. They also indicate
that these methods work equally well for more general problems than (lb), (2b) where
our analysis does not apply. Specifically, we have applied the LCSC methods to
approximate the known solution of the following PDE problems:

PDE A2:
PDE B2:
PDE C2:
PDE A3:
PDE B3:
PDE C3:

D2u + Du f,
D2u / 4Du- lOu I,
D2u + D2..u + lOe+u f,

n2u + nu + 4D2u lOu f,
D2u + 2(x + z)Duu + (4- x z)D2u + eX+U+Zu f.
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All these problems are on the unit square or cube with homogeneous Dirichlet bound-
ary conditions (u 0), and f is such that the true solution is

u) u)

or

u, z) z).

The approximate solutions of the discretized problem are determined by the iterative
methods presented and analyzed in 3. For the LCSC discretization, we estimate the
maximum error (llU--Uhllo) at the mesh points and compute an estimate of its order
of convergence from the expression

IIo /log(ll(u
where hi, h2 are the grid steps for the two different uniform partitions. All the
computations were done on a SUN 4/110 in double-precision arithmetic. The linear
systems from the LCSC discretization are solved by the iteration of 3, with termi-
nation criterion being that IIU(8+) U(S)ll is within the interval (0,10-7). Tables
1 and 3 show the results for the six problems and the second-order LCSC method
using an (NGRID by NGRID) or (NGRID by NGRID by NGRID) mesh for NGRID

8, 16, 24, We see that the discretization error decreases regularly, and that the
estimated order of convergence agrees well with the asymptotic result expected from
Theorem 2.1. Similarly, Tables 2 and 4 show the results for the fourth-order LCSC
discretization and, again, the estimated order of convergence agrees well with that
expected from Theorem 2.1.

Tables 5 and 6 present the number of SOR iterations required to solve the dis-
cretized equations using a 10-7 stopping criterion for the second- and fourth-order
LCSC methods. We see that the number of iterations increases a little faster than
linearly in NGRID.

The number of iterations for the fourth-order case increases more rapidly as
NGRID increases, apparently faster than linearly, but slower than quadratically. Of
course, the fourth-order discretization is much more efficient as it achieves much higher
accuracy. Restated, for PDE B2, we could use the fourth-order discretization with
an 8 8 mesh and 132 iterations instead of the second-order discretization with
2424 mesh and 279 iterations. Both ways, we achieve an accuracy of about .006. It
is important to note that the number of iterations does not increase going from two
to three dimensions.

We also note in all these tables that the analytical results established for the
Helmholtz problem are observed for the non-Helmholtz problems PDE C2 and PDE
C3.

The nature of the convergence of the iterative methods is examined in more detail
in Figures 5-7.

Figures 5-7 explore the accuracy of the theoretical predictions of the optimum
relaxation factor Wopt for three cases: second-order LCSC discretization in two di-
mensions (Fig. 5), fourth-order LCSC discretization in two dimensions (Fig. 6), and
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PDE A2 +
PDE B2
PDE C2

16 24 32 64
Number of grid points-NGRID

FIG. 5. Graph of the Wopt vs. the number of grid points for the second-order LCSC method
applied to PDE A2, PDE B2, and PDE C2.

second-order LCSC discretization in three dimensions (Fig. 7). The experimental
values of Wopt are determined by systematic search. In all cases we see that the
theoretical optimum values are good estimates of the actual optimums. Furthermore,
the theoretical Wopt values for the Helmholtz problems are good estimates for the more
general operator problems where our theory does not apply.

TABLE 1
The error and estimated order of convergence of the second-order LCSC method for the three

elliptic problems PDE A2, PDE B2, and PDE C2. The convergence (order) of the discretization is
estimated by (50) from successive values of h- 1/NGRID.

PDE A2 PDE B2 PDE C2
NGRID error order error order error order

8
16
24
32
64

.86 D-2

.22D-2 1.79

.96 D-3 1.94

.55 D-3 1.87

.14 D-3 1.93

.73 D-2

.18 D-2 1.83

.73 D-3 2.11

.38 D-3 2.13

.10 D-3 1.89

.22 D-1

.57 D-2 1.95

.25 D-2 2.03

.13 D-3 2.17

.30 D-3 2.06
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opt
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.2-

.1--

Theoretical Experimental
PDE A2
PDE B2
PDE C2

Number of grid points-NGRID

FIG. 6. Graph of the wopt vs. the number NGRID of grid points for the fourth-order LCSC
method applied to PDE A2, PDE B2, and PDE C2.

TABLE 2
The error and estimated order of convergence of the fourth-order LCSC method for the three

elliptic problems PDE A2, PDE B2, and PDE C2. The convergence (order) of the discretization is
estimated by (50) from successive values of h 1/NGRID.

PDE A2 PDE B2 PDE C2
NGRID error order error order error order

8
16
24
32
64

.69 D-3

.54 D-4 3.67

.12 D-4 3.71

.39 D-5 3.91

.25 D-6 3.96

.54 D-3

.48 D-4 3.49

.97 D-5 3.94

.30 D-5 4.07

.22 D-6 3.77

.92 D-3

.64 D-4 3.85

.14 D-4 3.74

.42 D-5 4.12

.30 D-6 3.81

TABLE 3
The error and estimated order of convergence of the second-order LCSC methods for three

elliptic problems PDE A3, PDE B3, and PDE C3. The convergence (order) of the discretization is
estimated by (50) using successive values of h-- 1/NGRID.

PDE A3 PDE B3 PDE C3
NGRID error order error order error order

8
16
24
32

.38 D-2

.97D-3 1.79

.56 D-3 1.90

.26 D-3 1.90

.33 D-2

.87 D-3 1.75

.41 D-3 1.76

.24 D-3 1.81

.42 D-2

.11 D-2 1.75

.72D-3 1.82

.41 D-3 1.82
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opt
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.2-
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Theoretical Experimental
PDE A3 +
PDE B3
PDE C3

16 24 32
Number of grid points-NGRID

FIG. 7. Graph of the Wopt vs. the number NGRID of grid points for the second-order LCSC
method applied to the three-dimensional problems PDE A3, PDE B3, and PDE C3.

TABLE 4
The error and estimated order of convergence of the fourth-order LCSC methods for the three

elliptic problems PDE A3, PDE B3 and PDE C3. The convergence (order) of the discretization is
estimated by (50) using successive values of h- 1/NGRID.

PDE A3 PDE B3 PDE C3
NGRID error order error order error order

8
16
24
32

.49 D-3

.51 D-4 3.28

.98 D-5 4.01

.33 D-5 3.79

.41 D-3

.40 D-4 3.35

.85 D-5 3.82

.30 D-5 3.65

.76 D-3

.86D-4 3.14

.20 D-4 3.61

.67 D-5 3.82

TABLE 5
The required number of iterations of the SOR method to solve the second- and fourth-order

LCSC equations for the elliptic problems PDE A2, PDE B2, and PDE C2 using 10-7 as iteration
termination criterion.

Second-order LCSC Fourth-order LCSC
NGRID PDE A2 PDE B2 PDE C2 PDE A2 PDE B2 PDE C2

8
16
24
32

48 101 97
97 201 188
137 279 268
185 367 353

61 132 105
111 228 210
196 345 293
389 520 478
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TABLE 6
The required number of iterations of the SOR method to solve the second- and fourth-order

LCSC equations for the elliptic problems PDE A3, PDE B3, and PDE C3 using 10-7 as iteration
termination criterion.

Second-order LCSC Fourth-order LCSC
NGRID PDE A3 PDE B3 PDE C3 PDE A3 PDE B3 PDE C3

8
16
24
32

60 114 92
122 219 193
170 330 327
237 442 402

82 135 110
150 273 225
242 417 310
393 710 512
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AN ALGORITHM FOR SYMMETRIC TRIDIAGONAL
EIGENPROBLEMS: DIVIDE AND CONQUER WITH HOMOTOPY

CONTINUATION*

KUIYUAN Lit AND TIEN-YIEN LI
Abstract. This paper presents a new algorithm for finding all the eigenvalues and corresponding

eigenvectors of a symmetric tridiagonal matrix. The algorithm is based on the homotopy continuation
approach coupled with the strategy of "divide and conquer." Evidenced by the numerical results, the
algorithm given here provides a considerable advance over previous attempts to use the homotopy
method for eigenvalue problems. Numerical comparisons of this algorithm with the methods in the
widely used EISPACK library, as well as Cuppen’s divide and conquer method, are presented. It
appears that the algorithm is strongly competitive in terms of speed, accuracy, and orthogonality.
The performance of the parallel version of this algorithm is also presented. The natural parallelism
of the algorithm makes it an excellent candidate for a variety of advanced architectures.

Key words, eigenvalues, eigencurves, multiprocessors, homotopy method
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1. Introduction. In this paper, we propose a new algorithm, based on the con-
tinuation approach, for finding all the eigenvalues and eigenvectors of a symmetric
tridiagonal matrix. Let A be an n )< n real symmetric tridiagonal matrix of the form

In (1.1), if some/i 0, then Rn is clearly decomposed into two complementary
subspaces invariant under A. Thus the eigenproblem is decomposed in an obvious
way into two smaller subproblems. Therefore, we assume that each/i 0. That
is, A is unreduced. Our algorithm uses the "divide and conquer" strategy. First, the
matrix A is divided into two blocks by letting one of the/i’s equal to zero. Namely,
we let

(1.2) D_(D10 D2
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where

k+l k+2
+2 a+2 +3

D2 "’. "’. "’.

n-1 n-1

We then calculate the eigenvalues of unreduced matrices D1 and D2 by using
the most efficient algorithm available. Unlike Cuppen’s divide and conquer method
[4], our algorithm conquers the matrix A by the homotopy H Rnx R )< [0, 1]

Rn x R, defined by

(1.3)

H(x, , t) (1 t) xTx 1 + t xTx 1

2 2

)x -[(1 t)D + tA]x

)xTx 1

2

xTx- 1

2

where A(t) (1-t)D+tA. It can easily be seen that the solution set of H(x, , ) 0
in (1.3) consists of disjoint smooth curves (x(t), A(t)), each joining an eigenpair of
D to one of A. We call each of these curves a homotopy curve or an eigenpath and
its component A(t) an eigenvalue path. Thus, by following the eigenpaths emanating
from the eigenpairs of D at t 0, we can reach all the eigenpairs of A at t 1.

Unlike curve-following strategies used in standard homotopy continuation meth-
ods, our algorithm mainly uses the homotopy continuation as a backup of Newton’s
method. Simple computation shows that Newton’s method for the nonlinear problem
of n + 1 equations

(1.4)
ax Ax O,

F(A,x)= xTx --1
=0

2

in the n + 1 variables A, Xl,X2,... ,Xn at (A(m),x(m)) is the inverse iteration of A on
x(’) with shift A(m), i.e.,

(A- A(’)I)y x(’)

and

I (x(m))Tx(m) + 1,(m+l) ,(m)
_

2(x(m))TY
x(m+l) (A(m+l)
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By making the initial matrix D close to A’ the eigenpairs of D should be excellent
starting points for applying Newton’s method to the eigenproblem (1.4). Based on this
observation, our algorithm solves the eigenvalues of the initial matrix D by using the
most efficient method available first, and applying the inverse iteration with a random
starting vector on (1.4), using each eigenvalue of D as a shift. This is essentially the
first step of the usual curve-following scheme to follow the eigenpath (x(t), A(t)) of
the homotopy H(x,A,t) 0 in (1.3) with starting stepsize h 1. After the first
inverse iteration, we switch to Rayleigh quotient iteration (RQI), an inverse iteration
with Rayleigh quotient as a shift, to speed up the convergence. We check the Sturm
sequence at the convergent point and, if this procedure fails to provide the correct
eigenpair, we cut the stepsize in half. That is, we repeat the process by applying the
inverse iteration to (1.3) with t 0.5 and then switch to RQI to return to the right
eigenpath (x(t), A(t)). Assuming that after i steps, the approximate value (x(ti), A(ti))
is known, we always choose stepsize h 1- ti at (x(ti), A(ti)). In this way, we follow
the eigenpath from t 0 to t 1. A theoretical analysis of the eigenpath is given in
2, and the details of the algorithm are described in 3.

The search for fast, reliable methods for handling symmetric eigenproblems has
produced a number of methods, most notably the QR algorithm, the bisection Sturm
sequence method with inverse iteration [6], [7] and the divide and conquer method [4],
[5], [15]. In 4.1 we present our numerical results, along with comparisons to results
obtained with those methods. It appears that our algorithm is strongly competitive
in terms of speed, accuracy, and orthogonality, and leads in speed in almost all cases.

Modern scientific computing is marked by the advent of vector and parallel com-
puters and the search for algorithms that are, to a large extent, parallel in nature. A
further advantage of our method is that, to a large degree, it is parallel in the sense
that each eigenpath is followed independently of the others. It makes the parallel
implementation of the homotopy method much simpler than the other methods. In
4.2, we show the performance of our parallel algorithm. The results suggest that our
algorithm may be an excellent candidate for a variety of architectures.

The theoretical aspect of the continuation approach to the eigenvalue problems
has been studied in [1]-[3] and [9]. A first attempt was made in [8] to make the
method computationally efficient. Its parallel version appeared in [11]. Evidenced by
the numerical results, our algorithms given here provide a considerable improvement
over the algorithms in [8] and [11].

2. Preliminary analysis.
PROPOSITION 2.1. Let (t) be an eigenvalue path of the homotopy H(x, , t) 0

in (1.3). Then, either A(t) is constant for all t e [0, 1] or strictly monotonic. (See
Fig. 1.)

Proof. For a symmetric tridiagonal matrix

al b2
b2 a2 b3

bn-1 an-1

b,
bn

with bi 0, i --2, 3,..., n, let Mi be the i principle submatrix of M. Let
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.x- Dx

(0)

FIG. 1

p,(t) det(Mi M). The well-known three-terms recurrence relation gives [131

(2.1) -bi+lpi_l(A).

Applying (2.1) to

A(t) (1 t)D + tA

tfla+l

D2
in our homotopy in (1.3), we can easily see that the variable t appears in det(A(t)-AI)
only in the second degree. Namely,

p(,, t) det(A(t)- M) t2fl (,) + f2(A)

for certain polynomials f(A) and f2(A). Thus, for any given A0, if f(A0) - 0, then
p(A0, t) 0 has two solutions

Thus, when -f2(A(to))/f2(A(to)) > 0, t is real and p(A0, t) 0 can have at most
one solution in [0,1]. It follows that the eigenvalue path A(t) of (1.3), a solution of
p(A, t) 0 for each t in [0,1], is strictly monotonic. Otherwise, for certain values of
A0, p(A0, t) 0 will have more than one solution in [0,1]. (See Fig. 2.)
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If an eigenvalue Ao of the initial matrix D satisfies f: (Ao) 0, then P(Ao, 0)
det(D-AoI) 0 implies f2(Ao) 0. Hence, p(Ao, t) 0 for all t in [0,1] and A(t) _-- Ao
gives a constant eigenvalue path.

, (t)

0
2

FIG. 2

Remark. It follows from the proof of the above proposition that if

<_ <_... _<

then

2<i<n-1.

THEOREM 2.2 (HOFFMAN AND WIELANDT [16]). Let M be an n n symmetric
matrix. Let M =_ M + E where E is a symmetric perturbation of M. Denote the
eigenvalues of M by (1 < 2 <"" < n}, the eigenvalues of M’ by ( < <... <
n}, and the eigenvalues of E by (9/1 < 9/2 <"" < 9/n}, then

n n

(2.2) E(. ,)2 _< Eq"
i=1 i--1

Applying this theorem to M A and M’ A(t) (1 t)D + tA A / E with

(t- 1)/k+l

(t- 1)k+1

then (2.2) gives

(2.3)
n

E(Ai- Ai(t)) 2 _< 2(1 t)2/+:
i--1

for all t in [0, 1],
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where Ai and Ai(t) are the eigenvalues of A and A(t), respectively.
From (2.3), together with the conclusion in Proposition 2.1 that each nonconstant

Ai (t) is monotonic in t, we see that the smaller k+l is, the flatter the eigenvalue curves
are, especially when n is very large. To make the eigencurves easy to follow, we intend
to choose/k+l as small as we can for k in a certain range, as described in 3.

3. Algorithms. The basic features of our algorithm to follow the eigenpath
((t), (0 e

(i) Initiating at t 0,
(ii) Prediction,
(iii) Correction,
(iv) Checking,
(v) Detection of a cluster and space iteration,
(vi) Stepsize selection,
(vii) Terminating at t 1.
In this section, we give a detailed description of these features.
(i) Initiating at t O. As mentioned in 2, we intend to choose k for which/k+l

is as small as possible. To make the sizes of the blocks D1 and D2 roughly the same,
we limit the choice of k in the range n/2- <_ k <_ n/2 / , where 5 n/20 and
find the smallest/k+ by local sorting.

When the initial matrix D is decided, different from the homotopy algorithms
in [8], [11] where all the eigenvalues and eigenvectors of D are calculated in order to
start following the eigenpaths, our algorithm only calculates the eigenvalues of D
and D2. These eigenvalues are obtained by using the most efficient method available.
From our experience, for matrices of relatively small size, the QR algorithm is the
fastest method for this purpose. Therefore, in the real implementation, we use the
subroutine TQL1 in EISPACK [14] here. (Since the QL algorithm in TQL1 is highly
serial, it is not very efficient with a modest number of processors on large problems.
Thus, for parallel computing, if a modest number of processors are available, we use
the multisection method. Otherwise, we still use TQL1.) At this stage, the precision
of the eigenvalues of D and D2 is not crucial. Thus we only require that the accuracy
stay within one-half or even one-third of the working precision. With this strategy, a
considerable amount of computing time is reduced.

(ii) Prediction. Assume that after i steps the approximate value (5(ti),(t))
on the eigenpath (x(t),(t)) at t is known and the next stepsize h is determined;
that is, ti+ t + h. We want to find an approximate value ((ti+l),(t+)) of
(x(t+),(t+)) on the eigenpath at t+. Note that ((t+l), (t+))is an approx-
imate eigenpair of A(ti+). Since g(x(t), ik(t), t) O, we have

A(t)x(t)=A(t)x(t), xT(t)x(t)=l.
Differentiating both equations with respect to t yields,

(a.1) (A- D)x(t) + A(t)&(t) J (t)x(t) + A(t)ic(t),
O.

For t- t, multiplying (3.1) on the left by xT(t) yields,

(3.2) (t) xT(t)(A- D)x(t) 2a+lx(t)Xk+l(t),
where x(ti)- (xl(ti), ...,xn(ti))T. With (ti) at hand, we use the Euler predictor
to predict the eigenvalue at ti+, namely,

A(ti+) A(ti) + (ti)h.
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It is easy to see that J(0) 0 in (3.2), since x(0) is either of form (xl(0),...,
xk(O), 0,..., 0) or (0,..., 0, xk+(O),..., xn(O)). Consequently, )(t) always equals
A(0). To predict the eigenvector, we use the inverse power method of A(ti+) on x(ti)
with shift (ti+1). That is, we first solve

(3.3) (A(ti+l)-)(ti+l)I)y(ti+l) x(ti),

and let

At ti 0, since we skip the calculations of eigenvectors of D, x(0) is not available.
We chose a random vector to substitute for x(0) in (3.3).

(iii) Correction. As a corrector, we use the standard RQI, starting with x(t+).
To be more precise, at (xJ-l(ti+),)J-(ti+))(j >_ 1) let

AJ(ti+) xJ-l(ti+)TA(ti+)xJ-(ti+),

then solve

(A(ti+)- AJ(ti+)I)y(t+) xJ-(ti+),

and let

We repeat the above process to within half of the working precision if single precision is
used, and one-third of the working precision if double precision is used when ti+ < 1,
since precision in determining the curve is only of secondary interest. We polish
(x (t+), (ti+l)) at the end of the path (t+l 1) by iterating the Rayleigh quotient
to machine precision. The stop point (x(t+),(t+)) of RQI will be taken as an
approximate eigenpair ((ti+),A(ti+i)) of A(ti+). The cubic convergence rate of
RQI makes the corrector highly efficient.

(iv) Checking. When ((ti+l),)(ti+l))is taken as an approximate eigenpair of
A(ti+l), the Sturm sequences at A(ti+) :i: eA(ti+l) are computed to check that, if we
are trying to follow the curve of jth highest eigenvalues, we are still on that curve.
Here, e is chosen as half of the working precision if single precision is used, and
one-third of the working precision if double precision is used. If the checking fails, we
reduce the stepsize to hi2 and repeat the whole process once again, beginning with
the eigenvalue prediction in (ii).

(v) Detection of a cluster and subspace iteration. At ti 0, when all the eigenval-
ues of D, A(0) _< )2(0) _’’"

_
n(0), are available, we let 5 max(10-5, 10-2(n(0)

Al(0))/n) if double precision is used (or 5 max(10-3, 10-2(n(0)- )l(0))/n) if
single precision is used). Set A and Aj in the same group if IA(0) Aj(0)I < 5. If the
number of the eigenvalues_ in any group is bigger than 1, then a cluster is detected. At
ti 0, or 1, when ((ti), A(ti)) is taken as an approximate eigenpair of A(ti), after the
checking step in (iv) we compute the Sturm sequences at (t) =t= 5 for~ the purpose of
finding the number of eigenvalues of A(ti) in the interval (A(ti) 5, A(ti) + 5). When
this number is bigger than 1, a cluster of eigenvalues of A(ti) is detected.
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In those cases, the corresponding eigenvectors are ill conditioned and this ill-
conditioning can cause the inefficiency of the algorithm. To remedy this problem, the
inverse power method [13], [16] with A(t) as shifts is used to construct an approxima-
tion of the corresponding eigenspace S of dimension m (- the number of eigenvalues
in the cluster) of A(t). This approximate eigenspace S is used as an initial subspace
of the subspace iterations at t+l when we approximate the eigenpairs of A(t+l).

(vi) Stepsize selection. In the first attempt, we always choose stepsize h 1-t at
t < 1. If, after the prediction and correction steps, the checking step fails, we reduce
the stepsize to h/2 as mentioned in (iv). This extremely liberal choice of stepsize
can be justified because of the closeness of the matrix D to A as well as the effective
checking algorithm. Indeed, since the initial matrix D is chosen to be so close to A,
from our experience, the majority of the eigenpairs of A can be reached in one step,
i.e.,h- 1.

Very small stepsize can also cause inefficiency of the algorithm. Therefore, we
impose a minimum on stepsize h. If h < , we simply give up following the
eigenpath, and the corresponding eigenpair of A will be calculated at the end of the
algorithm by the method of bisection with inverse iterations (see (vii)). We usually
choose - 0.25.

(vii) Terminating at t 1. At t 1, when an approximate eigenvalue (1) is
reached, we compute the Sturm sequence at (1) =t= e(1) with e machine precision
to ensure the correct order. If the checking fails, we have jumped into a wrong
eigenpath. More precisely, suppose that as we are following the ith eigenpair, the
checking algorithm detects that we have reached the jth eigenpair instead. In this
situation, we will save the jth eigenpair before the stepsize is cut. By saving the jth
eigenpair, the computation of following the jth eigenpair is no longer needed.

As mentioned in (vi), we may give up following some eigenpaths to avoid adopting
a stepsize that is too small. Without extra computation, we know exactly which
eigenpairs are lost at t 1. In order to find these eigenpairs, we first use the bisection
to find the missing eigenvalues up to half the working precision and then use the
inverse iteration and the RQI or subspace iteration (if there are some clusters) to find
the eigenpairs.

4. Numerical results.

4.1. A serial comparison with the existing methods. For symmetric tridi-
agonal matrices, the routine TQL2 in EISPACK implements explicit QL iteration to
find all the eigenpairs. EISPACK also includes a Sturm sequence with inverse iteration
method (BISECT+TINVIT), which is much faster than TQL2. However, it may fail
to provide more accurate eigenvectors when the corresponding eigenvalues are very
close. A new version by Jessup [7] (B/III) has considerably improved the reliability
and the accuracy of the inverse iteration. The divide and conquer method for symmet-
ric tridiagonal matrix was suggested by Cuppen [4] and was implemented, combined
with a deflation and a robust root-finding technique, by Dongarra and Sorensen [5]
(TREEQL) (see also [15]).

The homotopy continuation algorithm is in its preliminary stage, and much de-
velopment and testing are necessary. But the numerical results on the examples we
have looked at seem remarkable. The standard testing matrices are:

(1) The Woeplitz matrix [1,2,1].
(2) The random matrix with both diagonal and off-diagonal elements being uni-

formly distributed random numbers between 0 and 1.
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(3) The Wilkinson matrix Wn+, i.e., the matrix [1, di,1], where di abs((n /
1)/2- i), i 1, 2,..., n with n odd.

(4) The matrix [1,i,1], where i- i x 10-6.
(5) The matrix T2: same as matrix [2,8,2] except the first diagonal element al 4.
(6) BW matrix: the matrix consists of two copies of Wilkinson matrices W+ with

even k along the diagonal and the off-diagonal elements at the position k+l, where
the submatrices join equal to 10-6.

We show the computational results comparing our homotopy continuation algo-
rithm HOMO to those methods, TQL2, B/III, and TREEQL, mentioned above. The
computations were done on a Sun SPARC station 1.

Tables 1, 2, and 3 show the comparisons in terms of speed, accuracy, and orthog-
onality, respectively. The homotopy method appears to be strongly competitive in
every category and leads in speed by a considerable margin in comparison with all
other methods in most of the cases.

Table 4 gives an analysis of our algorithm on those testing matrices. The fourth
column on the table shows the total number of stepsize cuttings because of the curve
jumping. The fifth column shows how many clusters occurred and the last column
shows the largest dimension of the subspaces of the clusters.

As we mentioned in 2 and 3, to form the initial matrix D, we usually choose
the smallest off-diagonal entry 3k+1, for k in a certain range, of A, making it zero in
D so that D is as close to A as possible. This strategy is crucial for the efficiency of
our algorithm. To illustrate this, we perform our algorithm on Toeplitz matrices [3,
i,/]. Table 5 shows that our algorithm is much faster when is smaller.

TABLE 1
Execution time (seconds) of computed eigenvalues and eigenvectors.

Matrix Order Execution time (seconds)
n. HOMO B/III TREEQL TQL2

64 2.03 2.43 5.90 17.06
[1, 2, 1] 125 5.88 8.58 37.61 114.4

256 30.25 35.7 302.8 904.6
499 100.04 152.9 984.4 2416.
64 1.13 2.44 6.09 17.32

Random 125 3.79 8.53 31.41 115.8
256 14.90 34.45 158.1 949.9
499 53.19 133.6 235.8 2482.
65 0.97 1.84 2.73 16.10

Wn+ 125 3.97 6.21 8.20 108.8
255 16.40 22.57 31.83 879.9
499 57.35 95.50 57.83 3869.
64 1.97 2.43 ’"5.91 17.15

[1, i, 1] 125 6.78 8.64 37.65 115.6
256 30.61 34.19 303.4 901.8
499 107.04 129.3 984.4 2424.
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TABLE 2
The residual of computed eigenvalues and eigenvectors.

Matrix Order
N HOMO
64 1.91D-15

[1,2,1] 125 1.95D-15
256 2.35D-15
499 2.22D-15
64 1.93D-16

Random 125 2.04D-16
256 3.98D-15
499 1.03D- 13
65 5.41D-16

W+ 125 3.39D-16
255 7.78D-16
499 9.10D-16
64 4.91D-15

[1, i, 1] 125 3.22D-15
256 4.40D-15
499 4.94D-15
64 7.16D-16

T2 125 7.30D-16
256 8.17D-16
499 8.08D-16
64 8.15D-16

BW 128 1.25D-15
256 2.13D-15
512 4.23D-15

B/III
4.97D-16
8.42D-16
1.28D-15
1.76D-15
3.66D-16
3.56D-16
3.62D-16
9.24D-15
5.49D-15
7.16D-15
1.43D-14
2.83D-14
5.08D-16
7.08D-16
1.14D-15
1.75D-15
1.77D-15
1.85D-15
2.29D-15
3.73D-15
3.25D-15
1.30D-14
1.40D-14
2.38D-14

TREEQL
1.90D-15
3.36D-15
6.09D-15
7.51D-15
2.45D-14
5.65D-14
7.14D-14
4.82D-14
1.88D-13
1.08D-12
1.08D-12
1.62D-11
2.44D-15
3.81D-15
5.42D-15
8.44D-15
5.59D-15
6.55D-15
1.34D-14
1.76D-14
4.38D-14
4.32D-13
3.84D- 12
3.84D-12

TQL2

9.83D-15
1.09D-14
2.75D-14
3.75D-14
6.05D-15
1.26D-14
5.39D-14
5.75D-14
8.79D-14
3.44D-13
6.71D-13
6.57D-12
8.81D-15
1.11D-14
2.75D-14
3.71D-14
1.58D-14
2.67D-14
5.01D-14
8.17D-14
3.19D-14
1.14D-13
6.67D-13
1.76D-12

We also execute our algorithm on 21 types of testing matrices in newly established
LAPACK, a package that rewrites the widely used LINPACK and EISPACK libraries
to make them efficient on vector and parallel computers. Tables 6 and 7 show the
comparisons of HOMO with B/III (DSTEBZ+DSTEIN in LAPACK). Types 1-7 of
those testing matrices are diagonal matrices, and Table 6 shows that both algorithms
work very well. The matrices of types 9, 17, and 21 have a large cluster with dimen-
sions around 4n/5 where n is the order of the matrices. For these matrices, HOMO
is not as fast as B/III. The matrices of types 10 and 18 have an even larger cluster
with dimension around n- 2. Although HOMO still works, time consumption does
not compare with B/III. We have a similar result for matrices of type

(0 #

# 0

0 1

1 0

where # is so large that HOMO detects a cluster of size n- 2. When n 250, while
B/III takes about 150 seconds to find all the eigenpairs, HOMO needs about 1000
seconds. Tables 6 and 7 show that HOMO leads in speed for the other types of testing
matrices.
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TABLE 3
The orthonormality of computed eigenvectors.

Matrix Order
N HOMO

64 6.21D-15
[1,2,1] 125 5.06D-14

256 4.11D-14
499 1.89D-13
64 4.16D-15

Random 125 1.75D-13
256 7.81D-13
499 1.94D-13
65 1.63D-15

W+ 125 2.16D-15
255 1.36D-15
499 1.02D-15
64 4.28D-15

[1,, 1] 125 2.46D-14
256 7.63D-14
499 2.38D-13
64 1.14D-15

T2 125 3.64D-15
256 5.34D-14
499 1.01D-13
64 2.13D-15

BW 128 1.36D-15
256 3.42D-15
512 1.95D-15

maxi,, I(xTx
B/III

9.40D-15
3.51D-14
2.10D-14
4.19D-14
2.66D-15
5.58D-15
3.99D-15
9.24D-15
2.22D-15
3.21D-15
4.32D-15
1.22D-13
7.66D-15
4.33D-14
1.66D-13
1.39D-13
7.91D-15
1.38D-14
1.99D-14
1.57D-14
3.55D-15
1.47D-13
1.03D-13
1.42D-13

TREEQL
1.48D-15
3.62D-15
1.49D-14
1.95D-14
1.08D-14
4.15D-14
1.92D-13
4.82D-14
1.11D-15
1.25D-15
4.44D-15
8.21D-15
1.08D-15
1.27D-14
8.40D-15
6.91D-14
9.35D-16
3.74D-15
1.04D-14
1.91D-14
6.66D’16
1.13D-15
4.44D-15
1.13D-14

TQL2

5.99D-15
7.54D-15
1.59D-14
2.48D-14
7.32D-15
1.13D-14
3.64D-14
4.24D-14
7.54D-15
1.26D-14
2.50D-14
6.97D-14
4.66D-15
6.66D-15
1.33D-14
2.44D-14
5.99D-15
1.33D-14
2.17D-14
4.92D-14
7.99D-15
9.10D-15
2.37D-14
2.66D-14

4.2. Numerical results in the parallel case. Scientific and engineering re-
search has become increasingly dependent upon the development and implementation
of efficient parallel algorithms on modern high-performance computers. The search
for algorithms for advanced computers suitable for eigenvalue problems has produced
several algorithms, such as divide and conquer (D&C)[5] and bisection/multisection
(B/M)[12] for symmetric tridiagonal matrices.

The homotopy algorithm is, to a large degree, parallel since each eigenpath can
be followed independently. This inherent nature of the homotopy method makes the
parallel implementation much simpler than other methods.

In our parallel algorithm, after all the eigenvalues of D are computed and put in
increasing order, we assign each processor to trace roughly nip eigencurves, where n
is the order of matrix A and p is the number of the processors being used. Let the
first processor trace the first nip smallest eigencurves from the smallest to the largest,
and let the second processor trace the second nip smallest eigencurves, and so on.

We present, in this section, the numerical results of the parallel implementation
of our algorithm. All examples were executed on the BUTTERFLY GP 1000, a
shared-memory multiprocessor machine.

The speedup is defined as

execution time using one processor
execution time using p processors

and the efficiency is the ratio of the speedup over p.
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TABLE 4
Analysis of the homotopy algorithm.

Number of
stepsize cutting

Number of
clusters

Maximum dimension of
subspaces of clusters

64 2.03
[1,, 1] 1

256 30.25
499 100.04
64 1.13

Random 125 3.79
256 14.90
499 53.19
65 0.97

Wn+ 125 3.97
255 16.40
499 57.35
64 1.97

[1,m, ] .s
256 30.61
499 107.04
64 1.80

T2 125 6.85
256 28.24
499 108.46
64 1.80

BW 128 8.69
256 38.85
512 144.05

10
28
37
111

10
28
8
113
11
28
38
93

32
4
128
22

25
59
121
246
32
5
128
10
2
4
11
17
20
36
68
132

TABLE 5
Analysis of the homotopy algorithm on [,i,] matrices with n 124.

Execution Execution
Matrix time of time of

B/III HOMO

[1,i,1] 8.86 2.01
8.78 3.83[10,i,10]

[10,,0]
[10,i,101
[lOa,i,lOa]

9.06 5.34
8.67 6.89
8.95 9.01

No. of No. Max.
stepsize of _subspace
cutting clusters dimension

0 0
7 2 2
18 0
32 2 2
57 0

subspace
iteration RQI

0 256
10 5O5
0 667
11 810
0 961

Table 8 shows the execution time and the speedup Sp, as well as the efficiency Sp/p
of our algorithm HOMO on matrices [1,2,1] and T2. The speedup of our method over
TQL2, TQL2/HOMO, on [1,2,1] is also listed. Similar results on matrices [1,#i,1]
and BW are shown in Table 9, and on random matrices, in Table 10. It appears that
our homotopy algorithm is very efficient.

The eigenvalues of the initial matrices of our algorithm on the examples in Tables
8, 9, and 10 were computed by TQL1. Since TQL1 is highly serial, it is not very
efficient with modest numbers of processors on large problems. Table 11 shows the
results of HOMO on random matrices by computing the eigenvalues of the initial
matrices with multisection method. From Tables 10 and 11, we can see that if only a
small number of nodes are available, using TQL1 to compute the eigenvalues of the
initial matrices is better than using the multisection method.
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TABLE 6
Execution time (seconds) of computed eigenvalues and eigenvectors from type 1 to 10.

Matrix[ Order[ Execution time
type n HOMO B/III HOMO

Matrix 32 0.00 0.00 0.0
type 64 0.02 0.03 0.0

1 128 0.07 0.10 0.0
256 0.32 0.33 0.0
500 1.17 1.40 0.0

Matrix 32 0.01 0.01 0.0
type 64 0.02 0.02 0.0
2 128 0.08 0.09 0.0

256 0.31 0.35 0.0
500 1.18 1.33 0.0

Matrix 32 0.00 0.00 0.0
type 64 0.02 0.03 0.0
3 128 0.07 0.09 0.0

256 0.30 0.34 0.0
500 1.17 1.33 0.0

Matrix 32 0101 0.00 0.0
type 64 0.02 0.02 0.0
4 128 0.07 0.08 0.0

256 0.32 0.33 0.0
500 1.17 1.34 0.0

Matrix 32 0.00 0.00 0.0
type 64 0.02 0.03 0.0
5 128 0.08 0.09 0.0

256 0.30 0.34 0.0
500 1.18 1.35 0.0

Matrix 32 0.01 0.00 0.0
type 64 0.02 0.02 0.0
6 128 0.07 0.10 0.0

256 0.32 0.33 0.0
500 1.17 1.32 0.0

Matrix 32 0.00 0.01 0.0
type 64 0.02 0.02 0.0
7 128 0.07 0.08 0.0

256 0.32 0.33 0.0
500 1.!8 1.34 0.0

Matrix 32 0.79 1.01 2.13D-16
type 64 2.67 3.99 1.73D-16
8 128 11.33 15.36 6.41D-16

256 36.30 60.10 5.57D-16
500 142.8 226.6 6.38D-16

Matrix 32 1.24 0.93 2.17D-16
type 64 16.01 4.54 6.70D-17
9 128 119.0 15.36 1.60D-16

256 937.8 154.5 1.14D-16
500 7334. 989.0 1.68D-16

Matrix 32 1.31 0.80 3.76D-16
type 64 22.23 3.91 4.34D-16
10 128 171.4 24.22 7.32D-16

256 1432. 171.6 2.87D- 16
500 12934 1193. 7.92D-16

B/Ill
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

maxi,j I(xTx
HOMO B/III

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

2.05D-16
2.97D-16
2.34D-16
3.87D-16
3.31D-16
1.03D-16
1.03D-16
1.40D-16
2.38D-16
3.87D-16
8.51D-17
1.60D-16
3.93D-16
5.81D-16
6.56D-17

1.39D-15
3.38D-15
3.84D- 15
1.05D-14
2.02D-14
3.32D-16
5.10D-15
5.77D-15
1.19D-14
1.77D-14
8.32D-15
5.91D-15
3.83D-14
4.44D-14
5.32D-14

1.73D-15
2.98D-15
4.58D-15
1.52D-14
2.53D-14
4.44D-16
4.94D-16
7.77D-16
1.21D-15
2.10D-15
5.15D-15
3.72D-15
3.22D-14
1.29D-13
5.22D-15
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ThBLE 7
Execution time (seconds) of computed eigenvalues and eigenvectors from type 11 to 21.

Matrix]Order Execution time maxi IlAx,- A,x, ll2/Amax
type n HOMOI g/III HOMO B/III

Matrix
type
11

Matrix
type
12

"’Matrix
type
13

Matrix
type
14

Matrix
type
15

Matrix
type
16

Matrix
type
17

Matrix
type
18

Matrix
type
19

Matrix
type
2O

Matrix
type
21

maxi,j I(Xx I)ij I/Amax
HOMO B/III

32 0.71 1.00
64 2.86 3.88
128 11.14 24.28
256 46.85 57.96
500 174.3 217.4
32 0:53 1.07
64 3.22 4.17
128 12.23 14.78
256 40.93 60.99
500 159.3 229.1
3’2 0:67 0.96
64 2.37 3.84
128 9.95 14.98
256 33.98 59.59
500 157.9 223.4
32 0152 0.99
64 2.49 3.82
128 9.70 14.77
256 41.37 58.18
500 137.4 217.3
32 0.80 1.08
64 3.42 4.07
128 9.97 15.35
256 36.71 60.33
500 143.8 229.7
32 0.54 1.03
64 2.34 3.89
128 9.96 15.15
256 42.91 59.56
500 150.5 227.3
3’2 2.08 0.97
64 14.47 4.53
128 105.4 24.58
256 855.3 152.2
500 9013 998.1
32 1.38 0.84
64 23.17 3.85
128 184.6 24.29
256 1327. 170.4
500 12814 1193.3
3 o. .o
64 2.39 3.81
128 9.71 14.75
256 45.70 57.56
500 157.07 216.3
32 0.69 1.04
64 3.73 3.88
128 10.90 15.50
256 42.95 60.29
500 146.1 231.7
3’2’ 2.’57 1.01
64 14.10 4.96
128 142.2 24.42
256 1116. 150.7
500 8702. 992.3

1.83D-16
1.95D-16
5.08D- 16
6.01D-16
1.04D-15
2.26D-16
1.76D-16
6.82D-16
4.76D-16
1.24D-15
3.71D-16
1.81D-16
8.93D-16
7.05D-16
9.38D-16
8.47D- 17
1.50D-16
2.40D-16
2.31D-16
1.17D-15
1.63D-16
5.46D- 16
1.73D-16
6.65D-16
8.55D-16
8.96D-17
7.25D-17
9.94D-17
4.67D- 16
1.14D-15
6.46D- 17
8.51D-17
9.34D-17
6.45D-17
2.86D-16
6.02D-16
2.38D-16
9.37D- 16
1.88D-15
6.73D-15
7.42D-17
2.59D-16
3.18D-16
8.97D- 16
1.20D-15
5.79D- 16
1.46D-16
2.54D-16
4.45D-16
6.03D-16
3.37D-17
4.33D-17
5.33D-17
6.25D-17
6.04D-17

2.07D- 16
2.35D-16
2.30D-16
2.90D-16
3.44D-16
1.84D-16
2.51D-16
2.29D-16
2.51D-16
3.33D-16
1.69D-16
2.69D-16
2.85D-16
2.21D-16
2.42D-16
2.76D- 16
1.81D-16
1.91D-16
2.66D- 16
2.81D-16
1.84D-16
2.63D-16
1.99D-16
2.16D-16
3.34D-16
1.21D-16
2.01D-16
2.21D-16
1.82D-16
2.37D-16
1.57D-16
9.18D-17
1.84D-16
1.57D- 16
1.58D-16
1.31D-16
8.36D- 17
1.29D-16
4.47D-16
3.71D-16
1.53D-16
1.25D-16
1.83D-16
2.12D-16
2.19D-16
1.26D-16
1.90D-16
1.65D-16
2.32D-16
2.20D-16
1.00D-16
1.01D-16
1.15D-16
1.14D-16
1.14D-16

7.75D-16
1.81D-15
2.63D-15
4.65D-15
1.15D-14
3.20D-16
4.41D-16
1.55D-15
4.32D-15
1.46D-14
1.72D-16
1.10D-16
3.04D-16
1.07D-15
1.29D-15
1.45D-16
5.42D-16
1.23D-15
5.47D-15
1.67D- 14
1.44D-15
1.53D-15
3.77D-15
6.38D-15
2.74D- 14
3.33D-16
6.66D-16
2.80D-15
5.41D-15
1.70D-13
2.55D-15
4.21D-15
7.99D-15
1.24D-14
2.08D-14
3.33D-16
2.87D-15
7.07D- 14
5.31D-14
8.83D-14
4.85D-16
7.10D-16
1.82D-15
3.58D-15
7.83D-15
6.49D-16
7.30D-16
1.35D-15
3.02D-15
9.48D-15
2.44D- 15
3.99D-15
9.54D-15
1.24D- 14
2.35D-14

1.88D-15
5.93D-15
2.81D-14
1.44D-13
5.36D-13
.0D-6
8.44D- 16
4.93D-16
5.73D- 16
6.39D-15
1.85D’16’
1.79D-16
4.05D-16
7.07D- 16
9.48D-16
2.96D-16
1.40D-16
3.74D-15
8.71D-15
2.31D-14
7.43D-16
5.86D-15
7.95D-15
4.48D-14
2.08D-14
4.44D-16
7.77D- 16
2.27D- 15
5.64D-15
1.24D-14
4.44D-16
1.10D-15
9.68D-16
3.00D-15
3.20D-15
7.45D-16
8.05D-16
1.60D-15
2.16D-13
1.32D-14
7.16D-16
3.03D-16
1.14D-16
4.57D-15
1.65D-15
3.09D-15
3.11D-15
2.45D-15
4.28D-15
3.91D-15
6.66D-16
6.66D-16
6.66D-16
8.88D-16
1.75D-15
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TABLE 8
Execution time (seconds), speedup, and ejciency of HOMO on [1,2,1] and T2 matrices.

[1,2,1] matrix T2 matrix

Order Nodes Sp TGL2 Sp
n p Sp p HOMO Sp p

1 1.0 1.00 3.44 1.0 1.00
65 2 1.8 0.89 6.10 1.9 0.95

4 2.9 0.72 9.93 3.3 0.82
1 1.0 1.00 176.7 6.06 1.0 1.00

125 2 1.9 0.96 11.59 2.0 1.00
4 3.3 0.83 20.18 3.7 0.94
8 4.6 0.57 27.70 5.7 0.71
1 1.0 1.00 1457. 11.91 1.0 1.00
2 1.9 0.97 20.85 2.0 1.00

255 4 3.7 0.92 44.07 3.9 0.96
8 6.0 0.75 71.53 6.4 0.80
16 8.6 0.54 102.08 9.7 0.60
1 1.0 1.00 10889 22.79 1.0 1.00
2 2.0 0.99 45.00 2.0 1.00

499 4 3.8 0.95 86.80 3.9 0.98
8 6.4 0.80 146.19 6.7 0.84
16 10.1 0.63 229.69 10.5 0.66

HOMO
(Exe-
Time)
7.99
4.51
2.77
29.18
15.25
8.76
6.38
122.37
69.93
33.08
20.38
14.28
477.91
242.01
125.45
74.49’
47.41

TQL2 HOMO TQL2
(Exe- (Exe- (Exe-)
Time) Time) Time)
27.55 9141 26.33

4.93
2.88
34.98 177.33
17.55
9.34
6.14

143.46 1497.
71.76
37.2
22.4
14.85
550.90 11198
276.56
140.48
81.72
52.27

TABLE 9
Execution time (seconds), speedup, and efficiency of HOMO on [1, #i, 1] and BW matrices.

Orde
n

[1,ui, 1] matrix

p (ExeTime) Sp -- n

1
65 2

4
1

125 2

255

7.61
4.09
2.81

499

30.21
15.51

4 9.50
8 6.64
1 123.91
2 62.73
4 34.98
8 20.86
16 14.60
1 498.85
2 249.46
4 132.46
8 78.18
16 52.69

1.0 1.00
1.9 0.93
2.7 0.68
1.0 1.00
1.9 0.97
3.2 0.79
4.6 0.57
1.0 1.00
2.0 O.98
3.5 0.89
5.9 0.74
8.5 0.53
1.0 1.00
2.0 1.00
3.8 0.94
6.4 0.80
9.5 0.59

64

128

256

512

BW matrix
Nodes

P
1
2
4
1
2
4
8
1
2
4
8
16
1
2
4
8
16

HOMO Sp
(ExeTime) Sp p

11.89 1.0 1.00
6.32 1.9 0.94
3.79 3.1 0.78
26.87 1.0 1.00
14.06 1.9 0.95
7.69 3.5 0.87
5.15 5.2 0.65
186.36 1.0 1.00
97.75 1.9 0.97
49.79 3.7 0.94
31.55 5.9 0.74
20.54 9.1 0.57
726.42 1.0 1.00
366.40 2.0 0.99
188.54 3.9 0.96
111.51 6.5 0.81
67.64 10.7 0.67

The results we show here are only preliminary. With further intensive concentra-
tions on parallel programming strategies, our HOMO algorithm may be an excellent
candidate for a variety of advanced architectures. We expect to report on this impor-
tant aspect in a future article.
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TABLE 10
Execution time (seconds), speedup, and ejciency of HOMO on random matrices by computing

the eigenvalues of the initial matrices with TQL1.

Order
Nodes

(ExeWime)
s

n =125
1 2 4’ 8

21.1 11.1 6.04 4.06
1.0 1.9 3.5 5.2
1.0 0.95 0.87 0.65

n =255
1 2 4 8

80.6 41.6 22.2 14.4
1.0 1.9 3.6 5.6
1.0 0.97 0.91 0.70

n =499
1 2 4 8

302. 155. 82.5 52.0
1.0 1.9 3.7 5.8
1.0 0.97 0.92 0.73

TABLE 11
Execution time (seconds), speedup, and ejciency of HOMO on random matrices by computing

the eigenvalues of the initial matrices with multisection method.

Order
Nodes

(ExeTime)
s
Sp/p

n =255
1 2 4 8 16

112. 57.6 30.2 16.7 10.1
1.0 2.0 3.7 6.7 11.1
1.0 0.98 0.93 0.84 0.69

32
7.07
16.0
0.50

Order
Nodes

(ExeTime)
s
Sp/p

n =499
1 2 4 8 16 32 46

386. 195. 101. 53.5 31.1 19.5 16.8
1.0 2.0 3.8 7.2 12.4 19.7 22.9
1.0 0.99 0.95 0.90 0.78 0.62 0.50
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THE DUAL SCHUR COMPLEMENT METHOD
WITH WELL-POSED LOCAL NEUMANN PROBLEMS:

REGULARIZATION WITH A PERTURBED LAGRANGIAN
FORMULATION*

CHARBEL FARHATt, PO-SHU CHENt, AND FRANCOIS-XAVIER ROUX$

Abstract. The dual Schur complement (DSC) domain decomposition (DD) method introduced
by Farhat and Roux is an efficient and practical algorithm for the parallel solution of self-adjoint
elliptic partial differential equations. A given spatial domain is partitioned into disconnected sub-
domains where an incomplete solution for the primary field is first evaluated using a direct method.
Next, intersubdomain field continuity is enforced via a combination of discrete, polynomial, and/or
piece-wise polynomial Lagrange multipliers, applied at the subdomain interfaces. This leads to a
smaller size symmetric dual problem where the unknowns are the "gluing" Lagrange multipliers,
and which is best solved with a preconditioned conjugate gradient (PCG) algorithm. However, for
time-independent elasticity problems, every floating subdomain is associated with a singular stiffness
matrix, so that the dual interface operator is in general indefinite. Previously, we have dealt with
this issue by filtering out at each iteration of the PCG algorithm the contributions of the local null
spaces. We have shown that for a small number of subdomains, say less than 32, this approach is
computationally feasible. Unfortunately, the filtering phase couples the subdomaln computations,
increases the numerical complexity of the overall solution algorithm, and limits its parallel implemen-
tation scalability, and therefore is inappropriate for a large number of subdomains. In this paper, we
regularize the DSC method with a perturbed Lagrangian formulation which restores the positiveness
of the dual interface operator, reduces the computational complexity of the overall methodology,
and improves its parallel implementation scalability. This regularization procedure corresponds to
a novel splitting method of the interface operator which entails well-posed local discrete Neumann
problems, even in the presence of floating subdomains. Therefore, it can also be interesting for other
DD algorithms such as those considered by Bjorstad and Widlund, Marini and Quarteroni, De Roeck
and Le Tallec, and recently by Mandel.

Key words, domain decomposition, Neumann problems, parallel processing
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1. Introduction. Recently, Farhat and Roux have introduced a dual Schur com-
plement (DSC) domain decomposition (DD) method for the efficient solution of static

[1]-[4] and transient [5] finite element structural problems on parallel processors. The
method was shown to outperform direct solvers on both serial and coarse-grained mul-
tiprocessors such as the CRAY Y-MP system, and to compare favorably with other
domain decomposition algorithms on a 32-processor hypercube [2]. However, for a
large number of subdomains and processors and for time-independent problems, the
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DSC method may lose some of its efficiency because of its special treatment of floating
subdomains. The objective of this paper is to present a regularization procedure that
is based on a "balanced" perturbed Lagrangian formulation and that improves the
overall computational efficiency of the DSC method. This regularization procedure
corresponds to a novel splitting method of the interface operator which entails well-
posed local discrete Neumann problems, even in the presence of floating subdomains.
It provides a practical means to regularize several other DD algorithms using both
Dirichlet and Neumann local solvers and which can suffer from the presence of floating
subdomains [6]-[9].

The resulting regularized dual Schur complement (RDSC) method is a two-field
alternative to the related three-field hybrid domain decomposition method introduced
by Glowinski and Le Tallec [10]. Because of space limitations, we refer the reader to
[2] and [3] for a background on the DSC method and for a discussion on the effect of
floating subdomains on the algebraic properties and computational requirements of
the resulting interface problem.

2. A regularized DSC method.

2.1. The two-subdomain problem. The variational form of the three-
dimensional boundary-value problem to be solved is as follows. Given f and h, find
the displacement function u that is a stationary point of the energy functional

(2.1) J(v) 1/2a(v, v) (v, f) (v, h)r

where

a(v,w) V(i,j)CijklW(k,l d; (v,f) vifi d; (v,h)r r vihi dF.
h

In the above, the indices i,j,k take the values 1-3, v(i,j) (vi,j /vj,i)/2, vi,j denotes
the partial derivative of the ith component of v with respect to the jth spatial variable,
cijkl are the elastic coefficients, denotes the volume of the elastostatic body, F its
piecewise smooth boundary, and Ih is the piece of F where the tractions hi are
prescribed. If is subdivided into two subdomains 1 and 2, solving the above
elastostatic problem is equivalent to finding the displacement functions ul and u2,
which are stationary points of the perturbed Lagrangian functional

H(vl,v2, A) J(v) / J2(v2)+ fr,(v -v) dr
(2.2)

_12 fv, :(vl I,)2 (v2lv,)2dF,

where FI C Fz is a subset of the interface boundary, and is a linear operator that
acts on the traces of v and v2 on F. The proper selection of F and is discussed
later. In the remainder of this section, we assume that only f2 is a floating subdomain,
that is, a subdomain without sufficient Dirichlet boundary conditions to guarantee a
nonsingular stiffness matrix. The finite element equations associated with (2.2) are
given by

(2.3) (K -/)Ul fl BTA; (K2 + Z)u2 f2 B2TA; BlU / B2u2 0,

where K1 is positive definite, K2 is positive semidefinite, and A is zero everywhere
except on a subset of the interface boundary degrees of freedom. If discrete Lagrange
multipliers are used, B and B2 are signed boolean matrices; otherwise, they are
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standard finite element matrices with full column rank. Clearly, serves the purpose
of regularizing K2. However, is useful only if it is sparse and computationally
inexpensive, and if it restores the positive definiteness nature of the stiffness in 2,
without destroying this algebraic property in 121. In other words, the problem now is to
find an economical matrix A--or its corresponding operator/:--which can stiffen 2
enough so that K2 -F is symmetric positive definite, without softening 1 enough so
that K1-A is singular or indefinite. We refer to this problem as a balancing problem,
and we refer to the corresponding functional H(vl,v2, A) as a balanced perturbed
Lagrangian.

Remark 2.1.1. Given that fi :(vlli)2-Z:(v21 )2 dF depends only on the traces

of vl and v2 on the subset Fx of the interface boundary Ii where the Lagrange
multipliers/ enforce the continuity equation (vl -v2)lr 0, the solution (ul, u2) of
the system of equations (2.3) is independent of the operator/ and its corresponding
matrix A.

2.2. Balancing the subdomains. Here we consider the problem of construct-
ing A such that both K1 A and K2 -+- A are symmetric positive definite. Homoge-
neous boundary conditions are assumed on part of 1 (Fig. 1).

Let ri and nr denote, respectively, the total number of unknowns on Ii, and the
exact number of rigid body modes associated with 2, that is, the dimension of the
null space of K2. These rigid body modes can be eliminated, for example, by fixing
nc degrees of freedom on FI, where nr < nc < hi. We define FI as the spatial support
of these nc degrees of freedom (Fig. 1).

1,2)

FIG. 1. FI .for the two-subdomain problem with a local singularity.

Next, we partition the subdomain stiffness matrices as

(2.4) K1 fr c
and K2 fcT CC142 K2

where the superscript c denotes those degrees of freedom on Ii, and the superscript
f denotes all of the other degrees of freedom. The above partitioning is characterized
by:

1. K and K2/ are symmetric positive definite,
2. K1/c and K2/ have full column rank,

c CrKllf-lKI is symmetric positive definite, and3. K L
c "fcrKl2f-IKl2C is symmetric positive semidefinite.4. K2 l(.2

After all but the last nc equations in each subdomain are reduced with a Gaussian
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elimination or a Cholesky decomposition, K1 and K2 are overwritten with

g [ gfa...
(2. 1

K2 [K2Ha...
where the superscript indicages a reduced magrix. Now, if A is constructed as

(2.6) A A*
1
(Kc- /,cr.f/,-1

then it follows thag

(e.7)

(K1 Z*)R "’1

-I(Kc 1-IcTKII-1KflC)R2

/CTK(/-1K(C)IR"IrK- K + (K-1[K 2
which clearly demonstrates that both KI &* and K2 + * are symmetric positive
definite matrices.

The extreme values of nc correspond to two extreme regularization strategies.
For n ni, the local problems are better conditioned than for nc nr but a lot of
fill-in may be introduced during the factorization of K2 + *. On the other hand
for n nr, the local problems are not well conditioned for nc n but
K2 + * and K2 generally have the same sparsity pttern and therefore the latter
regularization strate is cheaper to implement. The ce nr nc ni corresponds
to a compromise between the two extreme options. In the remainder of this paper
we consider only the ce where nc nr and therefore we have

cc ]CK]-Kc 0.(2.8) K2 2
2.3. The multiple subdomain problem. For the ske of clarity, we first con-

sider a strip-wise decomposed three-subdomain problem where is clamped at one

end, nd 2 nd 3 re Hotin subdomins (Fi. 2). ,2) is dened the spatial
support of n’2) degrees of freedom on the interface between and 2 that must be
constrained in order to remove the rigid body modes in 2. Similarly ,3) is defined

the spatial support of n2’3) degrees of freedom on the interface between 2 and 3
which must be constrained in order to eliminate the rigid body modes in 3 aer2
h been regularized. For subdomain 2 we refer to the degrees of freedom on ,2)

the receiving degrees of freedom and to those on 2,3) the emitting degrees of
freedom.

We prtition the subdomin stiffness matrices

(2.9)
/f

gl .fcT ;K2= K2 K2 ;K3= fT KcCC
T crceT 143gl K2/ K2 K
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FIG. 2. The strip-wise decomposed three-subdomain problem with local singularities.

where the superscripts c" and ce indicate the receiving and emitting degrees of freedom
in f2, respectively. After all but the last n(r1’2) equations in fl and f2, and all but
the last n(r2’3) equations in [-3 are reduced, the subdomain stiffness matrices are
overwritten with

(2.10)

K [ Klffn...
and

K1 _11-IK(I-K( K3 "’3

K2I
a

K

First, 2 is regularized with the n(1’2) n(r1’2) matrix

A (1,2) 1
(KC .seT ,.$f-I

"1 "1 K2

after which the factored stiffnesses in and 2 become

K2C,-n
c"c" Kf2c’TKf2I- Kf2" K" "’2 "’2K2 i(fc,.Ti(ff-IKf2c

[K," uf2c"TKf2.f-lKf2C]T UeC gf2cTuf2.f-uf2c

(2.11) (K1 (1,2))R 11
A(1,2)n

and

(2.12)
(K2 + A(1’2))R
KV K2

K"c" i,( .fcrT if.ff Kf2 cr (1,2) R
-’2 "’2 +A [K" I’(’fc"TI"f’f-Kf2c’]R"’2 "2

T2

where

T2 K2C Kf2TKf2"f-lgf2c-[g"c g2fc’TK2ff-lK2f]T
K c" Kf2 c"TKf2 f Kf2 c" + A(l’2)]-I [K"ce l’2I’fc"TI’ff-Kf2c’’’2
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_1T2 and finallyNext, f3 is regularized with the n(r2’3) n(r2’3) matrix (2,3)
2

the factored stiffnesses in i22 and f3 become

(K2 (2,3))R

K2C R

K/2CTK2-K25c]

and

(2.14) (K3 -+- A(2’3))R [ K3ffa...
For arbitrary mesh decompositions, the crucial point is to detect for a given

subdomain s and a neighboring q, whether I is a "receiving" or "emitting"
subset of FI. If V, denote the number of neighboring subdomains to s, the overall
regularization algorithm can be implemented as follows:

Step 1. For every subdomain 12s, reduce all but the last n(s) equations of the corre-

sponding stiffness matrix Ks. (Note that n(rs) _< 3 Vs in two-dimensional

problems, and n(s) _< 6 Vs in three-dimensional ones.)
Step 2. Regularization proceeds from the nonfloating subdomains towards the floating

ones. Floating subdomains which contain both "receiving" and "emitting"
interface subsets are regularized first, and the "receiving" degrees of freedom
are treated before the "emitting" ones.

Clearly Step 1 is a parallel step but Step 2 is a sequential one. However, for
most large-scale problems, the CPU time corresponding to Step 2 is an extremely
small fraction of the CPU time corresponding to Step 1, as the first step may involve
millions of floating-point operations while the second one involves at most a few
hundred. Interprocessor communication is required only in Step 2 and is limited to
neighboring processors.

3. The regularized interface problem. If the floating subdomains are not
regularized, the interface problem associated with (2.3) can be written in the case of
Ns arbitrary subdomains as [1]

BsKsBs -GI ) d
s=l where

(3.1) -GIT 0 o -e

K K if fs is not a floating subdomain,

K: K+ if fs is a floating subdomain,

where K+ is a generalized inverse of Ks, GI is a full column rank matrix that stores
the traces on the interface boundary of the null spaces corresponding to the floating
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subdomains, and c stores the contributions of these null spaces to the local solutions.
The above interface problem (3.1) is clearly indefinite and its solution requires special
handling [1]-[3]. On the other hand, the regularized interface problem associated with
(2.3) can be written for N8 arbitrary subdomains as

(3.2) Bs(Ks + (sAs)-lB Bs(K8 + sAs)-lfs,
L s:l s:l

where 5s is +1, -1, or 0 if 8 is a receiving, sending, or nonfloating subdomain, re-
spectively. Clearly, the above regularized system (3.2) is symmetric positive definite.
The PCG algorithm can be applied to the solution of (3.2) at little additional cost
and using only subdomain-by-subdomain scalable and intrinsically parallel compu-
tations. As in the case of nonfloating subdomains, the above interface problem is
preconditioned with P derived in [1] as

(3.3) p-l= Z BKBT"
s--1

4. Performance improvement. Here, we consider the static analysis of the
cabin of a launch vehicle subjected to external aerodynamic loading and internal
pressurization (Fig. 3). All computations are performed on an iPSC/860 Touchstone
machine. The structure is discretized with triangular shell elements. Several meshes of
different sizes are constructed, each corresponding to a different number of processors
and therefore to a different total memory size. In order to highlight the improvement
in performance induced by the regularization approach described in this paper, both
the "filtered" DSC method [1] and the RDSC method are applied to the solution
of the same problem. Also, the Jacobi preconditioned (diagonal scaling) conjugate
gradient (JPCG) algorithm is used as a reference for CPU timings.

FIG. 3. Finite element discretization of the cabin.

All measured performance results are summarized in Table 1, where NP, NDOF,
and Tp denote, respectively, the number of processors, the number of degrees of free-
dom, and the solution parallel time measured in seconds. The number of iterations
is indicated in parentheses., For all solution algorithms, convergence is established by
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requiring that the normalized global residual be less than 10-3.

(4.1) [[Ku- f[[2 < 10_3
Ilfll 

TABLE 1

Performance results--iPSC/860.
NP NDOF Tp (JPCG) Tp (DSC) Tp (RDSC)
4 4,024 46 s. (700 it.) 23 s. (34 it.) 22 s. (38 it.)
16 16,456 110 s. (2308 it.) 54 s. (66 it.) 49 s. (62 it.)
32 31,928 168 s. (3980 it.) 79 s. (89 it.) 62 s. (92 it.)
64 59,064 295 s. (6127 it.) 189 s. (142 it.) 121 s. (144 it.)

The performance results reported above clearly indicate that
1. the regularization process does not seem to negatively affect the performance

of the solution of the interface problem, since the DSC and RDSC method appear to
converge after an almost identical number of iterations,

2. as expected, the performance improvement due to regularization is most im-
portant for an increasing number of processors, and

3. both DSC methods are shown to outperform the JPCG algorithm by a factor
of three.
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A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR
SHARED-MEMORY MULTIPROCESSORS*
ESMOND NG AND BARRY W. PEYTONt

Abstract. This paper presents a parallel sparse Cholesky factorization algorithm for shared-memory
MIMD multiprocessors. The algorithm is particularly well suited for vector supercomputers with multiple
processors, such as the CrayY-MP. The new algorithm is a straightforward parallelization ofthe left-looking su-
pernodal sparse Cholesky factorization algorithm. Like its sequential predecessor, it improves performance by
reducing indirect addressing and memory traffic. Experimental results on a Cray Y-MP demonstrate
the effectiveness of the new algorithm. On eight processors of a Cray Y-MP, the new routine performs the
factorization at rates exceeding one Gflop for several test problems from the Harwell-Boeing sparse matrix
collection.

Key words, parallel algorithms, sparse linear systems, Cholesky factorization, supernodes
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1. Introduction. In this paper, we present a simple algorithm for computing a sparse
Cholesky factorization on a shared-memory multiprocessor system. While our focus is
on powerful multiprocessor vector supercomputers, our approach should perform well
on any shared-memory multiprocessor with a modest number of processors and a bus
that provides adequate bandwidth. The key features of our algorithm can be summa-
rized as follows.

It is both column oriented and left looking, like the algorithms used in several
sparse matrix packages (e.g., see [11]).

It uses supernodes to reduce both memory traffic and indirect addressing, as de-
scribed in [4].

The techniques used to implement the algorithm on a shared-memory multipro-
cessor are precisely those used in [10] to implement the left-looking algorithm in [11] on
this class of machines.

Our primary contribution is to incorporate into one algorithm the supernodal tech-
niques introduced in [4] and the parallel implementation techniques introduced in [10],
and further to demonstrate the effectiveness of this simple approach on an important
class of machines. Since the ideas upon which the algorithm is based are simple and
well known, our discussion of previous work and the presentation of the new algorithm
will be brief and, for the most part, informal. The reader can find most of the necessary
details in [4], [10], and [11].

This note is organized as follows. Section 2 briefly discusses some background ma-
terial. Section 3 provides a complete description of our algorithm. The timing results
reported in 4 demonstrate the effectiveness of this approach on a Cray Y-MP with eight
processors. Finally, 5 contains a few concluding remarks.

2. Background. Let A be a symmetric positive definite matrix. The Cholesky factor
of A, denoted by L, is a lower triangular matrix whose main diagonal is positive and for
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which A LL7". When A is sparse, fill occurs during the factorization; that is, some of
the zero elements in A will become nonzero elements in L. In order to reduce time and
storage requirements, only the nonzero positions ofL are stored and operated on during
sparse Cholesky factorization. Techniques for accomplishing this task and for reducing
fill have been studied extensively (see [11] for details). In this paper we restrict our
attention to the numerical factorization phase. We assume that the preprocessing steps,
such as reordering to reduce fill and symbolic factorization to set up the compact data
structure for L, have been performed. Details on the preprocessing can also be found
in [11].

Column-oriented, left-looking, sparse Cholesky. The standard column-oriented, left-
looking, sparse Cholesky algorithm is widely used in many sparse matrix packages, such
as SPARSPAK [5]. When column L,, is to be computed, the algorithm modifies column
A,, with multiples of previous columns of L, namely those columns L,, for which 1 <
k < j- 1 and L, # 0. We shall let cmod(j, k) denote the operation of updating column
A,, with a multiple of the appropriate entries of L,,. The compute-intensive kernel
used by the algorithm performs a single cmod(j, k) operation. A detailed description of
this algorithm, along with a computer code that implements it, can be found in [11].

Supemodalsparse Cholesky. For many realistic problems, especially those from struc-
tural analysis applications, the fill generated during the factorization creates groups of
contiguous columns that share the "same" sparsity structure. A group of such columns
is referred to as a supemode. The reader should consult [12] and [16] for a detailed de-
scription of various supemode partitions. The first reference also presents an efficient
algorithm for generating a supernode partition.

Recently, supernodes have been used to organize sparse numerical factorization al-
gorithms around matrix-vector or matrix-matrix operations that reduce memory traffic,
thereby making more efficient use of vector registers [3], [4] or cache [1], [17]. The role
of supernodes in improving both left- and right-looking sparse Cholesky factorization
algorithms is well documented [1], [3], [4], [8], [17], [19], with the references [4] and [17]
providing the basis for the work in this note.

Let K (p, p + 1,..., p + q} denote a supernode in L. Because of the sparsity pat-
tern shared by all columns in K, any column A,, (j > p + q) will be modified by either
all columns ofK or no column of K. Consequently, a supernodal Cholesky algorithm is
expressed in terms of the operation cmod(j, K) (j K), which modifies column j with
a multiple of each column in K, and also the operation cmod(j, .I) (j J), which mod-
ifies column j with a multiple of each column k E J for which k < j. The cmod(j, K)
update, where j K, first uses a dense matrix-vector multiplication to accumulate the
column modifications in a small work vector, after which the accumulated column up-
date is applied to the target column L,, using a single column operation that requires
indirect addressing. In practice, this often greatly reduces the number of operations that
require indirect addressing. Execution of the cmod(j, J) update, where j ./, is even
easier; the result of the matrix-vector multiplication is accumulated directly into factor
storage for the target column L,, and thus requires no work storage or indirect address-
ing. For both cmod(j, K) and cmod(j, ), unrolling the outer loop of the matrix-vector
multiplication significantly reduces memory traffic, thereby improving the utilization of
pipelined arithmetic units, especially on vector supercomputers. The interested reader
should consult [4] and [17] for details.

Automatic parallelization ofthe supemodal algorithm. One approach to implement-
ing sparse supernodal Cholesky factorization on a multiprocessor vector supercomputer
has been described in [19]. The basic idea is to partition the work in cmod(j, K) and
cmod(j, ) evenly among the available processors using the automatic parallelization
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capabilities of the target machine. This approach is similar to that employed in the LA-
PACK project [2], where, in the interest of software portability and reliability, use of
multiple processors occurs strictly within each call to some compute-intensive variant of
a matrix-matrix multiplication (BLAS3) or matrix-vector multiplication (BLAS2) kernel
subroutine. Hence each call to the kernel involves a fork-and-join operation. For large
dense matrices, where the vectors are quite long and each call to the kernel routine typ-
ically involves a substantial amount of work, this approach is quite effective [6]. For
sparse matrices, however, short vectors and a limited amount of work within a typical
call to the kernel routine make it quite difficult to implement this approach in an effec-
tive manner. As shall be shown in 4, the performance of the code in [19] apparently
suffers from these defects.

Handparallelization ofthe "nodal" algodthm. George, Heath, Liu, and Ng [10] intro-
duced a parallel sparse Cholesky algorithm for shared-memory multiprocessors. Their
algorithm is a straightforward parallel implementation of the sequential column-based,
left-looking, sparse Cholesky factorization algorithm from [11]. The techniques we use
to parallelize the supernodal factorization algorithm are taken directly from [10].

The task ofcomputing column L., is referred to as a column task in the computation
and is denoted by Tcol(j). More precisely,

Tcol(j) := {cmod(j, k) k < j and Lj,k 0} t.J {cdiv(j) },

where cdiv(j) is the column scaling required to complete the computation of L,,j. The
parallel algorithm maintains a pool of column tasks, and the assignment of column tasks
to processors is dynamic: when a processor completes one column task, it immediately
seeks another column task from the pool. This approach is particularly appropriate for
a shared-memory multiprocessor system with a fast bus, and, as might be expected, it
typically achieves good load balance.

Clearly each task Tcol(j) needs access to the set of column indices that constitute
the sparsity pattern ofrow Lj,,. Because the computation and its data structures are both
column oriented, special techniques are needed to generate these row-oriented sets in
all the left-looking algorithms. The details of how to use a collection of linked lists to
compute the "row structure" sets as the algorithm proceeds are well known and can be
found in [11]. These linked lists are implemented with a single n-vector. To maintain
the integrity of this dynamic data structure, it is modified in critical sections of the code,
which are implemented by means of standard synchronizing primitives, which we shall
call lock and unlock.

Finally, the column tasks Tcol(j) are placed in the column-task queue in an order
that exploits high-level parallelism in the computation. It is well known that the elimina-
tion tree associated with L fully describes the data dependencies in the computation [14].
We refer the reader to [15] for details on the many uses of elimination trees in sparse
matrix computation, and to [14] for details on how the elimination tree reveals vari-
ous levels of parallelism available in the factorization. Two columns are independent of
one another if and only if the corresponding nodes in the elimination tree are not an
ancestor-descendent pair in the tree. Consequently, an ordering obtained by a breadth-
first, bottom-up traversal of the postordered elimination tree is ideal for preserving as
much independence as possible among the columns currently being computed at any
point in the algorithm.

3. Detailed algorithm. In this section we give the details of an algorithm based on
the ideas discussed in 2. The following notation and conventions are used in the algo-
rithm, which is shown in Fig. 1.
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Global initialization:- {Tcol(1), Tcol(2),..., TcoZ(n)}
for j 1 to n do

end for

Work performed by each processor:
while Q @ do

pop Tcol(j) from Q (critical section)
let J be the supernode containing column j
while column j requires further cmod’s from some K < J do

if Sj 0 then
wait until Sj q}

end if
lock
remove K from Sj
q next(j, K)
if q < n then

Sq - Sq {K}
end if
unlock
cmod(j, K)

end while
cmod(j, J)
cdiv(j)
if j is the last column of supernode J then

q - next(J, J)
if q _< n then

lock

Sq -- Sq [3 {J}
unlock

end if
end if

end while

FIG. 1. A parallel supemodal Choleskyfactoization algothmfor shared-memory multiprocessor machines.

The work queue is denoted by Q and the row structure set for updating column j is
constructed in the set Sy as the algorithm progresses. It is worth noting that the set
Sj contains supemodes that update column L.,y, not individual columns that update the
column. We let next(j, K) be the next column after j to be updated by supernode K.
(Here we assume that next(j, K) is n+ 1 if j is the last column updated by K.) Similarly,
next(J, J) is the first column to be updated by supernode J.

A few comments on the algorithm in Fig. 1 are in order. First, note that a supernode
J is inserted into Sq, where q next(J, J), only after the last column of J has been
completed. We were concerned that delaying the availability of each individual column
until after the supernode in which it resides is complete might hurt performance. We
tried different strategies that avoided this problem, but found that the technique used in
the algorithm, which is the simplest approach tried, was as effective as the others.
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Second, a processor enters a "spin wait" condition whenever the set Sj and the
column modifications for L.,j are not complete.

Third, note that extra care is required to synchronize the cmod(j, J) operation.
Since some of the columns j’ < j belonging to J may not be completed, a flag has
to be associated with each column to record each column’s current status. The flag for
a particular column is set immediately after the column has been completed. Thus one
potential cause of delay in the computation is that a processor may spin while waiting
for this flag to be set for a previous column in the same supernode.

Fourth, the number of ock and unlock synchronization operations required in the
parallel supernodal Cholesky factorization algorithm is often much smaller than that
required in the parallel column-based version. The number of synchronization opera-
tions (i.e., locking and unlocking operations) required by the latter is relatively high; it
is proportional to the number of nonzeros in the Cholesky factor L. It is easy to see that
the number of synchronizations required by the supernodal algorithm is proportional to
the number of compressed subscripts [18], which is precisely the number of off-diagonal
nonzero entries in the last columns of all supernodes. To illustrate the reduction in the
amount of synchronization, consider a model m m grid problem using either a five-
point or a nine-point operator. Suppose the grid points are labelled using the nested dis-
section algorithm [9]. It is easy to show that the number of nonzeros in L is O(m2 log m)
[9] and the number of compressed subscripts is O(m) [18]. Thus, the amount of syn-
chronization in the parallel supernodal Cholesky factorization is reduced by a factor of
log m.

4. Numerical experiments. Most of the test problems used in our numerical exper-
iments were taken from the Harwell-Boeing sparse matrix collection [7]. In the ex-
periments, each matrix was initially ordered using an implementation of the minimum-
degree algorithm due to Liu [13], followed by a postordering of the elimination tree [15],
which is helpful in computing the supernode partition [12]. Some statistics, such as the
size of each matrix, nonzero counts for both A and L, number of subscripts required to
represent the supernodal structure of L (denoted by #(L)), the number of supernodes
in L, and the number of floating-point operations, are provided in Table 1.

Throughout this section, we use colfc; to refer to the column-based approach to
Cholesky factorization, and we use supf c’c to refer to the supernode-based approach.
For each approach there are two distinct but similar routines: a serial routine and a par-
allel routine. It is worth noting that the serial coLf c’c routine is a version ofSPARSPAK’s
gsf c’c routine that has been slightly modified for fair comparisonwith the other routines,
which were written from scratch.

We compare parallel cofc; and parallel upfc; on a Cray Y-MP, a powerful vector
supercomputer with 8 processors and 128 Mwords of memory. Loop unrolling to level
eight was used in supf c;, and Fortran compiler directives were used to exercise the
machine’s parallel capabilities and to perform the necessary synchronization operations.
The code was compiled using the Fortran compiler c77 with optimization (the default)
and preprocessing options on (i.e., c77 -7.u).

The top half of Table 2 reports factorization times and speedup ratios (enclosed
in parentheses) for both methods applied to some small problems in our test set. The
bottom halfofthe table records performance data for supc; on the remaining problems
in our test set.

1A single floating-point operation is either a floating-point addition, subtraction, multiplication, or divi-
sion, and is denoted by "flop."
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TABLE 1
Characteristics oftestproblems.

Problem n

BCSSTK13 2,003
BCSSTK14 1,806
BCSSTK15 3,948
BCSSTK16 4,884
BCSSTK17 10,974
BCSSTK18 11,948
BCSSTK23 3,134
BCSSTK24 3,562
BCSSTK25 15,439
BCSSTK29 13,992
BCSSTK30 28,924
BCSSTK31 35,588
BCSSTK32 44,609
BCSSTK33 8,738
NASA1824 1,824
NASA2910 2,910
NASA4704 4,704
NASASRB 54,870

83,883
63,454
117,816
290,378
428,650
149,090
45,178
159,910
252,241
619,488

2,043,492
1,181,416
2,014,701
591,904
39,208
174,296
104,756

2,677,324

#(L) N

271,671 28,621 599
112,267 17,508 503
651,222 61,614 1,295
741,178 50,365 691

1,005,859 94,225 2,595
662,725 116,807 7,438
420,311 49,018 1,522
278,922 22,331 414

1,416,568 205,513 7,288
1,694,796 174,770 3,231
3,843,435 229,670 3,689
5,308,247 330,896 8,304
5,246,353 374,507 6,927
2,546,802 124,532 1,201

73,699 12,587 527
204,403 25,170 599
281,472 35,339 1,245

11,904,998 592,254 8,027

n: number of equations,
IAI: number of nonzeros in A,
ILl: number of nonzeros in L, including the diagonal,

flops

58,550,598
9,793,431

165,035,094
149,100,948
144,269,031
140,907,823
119,155,247
32,429,194

283,732,315
393,045,158
928,323,809

2,550,954,465
1,108,686,016
1,203,491,786

5,160,949
21,068,943
35,003,786

4,672,895,526

#(L): number of row subscripts required to represent the supernodal structure of L,
N: number of fundamental supernodes in L,
flops: number of floating-point operations required to compute L.

TABLE 2
Factorization times in seconds (and speedups) on a Cray Y-MP.

Problem

BCSSTK13

BCSSTK14

BCSSTK15

BCSSTK16

BCSSTK17

BCSSTK18

BCSSTK23

BCSSTK24

BCSSTK25
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
NASA1824
NASA2910
NASA4704
NASASRB

Method Serial

colfct .929 1.347 (.69)
supfct .439 .493 (.89)
colfct .238 .391 (.61)
supfct .156 .185 (.84)
eolfct 2.485 3.471 (.72)
supfct 1.071 1.172 (.91)
coilct 2.444 3.549 (.69)
supfct 1.067 1.178 (.91)
colfct 2.712 4.121 (.66)
supfct 1.373 1.540 (.89)
colfct 2.288 3.284 (.70)
supfct 1.314 1.481 (.89)
colfct 1.755 2.408 (.73)
supfct .798 .879 (.91)
colfct .674 1.071 (.63)
supfct .338 .381 (.89)

supfct 2.580 2.872 (.90)
supfct 2.939 3.195 (.92)
supfct 5.816 6.301 (.92)
supfct 12.607 13.299 (.95)
supfct 7.773 8.491 (.92)
supfct 5.831 6.146 (.95)
supfct .114 .137 (.83)
supfct .287 .331 (.87)
supfct .429 .483 (.89)
supfct 23.563 24.850 (.95)

Parallel

p =1 p =2 p =4 p =6 p =8

.685 (1.4)

.249 (1.8)

.203 (1.2)

.093 (1.7)
1.770 (1.4)
.594 (1.8)

1.814(1.3)
.590 (1.8)

2.142 (1.3)
.773 (1.8)

1.675 (1.4)
.741 (1.8)

1.219 (1.4)
.441 (1.8)
.551 (1.2)
.190 (1.8)

1.433 (1.8)
1.602 (1.8)
3.154 (1.8)
6.653 (1.9)
4.249 (1.8)
3.074 (1.9)
.069 (1.7)
.166 (1.7)
.243 (1.8)

12.404 (1.9)

.379 (2.5)

.128 (3.4)

.126 (1.9)

.048 (3.2)

.962 (2.6)

.299 (3.6)

.995 (2.5)

.299 (3.6)
1.223 (2.2)
.392 (3.5)
.928 (2.5)
.382 (3.4)
.652 (2.7)
.224 (3.6)
.329 (2.0)
.096 (3.5)

.731 (3.5)

.810 (3.6)
1.590 (3.7)
3.330 (3.8)
2.134 (3.6)
1.539 (3.8)
.036 (3.2)
.084 (3.4)
.124 (3.5)

6.202 (3.8)

.314(3.0)

.089 (4.9)

.121 (2.0)

.033 (4.7)

.768 (3.2)

.204 (5.2)

.834 (2.9)

.202 (5.3)
1.104 (2.5)
.267 (5.1)
.767 (3.0)
.265 (5.0)
.514 (3.4)
.153 (5.2)
.302 (2.2)
.065 (5.2)

.504 (5.1)

.547 (5.4)
1.073 (5.4)
2.249 (5.6)
1.442 (5.4)
1.040 (5.6)
.025 (4.6)
.058 (4.9)
.085 (5.0)

4.179 (5.6)

.301 (3.1)

.069 (6.4)

.121 (2.0)

.026 (6.0)

.728 (3.4)

.157 (6.8)

.812 (3.0)

.154 (6.9)
1.094 (2.5)
.206 (6.7)
.729 (3.1)
.213 (6.2)
.473 (3.7)
.125 (6.4)
.301 (2.2)
.050 (6.8)

.394 (6.5)

.421 (7.0)

.815 (7.1)
1.706 (7.4)
1.100 (7.1)
.788 (7.4)
.019 (6.0)
.045 (6.4)
.065 (6.6)

3.164 (7.4)
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Not surprisingly, supfcz performs much better than colfct on this machine. Loop
unrolling is extremely important for good performance on the Cray Y-ME Comparing
the serial runs for the two methods, we find differences in performance ranging from
a low of 53% to a high of 132%, due to loop unrolling and reduced indirect index-
ing in supfct. Similar results have been reported previously in [4]. We also find that
supct parallelizes much better than colder. For example, on eight processors (p=8)
the speedup ratios for supfct range from a low of 6.0 to a high of 6.9, which is quite
good, especially on such small problems. The speedup ratios for colfct, however, are
very poor, ranging from a low of 2.0 to a high of 3.7.

The performance of supfct on the large problems in the bottom half of the table
is consistently good. Ignoring the three smallest problems in this portion of the table
(NASA1824, NASA2910, and NASA4704), speedup ratios range from a low of 6.5 to a
high of 7.4. On six out of seven of these problems the speedup ratio is 7.0 or greater,
with the 6.5 speedup ratio reserved for the problem requiring the least work, namely
BCSSTK25.

Table 3 compares the performance of supct with the parallel supernodal factor-
ization algorithm used in [19], which we will designate as supfct-SVY. The performance
figures are expressed in Mflops,2 as is commonly done for vector supercomputers such
as the Cray Y-ME We report the performance of both codes on those problems in our
test set for which results for supfct-SVY were available to us. The performance data for
supfct-SVY were obtained from an unpublished manuscript [20].

TABLE 3
Factotization computational rates (Mflops) on a Cray Y-MP.

Problem

BCSSTK15

BCSSTK16

BCSSTK23

BCSSTK24

BCSSTK30

BCSSTK31

BCSSTIC32

BCSSTK33

NASA1824

NASA2920

NASA4704

NASASRB

Parallel

Method Serial p =4 p =8

supfct 154.1 551.9 1051.2
supfct-SVY 197.8 301.1 320.8
supfct 139.7 498.6 968.2
supfct-SVY 190.8 287.5 297.4
supfct 149.3 531.9 953.2
supfct-SVY 191.6 293.3 315.1
supfct 95.9 337.8 648.5
supfct-Svg 139.4 168.2 168.7
supfct 159.6 583.8 1139.0
supfct-Sx/V 212.2 350.0 375.0
supfct 202.3 766.0 1495.3
supct-SV 251.4 566.3 689.2
supfct 142.6 519.5 1007.9
supfct-SVY 193.5 291.4 307.0
supfct 206.4 782.0 1527.3
supfct-SV 258.4 593.1 717.2
supfct 45.3 143.3 271.5
supfct-SV 64.3 69.8 69.8
supper 73.4 250.8 468.1
supfct-Svg 97.5 121.6 121.4
supfct 81.6 282.3 538.4
supfct-SVY 117.0 143.5 143.5
supfct 198.3 753.4 1476.9
supfct-SV 250.6 531.6 625.2

2Mflops (megaflops) are millions of floating-point operations per second. Gflops (gigaflops) are billions
of floating-point operations per second.
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Consider the results obtained on eight processors (p=8). On six of the twelve prob-
lems, supfc; performs the factorization at over a Gflop, with highs of 1.48 Gflops on
NASASRB, 1.50 Gflops on BCSSTK31, and 1.53 Gflops on BCSSTK33. For two other
problems, the computational rate is nearly a Gflop: .97 Gflop on BCSSTK16 and .95
Gflop on BCSSTK23. Thus, for 8 out of 12 of the problems, supfc; computed the fac-
torization at nearly a Gflop or more. Table 1 indicates that the remaining four problems
(NASA1824, NASA2910, NASA4704, and BCSSTK24) are quite small. Moreover, in
Table 2 we see that serial supcc requires less than half a second to factor any of these
four matrices.

The performance of upct-SV is much poorer due to the problems with this ap-
proach mentioned earlier in 2. The code runs at less than a Gflop on every problem,
despite having significantly higher serial efficiency due to assembly language program-
ming ofthe compute-intensive kernel routines and other machine-specific optimizations.
Our parallel implementation of SUlac; is a Fortran 77 code, with no machine-specific
optimizations.

5. Concluding remarks.We have implemented a simple new parallel sparse
Cholesky factorization algorithm for shared-memory multiprocessors. Our left-looking
algorithm uses techniques from [4] and [10]: it uses supernodes to reduce indirect ad-
dressing and memory traffic [4], and it decomposes the computation into column tasks
Tcol(j) and schedules these tasks dynamically on the available processors [10]. Incor-
poration of supernodes into the algorithm in [10] reduces the synchronization overhead
required to manage the row structure sets Sq from O(ILI) to O((L)). In practice, #(L)
is often much smaller than ILl; consequently, contention for the critical sections is likely
to be higher in colc; than in supfc;, particularly on machines such as the Cray Y-MP,
which have a limited number of lock variables.
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GENERATING LINEARAND LINEAR-QUADRATIC BILEVEL PROGRAMMING
PROBLEMS*

PAUL H. CALAMAIt AND LUIS N. VICENTE

Abstract. This paper describes a technique for generating both linear and linear-quadratic bilevel pro-
gramming problems. The method is based on combining a number of single-parameter two-variable problems
to obtain a separable multivariable problem with a number of desirable properties. The separability is then
disguised using a simple transformation.

The proposed technique, which requires very little computational effort, allows the user control over,
among other things, the number and type of minima and the data density.

Key words, bilevel programming, test problems, separable programs

AMS subject classifications. 90C30, 90D05

1. Introduction. An important field of mathematical programming is bilevel pro-
gramming [5], [9], [11]. One reason for this interest is that problems involving hierar-
chical decision making can be modeled as bilevel problems [1], [2], [6]. Although sev-
eral techniques have been designed for solving linear and linear-quadratic bilevel pro-
gramming problems [3], [7], [8], [12], little has been done to compare the computational
virtues of these techniques. One likely reason for this omission is the lack of an accept-
ably large and diverse set of test problems. In this paper we describe a computationally
simple procedure for constructing problems that can be used to this end. Much of this
work is based on a related technique for generating quadratic bilevel programming prob-
lems [4].

The method described here gives the user control over a number of important prob-
lem features that can be adjusted to test the performance of the various solution tech-
niques. We demonstrate how the number and type of minima can be controlled and how
the data density can be adjusted. Since several solution techniques start by solving the
relaxed linear program that corresponds to the bilevel problem, we also show how the
diversity between the solutions of these two problems can be controlled.

In 2we describe how the linear bilevel programming problems are constructed. We
start by introducing the single-parameter, two-variable, bilevel programming problem
that is our fundamental building block. The solution properties of these problems are
described using simple geometry. We then demonstrate how these simple problems can
be combined to produce a separable linear bilevel problem with chosen properties. In
3 we describe how our basic linear bilevel problems can be modified and extended.
We show how the number of inequality constraints can be reduced and how equality
constraints can be added. The modifications required for constructing linear-quadratic
bilevel programming problems are also included in this section. The transformation that
is used to disguise the separability of the constructed problems is then described in 4.
In 5 we illustrate our technique with an example. The paper concludes with 6, where
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we report conclusions and demonstrate that the proposed method generates problems
that meet the requirements of three different solution techniques.

2. The linear problem. Our intention is to construct purely linear bilevel program-
ming (LBP) problems with a number of favorable properties. We accomplish this by
starting with a simple single-parameter problem in one upper-level and one lower-level
variable. We then combine several of these problems to obtain a separable multiparam-
eter multivariable linear bilevel programming problem with several desirable properties.
The separability of this problem is then disguised, without destroying these properties,
using a simple, nonsingular transformation of variables.

2.1. A one-parameter, two-variable LBR Consider the following linear, bilevel pro-
gramming problem in the variables zk and yk, denoted LBP(p)"

min Lk(Xk, Yk) (3 Xk) + Yk,
X,kYk

subject to (Xk, Yk) e a
(the upper-level problem), where y y(x) solves (the lower-level problem)

minlk(Xk, Yk) --Yk,
Yk

subject to (Xk, Yk E [2L (Pk ),

with 3 < p < 9, f {x 1 < x < 3}, and L(Pk) consisting of those points
(xk, y) satisfying

The relaxed feasible region for LBP(p), f(p) fr f"l fz(P), is thus the (un-
bounded) region bounded on the left by xk > 1, on the right by x < 3, and above by
-2x + y < 0 (to the left) and x + yk < p (to the right).

The set of all feasible points ofproblem LBP(p) is called the induced region (see [12,
pp. 9-10] for a complete mathematical description).

PROPOSITION 2.1. Forproblem LBP(p) the induced region, denoted S, consists of
the union ofthe following two sets:

Sl {(Xk, Yk) e [’(Pk) --2Xk -- Yk 0},
S2 { (xk, Yk) [2(pk) Xk + Yk Pk},

which descdbe two line segments in f(p ).
Proof. The proof follows directly upon applying the Karush-Kuhn-Tucker condi-

tions to the corresponding lower-level problem.
The solution of problem LBP(p) occurs at some point (xk, y(x)) S which de-

pends on the value of the parameter Pk. There are five cases to consider:
1. Case 1 (Fig. 1), where pk 3.
2. Case 2 (Fig. 2), where p 7.
3. Case 3 (Fig. 3), where p 9.
4. Case 4, where 3 < p < 7.
5. Case 5, where 7 < p < 9.



772 PAUL H. CALAMAI AND LUIS N. VICENTE

Yk

I1 2)

11’ 2 2 2

FIG. 1. Case 1, where Pk 3.

Feasible region
(positive quadrant only)

(3,0)

Zk +Yk =3

Yk

3

2 (if.).

1

Feasible region
(positive quadrant only)

...(,2)_._ Xk

FIG. 2. Case 2, where Pk 7.
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Yk

1

xk=3! 2 2 2= 12
FIG. 3. Case 3, where Pk 9.

Feasible region
(positive quadrant only)

,(2,2)_._ Xk

What follows is an examination of problem LBP(pk) for each of these five cases. In
each instance, the solutions are determined geometrically. This is a simple matter since,
for (zk, y) E S, we have

min Lk(Xk, Yk) (3 Xk) + Yk
XkYk

This means that the global minima of problem LBP(pk), denoted (xkc, yk), are
simply those points in S closest to the point (3, 0) in the 11 sense. Similarly, the local
minima of problem LBP(pk), denoted (x, y), are points in S that are closer (in the 11
sense) to the point (3, 0) than points in S in some nonempty neighborhood of (XkL, ykL).

Case 1. Pk 3. In this case, depicted in Fig. 1, the set S equals $2, and therefore
includes the point (3, 0). Thus (x, y) (3, 0) with L(x, y) O.

Case 2. pk 7. In this case, depicted in Fig. 2, the set S is the union of S and
S.. By observing the l contours centered at the point (3, 0), we find that LBP(p)
has two (strict) global minima, namely (x, y) (1, 2) and (x, yC) (3, 4), with
Lk(XCk yak) 4.

Case 3. p 9. Figure 3 depicts this case, where the set S equals S1. In this case
the closest point in S, in the ll sense, to (3, 0) is the point (1, 2). Thus (x, y) (1, 2)
with L(x, y) 4.

Case 4. 3 < Pk < 7. This case is similar to the situation depicted in Fig. 2 except
that the line Xk + Yk 7 is replaced with the line Xk + Yk Pk (i.e., the line xk + Yk 7
is shifted down 7 p units), subsequently changing S1 and Sa (and therefore S). The
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closest point in S, in the It sense, to (3, 0) occurs at the intersection of Sz with the line
z 3. Thus (z,) (3, p 3) with L(z, G) p 3.

In addition, the point (1, 2), the left endpoint of $1, is closer, in the 11 sense, to the
point (3, 0) than any other point in $1. Thus (z,) (1, 2) with L(z,) 4.

Case 5.7 < Pk < 9. This case is also similar to the situation depicted in Fig. 2, except
that this time the line zk + y 7 is shifted up pk 7 units (i.e., the line z + y 7 is
replaced with the line zk + Yk Pk), subsequently changing S and $2 (and therefore
S). The closest point in S, in the l sense, to (3, 0) for this case occurs at the intersection
of S with the line xk 1 (as in Case 3). Thus (xk, yk) (1, 2) with Lk(x, y) 4.

The point (3, Pk 3), the right endpoint of $2, is closer, in the/-sense, to the point
(3, 0) than any other point, in $2. Thus (xkL, y) (3, Pk 3) with Lk(x, yLk) Pk 3.

In the next section we demonstrate how a (separable) multiparameter multivario
able linear bilevel programming problem, with specific properties, can be constructed
by combining these simple one-parameter, two-variable problems.

2.2. A simple, separable parametric LBP. Let nx and ny be the desired number
of upper-level and lower-level variables of the linear bilevel problem, respectively. In
addition, let m min(nx, ny}.

Consider the following problem, which we denote LBP(p):
m

minL(x,y) ELk(xk, Yk) + E (3--Xk)+
k=l m<k<_nx
nx ny

k=l k=l

subject to (x, y) E fv

E Yk
m<k<_ny

with 3 < Pk < 9, for k 1,..., m,
m

k=l

and

N < 3},
m<k<_nx

m

k=l m<k<_ny

In addition, define the corresponding relaxed linear program LP(p) as

min{n(x, y) (x, y) e Ftv n fL(P)}.

’From this construction we can easily see that the solution of the multiparameter
problem LBP(p) is simply composed of the solutions of the m single-parameter prob-
lems LBP(pk), k 1,..., m, plus the solution of the subproblem

min (3--Xk)+ Yk,

m<knx m<kny

(the upper-level problem), where y y(x) solves (the lower-level problem)
m m

min l(x, y) E lk(Xk, Yk) E Yk,
Y

k=l k=l

subject to (x, y) e Oi(p)



GENERATING LINEAR BILEVEL PROGRAMMING PROBLEMS 775

subject to

z, < 3, m < k < nz,

> O, m < k < n.
Ifwe define the five sets M1 through M5 (with corresponding cardinalities ml through

ms) as

M {k M" p, 3},
M2 {k e M" pk 7},
M3 {k e M’pk
Ma={keM’3<pk <7},
Ms={keM’7<pk <9},

where M {1,..., m}, then the following properties hold.
3 (m < k < nx),PROPERTY 1. Problem LBP(p) has 2m global minima with xky 0 (m < k <_ ny), and

(3, 0), k G M,

xGk, Yk)
(1 2) or (3, 4) k e M2,

(1, 2), k e M3 U M5,

(3, p- 3), k e M,

yielding L(xa, ya) 4(m2 -t- m3 q- m5) + EkeMa (Pk 3).
This property follows directly from the manner in which problem LBP(p) is con-

structed and from the previous geometric analysis of problems LBP(pk), k M.
PROPERTY 2. Problem LBP(p) has local minima (that are not global) only when

ma + m > 0. In this case there are 2"+’’+’ 2"- such minima. These local
minima occur whenever one or more of the following hold

(1,2), keM4,
(Xk, Yk)

(3, Pk 3), k e M5,

with all remaining components defined as in Property 1.
This property, like Property 1, follows directly from the manner in which problem

LBP(p) is constructed and from the geometric properties ofproblems LBP(pk), k M.
PROPERTY 3. The global minima of problem LBP(p) do not coincide with any so-

lution of the corresponding relaxed linear program LP(p).
This result follows trivially since problem LP(p) is unbounded. In fact, this result

still holds (as long as m < m) if one adds what might be considered the natural lower-
bound constraints Yk >_ O, k 1,..., ny, since the solution to the corresponding relaxed
LP yields Xk 3, k 1,..., nx, and Yk O, k 1,..., ny, which differs from the
minima of LBP(p) in 2(m ml) variables.

PROPERTY 4. The gradients, in the lower-level variables y, of the active constraints
at the minima of problem LBP(p) are linearly independent, and the complementarity
conditions associated with the corresponding lower-level problem are strictly satisfied at
these minima.

This property is a direct consequence of the separability of problem LBP(p) and
the strict complementarity of the minima of problems LBP(pk), k 1,..., m.
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3. Extensions and modifications. Problem LBP(p) can be extended and modified
in a number ofways. In the subsections that followwe showhow the number of inequality
constraints in problem LBP(p) can be reduced, how equality constraints can be added to
problem LBP(p), and how our technique can be modified to produce bilevel problems
with quadratic lower-level objectives (i.e., linear-quadratic bilevel programs).

3.1. Reducing the number of inequality constraints. When k E M1, the constraints

xk _> 1 and -2xk W Yk < 0

are redundant in problems LBP(p). Similarly, when k E M3, the constraints

Xk _< 3 and xk + yk <_ 9

are redundant in problems LBP(pk). Thus 2(ml +m3) constraints can be removed from
problem LBP(p) without consequence.

An additional 2(m-rh) constraints can be removed by setting rh < m min{nx, ny}
and replacing the constraints

--Xk <_--1,

Xk + Yk, < Pk,

--2Xk, + Yk < 0,

k=rh+ 1,...,m,

k rh+ 1,...,m,

k rh+ 1,...,m,

with the constraints

Yk > O, k (n + 1,...,m.

This requires redefining M through M5 (and their corresponding cardinalities m
through ms) after setting M {1,..., rh}.

With this modification, the minima of LBP(p) satisfy (Xk, yk) (3, 0) when k
{rh + 1,..., m}.

3.2. Adding equality constraints. Equality constraints can be added to problem
LBP(p) in a number ofways without changing its minima. Those analogous to the ones
presented in 6.2 of [4] are:

1. x xj 0, where j and i, j {m + 1,..., nx} when nx > ny m.
2. y yj 0, where j and i, j e {m + 1,..., ny} when ny > nx m.
3. x y 3, where i, j M when ml > 0.
4. xi y 3, where i, j E {rh + 1,..., m}, and rh andM through M5 are defined

as in the previous section.
In order to ensure the linear independence of the gradients (with respect to the

lower-level variables y) of the constraints at optimality, the same conditions as those
stated in 6.2 of [4] must hold.

3.3. Replacing the lower-level objective with a quadratic. After redefining r and
M1 through M5 as in 3.1, and removing the constraints

--2Xk -t-Yk < 0, k 1,..., rh,

the linear, lower-level objective l(x, y) can be replaced with the quadratic

minq(x,y) - Yk(Yk 4Xk) Yk
y

k--1 k--rhW1
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without affecting the foregoing analysis (since the induced region S is the same for
(Xk, Yk) when k M).

With this modification we obtain a linear-quadratic bilevel programming problem,
which we denote LQBP(p).

4. The transformation. In order to describe our technique for disguising the sepa-
rability of problem LBP(p), we define problem LBP(c, s, Ax, Au, b) as

min L x, y) cT x + cTu y +
(the upper-level problem), where y y(x) solves (the lower-level problem)

Tmin l(x, y) sTyx + sy y,
y

subject to Axx + Ayy < b,

with

Cx, 8x X lnx
A Rx’x,

cy, su, y lnY
AuRxny, bR and nR.

With the following substitutions,

Cx lnx Cy lny 8: Onx

-2P
A= p

f
O,

A, 0 and b

0

1,... ,m,

otherwise,

P

Om
lm

--lm

3nx,

where

0 is the m ny zero matrix and pT [/91"" Pro],
1. is a ones-vector of length , and 0. is a zeros-vector of length 7,

Px R ’ and P Rm u satisfy P
1,

O, otherwise,

and, for a max{nx, ny} m,

QR’satisfies (Qz)ij=
o, ny>nx or jm+i,

( , otherwise,

l<i=j<m,
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0,
Qu Rx’u satisfies (Qu)i

-1,

R satisfies e [ 1, nx > ny,

0, ny > nx,

nx>ny or jCm+i,

otherwise,
and

problem LBP(c, s, Ax, Au, b) is equivalent to problem LBP(p).
Now, for n nx + ny, define the order-n matrix JPl HDH, where

is a block-diagonal matrix with Hx and Hy constructed as random Householder matrices
using

T with vTv 1 and v E R’ sparse,Hx Inx 2vv,

T with T 1 and vu R’w sparse,Hy I,w 2vyvy, vy vu
and D is a positive definite diagonal matrix with two-norm condition number n2(D)
10,andletW:A/[-I:HD-1HandA A Ay ].

PROPOSiTiON 4.1. Problem LBP(c, s, A, A, b) (and problem LBP(p)) in the vari-
ables x and is equivalent to problem LBP(3dc, .Ms, A.M, b) in the variables and f
under the nonsingular transformation

Proof. For

problem LBP(c, s, Ax, A, b) becomes

min L(2, )
c

A4
2

x,y Cy

subject to 3(2) solving
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subject to [A.M] < b,

which is problem LBP(.Mc, .Ms, A.M, b) in the variables and . Iq

Thus,

is a global solution to the transformed problem and this one-to-one correspondence
holds for all minima of problem LBP.

Notes.
1. A similar technique can be applied to problem LQBP(p) to disguise its separa-

bility.
2. The sparsity of v and v controls the sparsity of .M (and consequently, the spar-

sity of the data).
3. The spectrum of D controls the spectrum of 3d (and consequently, affects the

geometry of the problem).
4. The lower-level objective of problem LBP(o) is strictly convex in .
5. The upper-level constraints of problem LBP(p) have been moved into the lower

level of problem LBP(c, s, Ax, Ay, b) in order to simplify notation.
6. A paper of Marcotte and Savard [10] was brought to our attention after com-

pleting this work. In their report a transformation similar to that used here is used to
establish the equivalence between bilevel problems and to prove that solutions to bilevel
problems are not necessarily Pareto optimal.

5. Example. In order to illustrate some of the ideas that have been presented, con-
sider the (untransformed) linear bilevel programming problem obtained when the fol-
lowing values are used for the control parameters:

nx 4, ny 2 and m=2,

m=m2=m3=O and m4=ms=1,

and

and p2 8.

This corresponds to the following bilevel problem:

2 4

minL(x,y) ((3 x) + y) + -’(3 x),
i=1 i=3

subject to y y(x) solving

2

min l(x, y) - y,
Y

i--1

subject to
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xl + yl

X2

--2Xl q- y

Xl

--Xl

2x2

x2

x2

x3

x4

_< 5,

+ Y2 < 8,

<_ 0,

T Y2 _< 0,

_< 3,

_< 3,

< -1,

<_ -1,

< 3,

_< 3,

where

and

Xl

X2
X--"

X3

X4

[Y ] R2"and y E
y2

Now suppose the following data was used in the transformation:

vx =-0.7 0.7 0.1 -0.1 vy 0.8 -0.6

D diag(20, 10, 20, 10, 10, 20).

This would yield the following (transformed) linear bilevel programming problem:

-11.6

-18.4
min L(x, y)
x,Y -21.2

-T

Xl

X2

X3

X4

21.904 y

13.472 Y2
+12

(the upper-level problem) subject to y y(x) solving (the lower-level problem)

-21.904 y
minl(x,y)
u -13.472 Y2

subject to
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10.2Xl

--20.4x

10.2x

--10.2x

1.4Xl

+ 1.4x3 + 19.216y + 2.688y2 <_ 5,

19.8x2 1.4xa + 2.688y + 10.784y2 < 8,

2.8x3 + 19.216y + 2.688y2 _< O,

--39.6x2 + 2.8x4 + 2.688yl + 10.784y2 _< 0,

+ 1.4x3 < 3,

19.8x2 1.4x4 <_ 3,

1.4x3 < -1,

--19.8x2 + 1.4xa _< -1,

+ 19.8x3 _< 3,

-1.4x2 / lO.2xa <_ 3,

where

Xl

X2
X--

X3

X4

[Y ] R2"and y
Y2

Since m2 0 and m4 + m5 2 this problem has 2’+’’+m 2’- 3 local
solutions and a unique global minimum with value La 4(m+ma+m)+(px- 3) 6.

6. Remarks and conclusions. In designing these test problems careful attention has
been placed on conforming to the requirements of several solution techniques. We elab-
orate on this point by considering three available solution techniques.

SLCP approaches [7], [8]. The requirements of these sequential linear complemen-
tarity approaches are met since the lower-level problems can be replaced with the corre-
sponding Karush-Kuhn-Tucker conditions. In addition, for the linear-quadratic bilevel
problems an initial basis for the first LCP is readily available.

Exactpenalty approaches [3]. For the pure linear bilevel problems generated using
the proposed techniques

the feasible region f is nonempty,
the lower-level variables satisfy a strict complementarity condition at all local min-

ima, and
the lower-level objective function is bounded below on the feasible region and the

upper-level objective function is bounded below in the induced region.
Thus, the requirements of this exact penalty function approach are met.
The requirements of these techniques also hold for the linear-quadratic case, as

demonstrated in [4].
Branch and bound techniques [12, pp. 19-22]. In respect to the pure linear bilevel

problems, the requirements for these techniques are met since there is always an optimal
solution for the generated problems and since the lower-level problem has a unique
solution in y for every fixed x.

We have described a method for generating both linear and linear-quadratic bilevel
test problems. The method requires very little computational effort (i.e., no subproblems
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need be solved) and gives the user control over the number and type of minima, the
sparsity ofthe data, the diversity from the corresponding relaxed problem and, to a lesser
extent, the geometry of the problems generated.

Note. A Fortran 77 code that implements the technique described in this paper can
be obtained by sending an e-mail request to phcalamai@dial.waterloo.edu.

REFERENCES

[1] J. BARD, Coordination of a multidivisional organization through two levels of management, Omega, 11
(1983), pp. 457-468.

[2] O. BEN-AYED, C. BLAIR, AND D. BOYCE, Construction ofa real world bilevel linearprogram ofthe highway
designproblem, Faculty Paper No. 1464, College of Commerce and Business Administration, Univ.
of Illinois at Urbana-Champaign, 1988.

[3] Z. BI, E CALAMAI, AND A. Cor,An exact penalty function approach for the linear bilevel programming
problem, Tech. Rep. #167-O-310789, Dept. of Systems Design Engineering, Univ. of Waterloo,
Ontario, Canada, 1989.

[4] P.CAND N. VICENTE, Generating quadratic bilevel programming problems, ACM Trans. Math.
Software, to appear.

[5] Y. DIRICKXAND L. JENNEGREN, SystemsAnalysis by Multilevel Methods: With Applications to Economics
and Management, John Wiley, New York, 1979.

[6] J. FORTUNY-AMATAND B. MCCARL,A representation and economic interpretation ofa two-levelprogram-
mingproblem, J. Oper. Res. Soc., 32 (1981), pp. 783-792.

[7] J. JODICE AND A. FAUSTINO, The linear-quadratic bilevelprogrammingproblem, Infor, to appear.
[8] ,A sequential LCP methodfor bilevel linearprogramming, Ann. Oper. Res., to appear.
[9] C. KOLSTAD, A review of the literature on bi-level mathematical programming, Los Alamos Tech. Rep.

LA-10284-MS, UC-32, Los Alamos National Laboratory, Los Alamos, NM, 1985.
10] P. MARCOa’rEAND G. SAVARD,A note on the Pareto optimality ofsolutions to the linear bilevelprogramming

problem, Comput. Oper. Res., 18 (1991), pp. 355-359.
[11] M. MESANOVIC, D. MACKO, AND Y. TAKAHARA, Theory of Hierarchical, Multilevel Systems, Academic

Press, New York and London, 1970.
[12] G. SAVARD, Contribution a laprogrammation mathematique a deux niveaux, Ph.D. thesis, Ecole Polytech-

nique, Univ. de Montreal, Qu6bec, Canada, 1989.



SIAM J. ScI. COMPUT.
Vol. 14, No. 4, pp. 783-799, July 1993

() 1993 Society for Industrial and Applied Mathematics
OO3

THE ACCURACY OF FLOATING POINT SUMMATION*
NICHOLAS J. HIGHAMt

Abstract. The usual recursive summation technique is just one of several ways of computing the sum of
n floating point numbers. Five summation methods and their variations are analyzed here. The accuracy of
the methods is compared using rounding error analysis and numerical experiments. Four of the methods are
shown to be special cases of a general class of methods, and an error analysis is given for this class. No one
method is uniformly more accurate than the others, but some guidelines are given on the choice of method in
particular cases.

Key words, floating point summation, rounding error analysis, orderings
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1. Introduction. Sums of floating point numbers are ubiquitous in scientific com-
puting. They occur when evaluating inner products, means, variances, norms, and all
kinds of nonlinear functions. Although, at first sight, summation might appear to offer
little scope for algorithmic ingenuity, the usual "recursive summation" (with various or-
derings) is just one of several possible techniques. Most of the other techniques have
been derived with the aim of achieving greater accuracy of the computed sum, but pair-
wise summation has the advantage of being particularly well suited to parallel computa-
tion.

In this paper we examine a variety of methods for floating point summation, with
the aim of answering the question, "which methods achieve the best accuracy?" Several
authors have used error analysis to compare summation methods; see, for example, [1],
[2], [32], and [38]. Here we give a more comprehensive treatment that highlights the
relationships between different methods; in particular, we give an error analysis for a
general class ofmethods that includes most of the specific summation methods as special
cases.

This work was motivated by two applications in which the choice of summation
method has been found to have an important influence on the performance of a nu-
merical method.

(1) In [24], Lasdon et al. derive an algorithm for solving an optimization problem
that arises in the design of sonar arrays. The authors state [24, p. 145] that "the objective
gradient Vf in (4.1) is a sum of M terms. In problems with M 284 and n 42, the
GRG2 optimizer encountered difficulties which stem from inaccuracies in Vf We
hypothesized that this was due to roundoff error resulting from cancellation of terms in
Vf of approximately equal magnitudes and opposite signs. These problems were elim-
inated by accumulating separately positive and negative terms (for each component of
Vf) in the sum (4.1), adding them together only after all M terms had been processed."

(2) Dixon and Mills [7] applied a quasi-Newton method to the extended Rosenbrock
function

(1.1) ’’’ )2F(Xl x2 xn) E(IOO(x2i- x22i_1 + (1 x2i_1)2).
i=1

This function and its derivatives possess certain symmetries; for example, F(a, b, c, d)
F(c, d, a, b) when n 4. It is observed in [7] that expected symmetries in the search
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784 NICHOLAS J. HIGHAM

direction and Hessian approximation are lost in practice, resulting in more iterations for
convergence of the quasi-Newton method than are predicted theoretically. Dixon and
Mills attribute the loss of symmetry to rounding errors in the evaluation of certain inner
products, which can cause identities such as the one quoted above to fail in floating point
arithmetic. They restore symmetry (and thus reduce the number of iterations) by using a
special summation algorithm when evaluating inner products: their algorithm evaluates

Y’. x by sorting the x, dividing them intoa list of negative numbers and a list of
nonnegative numbers, and then repeatedly forming the sum of the largest nonnegative
and most negative elements and placing the sum into the appropriate list, in order.

We return to these two applications in 7.
The five main summation methods that we consider are defined and analyzed in 2

and 3. For the error analysis we will make use of the standard model of floating point
arithmetic, in which u is the unit roundoff:

(1.2) fl(x op y)= (z op y)(X + 6), 161 < u, op +,-, ,,/.

This model is violated by machines that lack a guard digit, so we explain in 5 how our
analysis has to be modified to accommodate such machines. We will assume that no
floating point underflows occur; how to modify error analyses to allow for underflow
is described by Demmel in [6]. An excellent tutorial on many aspects of floating point
arithmetic is given by Goldberg [9].

In 4we summarize some existing results on statistical estimates of accuracy of sum-
mation methods. Numerical experiments are presented in 6 and conclusions are given
in 7.

2. Orderings ofrecursive summation. Our task is to evaluate & -i= xi, where
z,..., z, are real numbers. In this section we consider the standard recursive summa-
tion technique in which S is evaluated according to

a’-O
for/= l’n

8--’8"{-Xi
end

In general, each different ordering of the xi will yield a different computed sum
in floating point arithmetic, and it is of interest to determine how the ordering affects
the error

En=Sn-S.
To begin, we make no assumption on the ordering and obtain a standard bound for

kE,. By a direct application of the model (1.2) we have, with Sk -,i= xi,

(2.1) Sk fl(S_l + xk)= (Sk- + xk)(1 + 5k), lakl <_ u, k 2: n.

By repeated use of this relation it follows that
n n n

(2.2) n (x, + x2) H (1 + k) + Xi H(1 + dik).
k:2 i:3 k=i

To simplify the product terms we use the result that if lai[ <_ u for i l’n then
n

H(1+6i)=l+0’’ where IOnl 1- nu
< nu

)’n.
i=1
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Thus we rewrite (2.2) as

(2.3) g. (x + x)(1 + 0,_) + x(1 + O.-i+),

which yields
n

(2.4) IE,I I(zl + xz)On- + ZxiOn-i+l

(2.5) < (IXll /
i=3

Note that xx and xz have the same factor 7-, because they play identical roles in the
summation. e bound (2.5) is essentially the same as the one derived by Wilkinson in
[42, p. 323] and [43, p. 17]. As Wilkinson notes in [43, p. 17], the upper bound in (2.5)
depends on the order of summation, and the bound is minimized if the xi are arranged in
order of increasing absolute value. We emphasize that this ordering minimes an error
bound and not necessarily the actual error (this is illustrated later in this section, and by
numerical examples in 6). We can weaken (2.5) to obtain the bound

n n

(2.6) lEvi 7-x [xi[ (n- 1)u Ix, + O(u2),
i=1 i=1

which is independent of the ordering. It is natural to regard satisfaction of (2.6) as a
minimal requirement of any summation method; in fact, all the methods we will examine
do satis this bound.

We can rewrite (2.6) as the relative error bound

In the special case where x 0 for all u, R, 1, and the relative error has a bound
of order nu, but ifi Ix l we cannot guarantee that the relative error
is small. The quantiR is easily seen to be the condition number of summation when
perturbations xi + xi + Ax are measured bym I x I/Ix l.

RecursNe summation by order of increasing absolute value can be improved upon
in o possible ways. First, a method may satis a bound of the form (2.6) but with a
constant smaller than 7-. Second, a method may satis a bound that in the worst
case is no better than (2.6), but the method might be expected to yield a more accurate
computed sum for particular classes of {x}. In the rest of this section we considero
alternatNe orderings, which fall into the second catego.

First, we derive a shawer error bound. From (2.1) we see that the error introduced
on the kth step of the summation is (S_ + x) S/(1 + g). Summing these
individual errors we find

n

(2.7) En l+6k’k=2

which shows that, to first order, the overall error is the sum of the n- 1 relative rounding
errors weighted by the partial sums. We obtain the bound

n

(2.8)
-1-u
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This bound involves the computed partial sums (excluding $1 Zl) but not the individ-
ual terms z. Ifwe weaken (2.8) by bounding I1 in terms of Izl, Iz21, Izl, then we
recover (2.5), to within O(u2).

The bound (2.8) suggests the strategy ofordering the zi so as to minimize -=2 I1.
This is a combinatorial optimization problem that is too expensive to solve in the context
of summation. A reasonable compromise is to determine the ordering sequentially by
minimizing, in turn, (xll, IS21, Is-xl. This ordering strategy, which we denote by
Psum, can be implemented with O(n log n) comparisons. The principal difference be-
tween the Psum and increasing orderings is that the Psum ordering is influenced by the
signs of the xi, while the increasing ordering is independent of the signs. If all the xi
have the same sign then the two orderings are identical.

It is easy to show by example that the bounds (2.8), (2.5) and (2.6) are nearly at-
tainable. Following Wilkinson [43, p. 19] we assume u 2-t, set n 2r (r << t), and
define

x(1) 1,

x(2) 1-2-t,
x(3: 4) 1 2l-t,
x(5: 8) 1 22-t,

x(2r-1 + 1:2r) 1- 2r--t.

Then in the (i 1)st floating point addition the "2-t’’ portion ofx does not propagate
into the sum; thus there is an error of 2k-t and i. The total error is

2-t(1+ 22 + 24 +... + 22(r-l)) 2-t
4r 1

3

while the upper bound of (2.6) is

(n- 1)u n 2,.2_
< 2

(n-1)u 1- 22-t
.. 2

1

which agrees with the actual error to within a factor 3; thus the smaller upper bounds
of (2.5) and (2.8) are also correct to within this factor. The example just quoted is, of
course, a very special one, and as Wilkinson [43, p. 20] explains, "in order to approach
the upper bound as closely as this, not only must each error take its maximum value, but
all the terms must be almost equal."

Next, we consider ordering the x by decreasing absolute value. For the summation
of positive numbers this ordering has little to recommend it. The bound (2.8) is no
smaller, and potentially much larger, than for the increasing ordering (the same is true
for the weaker bound (2.5)). Furthermore, in a sum of positive terms that vary widely
in magnitude, the decreasing ordering may not allow the smaller terms to contribute to
the sum (which is why 1/i "converges" in floating point arithmetic as n
However, consider the example with n 4 and

(2.9) z=[1, M, 2M,-3M],

1We assume in this example that the floating point arithmetic uses round to nearest with ties broken by
rounding to an even last bit or rounding away from zero.
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where M is a power of the machine base and is so large that fl(1 + M) M (thus
M > u-1). The three orderings considered so far produce the following results:

Increasing:

Psum:

Decreasing:

Sn fl(1 + M + 2M- 3M) 0,

Sn fl(1 + M- 3M + 2M) 0,

Sn fl(-3M + 2M + M + 1) 1.

Thus the decreasing ordering sustains no rounding errors and produces the exact answer,
while both the increasing and Psum orderings yield computed sums with relative error 1.
The reason why the decreasing ordering performs so well in this example is that it adds
the "1" after the inevitable heavy cancellation has taken place, rather than before, and
so retains the important information in this term.

Ifwe evaluate the term # Y=2 Igkl in the error bound (2.8) for the example (2.9)
we find

Increasing: # 4M, Psum: # 3M, Decreasing: # M + 1,

so (2.8) "predicts" that the decreasing ordering will produce the most accurate answer,
but the bound it provides is extremely pessimistic since there are no rounding errors in
this instance. This example illustrates the main weakness of bounds from a rounding
error analysis: they represent the worst case and so do not account for the possibility
that rounding errors may cancel or be smaller than expected.

Extrapolating from this example, we conclude that the decreasing ordering is likely
to yield greater accuracy than the increasing or Psum orderings whenever there is heavy
cancellation in the sum, that is, whenever Y]i=l x << ’i=1 Ix I. A numerical example
that illustrates this assertion is given in 6 (see Table 6.1).

3. Other methods. In this section we consider in detail four more summation meth-
ods. The first three of these methods, together with recursive summation, have the fol-
lowing general form: with T zk, k 1: n, they perform n I additions

(3.1) Tk Tk. + Tk2, kl < k2 < k, k n + 1: 2n- 1,

yielding S, T2,-1. In recursive summation, kl < n in each instance of (3.1), but
for the other methods at least one addition involves two previously computed sums. A
useful expression for the error in this general class of summation methods can be derived
as follows. The computed quantities Tk satisfy

(3.2) Tk (Tk + Tk .)(1 + I kl U, k n + 1: 2n 1.

The local error introduced in forming Tk is (Tkl + T2)6 T,6,/(1 + 6,), so overall we
have

2n-1
6k(3.3) n S, k 1 + 6k

k=n+l

The smallest possible error bound is therefore

2--1

(3.4) iEnl <
u Z Il"

k=n+
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It is easy to see that ITkl -- Ixl + O(u) for each k, and so we also have the weaker
bound

n

(3.5) I1 < (n 1)uE Ix"l + O(u2)"

Note that in the case of recursive summation (3.3)-(3.5) are the same as (2.6)-(2.8).
Finally, we note in passing that from (3.2) there follows a backward error result which
shows that S, is the exact sum of terms zi(1 + 0), where 10[ O(u).

The first method we consider is pairwise summation (also known as cascade sum-
mation), which was first discussed by McCracken and Dorn [29, pp. 61-63], Babuka [1],
and Linz [27]. In this method the zi are summed in pairs,

yi X2i--1 + X2i, i 1" [] (Y[(n+l)/2] x, if n is odd),

and this pairwise summation process is repeated recursively on the yi, i 1 [(n+ 1)/2].
The sum is obtained in log2 n] stages. For n 6, for example, pairwise summation
forms

$6 ((Xl -- x2) -- (x3 -- x4)) -- (x5 -- x6).

Pairwise summation is attractive in parallel settings, because each of the [log2 n] stages
can be done in parallel [13, 5.2.2]. Caprani [4] shows how to implement the method on
a serial machine using temporary storage of size [log2 n] (without overwriting the zi).

The error expression (3.3) holds for pairwise summation, but it is easy to derive a
useful error bound independently. Assume for simplicity that n 2r. Unlike in recur-
sive summation each addend takes part in the same number of additions, log2 n. There-
fore, analogously to (2.2), we have a relation of the form

n log2 n

6(ki)’=Exi n (1+ ),
i=1 k=l

which leads to the bound
n

(3.6) lEvi Ix l.
i=1

This is a smaller bound than (2.6) for recursive summation, since it is proportional to
logg. n rather than n. However, in special cases the bound (2.5) for recursive summation
can be smaller than (3.6). For example, if xi 1/ia, the bound (3.6) is

(3.7) IEnl 1.20 log2 n u + O(u2)

(using Ein__l 1/i =1 1/ia 1.20), while for the increasing ordering (2.5) becomes

n
1

n
1

lEvi _< u 1= (n + 1)3 (n
i + 1) + O(u2) u Ei=I fi + O(u2) 1.64u + O(u2)

(using ’i1 1/i2 2i=1 1/i2 7r2/6 1.64), and so pairwise summation has the
larger error bound, by a factor log2 n. (Expression (3.3) does not enable us to improve
on the factor log2 n in (3.7).)
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In [35] an "insertion adder" is proposed for the summation ofpositive numbers. This
method can be applied equally well to arbitrary sums. First, the x are sorted by order
of increasing magnitude. Then X + x2 is formed, and the sum is inserted into the list
x2,..., x,, maintaining the increasing order. The process is repeated recursively until
the final sum is obtained. The motivation given in [35] for this strategy is that it tends to
encourage the additions to be between numbers of similar magnitude. It can be argued
that such additions are to be preferred, because they retain more of the information in
the addends (by comparison, "large" plus "small" may lose many significant digits from
"small"). A more convincing explanation of the insertion strategy is that it attempts to
minimize, one at a time, the absolute values of the terms T,+I,..., T2,_1 in the error
expression (3.3). Indeed, if the x are all positive the insertion method minimizes the
bound (3.4) over all methods of the form (3.1).

In particular cases the insertion method reduces to earlier methods. For example, if
x 2, the insertion method is equivalent to recursive summation, since the insertion
is always to the bottom of the list:

1248 ---* 348 --* 78 15.

On the other hand, if I < Xl < x2 < < xn < 2, every insertion is to the end of the
list, and the method is equivalent to pairwise summation if n is a power of 2; for example,
if0<e< 7,

1, l+e, 1+2e, 1+3e ---, 1+2e, 1+3e, 2+e ---, 2+e, 2+5e 4+6e.

The next method we consider is the one used in [24], as quoted in the Introduc-
tion. This method can be derived by the following specious reasoning: ’Yk major source
of inaccuracy in floating point summation is cancellation when numbers of nearly equal
magnitude and opposite sign are added. To minimize the amount of cancellation we can
accumulate the sum of the positive numbers, S+, and the sum of the negative numbers,
S_, separately, and then form S, S+ + S_." There are two flaws in this argument.
First, this "+/-" method does not reduce the amount of cancellation--it simply concen-
trates all the cancellation into one step. Second, cancellation is not a bad thing per se;
the problem with cancellation is that it brings into prominence any loss of significant dig-
its suffered earlier in the calculation (and it also brings into prominence any uncertainty
in the data). Indeed, nearly equal floating point numbers are always subtracted exactly
(assuming the presence of a guard digit)--it is any (relative) uncertainty in those num-
bers that is magnified. For an excellent and more detailed discussion of cancellation, we
refer the reader to [34, pp. 25-29].

The +/- method is of the form (3.1) (assuming that S+ and S_ are computed using
one of the methods discussed so far) and it is easy to see that it maximizes maxk ITI over
all methods of this form. Moreover, wheni IXi[ Zin--_l Xil the value of maxk ITkl
tends to be much larger for the +/- method than for the other methods we have con-
sidered. For example, if n 2rn and the xi are the values {-1, 1,-2, 2,...,-m, rn}
then

m

IS+l- IS-I- IT2 -21- k- m(m + 1)/2,
i--1

whereas for recursive summation with the increasing ordering, ITkl < rn for all k. De-
spite this weakness, if S+ and S_ are computed by recursive summation with the increas-
ing ordering then the +/- method satisfies a bound very similar to (2.5): if

Xp

__
Xp--1

__ __
X < 0

__
Xp+ -- __

Xn
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then it is straightforward to derive the bound

(3.8) -< I ,1 + I ,l + 1 u
i=1 i=p+l

In summary, the +/- method appears to have no advantages over the other methods
considered here, and in cases where there is heavy cancellation in the sum it can be
expected to be the least accurate method.

The final method that we examine has an interesting background. In 1951, Gill
[8] noticed that the rounding error in the sum of two numbers could be estimated by
subtracting one of the numbers from the sum, and he made use of this estimate in a
Runge-Kutta code in a program library for the EDSAC computer. Gill’s estimate is
valid for fixed point arithmetic only. Kahan [16] and Mller [31] both extended the
idea to floating point arithmetic. Mller shows how to estimate a + b fl(a + b) in
chopped arithmetic, while Kahan uses a slightly simpler estimate to derive a "compen-
sated summation" method for computing =1 z. The use of Kahan’s method with a
Runge-Kutta formula is described in [41] (see also the experiments in [26]).

The estimate used by Kahan is perhaps best explained with the aid of a diagram. Let
a and b be floating point numbers with lal _> Ibl, let " fl(a + b), and consider Fig. 3.1,
which uses boxes to represent the mantissas of a and b. The figure suggests that if we
evaluate

e=-[((a+b)-a)-b] =(a-’)+b

in floating point arithmetic, in the order indicated by the parentheses, then the computed

" will be a good estimate of the error (a + b) . In fact, for rounded floating point
arithmetic in base 2, we have

(3.9) a + b + ’,

that is, the computed ’represents the error exactly. This result (which does not hold for
all bases) is proved by Dekker [5, Thm. 4.7], Knuth [22, Thm. C, p. 221], and Linnainmaa
[26, Thm. 3]. Note that there is no point in computing fl(’g + ), since is already the
best floating point representation of a + b!

a al ]
+b

-a

a2

b b2

a2 + b
b 0

-b -b2 0 -e

FIG. 3.1. Recovering the rounding error.

Kahan’s compensated summation method employs the correction e on every step
of a recursive summation. After each partial sum is formed, the correction is computed
and immediately added to the next term z before that term is added to the partial sum.
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Thus the idea is to capture the rounding errors and feed them back into the summation.
The method may be written as follows.

s=0;e=0
for/= l:n

temp s
y= x +e
s temp + y
e (temp s) + y

end

The compensated summation method has two weaknesses: " is not necessarily the
exact correction, since (3.9) is based on the assumption that lal > Ibl, and the addition
y x + e is not performed exactly. Nevertheless, the use of the corrections brings a
benefit in the form of an improved error bound. Knuth [22, Ex. 19, pp. 229, 572-573]
shows that the computed sum S, satisfies

(3.10) g, E(1 + #,)xi, I#i[-< 2u + O(nuZ),
i=1

which is an almost ideal backward error result (a more detailed version of Knuth’s proof
is given in [9]).

In [17] and [18], Kahan describes a variation of compensated summation in which
the final sum is also corrected (thus "s s +e" is appended to the algorithm above). Ka-
han states in [17] and proves in [18] that (3.10) holds with the stronger bound ]#i[ < 2u+
O((n i + 1)u9); note that with this bound for [#i[, (3.10) is essentially (2.3) with the
n dependency transferred from the u term to the uz term. The proofs of (3.10) given by
Knuth and Kahan are similar, and involve a subtle induction using the model (1.2).

The forward error bound corresponding to (3.10) is

(3.11)
i=1

As long as nu < 1, the constant in this bound is independent of n, and so the bound
is a significant improvement over the bounds (2,6) for recursive summation and (3.6)
for pairwise summation. Note, however, that if Y.= Ixl >> Ixl, compensated
summation is not guaranteed to yield a small relative error.

Another version of compensated summation is described in [14], [15], [21], [32], and
[33]. Here, instead of immediately feeding each correction back into the summation, the
corrections are accumulated by recursive summation and then the global correction is
added to the computed sum. For this version of compensated summation it is shown in
[21] and [32] that

(3.12) , E(1 + #i)xi, I#il < 2u + n=u,
i=1

provided nu < 0.1; this is weaker than (3.10) in that the second-order term has an extra
factor n. If nZu < 0.1 then in (3.12), ]#1 < 2.1u. In [14], it is shown that by using
a divide and conquer implementation of compensated summation the range of n for
which [#il < cu holds in (3.12) can be extended, at the cost of a slight increase in the size
of the constant
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Finally, we mention briefly two further classes of algorithms. The first builds the
sum in a series of accumulators, which are themselves added to give the sum. As origi-
nally described in [44], each accumulator holds a partial sum lying in a different interval.
Each term z is added to the lowest level accumulator; if that accumulator overflows it
is added to the next higher one and then reset to zero, and this cascade continues until
no overflow occurs. Modifications of Wolfe’s algorithm are presented in [28] and [36].
Malcolm [28] gives a detailed error analysis to show that his method achieves a relative
error of order u. A drawback of the algorithm is that it is strongly machine dependent.
An interesting and crucial feature of Malcolm’s algorithm is that on the final step the ac-
cumulators are summed by recursive summation in order of decreasing absolute value,
which in this particular situation precludes severe loss of significant digits and guarantees
a small relative error.

Another class of algorithms, referred to as "distillation algorithms" by Kahan [19], it-

eratively constructs floating point numbers xk),..., x(k) such that iL1 Xk) ElL1 Xi,

terminating when x() approximates i1 xi with relative error at most u. Kahan states
that these algorithms appear to have average run times of order at least n log n. See [3],
[19], [25] and [23] for further details and references.

4. Statistical estimates of accuracy. As we have noted, rounding error bounds can
be very pessimistic, because they account for the worst-case propagation of errors. An
alternative way to compare summation methods is through statistical estimates of the
error, which may be more representative of the average case. A statistical analysis of
three summation methods has been given by Robertazzi and Schwartz [35] for the case
of nonnegative x. They assume that the relative errors in floating point addition are
statistically independent and have zero mean and finite variance a2. Two distributions
of nonnegative x are considered: the uniform distribution on [0, 2#], and the exponen-
tial distribution with mean #. Making various simplifying assumptions Robertazzi and
Schwartz estimate the mean square error (that is, the variance of the absolute error) of
the computed sums from recursive summation with random, increasing, and decreasing
orderings, and from insertion summation and pairwise summation. Their results for the
summation of n numbers are given in Table 4.1.

TABLE 4.1
Mean square errors.

Distribution

Unif(0, 2/)
Exp(/)

Increasing Random Decreasing Insertion Pairwise

0.202n3tr2 0.33/z2n3cr2 0.532n3tr2 2.6/,2n2tr2 2.7/z2n2tr2
0.13/z2n3a2 0.33/2n3a2 0.63/z2n3tr2 2.6/2n2tr2 4.0/z2n2cr2

The results show that for recursive summation the ordering affects only the constant
in the mean square error, with the increasing ordering having the smallest constant and
the decreasing ordering the largest; since the z are nonnegative, this is precisely the
ranking given by the rounding error bound (2.8). The insertion and pairwise summa-
tion methods have mean square errors proportional to n rather than n for recursive
summation, and the insertion method has a smaller constant than pairwise summation.
This is also consistent with the rounding error analysis, in which for nonnegative z the
insertion method satisfies an error bound no larger than pairwise summation, and the
latter method has an error bound with a smaller constant than for recursive summation
(log2 n versus n).
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5. No guard digit model. The model (1.2) on which our error analysis is based is
not valid on machines that lack a guard digit in addition, notable examples ofwhich are
Cray computers. On Cray computers, subtracting any power of 2 from the next smaller
floating point number gives an answer that is either a factor of 2 too large or is zero, so
the expression fl(c +V) (z +U)(1 +6) holds with }61 i but not with 161 o() [20].
For machines without a guard digit we have to use the weaker model [43, p. 12]

(5.1) fl(x + y) x(1 + a) + y(1 + ), la[, I1 .
We now summarize the effect on the rounding error analysis of using (5.1) in place

of (1.2). The equality (2.4) remains valid provided we replace (xl +x2)0_1 by xl0_ +
x20_; so (2.5) and (2.6) are unchanged. The error expression (2.7) has to be re-
placed by

(5.2) En -(k-lOk + Xiflk), [Ok[, IZI ,
and so the analog of (2.8) is

(5.3) I1 z(1-11 + I1),

which is bounded above by 3z= + Notice that (5.3) contains the term

S z, which is not present in (2.8). The error expression (3.3) has to be replaced
by an expression analogous to (5.2), and in (3.5) the factor n 1 has to be replaced
by n. The bound (3.6) for pairwise summation remains valid under the no guard digit
model, while in the bound (3.8) for the +/- method we have to replace z/(1
by (IS"+ + IS"-I), which is bounded by u E,I Iz, + O(u)

Neither the correction formula (3.9) nor the result (3.10) for compensated summa-
tion holds under the no guard digit model. Indeed, Kahan [20] constructs an example
where compensated summation fails to achieve (3.11) on Cray machines, but he states
that such failure is extremely rare. In [17] and [18], Kahan gives a modification of the
compensated summation algorithm in which the assignment "e (temp s) + U" is
replaced by

f=0
if sign(temp) sign(u), f (0.46 s s) + s, end
e ((temp- f) (s f)) + U

Kahan shows in [18] that the modified algorithm achieves (3.10) "on all North American
machines with floating hardware" and explains that, "the mysterious constant 0.46, which
could perhaps be any number between 0.25 and 0.50, and the fact that the proof requires
a consideration ofknown machines designs, indicate that this algorithm is not an advance
in computer science."

Ii. Numerical experiments. In this section we describe some numerical experiments
that give further insight into the accuracy of summation methods. All the experiments
were done using MATLAB [30], which uses IEEE standard double precision arithmetic
with unit roundoff z 1.1 10-6.

First, we illustrate the behavior of the methods on four classes of data {zi} cho-
sen a priori. In these tests we simulated single precision arithmetic of unit roundoff
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l,Sp 2-23 1.2 x 10-7 by rounding the result of every arithmetic operation to 23
significant bits. We formed an approximation to the exact answer Sn by summing the
single precision numbers zi in double precision by recursive summation; in each case
nz Y’il [xi[ < zsplSn[, so (2.6) guarantees that this approximation is correct to single
precision. We give results for recursive summation with the original (Orig.), increasing
(Inc.), decreasing (Dec.), and Psum orderings, and for the insertion (Ins.) method, the
+/- method (with S+ and S_ computed by recursive summation with the increasing
ordering), pairwise summation with the increasing ordering (Pair.), and compensated
summation (Comp.).

The numbers reported are the relative error S, S,I/[S I, together with infor-
mation that indicates the sharpness of the bounds. In square brackets is the value T
y2,-1 [k[ in (3.4), for all methods except compensated summation. In parenthesesk=nq-1

is the ratio R ]Sn Snl/(usf -i=1 Ix, l), which, according to the error analyses, is
certainly bounded (to first order) by n for recursive summation and the insertion and
+/- methods, log2 n for pail-wise summation, and 2 for compensated summation. The
quantities T and R reveal how close the strongest and weakest of the error bounds are
to being equalities.

(1) In the first example, xi is the ith term in the Taylor series expansion of e-x about
the origin, with x 27r (this series provides the classic example of "catastrophic can-
cellation" [37]). Results for n 64 are given in Table 6.1. In this example, recursive
summation with the decreasing ordering yields by far the best accuracy. There is severe
cancellation in the sum and the decreasing ordering allows the terms of smallest mod-
ulus to contribute fully to the computed sum; in the other methods the small terms are
"swamped" by the large terms. The error bounds do not reflect the merit of the decreas-
ing ordering, because the T terms (in square brackets in the table) are of similar mag-
nitude for the first four methods. Note also that compensated summation produces no
improvement over recursive summation with the original ordering, and the +/- method
yields one less correct significant figure than all the other methods (as predicted by the
T values).

TABLE 6.1
a:from e-r expansion. -= xl/i= I1 a.48e ,

n Orig. Inc. Dec. Psum Pair. Ins. //- Comp.

64 5.11e-45.11e-4 2.27e-3 1.85e-7 2.27e-3 1.41e-4 2.27e-3 1.86e-2
[2.68e2 2.97e2 2.97e2 2.85e2 8.68el 2.97e2 1.34e3]
(1.49e-2 6.64e-2 5.40e-6 6.64e-2 4.13e-3 6.64e-2 5.44e-1 1.49e-2)

(2) In this example the zi are random numbers from the Normal(0,1) distribution
and we report the results for n 2048 and 4096 in Table 6.2. There is cancellation in
both sums, although not as much as in the first example. Here the Psum ordering is
clearly the best and the //- ordering the worst, and this is reflected in the T values.

The next two tests involve positive z, for which all the methods are guaranteed to
produce a relative error no larger than f(n)u, where f(n) < n depends on the method.
(Note that for positive z, "Psum =_ +/- Inc.")

(3) We take zi 1/i:t and examine how the errors vary with n for recursive summa-
tion with the decreasing and increasing orderings. Results for n 500, 1000,..., 5000
are given in Table 6.3. As would be expected in view of the error bounds of 2, the de-
creasing ordering provides much lower accuracy than the increasing ordering when n is
large.



FLOATING POINT SUMMATION 795

TABLE 6.2

from Normal (0,1)disbution. Yi--1 x,il/Y]i- Ix’il-- 8.08e- 3(n 2048), 3.48e- 3(n 4096).

n Orig. Inc. Dec. Psum Pair. Ins. +/- Comp.

2048 2.28e-7

4096

7.47e-6 3.32e-6 7.17e-6 6.82e-8 6.60e-7 5.12e-7 1.20e-4
[3.06e4 1.53e4 2.65e4 8.26e2 2.87e3 2.32e3 4.80e5]
(5.06e-1 2.25e-1 4.86e-1 4.62e-3 4.47e-2 3.47e-2 8.15e0
8.06e-6 1.04e-5 1.84e-6 2.66e-8 1.38e-7 6.87e-7 3.68e-4
[6.69e4 4.74e4 4.28e4 1.68e3 5.70e3 5.38e3 2.02e6]

(2.35e--1 3.04e-1 5.38e-2 7.76e-4 4.04e-3 2.00e-2 1.07el

1.54e-2)
1.92e-7

5.59e-3)

Inc.
Dec.

TABLE 6.3
xi 1/i2.

500 1000 2000 3000 4000 5000

1.04e-7 1.01e-7 1.74e-8 5.22e-8 1.36e-7 3.90e-8
3.31e-7 6.24e-7 5.64e-6 2.30e-5 2.77e-5 5.81e-5

(4) In this example the numbers xi are equally spaced on [1, 2]. We tried various
n < 4096 and did not observe a great difference between the increasing and decreas-
ing orderings; this is to be expected since the xi vary little in magnitude. For the fairly
large n in Table 6.4 pairwise summation out-performs recursive summation (the insertion
method is equivalent to pairwise summation in this example). The errors for compen-
sated summation are zero for all the n we tried!

TABLE 6.4
equispaced on [1, 2].

n Inc. Dec. Pair. Comp.

2048 0.00

4096

2.86e-6 3.86e-5 1.59e-7
[2.80e6 3.50e6 3.38e4]
(2.40e 3.24e2 1.33e0 0.00)
3.35e-5 2.18e-5 1.59e-7 0.00
[1.12e7 1.40e7 7.37e4]
(2.81e2 1.83e2 1.33e0 0.00)

In the next set of tests we used a MATLAB implementation [12] of the multi-
directional search (MDS) method [39], [40] which attempts to locate a maximizer of
f IR’ ]R using function values only. We applied the maximizer to f defined as the
relative error of the sum computed in single precision by recursive summation with the

2 1] the maximizer located theincreasing ordering. With n 3, starting with x0 [1/2, g,
following set of data after 280 function evaluations:

x [4.975987 2.495094 2.480894], f(x) 1.0,

3 -9.5367 x 10-7, $3 -4.7684 x 10-7,

where x and the Sa values are quoted to seven and five significant figures, respectively.
With f defined as the relative error for compensated summation, the MDS maximizer

2made little progress with the same starting value. But starting with x0 [-g, 0, g], the
maximizer found after 166 function evaluations the data

x--[-0.8308306
$3 2.3842 X 10-7,

0.7626623 1.593493],
$3 1.1921 10-7.

f(x)-- 1.0,
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(If z is reordered with the increasing ordering then f(z) 1.0, but f(z) 0 for the
decreasing ordering.)

These two examples are typical--using the maximizer it is straightforward to find
data for which any of the summation methods yields no correct significant figures in the
sum. The maximizer can also be used to compare two different methods, by defining f
as the ratio of the errors from the two methods. With n 3 we compared recursive sum-
mation (with the increasing ordering) with compensated summation. For both ratios of
errors (E(Inc.)/E(Comp.) and its reciprocal) with certain starting values the maximizer
was able to make the ratio arbitrarily large, by converging to data for which the error
forming the denominator of f is zero. We observed similar behavior when comparing
other methods.

Next, we describe an experiment with the forward substitution algorithm for solv-
ing a lower triangular system. We coded the inner product version of the algorithm and
provided an option to choose between eight summation methods when evaluating the
inner products. (The column-oriented form of forward substitution is not amenable to
the use of different summation methods.) Lower triangular systems Tx b were solved
in single precision and the forward error I1- zll/llzll was evaluated for each of the
eight summation options. We give results for T UT where PA LU is the LU fac-
torization with partial pivoting of the 10 x 10 Vandermonde matrix whose (i, j) element
is ((j 1)/(n 1))i-1. In Table 6.5 we report results for the two systems with right-
hand sides b Tz, where x has elements equally spaced on the intervals [1,100] for

1 and [0, 100] for 2. For this matrix o(T) IITIIIIT-XlI 3 107, and
cond(T, xx) cond(T, x2) 7 x 105, where cond(T,x) IT-111TIIzl II/llxll _<

(T) is the condition number that appears in a forward error bound for the substitu-
tion algorithm [11]. The forward error varies over the different summation methods by a
factor 98 for bl and a factor 39 for b2; these are the largest variations we observed in tests
with a variety of different matrices and right-hand sides. Throughout the tests there was
no pattern to which summation method led to the smallest or largest forward error. This
experiment shows that the choice ofsummation method for inner product evaluation can
significantly affect the accuracy achieved by forward substitution, and this conclusion ap-
plies afortiori to the solution of a full system via LU factorization. However, since there
appears to be no straightforward way to predict which summation method will be the
best for a given linear system, there is little reason to use anything other than recursive
summation in the natural order when evaluating inner products within a general linear
equation solver.

TABLE 6.5
Forward substitution with a 10 x 10 matrix.

Orig. Inc. Dec. Psum Pair. Ins. +/- Comp.

bl 3.01e-4 1.18e-2 7.70e-3 1.18e-2 2.94e-2 1.18e-2 4.01e-3 7.70e-3
bg. 1.31e-2 2.64e-2 4.63e-3 2.64e-2 6.81e-4 1.06e-2 2.64e-2 2.04e-2

We have also experimented with compensated summation with the data arranged
in order of decreasing magnitude. For all the problems we have tried, including those
described above, the relative errors are < usp. Our attempts to use the MDS maximizer
to find a set of x for which the relative error exceeds usp have been unsuccessful. It is
therefore natural to ask whether a relative error bound of the form _< can
be derived, where c is a constant independent ofthe x. The answer is no, because E, can
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can be nonzerowhen S, 0. Evenwhen n 3 and Sn 4 0 it appears to be impossible to
obtain such a bound. Nevertheless, our (limited) experience suggests that compensated
summation with the decreasing ordering performs remarkably well in practice, and it
would be interesting to determine why this is so.

Further test results can be found in the literature, although none are extensive. Linz
[27] compares recursive summation with pairwise summation for uniform random num-
bers on [0, 1] with n 2048, averaging the errors over 20 trials, and Caprani [4] and Gre-
gory [10] both conduct a similar experiment including compensated summation as well.
Linnainmaa [26] applies recursive summation and compensated summation to series ex-
pansions, Simpson’s rule for quadrature and Gill’s Runge-Kutta method. Robertazzi
and Schwartz [35] evaluate average mean square errors for recursive summation (with
increasing, decreasing, and random orderings), pairwise summation and the insertion
method, for the uniform [0, 1] and exponential (/z 0.5) distributions with n < 4096.

7. Concluding remarks. No summation method from among those considered here
can be regarded as superior to the rest from the point ofview of accuracy, since for each
method the error can vary greatly with the data, within the freedom afforded by the error
bounds. However, some specific conclusions can be drawn.

1. For all but two of the methods the errors are, in the worst case, proportional
to n. If n is very large, pairwise summation (error constant log n) and compensated
summation (error constant of order 1) are attractive.

2. If the all have the same sign, then all the methods yield a relative error of at
most nu, and compensated summation guarantees perfect relative accuracy (as long as
nu < 1). For recursive summation of one-signed data the increasing ordering is prefer-
able to the decreasing ordering (and it is equivalent to the Psum ordering); however,
the insertion method has the smallest bound (3.4) over all the methods considered here
(excluding compensated summation).

3. For sums with heavy cancellation (=1 Irl >> ’1 zl) recursive summation
with the decreasing ordering is attractive (see Table 6.1), although it cannot be guaran-
teed to achieve the best accuracy (see Table 6.2).

Considerations of computational cost and the way in which the data are generated
may rule out some of the methods. Recursive summation in the natural order, pair-
wise summation, and compensated summation can be implemented in O(n) operations
for general z, but the other methods are more expensive since they require searching
or sorting. Furthermore, in an application such as the numerical solution of ordinary
differential equations where the z are generated sequentially, and zk may depend on

k-1)-=1 zi, sorting and searching may be impossible. One way to achieve higher accuracy
that we have not mentioned is simply to implement recursive summation in higher pre-
cision; if this is feasible, it may be less expensive (and more accurate) than using one of
the alternative methods in working precision.

Finally, we return to the two practical applications mentioned in the introduction.
In [24], the +/- method was found to cure some problems with inaccurate gradients in
an optimization method. This is a little surprising since we have found the +/- method
to be unattractive. It appears that there is some feature of this application, not apparent
from [24], that encourages the +/- method to perform better than recursive summation
with the natural ordering. The loss of symmetry in a quasi-Newton method that was
observed in [7] is easier to understand. For example, symmetries in F in (1.1) can be
preserved by using any summation method whose computed answer does not depend on
the given order of the data--such as recursive summation with the increasing ordering
and with elements of equal magnitude ordered by sign.
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ADAPTIVE LINEAR EQUATION SOLVERS
IN CODES FOR LARGE STIFF SYSTEMS OF ODES*

K. R. JACKSONt AND W. L. SEWARD

Abstract. Iterative linear equation solvers have been shown to be effective in codes for large systems of stiff
initial-value problems for ordinary differential equations (ODEs). While preconditioned iterative methods are
required in general for efficiency and robustness, unpreconditioned methods maybe cheaper over some ranges
of the interval of integration. In this paper, a strategy is developed for switching between unpreconditioned
and preconditioned iterative methods depending on the amount of work being done in the iterative solver
and properties of the system being solved. This strategy is combined with a "type-insensitive" approach to the
choice of formula used in the ODE code to develop a method that makes a smooth transition between nonstiff
and stiff regimes in the interval of integration. As expected, it is found that for some large systems of ODEs,
there may be a considerable saving in execution time when the type-insensitive approach is used. If there
is a region of the integration that is "mildly" stiff, switching between unpreconditioned and preconditioned
iterativc methods also increases the efficiency of the code significantly.

Key words, type-insensitive ODE code, iterative linear solver, preconditioning
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1. Introduction. In recent years, there have been several investigations of the use
of iterative linear equation solvers in codes for the numerical solution of large systems
of stiff initial-value problems (IVPs) for ordinary differential equations (ODEs). See,
for example, [5], [6], [8], and [12]. Such work has established clearly the potential ef-
fectiveness of the combination of these methods, but there are many open questions
concerning both the choice of iterative method and the way in which it interacts with
strategies used in the ODE solver. Frequently, the iterative methods investigated have
been of the "Krylov subspace" type, e.g., the conjugate gradient method, Orthomin [22],
or GMRES [6]. In this paper, we also consider an iterative method of this type, but
our results should apply to a broader class since we are primarily concerned with the
interaction between the iterative method and the other strategies of the ODE solver.

We study the numerical solution of large systems of stiff IVPs for ODEs of the form

(1) y’ f(t, y), y(to) given.

Due to the stiffness, such problems are usually discretized using an implicit numerical
method, most often the backward differentiation formulas (BDFs) [11]. We will concen-
trate on the BDFs, although many of our ideas apply to implicit numerical methods in
general. Applied to (1), a k-step BDF has the form

(2)
k

Yn E OJnYn--J 2t- hn/nf(tn’ Yn).
j=l

To find y, from (2), it is necessary to solve a system of equations of the form

(3) [i’(yn) Yn hnnf(tn, Yn) Cn O,
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where b, contains the terms in (2) that do not depend on y,. In general, this system is
nonlinear and is solved by Newton’s method or some variant of it.

The usual form of Newton’s method is

select an initial guess y0
forl 0, 1,...
--solve Fu(y)A + F(y) 0 for A,
--set ,,+ y + A,

where Fv(V I- h,fv(t, V). Most ODE codes use a chord method (often called
a pseudo- or simplified-Newton method) in which Fv(Vtn) is replaced by some approx-
imation W, generally the Newton iteration matrix Fv (or some approximation to it)
from some earlier timestep. If the system of ODEs (1) is large, the linear algebra cost of
the solve step is normally a major part of the cost of the integration. IfW is sparse, as
is usually the case for large systems, exploiting the sparsity can be an effective means of
reducing this cost. Using a direct sparse matrix solver in Newton’s method is reasonably
straightforward and has been discussed in the context of ODE solvers by, for example,
Berzins and Furzeland [3] and Sherman and Hindmarsh [19]. Chan and Jackson [8] com-
pare direct and iterative methods in this context. In this paper, we concentrate on the
use of iterative solvers.

When an iterative linear equation solver is used in the solve phase of Newton’s
method, an inexact Newton method [10] is obtained. In general, such a method has the
form

select an initial guess
forl O, 1,...
find An satisfying F "sufficiently small,"(,)/X, + F() d, for d,
--set y+t y + A.

This iteration converges at least linearly if

(4) IIdll < ntllF(y)ll,

where 0 < r/t < r/< 1. In the case where an iterative linear equation solver is used to
find y, the residual d is the final residual of the linear iteration.

Brown and Hindmarsh [5] consider iterative linear equation solvers based on
Arnoldi’s method for use in the ODE code LSODE [14]. In their approach, the matrix-
vector product required in the iterative method is approximated by a finite difference
based on f. This approach avoids explicitly forming the iteration matrix W needed
in Newton’s method and hence has been referred to as a "matrix-free" method. These
methods are very efficient in storage and, as predicted by the theory of Krylov subspace
methods [5], converge quickly if the eigenvalues of W are clustered. If this is not the
case, preconditioning is usually required for efficiency and robustness in the ODE solver.
In [6], preconditioning strategies for use with the "matrix-free" approach are discussed.
These strategies require formation and storage of at least part of W in general, but
are still very efficient in terms of storage. The authors find that, with preconditioning, a
wider class of problems can be solved efficiently.

Chan and Jackson [8] also investigate both unpreconditioned and preconditioned
Krylov-type iterative methods used with LSODE. The methods they use are not "matrix-

free"--W is formed, stored and used explicitly to compute the matrix-vector products
needed in the iterative method. The authors consider various ways of reducing the
amount of time spent in forming and processing W. For example, if preconditioning is
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not being used, they show that it is not difficult to keep the factor h, in W current,
thus requiring fewer Jacobian evaluations for the integration.

Hence we observe that, for a variety of reasons, unpreconditioned iterative methods
can be cheaper to use than preconditioned ones in stiff ODE solvers. However, precon-
ditioning appears necessary in general for efficiency and robustness. This observation
led us to study an adaptive approach to switching preconditioning on and off. In partic-
ular, if the eigenvalues of the Newton iteration matrix W are clustered, which always
occurs when h, is small, preconditioning may not be necessary. In other cases, it is likely
that the number of iterations of the linear equation solver can be reduced significantly
by preconditioning.

Instead of not preconditioning at all, our method uses diagonal scaling, a cheap pre-
conditioner described in more detail below, when this seems to be effective, but switches
to a more powerful preconditioner based on W when diagonal scaling appears to be
ineffective. We expect that CPU time can be saved by avoiding unnecessary expensive
preconditioning without sacrificing robustness since preconditioning is available when
necessary.

The idea of switching preconditioning on and off combines naturally with the use
of a "type-insensitive" ODE solver. A type-insensitive code switches between methods
appropriate for nonstiff and stiff IVPs depending on the nature of the problem. This
approach has been discussed by several authors for a variety of formulas. See, for ex-
ample, [4], [15]-[18]. Petzold [16] developed a type-insensitive method based on the
Adams formulas [11] and the BDFs that switches between the two classes of formulas
based on Jacobian information and behaviour of the code. We have combined the ideas
from [16] with our adaptive approach to preconditioning. Our code starts integrating
with the Adams formulas and switches to the BDFs as described by Petzold. When this
switch is made, the linear equation solver uses diagonal scaling only. Later the method
may switch to a more expensive preconditioner described below. It can switch back to
diagonal scaling and to the Adams formulas, if it predicts they will be more cost effective.

The basic iterative linear equation solver that we use is Orthomin [22]. Other rea-
sonable choices include GMRES [5] and the stabilized version ofthe conjugate-gradient-
squared (CGS) algorithm [21]. To focus on adaptive preconditioning, we chose to use
one basic iterative solver only. We selected the well-known scheme Orthomin, in part
because an effective implementation of it along with several preconditioners was readily
available to us.

There is a variety of possible approaches for the "cheap" preconditioning. We could
use no preconditioning at all, in which case a "matrix-free" method or an approach that
updates h,fl, frequently might be very efficient. This approach would allow us to avoid
forming W entirely or to form it infrequently during this phase. HoWever, there may
be hidden costs associated with such methods. For example, a "matrix-free" method re-
quires one function evaluation per linear iteration. Forming the Newton iteration matrix

W explicitly, on the other hand, is frequently a relatively inexpensive operation for a
large sparse system of ODEs, costing a few function evaluations only.

In our numerical experiments, we chose to form W explicitly, according to the
heuristics of the basic ODE solver, and to use diagonal scaling (that is, precondition-
ing by a diagonal matrix to make the diagonal elements of W all ones) as our cheap
preconditioner. The improvement in performance when diagonal scaling is used can be
significant even though the cost is low. Moreover, diagonal scaling often reduces the
cost of the iterative solver since it is not necessary to multiply by the matrix diagonal
in this case when computing matrix-vector products. So there is little point to omitting
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diagonal scaling ifW is computed explicitly. Furthermore, diagonal scaling can be used
with other approaches to forming W (see [5], for example, for a discussion of scaling
with "matrix-free" methods), but we have not attempted any elaboration of our basic ap-
proach. For brevity, in the remainder of the paper, we occasionally refer to an iterative
method with diagonal scaling only as an unpreconditioned method.

A more powerful preconditioner is switched on if diagonal scaling appears to be
ineffective. The particular preconditioning strategies that we have studied are Level 0
and Level 1 incomplete LU (ILU) factorizations, as described in 2. We note that diag-
onal scaling is also used with the ILU preconditioners, as it is often found to improve
their performance. These preconditioning strategies can be applied to any matrix in a
"black box" fashion, and have been found to work well in solving time-dependent partial
differential equations (PDEs). (See, for example, [1], [2], and [9].) While these precon-
ditioners depend on the explicit presence of the Jacobian matrix, the idea of switching
between preconditioners should be useful whenever a variety of strategies of differing
costs are available.

We also develop criteria for switching these preconditioners off, and this is the only
place in our adaptive strategy where we use Jacobian information directly. Our strategy
looks at both the performance of the iterative solver and the spread of the eigenvalues
of the Newton iteration matrix W. The eigenvalue information is useful since fast con-
vergence of the iterative solver might be primarily due to the preconditioner. We have
not investigated the case in which the Jacobian is not available explicitly. In most cases,
the development of a good preconditioner requires at least some Jacobian information
which could be used in our test, possibly in a more conservative form.

In the next section, we briefly describe the codes that were used in this investigation.
Heuristics for identifying when to switch preconditioning on and off are discussed in
3. The use of adaptive preconditioning in type-insensitive codes is considered in 4.
Test problems and numerical results are presented in both 3 and 4 to illustrate the
performance of the techniques. We end with some conclusions in 5.

2. Codes used in the investigation. The ODE package used in this investigation
was SPRINT [3]. This package is designed to offer the user a range of methods for the
numerical solution of systems of IVPs in ODEs. It allows the user to select from four
timestepping methods and three linear algebra packages to create the complete method
appropriate for a particular problem. The three algebra routines are full, banded, and
sparse direct solvers. Because of this modularity, the SPRINT package is well suited for
testing the interaction ofthe iterative linear algebra solverwith the ODE method, since it
is possible to couple our iterative solver to a sophisticated, fully developed timestepping
scheme.

SPRINT includes a space discretization module, but for one-dimensional PDE sys-
tems only. Consequently, the higher-dimensional PDE test problems used in this paper
have been semidiscretized in space by our own routines. One motivation for our study of
iterative linear solvers is the current work being done with SPRINT to develop modules
for spatial discretization of PDE systems in higher dimensions.

The particular ODE method used in this investigation is based on the BDFs and is
similar in implementation to the well-known code LSODE [14]. A variant of LSODE,
called LSODA, was written by Hindmarsh and Petzold to incorporate the ideas for a
type-insensitive method described in [16]. Our type-insensitive ODE solver was de-
veloped by altering the SPRINT BDFs module corresponding to the changes made to
evolve LSODE into LSODA.
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The iterative solver used in our study, WATSIT, was developed at the University of
Waterloo based on methods described in [1], [2], and [9]. This code is designed to solve
systems of linear equations of the form Az b where the matrix A is large and sparse.
The basic technique is an incomplete factorization scheme with acceleration. The user
has several choices for both the acceleration method and the incomplete factorization.
Possible acceleration methods include the conjugate gradient method, Orthomin [22],
the CGS algorithm [20], and a stabilized version of CGS [21]. As noted in 1, since we
wish to focus on our adaptive strategy in this paper, we use Orthomin acceleration only
in our numerical tests and have not encountered any test problems where it breaks down.

The user has the choice of diagonal scaling only or preconditioning based on either
Level 0 or Level 1 ILU factorization, denoted ILU(0) and ILU(1), respectively. These
preconditioners are defined by discarding all or some of the fill elements that would
arise during a complete LU decomposition of the matrix associated with the system to
be solved. ILU(0), the simpler of the two preconditioners, discards all fill elements.
Thus, this preconditioner has the same sparsity structure as the original matrix, which
can be an advantage since the storage requirement is known a priori. The more power-
ful ILU(1) preconditioner retains the fill generated by eliminating the original nonzero
elements. These and other more powerful preconditioners may reduce the number of
iterations required to solve a linear system, although each iteration with a more powerful
preconditioner is generally more expensive than one with diagonal scaling or no precon-
ditioner at all. Whether a more powerful, but more expensive, preconditioner will be
more cost effective than a weaker, but less expensive, one depends on the linear system
to be solved. Further discussion of ILU preconditioners can be found in [9] and [13].

In Brown and Hindmarsh [5], convergence criteria for the iterative method are dis-
cussed in detail in the context of an ODE code. Both Brown and Hindmarsh [5] and
Chan and Jackson [8] find that the residual reduction condition (4) is overly expensive:
it forces linear iterations that do not seem to improve the accuracy of the ODE solution
significantly. In [5], the authors propose and justify a strategy that accepts the result pro-
duced by the iterative linear solver if the residual is some small fraction of the tolerance
level required on the solution of the nonlinear system. A similar strategy was developed
in [8]. We adopt this approach and also use the same fraction that is suggested in [5],
namely, 1/20. The residual is measured in the weighted norm used by the ODE solver.
Since the acceleration methods used in WATSIT return the residual directly, we do not
need to scale the matrix to obtain the weighted norm, as is done in [5]. The linear itera-
tion is started with a zero vector as its initial guess and always does at least one iteration.
If the maximum iteration count is reached without the desired reduction of the residual
on the first Newton iteration, the code accepts A and updates 0 + A0 provided
that the current residual, Fu(y)A + F(y) d, is smaller than the initial one, F().
Otherwise, a failure is signalled to the ODE solver and either the Newton iteration or the
timestep is retried, according to the criteria in the ODE code for a failure of Newton’s
method.

All numerical results reported in this paper were computed in double precision on
an MIPS M/120 RisComputer.

3. Adaptive preconditioning. In this section, the adaptive choice of precondition-
ing method is discussed independently of the type-insensitive approach for solving stiff
ODEs. The two ideas are combined in 4. To develop strategies for switching between
preconditioning methods, we need to assess the relative cost of the preconditioners as
well as the expected saving when the switch is made.
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For a particular iterative method and implementation, it is straightfonvard to es-
timate the relative cost of preconditioning by counting floating-point operations in the
code. For simplicity, we estimate this operation count based on the number of elements
per row of the matrix. If the original matrix has on average nrow nonzero elements per
row and the preconditioned matrix has on averagepnrow elements, then, for our imple-
mentation of Orthomin, the following table gives the costs for a matrix of dimension neq,
where the cost of diagonal scaling is included in all cases.

Operation countsfor the iterative methods.

Scheme Initialization k iterations

No pre (2 nrow + 4) neq (2 nrow + 11) neq k + 3 neq k (k 1)

Pre (2/mrow + 4) neq (4tmvow + 12) neq k + 3 neq k (k 1)

For example, for the heat equation ut ux + uyy + uzz in three space dimensions and
a centered finite difference spatial discretization, nrow 7; for ILU(0), pnrow 7;
and, for ILU(1), pnrow 13. Using these values, we can calculate the relative costs
for different iteration counts shown in Table 1. We note that the iterations with ILU(0)
preconditioning are only about 40% more expensive than those that use only diagonal
scaling. Of course, the ILU-preconditioned iterations incur the extra cost of doing the
ILU factorization, O(pnrow2 neq) floating-point operations. This cost is roughly that
of doing a few linear iterations. Since we are using a chord method rather than full
Newton iteration, and the factorization is only done when found necessary by the ODE
solver, this cost is small compared to the total cost of linear iterations. We do not include
here the cost of forming the matrix W, since this is done in all cases. If the cheap
preconditioning strategy also avoided the formation of W, then forming W would be
an additional cost of using a more powerful preconditioner.

TABLE
Relative cost ofiterative methods applied to the heat equation.

Iterations Scaling ILU(0) ILU(1)

43 neq 58 neq 94 neq

2 74 neq 104 neq 164 neq

3 111 neq 156 neq 240 neq

4 154 neq 204 neq 322 neq

5 203 neq 278 neq 410 neq

In one single solve of a linear system, a preconditioned method will be cheaper than
an unpreconditioned one if the number of linear iterations is reduced sufficiently by
preconditioning. The necessary reduction can be shown clearly, as in the tables above.
Over the course of the integration of an ODE, the trade-off is more involved. The basic
strategy for a general-purpose ODE solver must be to use a preconditioned iterative
method for robustness. By. substituting an unpreconditioned iteration in some cases, we
hope to reduce the total cost of linear algebra, but we expect to see the total number of
linear iterations increase, as a few expensive iterations are replaced by a larger number
of cheaper ones.

We address the question of switching from diagonal scaling to a more powerful pre-
conditioner first. Diagonal scaling is used at the start of the integration, since most ODE
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codes begin timestepping with a small stepsize, and it is usual to find an initial region of
the integration where the stepsize remains small due to the accuracy requirement. The
progress of the integration is then monitored with the aim of switching to a more pow-
erful preconditioner when diagonal scaling appears to require too many iterations. An
obvious strategy for assessing when the diagonally scaled method is using "too many"
iterations is to wait until the iteration fails to meet the convergence criterion in the max-
imum number of iterations. Frequently, this maximum number is set fairly small. For
example, Brown and Hindmarsh [5] found that five iterations worked well. In this case,
switching preconditioning on when the diagonally scaled iteration "fails" is not unrea-
sonable. In our tests, we have used a maximum value of 10 iterations to try to assess
the switching strategy independently of convergence failures. We have found that the
methods are more efficient if preconditioning is switched on when the diagonally scaled
method is taking only a few (e.g., two to four) iterations per solve.

It turns out to be straightforward to assess the number of linear iterations that the
method uses per solve. We have observed in practice that the number of linear iterations
per Newton iteration tends to remain constant over several Newton iterations. That is,
typically only one linear iteration per Newton iteration is required at the start of an in-
tegration. This number increases to two at some point as the stepsize increases, remains
steady at two for a while, then increases to three, and so on. Consequently, it is possible
to estimate the number of linear iterations per solve by taking the average over the last
few Newton iterations.

We have not attempted to use any theoretical results to predict the reduction in the
number of linear iterations when preconditioning is applied. Such results are available
for some problems, preconditioners, and iterative methods, but they give upper bounds
on, or asymptotic estimates of, the number of iterations required to reduce the residual
to some fraction of its initial size. Since our convergence criterion, discussed in 2, only
requires reducing the residual to a fixed value and since we expect to use only a few
iterations per solve, the theoretical results are not particularly useful here.

When a differential equation yields linear systems with clustered eigenvalues, un-
preconditioned and diagonally scaled iterative methods can be very effective. In [5], the
authors use a reaction-diffusion system with two species in three space dimensions as a
test problem. The differential equations have the form

Oc f(5) Ot diAc’ + (cx’ c2)’ 1, 2,

d 0.05, d2 1.0,

f(c, c2) c(bl ac a2c2), f2(c, c2) c2(b2 a21c a22c2),
all 106, a12 1, a21 106- 1, a22 106,

51 52 (1 / axyz)(lO6- 1 + 10-6).

The equations are defined on the unit cube with t [0, 10], homogeneous Neumann
boundary conditions and initial conditions

c(x, y, z, 0) 500 / 250cos(Trx)cos(37ry)cos(10rz),
c2(x, y, z, 0) 200 / 150 cos(10rx) cos(Try) cos(37rz).

The authors point out that, as t oc, the solution approaches a steady state which is
given roughly by the asymptotic solution of the problem without diffusion, namely,

c (1 10-6) (1 + axyz), c2 10-6 (1 + axyz).
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The spatial derivatives are discretized using a centered second-order finite differ-
ence approximation on an evenly spaced mesh with m subdivisions in each direction,
yielding a system of 2(m + 1) ODEs. Near the steady state, the interaction terms dom-
inate the Jacobian and the dominant part of the spectrum is clustered in the interval
-106 to -106(1 + c). Brown and Hindmarsh [5] point out that, consequently, unpre-
conditioned iterative methods are expected to work well unless c is large. It does not
necessarily follow that diagonal scaling will work well, but in this case it does, since all
eigenvalues of the scaled matrix are of moderate size. In [5], the ODE problem is solved
using a relative error tolerance of 10- and an absolute error tolerance of 10-8. We use
the same tolerances here, with the result that the code takes a very small stepsize (start-
ing around 10-) through the transient region, which lasts to about t 0.5. There is
then an abrupt transition to the steady-state region, during which the stepsize increases
by factors of two to five several times in rapid succession. The diagonally scaled method
encounters difficulty once the transition to the steady-state region starts. Numerical re-
suits are shown in Tables 2 and 3 for the case m 9 (2000 equations) and for c 0.
The maximum number of linear iterations was set to 10.

TABLE 2

Reaction-diffusion equation in three dimensions; no switching.

Diagonal ILU(0) ILU(1)
NFCN 1490 1466 1486

NJAC 71 67 68

NNWT 617 641 649

NLIN 1005 737 712

TIME 320 322 352

TABLE 3
Reaction-diffusion equation in three dimensions; switching.

ILU(0) ILU(1)
2 4 6 MAXIT 2 4 6 MAXIT

NFCN 1402 1390 1402 1417 1403 1404 1416 1416

NJAC 65 64 65 66 65 65 66 66

NNWT 601 601 601 604 602 603 603 603

NLIN 733 773 796 848 679 743 773 814

TSWI 217 243 253 263 217 243 256 266

TIME 278 280 284 295 280 281 288 293

Table 2 shows the number of function evaluations (NFCN), Jacobian evaluations
(NJAC), Newton iterations (NNWT), linear iterations (NLIN), and the time in seconds
(TIME) required to integrate the problem without adaptation of the preconditioning,
using either diagonal, ILU(0), or ILU(1) preconditioning. Table 3 shows the effect of
switching from diagonal scaling to ILU(0) or ILU(1) preconditioning during the inte-
gration. Each column corresponds to the number of linear iterations being used by the
diagonally scaled method when the switch was made. This number was calculated by
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looking at the average number ofiterations over the last four Newton iterations. The col-
umn labelled MAXIT indicates that the switch was made because the diagonally scaled
method failed to converge in the maximum number of iterations. The criterion used in
the program was to switch if the code took an average of eight linear iterations over the
past four Newton iterations, but a convergence failure occurred in each case before this
condition was met. The row of the table labelled TSWI shows the elapsed CPU time
when the code switched on the preconditioning.

From these tables, we see that there is a definite advantage to using the combination
of the diagonally scaled and preconditioned iterative methods, as most of the CPU time
is spent with the diagonally scaled iteration. This reflects the fact that 75 to 90% of
the work of the integration, measured in function evaluations, Jacobian evaluations, or
nonlinear or linear iterations is done using that diagonally scaled method. There is little
to choose between switching criteria in terms of total time, suggesting that there is a small
range of the integration in which the diagonally scaled and preconditioned methods are
equally expensive.

In the following tables, we show some numerical results obtained using the heat
equation in three space dimensions as a test problem. It is well known that the eigen-
values of the associated Jacobian matrix are widely spread without clustering and that
unpreconditioned and diagonally scaled iterative methods are generally inefficient. As
described in [8], the PDE has the form

(6) Ut Uxx -]-Uyy 2t-ZSzz

on the unit square for t [0, 10.24], with homogeneous Dirichlet boundary conditions
and initial condition

u(O,x,y,z) 64x(1 x)y(1 y)z(1 z).

The spatial derivatives were discretized using a centered second-order finite difference
discretization on a mesh ofm equal subdivisions, resulting in a system of (m- 1)3 ODEs.
In this example, m 16 (3375 equations). The maximum number of linear iterations
was set to 10. The absolute error tolerance in the ODE solver was set to 10-4 and no
relative error control was used. Table 4 shows the results without adaptation of the pre-
conditioner, and Table 5 shows the effect of switching preconditioners. The number of
linear iterations was calculated as the average over the last four Newton iterations.

TABLE 4
Heat equation; no switching.

Diagonal ILU(0) ILU(1)

NFCN 356 373 326

NJAC 19 20 17

NNWT 117 122 113

NLIN 400 200 140

TIME 130 107 94

The most efficient way to solve this particular problem is to use the ILU(1) precon-
ditioner over all iterations. This seems to be due, at least in part, to accuracy consider-
ations related to the use of the diagonally scaled iterative solver. Following Brown and



ADAPTIVE LINEAR EQUATION SOLVERS IN ODE CODES 809

TABLE 5
Heat equation; switching.

ILU(0) ILU(1)

2 4 6 MAXIT 2 4 6 MAXIT

NFCN 357 358 369 372 373 360 369 373

NJAC 19 19 20 20 20 19 20 20

NNWT 118 119 118 121 122 121 118 122

NLIN 189 244 320 359 170 212 306 340

TSWI 22 48 90 100 22 48 90 100

TIME 98 106 118 127 102 103 117 125

Hindmarsh [5], the solution of the linear system is accepted if

where d is the residual at the last linear iteration. With two different iterative meth-
ods, it often happens that one method just meets this criterion while the other returns
a solution with a much smaller residual. This difference in accuracy affects not only the
acceptance of the Newton iteration but also the error control strategy and stepsize se-
lection in the ODE solver. In the tables, we note that, as expected, the total number of
linear iterations increases as we use the diagonally scaled method for a longer period.
The other statistics are more variable because of this effect of the accuracy of the linear
solver.

For the ILU(0) preconditioning, the approaches that switch when the diagonally
scaled method is taking two or four iterations per solve are no worse than using precon-
ditioning on all steps. Switching always leads to a deterioration in performance for the
ILU(1) preconditioner.

For both the reaction-diffusion problem (5) and the heat equation (6), we have
tested the effect of averaging the number of linear iterations over the last six and the
last eight Newton iterations. Changing this parameter has little effect on the step at
which preconditioning is switched on.

Based on the results from these two test problems and additional numerical exper-
iments, it seems reasonable to use the following strategy to switch from a diagonally
scaled method to a preconditioned one:

Find the average number of linear iterations over the past four Newton itera-
tions.
Switch on preconditioning when the average is four or greater, and definitely
when the diagonally scaled iteration fails to converge in the maximum number
of iterations.

This approach sometimes yields a significant improvement in performance; for those
problems where it is less efficient, it does not degrade performance very much. The
particular value offour linear iterations obviously depends on the relative costs of the
preconditioning strategies and hence is dependent on the problem class, but does seem
appropriate for the PDE problems that we have tested.

For either the reaction-diffusion equation (5) or the heat equation (6), we observe
that the number of linear iterations per solve is reduced when preconditioning is first
switched on. As the integration continues with the preconditioned method, the number
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of iterations per solve increases again, along with the timestep, as the solution of the
differential equation approaches a steady state. This is typical behaviour for many time-
dependent systems, but problems exist for which phases similar to the initial transient
recur. For such problems, it is reasonable to consider switching preconditioning off.
We have developed a test to switch preconditioning off based on both the amount of
work being done by the linear solver and the character of the iteration matrix. As the
primary test, we require that the iterative solver takes one iteration only per solve over
the last several Newton iterations. Around 15 to 20 Newton iterations seems appropriate
since we wish to avoid cases where, say, the error estimate has forced an anomalously
small stepsize over a few steps. This also avoids switching preconditioning off again
immediately after switching it on.

A quantity relevant to convergence of a Krylov subspace-type iterative method is
the spectral rationthe ratio of the largest to the smallest eigenvalues of the matrix or,
for clustered eigenvalues, the ratio of largest to smallest eigenvalues within each cluster.
We use Gerschgorin circles to estimate the clustering of the eigenvalues of the Newton
iteration matrix. We need to consider one cluster only since all the Gerschgorin circles
of the diagonally scaled matrix will have center (1, 0). We also observe that the matrices
D-xW, WD-1, and D-I/2WD-/2 are similar; hence they have the same eigenval-
ues, but need not have the same Gerschgorin circles. (D diag(W) is the diagonal
scaling matrix.) When the Newton iteration matrix is formed by the ODE solver, the
Gerschgorin circles for these three matrices are calculated by both rows and columns,
giving six estimates of the eigenvalue range. If all the circles for a single case (particular
scaling and row or column calculation) lie in the same half-plane, we call the ratio of the
extreme real axis intercepts of the Gerschgorin circles a Gerschgodn ratio of the matrix.
We take the minimum of our six calculated Gerschgorin ratios and use it to approximate
the associated spectral ratio. When this value is small, it is reasonable to expect that an
unpreconditioned iterative method will work well.

As the theory suggests, we have found for all our test problems that, at the start ofthe
integration, the eigenvalues of the diagonally scaled iteration matrix are all contained in
one small cluster centered at (1, 0). As the stepsize increases, the cluster usually expands.
If any circle crosses the axis into the left half-plane, we consider the Gerschgorin ratio
to be infinite. Here, we expect that the diagonally scaled iterative method will have
difficulty and therefore we do not switch preconditioning off.

Van der Pol’s equation (see, for example, [16]) is often used as an example of an
ODE system in which transients recur throughout the integration. This second-order
equation is frequently rewritten as a system of two first-order ODEs. We have extended
it to a large system by using the two ODEs as the reaction terms in a reaction-diffusion
PDE system, as follows.

Oc
dAc + ff (c c2) i 1,2,(7) Ot
d 0.05, d2 1.0,

fl(cl,c2) =C2, f2 (C1, C2) T](1 (C1)2)C2 C1,

on the unit square with r 100, homogeneous Neumann boundary conditions, and
initial conditions

c (x, y, O) 1 cos(Trx) cos(27ry),

c2(x, y, O) 1 + 2 cos(2rx) cos(Try).
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The spatial derivatives were discretized using a centered second-order finite difference
approximation on an evenly spaced mesh with m subdivisions in each direction, yielding
a system of 2(m + 1) ODEs.

We solved this problem with m 10 subdivisions, t E [0, 1000], relative and ab-
solute error tolerances of 10- and 10-a, respectively, and various switching strategies.
As noted earlier, to be conservative about switching preconditioning off, it seems most
appropriate to observe the number of linear iterations over a larger number of Newton
iterations than is used in the test to switch it on. We require that the linear solver has
taken only one iteration per solve over the last 16 Newton iterations before we consider
switching preconditioning off. Ifwe use this criterion only, and no information about the
iteration matrices, the code switches preconditioning on 14 times and off 13 times in the
interval [0,1000]. We note that the original coupled pair of ODEs has period roughly
163, hence goes through six cycles in this time interval. Each cycle involves two intervals
in which the solution is changing rapidly.

To use information about the matrix, a bound on the Gerschgorin ratio is chosen. If
the smallest Gerschgorin ratio is less than the bound, then we switch preconditioning off
if the requirement on number of iterations per solve is also met. We solved Van der Pol’s
equation again with the Gerschgorin bound set to two and observed the same number of
switches as above. Comparing results from the two tests shows that the switches occur at
about the same times in the integration; a reassuring result since the switches should be
triggered by the stiffness of the continuous system rather than being artifacts of the code.
However, we observe that, without matrix information, the code switches precondition-
ing off as much as one hundred timesteps earlier than when matrix information is used.
The earlier switch seems more effective in the sense that the diagonally scaled method
experiences no difficulties after the switch, converging in one or two iterations. This re-
sult suggests that using a larger Gerschgorin bound might be appropriate, a conclusion
supported by tests using values of four and eight that also yield satisfactory behaviour
of the switching strategy. With the value eight, we observe the same results as when no
matrix information is used; that is, the condition on number of iterations controls the
switch. There is no significant difference in total solution time in any case, including a
comparison to doing the whole integration with preconditioning (ILU(1) precondition-
ing was used in all tests). This is due to the small size of the ODE system. We note that
the Gerschgorin ratio in the right half-plane grew as large as 103 and that some circles
extended into the left half-plane on several Jacobian evaluations.

With m 20 subdivisions (882 equations), t E [0,500], and the same error toler-
ances, the integration time using ILU(1) preconditioning on all iterations was 742 sec-
onds, with 452 seconds spent in linear algebra. The time when switching was used with
the Gerschgorin bound set to four was 722 seconds, including 435 seconds of linear alge-
bra. The code switched preconditioning on seven times and off six times. Similar results
were obtained when the Gerschgorin bound was set to two.

As the mesh is refined, the diffusion term in the PDE causes the ODE system to
become stiffer. The results shown in Table 6 are for a grid with m 40 subdivisions
(3362 equations), t [0, 500], and the same error tolerances. The code switched ILU(1)
preconditioning on if the diagonally scaled method was taking four iterations per solve
over the last four Newton iterations, and off if the ILU(1)-preconditioned method took
only one iteration per solve over the last 16 Newton iterations. The Gerschgorin bound
(G.B.) used in each test is given at the top ofthe column. Here, the most efficient solution
technique is to use ILU(1) preconditioning on all steps. With the Gerschgorin bound set
to two, preconditioning was switched on four times and off three times; with bound four,
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the code switched preconditioning on seven times and off six times. The grid size is
sufficiently small that the diffusion terms keep the ODE stiff and preconditioning on all
steps is the most efficient technique.

TABLE 6
I/an der Pol equation; switching on and off.

No switches G.B. 2 G.B. 4

NFCN 7447 7967 8129

NJAC 341 376 375

NNWT 3956 4118 4290

NLIN 9496 10,474 11,214

TIME 4365 4569 4597

For the Van der Pol equation, we expect to encounter recurring transients during
the integration, causing the ODE solver to use a small timestep to meet the accuracy
requirement. Due to this small timestep, all the eigenvalues of the unscaled Newton
iteration matrixwill be ofmoderate size and will occur in one single cluster. Checking the
Gerschgorin circles ofthe unscaled matrix confirms that, in the tests above, whenever the
code switched preconditioning off, the circles of the unscaled matrix made up one small
cluster. This is not the case for the following test problem, used in [5] and [7]. This PDE
system, also of reaction-diffusion type, models ozone production in the stratosphere and
has the following form.

Oc 02c 0 ( Oc) Oc
R c2t), i 1,2,(8) Ot Kh-O-x2 + -z I((z)-z Vh--x + (cl

Kh--4"10-6 Kv(z) lO-Sez/5, Vh =O.O1,

Rl(c1, c2, t)- -klc k2clc2 + ka(t)" 7.4.1016 -t- ka(t)c2,

R2(c1, c2, t) klC k2clc2 ka(t)c,
kl 6.031, k2 4.66.10-16,

exp[-22.62/sin(Trt/43200)]
ka(t)

0

(t)
exp[-7.601/ 8in(Trt/43200)]
0

for t < 43200,

otherwise,

for t < 43200,

otherwise.

The problem is posed for x E [0, 20], z E [30, 50] and t [0, 86400] with homogeneous
Neumann boundary conditions and initial conditions

cl(x,z,O)- 106c(x)fl(z), c2(x,z,O) 101ec(x)fl(z),

cz(x) i- (0.1x- 1)2 + (0.1x- 1)4/2,
fl(z) 1 (O.lz 4)2 + (0.1z 4)4/2.
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If the differential equations are discretized using central differences for both the diffu-
sion and convection terms, as is done in [5] and [7], the eigenvalues of the Jacobian are
found in two clusters, as discussed in [5].

The problem was solved with m 9 subdivisions (200 equations) and relative and
absolute error tolerances of 10-g and 10-, respectively. With the Gerschgorin bound
set to two, the code switches preconditioning on at t 13,340, then off at t 42,064, and
completes the integration successfully using the diagonally scaled method. Checking the
Gerschgorin circles of the unscaled matrix reveals that when preconditioning is switched
off, the circles make up two small clusters although the ratio of the extreme limits of all
the circles is over 100. In this case, the diagonal scaling has mapped these two clusters
into a single small circle. With the bound set to four, the code switches preconditioning
on, then off, twice between t 13,340 and t 35,002, finishing the integration with the
diagonally scaled method. It is less efficient than when the bound is set to two.

The results in Table 7 are obtained with a discretization having rn 19 subdivi-
sions (800 equations). The ODE solver has some difficulty with the integration, proba-
bly due to the central difference discretization, since it does not occur when upstream
differencing is used for the convection term. With the Gerschgorin bound set to either
two or four, the code switches preconditioning on five times and off five times between
t 7734 and t around 42,700; the switches occur at slightly different times depending on
the bound. When preconditioning is switched off at t 42,700, the Gerschgorin circles
of the unscaled Newton iteration matrix form two small clusters. The earlier switches
occur because the timestep is small enough, often after a failed step, to force all the cir-
cles of the unscaled matrix into one cluster. It is not clear if these switches should be
made; the timestep tends to increase rapidly after a failed step and the possible higher
accuracy of the more powerful preconditioner might be useful.

TAaLE 7
Ozoneproduction model; 800 equations.

No switches G.B. 2 G.B. 4

NFCN 6001 6267 6179

NJAC 297 320 310

NNWT 3552 3606 3612

NLIN 3552 4985 4865

TIME 654 657 650

The results in Table 8 are obtained with m 39 subdivisions (3200 equations).
When the Gerschgorin bound is set to two, t.he-code switches preconditioning on at t
7216, then off at t 42,321. With bound four, there are four on-off switches between
t 7216 and t 42,293, and the integration again finishes using the diagonally scaled
method. In this case, it is more efficient to switch preconditioning off when possible.

Overall, it seems that our strategy for switching preconditioning offdoes detect prob-
lem information correctly, i.e., nonstiffness of the Van der Pol oscillator. Also, the di-
agonal scaling is able to exploit the clustering of the eigenvalues in (8). Computing the
six different Gerschgorin ratios can have an effect on when the switches occur. For the
Van der Pol equation, all six values tend to be close on all Jacobian evaluations. For (8),
where the components are ofwidely differing magnitudes, the six values can be very dif-
ferent particularly when they are large. When a Gerschgorin bound of two was used to
switch preconditioning off, we found that the ratios were close when a switch occurred.
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TABLE 8
Ozoneproduction model; 3200 equations.

No switches G.B. 2 G.B. 4

NFCN 7713 7686 7766

NJAC 307 318 314

NNWT 5182 5065 5173

NLIN 5182 7490 7874

TIME 4559 4113 4168

In contrast, with a bound of four, some switches would not have occurred if all six values
had not been computed. Any strategy for making a switch should certainly be conserva-
tive. A bound of two seems a better choice, although the value four yields better results
in some cases.

4. Adaptive preconditioning in type-insensitive codes. In this section, we insert our
strategies for adaptive preconditioning into the type-insensitive ODE solver described
in 2. As noted, our code is based on the ideas of Petzold [16]. The method starts
integrating with the Adams formulas and monitors the timestep, the eigenvalues of the
Jacobian (indirectly), and the region of absolute stability. It switches to the BDFs when
it estimates that it can increase the stepsize by a factor of five or more by doing so. When
integrating with the BDFs, the code continues to monitor the same information (using
the norm of the Jacobian matrix which is now available directly) and will switch back to
the Adams formulas if it expects to maintain the same stepsize after the switch.

Our "combined" code incorporates our adaptive preconditioning strategy into the
type-insensitive method. The code starts integrating with the Adams formulas and func-
tional iteration and switches to using the BDFs and Newton’s method as described above.
When Newton’s method is first selected, the code uses the iterative linear solver with di-
agonal scaling only. The performance of the linear solver is monitored and the code may
select a more expensive preconditioner as described in 3. If the ODE is only mildly stiff,
expensive preconditioning might never be needed.

The strategies for switching preconditioning off and switching from the BDFs to the
Adams formulas are independent. TheAdams formulas can be selected at any timewhen
the BDFs are in use, regardless ofthe linear solver currently being used by the code. That
is, if a transient component recurred abruptly in the course of the integration, the code
could switch directly from the BDFs with the expensive preconditioner to the Adams
formulas and functional iteration. In the numerical tests in 4.3, we will see that, for
the van der Pol problem, the code actually switches preconditioning off before switching
from BDFs to Adams formulas, indicating that it detects a region of "mild" stiffness in
the transition from the stiff regime to the transient regime.

We report the results of numerical experiments with our combined code and several
test problems. In these tests, the maximum number of linear iterations is always set to
10. Preconditioning is switched on if the diagonally scaled method took four iterations
per solve over the last four Newton iterations and off if the Gerschgorin bound (2, unless
otherwise specified) is met and only one iteration per solve was required over the last 16
Newton iterations.

In the tables, the preconditioning strategy (either ILU(0) or ILU(1)) and number
of equations are shown in the caption. The column labels have the following meanings.
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No switch: BDF method; ILU preconditioning on all iterations.
Switch: BDF method; switching from diagonal scaling to ILU preconditioning.
Type-ins: Type-insensitive method; ILU preconditioning on all iterations.
Combined: Combined method; type-insensitive and switching from diagonal scal-

ing to ILU preconditioning.

4.1. Reaction-diffusion equation in three space dimensions. Equation (5) was solved
on a number of different grids (m 9, 2000 equations; m 14, 5488 equations; m 20,
16000 equations) with a 100 and t E [0, 100]. All other problem and method param-
eters are the same as in 3. The results are shown in Tables 9-14. When a 100, the
eigenvalues of the Jacobian are somewhat more widely spread than in the tests reported
in 3. Extending the range of integration from t 10 to t 100 simply causes the code
to take one large last step, of order 100 itself. This large step poses no problem for the
iterative solver in this case.

TABLE 9
ILU(0)preconditioning; 2000 equations.

No switch Switch Type-ins Combined

NFCN 1414 1335 1448 1444

NJAC 65 60 44 44

NNWT 613 596 350 346

NLIN 653 726 391 449

TIME 298 262 237 226

TABLE 10
ILU(1)preconditioning; 2000 equations.

No switch Switch Type-ins Combined

NFCN 1414 1334 1439 1444

NJAC 65 60 42 44

NNWT 613 595 365 346

NLIN 631 697 379 437

TIME 328 259 260 227

TABLE 11
ILU(0)preconditioning; 5488 equations.

No switch Switch Type-ins Combined

NFCN 1365 1378 1278 1270

NJAC 62 64 44 44

NNWT 602 589 400 392

NLIN 674 722 465 530

TIME 869 798 725 670
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TABLE 12
ILU(1)preconditioning; 5488 equations.

No switch Switch Type-ins Combined

NFCN 1365 1378 1290 1270

NJAC 62 64 44 44

NNWT 602 589 412 392

NLIN 643 698 445 501

TIME 966 801 763 667

TABLE 13
ILU(0)preconditioning; 16000 equations.

No switch Switch Type-ins Combined

NFCN 1401 1363 1568 1527

NJAC 64 60 43 42

NNWT 612 624 372 343

NLIN 744 849 511 556

TIME 2895 2698 2541 2365

TABLE 14
ILU(1) preconditioning; 16000 equations.

No switch Switch Type-ins Combined

NFCN 1413 1362 1568 1539

NJAC 65 60 43 43

NNWT 612 623 372 343

NLIN 694 786 443 505

TIME 3158 2668 2662 2342

We always find that the method that combines the type-insensitive approach with
adaptive preconditioning is the most efficient, saving 18 to 24% of execution time with
ILU(0) preconditioning, and 26 to 31% with ILU(1) preconditioning. Without adap-
tive preconditioning, the ILU(0) method is more efficient, but when preconditioning
is applied only when necessary, it is just as efficient to use the more powerful ILU(1)
approach.

4.2. Ozone production model. In 3, (8) was discretized using centered differences
for both the diffusion and convection terms, following [5] and [7]. Since the convection
coefficient Vh 0.01 while the diffusion coefficients have magnitude 10-6 to 10-4, this
problem is convection-dominated and it is reasonable to use upstream differencing for
the convection term. This discretization leads to a Jacobian matrix that is better condi-
tioned than when centered differences are used and allows the code to take much larger
timesteps. We do not expect that preconditioning will be switched off once it has been
turned on. Upstream differencing was used in computing the results in Tables 15 and 16.
The equations were discretized on a grid with 41 mesh points in each direction giving
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Az Az 0.5 and a system of 3362 equations. As before, an absolute error tolerance
of 10-a and a relative tolerance of 10-5 were used.

TABLE 15
ILU(0)preconditioning; upstream differences; 3362 equations.

No switch Switch Type-ins Combined

NFCN 1508 1566 1533 1375

NJAC 78 81 70 62

NNWT 705 731 599 523

NLIN 954 1083 826 773

TIME 677 696 652 574

TABLE 16
ILU(1)preconditioning; upstream differences; 3362 equations.

No switch Switch Type-ins Combined

NFCN 1276 1614 1359 1350

NJAC 61 86 57 59

NNWT 647 729 557 528

NLIN 837 1004 800 775

TIME 613 709 618 590

Again, it is found that the method that combines the type-insensitive approach with
adaptive preconditioning is the most efficient, although the saving is not as significant
as for (5). The method with ILU(1) preconditioning on all steps does well, taking fewer
function evaluations than any other approach. As mentioned previously, this seems to
indicate that there is an advantage in accuracy to using ILU(1) preconditioning. Adap-
tive preconditioning alone degrades efficiency although it does well in combination with
the type-insensitive method. With the combined method, the switch from the Adams
formulas to the BDFs occurs at step 93, t 3.93, then preconditioning is switched on at
step 140, t 1142. With adaptive preconditioning only, the switch occurs later at step
189, t 2167.

In Table 17, we show results computed with the type-insensitive and combined meth-
ods and a central difference discretization of all terms, for comparison with results given
in 3. (Those results are also included in this table.) In this case, the switching method
and the combined method have comparable cost. In the switching method, precondi-
tioning is turned on at t 7216, then off at t 42,321. In the combined method, the
BDFs are selected as above at t 3.93, step 93; preconditioning is turned on at t 5837,
and off at t 42,360.

4.3. Van der Pol equation. We use the modified Van der Pol equation (7) to investi-
gate the interaction between turning preconditioning on and off and switching from the
BDFs back to the Adams formulas. As we noted in 3, on a grid with m 40 subdivi-
sions (3362 equations), the ODE system is quite stiff due to the effect of the diffusion
terms regardless of the behaviour of the reaction terms. The results shown in Table 18
were computed using the same problem and method parameters as in 3 on the interval
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TABLE 17
ILU(1)preconditioning; centered differences; 3200 equations.

No switch Switch Type-ins Combined

NFCN 7713 7686 7933 7668

NJAC 307 318 311 296

NNWT 5182 5065 5157 5016

NLIN 5182 7490 5157 7347

TIME 4559 4113 4863 4146

[0, 500]. Recall that the und,erlying small ODE system goes through three cycles in this
interval. G.B. denotes the Gerschgorin bound.

TABLE 18
ILU(1)preconditioning; 3362 equations.

No switch Switch Type-ins Combined

G.B. 2 G.B. 4 G.B. 2 G.B. 4

NFCN 7447 7967 8129 7840 7521 8054

NJAC 341 376 375 353 334 359

NNWT 3956 4118 4290 4015 3890 4169

NLIN 9496 10,474 11,214 9608 9073 11,198

TIME 4365 4569 4597 4485 4267 4639

In the "switching" code, preconditioning is first turned on at time t 0.025, step 65.
Since the total integration takes around 4000 steps, this is very early in the integration.
With the Gerschgorin bound set to two, preconditioning is switched on four times and
off three times; with bound four, the code switches preconditioning on seven times and
off six times during the integration. The type-insensitive method is less effective than
the code that uses ILU(1) preconditioning throughout, somewhat surprisingly, since the
type-insensitive code switches from the Adams formulas to the BDFs at time t 0.0076,
step 85, and never switches back to the Adams formulas. The combined method with
Gerschgorin bound 2 turns preconditioning on at t 0.026, step 115, and never switches
it off. With the bound set to 4, the combined method makes the same number of switches
as the "switching" code, at essentially the same times in the integration.

This problem is best solved with ILU(1) preconditioning. The same set of tests was
run using ILU(0) preconditioning and the same relative performances were observed.
The total time to complete the integration was about 1000 seconds greater in all cases.

To investigate the effect of switching between the Adams formulas and the BDFs
when the number of equations is large, the diffusion coefficients were reduced from 0.05
and 1 to 0.005 and 0.1, respectively. The numerical results using ILU(0) preconditioning
are given in Table 19, those using ILU(1)preconditioning in Table 20. Other parameters
of the problem and method are the same as in 3, with t E [0,500].

With ILU(0) preconditioning, the "switching" method and the combined method
turn preconditioning on seven times and off six times for both choices of Gerschgorin
bound. The type-insensitive method selects the BDFs for the first time at t .709, step
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TAnLE 19
ILU(0)preconditioning; 3362 equations; small diffusion.

No switch Switch Type-ins Combined

G.B. 2 G.B. 4 G.B. 2 G.B. 4

NFCN 9503 9363 9579 9918 9930 10,129

NJAC 414 398 408 275 262 275

NNWT 5264 5288 5402 3171 2941 2990

NLIN 7964 8517 8792 5889 5849 6129

TIME 4216 4048 4073 3492 3343 3391

TABLE 20
ILU(1)preconditioning; 3362 equations; small diffusion.

No switch Switch Type-ins Combined

G.B. 2 G.B. 4 G.B. 2 G.B. 4

NFCN 9519 9605 9612 10,049 10,041 9966

NJAC 417 411 413 288 275 266

NNWT 5250 5398 5385 3302 2954 2939

NLIN 6547 7472 7761 4703 4570 4934

TIME 4028 3879 3853 3360 3132 3096

1285, where the total integration still takes around 4000 steps. Following the initial for-
mula change, there are three subsequent switches to the Adams formulas then back to
the BDFs. The combined method makes four subsequent switches between Adams for-
mulas and BDFs. Three of these switches are at essentially the same values of t as the
type-insensitive method, but there is one additional switch. There are two switches be-
tween preconditioning and diagonal scaling where the Adams formulas are not selected.
A switch to the Adams formulas is always preceded by switching preconditioning off,
typically by about 80 to 100 timesteps.

When ILU(1) preconditioning is used, the "switching" method and combined
method still turn preconditioning on seven times and off six times for both choices of
Gerschgorin bound. The type-insensitive method of course selects the BDFs for the
first time at the same timestep as in the ILU(0) case, then there are four subsequent
switches to the Adams formulas then back to the BDFs. The combined method makes
the same switches, with either Gerschgorin bound. A switch to the Adams formulas is
always preceded by switching preconditioning off; the switches occur at essentially the
same times for ILU(0) preconditioning.

The strategy for formula selection appears to be robust with respect to effects of
the linear algebra, as one would hope. Also, the switches between diagonal scaling and
preconditioning always occur at about the same t values, indicating that the switching
strategy is, in fact, detecting properties of the ODE system. It is, though, difficult to
choose a value for the Gerschgorin bound based on these tests. As noted in 3, the
value 2 appears preferable since it gives a saving whenever one is achieved by switching
preconditioning and does better when a saving is not achieved.
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4.4. A"dense" two-dimensional problem. The system ofPDEs defined by (9) below
is used as a test problem in [6]. Although this problem is similar in nature to (5)--both
are reaction-diffusion systems modelling a predator-prey interaction--it poses a slightly
different challenge to the iterative methods since it includes a large number of species,
making the associated Jacobian matrix relatively dense.

Oci
fi(9) Ot diAci + (c), i 1,2,...,s,

c8)T s/2,where c (c c2, p

di= 1,

di 0.05,

aii --1

aij ----0.5.10-6, i _< p,

aj=104 i>p, j_<p,

aij 0 for all other and j;

bi=(l+cxyz), <_ p,

bi -(l + oxyz), > p.

j>P,

The system (9) is defined on the unit square with t E [0, 10]. The problem has homoge-
neous Neumann boundary conditions and initial conditions

ci(x, y, 0) 10 / i[16x(1 x)y(1 y)]2, l<i<s.

Here, we take s 20 (p 10) and c 50. The steady state solution is spatially
inhomogeneous and the Jacobian is highly nonsymmetric at equilibrium [6].

The spatial derivatives are discretized using a centered second-order finite differ-
ence approximation on an evenly spaced mesh with m subdivisions in each direction,
yielding a system of s(m + 1)2 ODEs. Following [6], we take m 11, which gives an
ODE system of 2880 equations. This problem is solved using a relative error tolerance of
10-6 and an absolute error tolerance of 10-8. Numerical results for ILU(0) and ILU(1)
preconditioning are given in Tables 21 and 22, respectively.

The approaches that use ILU(0) preconditioning are always more efficient than
those using ILU(1) preconditioning, due to the density of the Jacobian matrix, which
has 42,240 nonzero entries, as does the ILU(0) preconditioner, while the ILU(1) pre-
conditioner has 112,840 nonzeros. Hence, even though the code using ILU(1) precon-
ditioning generally uses fewer function and Jacobian evaluations, nonlinear and linear
iterations, the total CPU time is greater. In both cases, the combined method is the most
efficient.

Brown and Hindmarsh [6] identify the nonstiff transient region for this problem
as roughly 0 < t < 10-a. Our strategy for switching on preconditioning also picks
out this region. While the switch from the Adams formulas to the BDFs takes place
at t 2.88.10-5, the switch from diagonal scaling to preconditioning takes place at
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TABLE 21
ILU(0)preconditioning; 2880 equations.

No switch Switch Type-ins Combined

NFCN 1614 1515 1388 1330

NJAC 43 40 31 29

NNWT 395 380 203 201

NLIN 780 755 655 621

TIME 507 449 416 384

TABLE 22
ILU(1)preconditioning; 2880 equations.

No switch Switch Type-ins Combined

NFCN 1451 1592 1257 1173

NJAC 38 42 27 24

NNWT 372 401 184 186

NLIN 586 638 397 496

TIME 570 507 422 418

t 2.45.10-a when the "switching" code is used, and at t 2.76.10-a in the combined
code.

The ratio of the number of linear iterations to the number of Newton iterations
(AVDIM) is reported in [6]. This value provides a rough comparison of the work being
done by the iterative method in the various approaches. For problem (9), it is also in-
teresting to compare the work done in the nonstiff and stiff regimes, which we identify
with the intervals [0, 1] and [1, 10], respectively, for convenience. Values are reported in
Table 23. As expected, AVDIM increases when diagonal scaling is used and also when
the type-insensitive method is used. The iterative solver works considerably harder in
the stiff regime. The values for AVDIM found here are similar to those reported in [6].

TABLE 23
AVDIM: ratio oflinear to Newton iterations.

ILU(0)

ILU(1)

[I, I0]

No switch Switch Type-ins Combined

1.82 1.90 2.88 2.97

5.17 5.10 5.72 4.53

[0, 1] 1.48 1.53 1.99 2.56

[1, 10] 5.10 4.22 4.58 4.25

5. Conclusions. We have developed a strategy for the adaptive choice of precondi-
tioning when an iterative linear solver is used in an ODE code. This strategy successfully
identifies characteristics of the problem and is able to switch preconditioning on or off
according to those characteristics. This approach combines naturally with the use of a
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type-insensitive ODE solver. For the test problems considered, we found that, when the
type-insensitive approach yields a saving in execution time, the combined method in-
creases the saving. There are problems for which the adaptive approach is not effective;
in these cases, it appears that the type-insensitive approach is not appropriate either. As
a simple rule of thumb, the combined method is effective when both the Adams formu-
las and the diagonally scaled preconditioning are used over a significant percentage of
steps.

There is a variety of ways of adapting the preconditioner that one might consider.
Possible choices for the "cheap" preconditioner were discussed in the introduction. An-
other idea is to adapt through various more powerful preconditioners, say ILU(0) to
ILU(1), possibly to a direct solution method if the ODE appears very difficult to solve.
However, the difference in cost of the various preconditioning methods is not that great
for a wide class of problems. As we noted earlier, for example, ILU(0) preconditioning
is only about 40% more expensive than diagonal scaling on many problems derived from
PDEs. This suggests that little additional saving would be achieved by this incremental
approach. A "cheap" preconditioner that was effective over a longer range would be
more useful. Switching to a direct method is possible if the problem size is not too great
or if a sparse direct method does not suffer too much fill-in.

Our strategy exploits the availability ofthe Jacobian matrix during intervals ofthe in-
tegration in which the expensive preconditioner is in use, both in the choice of precondi-
tioner and in the strategy for switching preconditioning off. Our choice ofpreconditioner
was motivated by the fact that ILU factorization can be applied without knowledge of a
particular matrix’s properties, i.e., it can be supplied to a user as part of a "black-box"
code. Also, implementations of these preconditioners were readily available to us. Our
idea of switching between preconditioners that have different costs is independent of the
choice of preconditioner, although parameters in the strategy would have to be adjusted
to suit the relative costs. The problem of switching preconditioning off if Jacobian in-
formation is not available is somewhat more difficult. One possibility would be to use
information about numbers of iterations only. The code might switch preconditioning
off if a reduction in the number of iterations used by the preconditioned iterative method
was noted and the number of linear iterations remained small over many Newton itera-
tions. In addition, the code could have a flag that disabled switching off entirely. If the
strategy was fooled, i.e., preconditioning had to be turned on again immediately after be-
ing turned off, the flag would be set. Another possibility is to use the Gerschgorin circles
of the preconditioner in the switching strategy, since the preconditioner is an approxi-
mation to the Newton iteration matrix, although admittedly a rough one. In many cases,
computing a finite-difference approximation to a sparse Jacobian matrix is, in fact, a rel-
atively cheap operation and hence basing a preconditioning strategy on explicit Jacobian
information is not unreasonable.

Both the ILU(0) and ILU(1) preconditioners worked well for these test problems.
The choice between them depends on the amount of fill-in generated by the ILU(1)
factorization and how difficult the ODE is to solve. As we saw for the last test problem,
even though ILU(1) preconditioning can be significantly more efficient in terms of the
number of linear iterations, the cost per iteration may make ILU(0) preferable. We note
that the choice of the maximum number of iterations can have a significant effect on the
overall performance of the code. In a method such as Orthomin or GMRES, the amount
of storage restricts the choice of this maximum. (Although restarting can be used, it is
not clear how effective it is.) If the ODE solver fails and reduces the stepsize because the
iterative method did not converge, this can have a ripple effect throughout the rest of the
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integration, significantly increasing the total number of steps and amount of work. The
maximum should be chosen as large as possible, consistent with the storage available.
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NUMERICAL METHODS FOR HYPERBOLIC CONSERVATION
LAWS WITH STIFF RELAXATION

II. HIGHER-ORDER GODUNOV METHODS*
RICHARD B. PEMBER

Abstract. A higher-order Godunov method is presented for hyperbolic systems of conservation laws with
stiff, relaxing source terms. The goal is to develop a Godunov method that produces higher-order accurate
solutions using time and space increments governed solely by the nonstiff part of the system, i.e., without fully
resolving the effect of the stiff source terms. It is assumed that the system satisfies a certain "subcharacteristic"
condition. The method is a semi-implicit form of a method developed by Colella for hyperbolic conservation
laws with nonstiff source terms. In addition to being semi-implicit, our method differs from the method for
nonstiff systems in its treatment of the characteristic form of the equations. The method is applied to a model
system of equations and to a system of equations for gas flow with heat transfer. Our analytical and numerical
results show that the modifications to the nonstiffmethod are necessary for obtaining second-order accuracy as
the relaxation time tends to zero. Our numerical results also suggest that certain modifications to the Riemann
solver used by the Godunov method would help reduce numerical oscillations produced by the scheme near
discontinuities. The development of a modified Riemann solver is a topic of future work.

Key words, hyperbolic conservation laws with relaxation, stiff source terms, finite difference methods,
Godunov-type methods

AMS subject classifications. 35L65, 65M25, 76.65

1. Introduction. Hyperbolic conservation laws with relaxation appear in the study
of a variety of physical phenomena, for example, in the modeling of thermally and chem-
ically nonequilibrium fluid flows. The term "hyperbolic system of conservation laws with
relaxation" is used here in the sense ofWhitham [42], [43] and Liu [27] to denote a hyper-
bolic system of N partial differential equations in conservation form with source terms
which has as a limit a hyperbolic system ofM equations, M < N, called the equilibrium
system as N M relaxation time parameters - - 0. We call the system ofN equations
the nonequilibrium system. The characteristic speeds of the nonequilibrium system are
called frozen characteristic speeds, while those of the equilibrium system are called equi-
librium characteristic speeds. We say that a system of conservation laws with relaxation
is stiff when at least one of its relaxation times is small compared to the time scale de-
termined by the frozen characteristic speeds of the system and some appropriate length
scale. In this paper we present a higher-order Godunov method for hyperbolic systems
of conservation laws with stiff, relaxing source terms. Our goal is to develop a second-
order Godunov method which produces higher-order accurate solutions using time and
pace increments governed solely by the nonstiff part of the system, i.e., without fully re-
solving the effect of the stiff source terms. We base our development on the higher-order
Godunov method for hyperbolic conservation laws with nonstiff source terms presented
by Colella 11].

We assume that the system of conservation laws with relaxation contains a single
rate equation, i.e., M N 1. We also assume that the frozen and the equilibrium
characteristic speeds of the system alternate in a particular way [27], [43]. Specifically,
suppose that the dependent variables of the nonequilibrium system are ul,..., zv, and
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that "8v is the dependent variable governed by a rate equation, i.e. the Nth equation of
the system has a source term which acts to restore "8v to equilibrium. The equilibrium
system is then found by substituting the equilibrium value of "8v, "8.(’81, , "SM), in the
first M equations of the nonequilibrium system. We then say that the frozen character-
istic speeds and the equilibrium characteristic speeds # satisfy the subcharacteristic
condition if they satisfy the inequality

(1.1)

where the Ai are evaluated at the equilibrium state (’81,... "SM, "8,(’81,..., "SM)). Hy-
perbolic systems of equations with relaxation whose frozen and equilibrium characteris-
tic speeds satisfy (1.1) include the equations describing gas flowwith vibrational nonequi-
librium and with nonequilibrium due to chemical dissociation [39].

There are a number of theoretical results in the literature based on the subcharac-
teristic condition. Whitham [42], [43] shows that the condition is necessary for stability in
the case of linearized systems with relaxation. Liu [27] shows for N 2 that if the frozen
and the equilibrium characteristic speeds always satisfy the subcharacteristic condition,
then the corresponding equilibrium equation is stable under small perturbations and the
time-asymptotic solutions of the system are completely determined by the equilibrium
equation. Chen, Levermore, and Liu [8] show that if the subcharacteristic condition is al-
ways satisfied, then solutions of the system tend to solutions of the equilibrium equation
as the relaxation time tends to zero.

In this paperwe develop a higher-order Godunov method for solving hyperbolic sys-
tems of conservation laws with stiff relaxation under the assumption that the frozen and
the equilibrium characteristic speeds of the system satisfy (1.1). Our results in an earlier
paper [31] show that under this assumption one can always obtain first-order accurate
solutions of these systems with a Godunov-type method which does not fully account
for the effect of the stiff source terms. Four new issues must be addressed, however, in
the development of a higher-order accurate Godunov method for hyperbolic conserva-
tion laws with stiff relaxation which incorporates the methodology in [11]. Two of the
issues are relevant to other shock-capturing methods. (See the discussion by Yee and
Shinn [46].) One issue is whether the method should be fully implicit or semi-implicit,
i.e., implicit only with respect to the stiff source term. The second issue is if the method
can use Strang splitting [33] to integrate the source term and the conservation laws in
separate, fractional steps and still produce higher-order accurate results. A third issue is
relevant to all Godunov-type methods. Godunov’s original method [18] and subsequent
Godunov-type methods (see [38], [44], and [45] for overviews) use either the exact or
the approximate solution of Riemann problems to calculate numerical fluxes. The issue,
then, is if the "Riemann solver" needs to account for the equilibrium equation and/or
the presence of source terms. The fourth issue is specific to the higher-order Godunov
method of Colella [11]. In this method the higher-order accuracy results from a step
which uses the characteristic form of the equations. The step discards certain compo-
nents of these equations depending on the signs of the characteristic speeds. The last
issue, then, is if one needs to modify this step (and, if so, how) to account for the presence
of stiff source terms and for the fact that waves propagate at the equilibrium character-
istic speeds as the relaxation time approaches zero.

(Remark. The issue ofwhether to use a fractional step or an unsplit approach is not
actually an issue per se in applying the methodology in [11]; the approach there is an
unsplit one. We address this issue because there is a lack of consensus in the literature
on this issue; see discussions in [16], [23], and [46].)
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We resolve the first of these four issues by assuming that the stiffness in the equations
is due entirely to the source term. Hence, a fully implicit method is unnecessary for
stability [46], andwe choose to use a semi-implicit approach for computational simplicity.
In the remainder of this paper we address the other issues with analytical and numerical
results. We present evidence in support of the following conclusions:

(1) The method must use an unsplit approach which couples the source term and
the conservation laws in order to achieve higher-order accuracy for stiff systems.

(2) The Riemann solver does not have to account for the equilibrium equation nor
for the presence of source terms for the purpose of accuracy. Nevertheless, the method
should use a Riemann solver which satisfies the following:

(1.2)

(A)

(B)

The Riemann solver reduces to a Riemann solver for the
equilibrium equation in the limit as relaxation time tends
to zero.

The numerical flux determined by the Riemann solver
implies that the method is an upwind scheme [21] for
all positive values of the relaxation time.

ARiemann solver satisfying (1.2) ensures that the method reduces to an upwind-centered
difference scheme [35] for the equilibrium equation in the limit as the relaxation time
approaches zero. If the Riemann solver does not satisfy (1.2), the method is more likely
to produce oscillations at discontinuities [35], [40], [41] when the system is stiff.

(3) The step ofthe higher-order Godunov methodwhich uses the characteristic form
of the equations does not have to account directly for the characteristic form of the equi-
librium equations. However, the test for determining which components of the charac-
teristic form of the nonequilibrium equations to discard must be modified in order to
achieve higher-order accuracy for stiff systems. This change in turn requires a modifica-
tion to the portion of the algorithm that helps preserve monotonicity [37].

In this paper we present a higher-order Godunov method that uses an unsplit ap-
proach and that implements a new test for determining which components of the char-
acteristic form of the nonequilibrium equations to discard. Both of these features are
needed to ensure that the method reduces to a second-order method for the equilibrium
system as the relaxation time tends to zero.

Our method, however, does not actually use a Riemann solver which satisfies (1.2).
We believe that the development of such a Riemann solver for a general hyperbolic
conservation law with relaxation is an open problem. Bolstad et al. [4] discuss a semi-
implicit, unsplit second-order Godunov method for a stiff system of equations modeling
gas dynamics with heat sources and sinks. The Riemann solver in their method uses
shockjump conditions which are correct for zero and infinite relaxation times, and which
vary in a continuousway for intermediate values ofthe relaxation time. We are uncertain,
however, whether their method is an upwind scheme for all intermediate values of the
relaxation time.

The remainder of the paper is organized as follows:
In 2 we review the second-order Godunov method [1], [11] for hyperbolic conser-

vation laws with nonstiff source terms in one space dimension. In 3 we discuss how to
modify the method in [11] in order to obtain a second-order Godunov method for hy-
perbolic conservation laws with stiff, relaxing source terms. We refer to the methods in
2 and 3 as the nonstiff method and the frozen method, respectively. In 4, we briefly
present three variant methods. We present these methods not as potential alternatives
to the frozen method but as aids in the analysis of the frozen method.



STIFF RELAXATION: HIGHER-ORDER METHODS 827

In 5 we develop a model system of equations and two specific test problems. In
6, we analyze the frozen method and the three variant methods presented in 4. We
show that the frozen method is second-order accurate for smooth solutions in the limit
as the relaxation time approaches zero. We also demonstrate that two of its features, the
coupling of the source term and its modified treatment of the characteristic form of the
equations, are necessary for obtaining higher-order accurate solutions when the model
system is stiff. We also show that the method does not reduce to an upwind method for
the equilibrium equation as the model system becomes increasingly stiff. In 7 we show
numerical results which validate the analysis in 6.

In 8 we apply the frozen method and the three variant methods to the equations
describing one-dimensional inviscid gas flow coupled to a constant temperature heat
sink. We solve two test problems, an isothermal shock and an isothermal rarefaction.
The results are consistent with the results discussed in 6 and 7 for the model system.
The results in 8 also show that the frozen method may produce numerical oscillations
near shocks. We conclude that the numerical oscillations produced by the frozen method
may be reduced if its Riemann solver were replaced by one which satisfies (1.2). In 9, we
discuss some considerations in the development of a Riemann solver with the property
in (1.2). We also discuss extending the method to the equations ofgas flow with chemical
and vibrational nonequilibrium.

Remark. The method introduced in 3 addresses the problem of obtaining higher-
order accuracy for stiff hyperbolic conservation laws with relaxation for which the frozen
and the equilibrium characteristic speeds satisfy some form of a subcharacteristic con-
dition. The method does not solve the problem of spurious solutions of hyperbolic sys-
tems with relaxation for which the subcharacteristic condition is violated [31], or, more
generally, of hyperbolic systems with stiff source terms for which the limits of vanishing
viscosity and vanishing relaxation time do not commute. In particular, the method does
not alleviate the problem of spurious solutions arising in the numerical approximation
of the equations of reacting gas dynamics [13] or any of the model systems for reacting
flow [26], [29]. In [31], we conjecture that there are inherent problems in using a purely
shock capturing finite difference scheme to solve a system of hyperbolic conservation
laws with stiff source terms for which the limits of vanishing viscosity and vanishing re-
laxation do not commute. The problem of spurious solutions for systems of this type
can be solved, we believe, only by effectively resolving the time scales of the stiff source
term via methodologies such as adaptive mesh refinement [2], front tracking [5], subcell
resolution [20], [7], [19], and numerical induction [15].

2. Review: Method for nonstitf source terms. In this section, we review the second-
order Godunov method 1], [11 for hyperbolic systems ofconservation laws with nonstiff
source terms in one space dimension. We refer to this method as the nonstiff method.
This method is based on earlier work byvan Leer [36], [37] and by Colella and Woodward
[14] for gas dynamics.

We consider a hyperbolic system of conservation laws with nonstiff source terms in
one space dimension, i.e., a system of the form

OU OF(U) =S(U,x), t>_O, -<x<
(2.1) Ot Ox

U U(x, t), F(U), S(U, x) e Rv,
where for all U under consideration the Jacobian of F, A(U) cOF/OU, has N real eigen-
values 1 < ,2"" < AN, called the characteristic speeds of the system, corresponding
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to N linearly independent right eigenvectors r, k 1,..., N. We assume that the or-
dering of the characteristic speeds is global, and that all N characteristic fields are either
genuinely nonlinear or linearly degenerate. We also assume that the Riemann problem
for (2.1) with S(U, x) O,

u(, 0) uz, < 0,

=Un, x >0,

has a unique solution for all U, Un under consideration. To aid in the description of
the algorithm, we define the matrix of right eigenvectors of A(U) by R (r... rN) and
the matrix of left eigenvectors by L R-1 (l 1N)T, where R and L have been
normalized so that LR I.

We now describe the second-order Godunov method for (2.1). We pick a fixed spa-
tial grid with cell width Az indexed over j. To advance the solution at time t,, we use a
time step At which satisfies the Courant-Friedrichs-Lewy (CFL) stability condition,

(2.2) At a
mx

where, is the kth eigenvalue ofA(U) and a is a constant called the Courant number,
a < 1. We assume that the largest eigenvalue of the Jacobian matrix OS(U, x)/OU is
significantly smaller in magnitude than (maxj I L l)//xz, i.e., the system is not stiff
with respect to the source term.

The algorithm consists of four general steps:
(1) the calculation of limited central difference approximations of AU in each cell

j, where AU/Ax is an approximation of OU/Ox at the cell center;
TTn+I/2 TTn+I/2(2) the calculation of time-centered left and right states, ,+x/2,t and ’’j+l/2,r’ at

each cell edge, i.e., at t (n + 1/2)At, x (j + 1/2)Ax. Since these values are
calculated by integrating the linearized characteristic form of (2.1), we refer to this step
as the characteristic tracing step;

(3) the solution of the Riemann problem at each cell edge with left and right states
]ri-n+l/2given by "j+/,t, "j+/, for (2.1) with S(U, x) 0 and the evaluation of that solution

]rTnq-1/2.along the ray z/t 0 to obtain ’j+/2,
(4) the calculation of U+ by an application of the divergence theorem. The so-

Fn+l/2lution of the Riemann problem in (3) is used to approximate the flux terms +/

’j+1/2 and to approximate the average of S(U, x) over [(j- 1/2)Ax, (j + 1/2)Ax]
[tn, tn + At]:

+I v + xx U-1/2 -"+1/2 )
++ -At (S 1/2,

 k j+1/2

We refer to this step as the conservative differencing step. A dissipative flux term can be
added to the numerical flux when strong shocks are present; see [11] and [14].

Step (4) is self-explanatory. We refer the reader to the literature for the details of
step (3). Exact Riemann problem solvers exist for very few hyperbolic systems. Riemann
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solvers for gas dynamics [9], [12] and for gas dynamics with combustion [10], [34] have
been developed. There are also a number of algorithms [1], [30], [32] for approximat-
ing the solution of the Riemann problem for general hyperbolic systems. We describe
the details of the other two steps below. Throughout the description we often omit the
superscript n to simplify the notation.

Remark. Steps (1)-(3) of the algorithm can be applied to any W that is related to U
by an invertible map U U(W). For example, in the case of Eulerian gas dynamics in
one space dimension where U (p, pu, pE), one can use W (p, u, p).

Remark. We want to stress here that there is no reason for the purpose of accuracy
to include the effect of the source term in the solution of the Riemann problem. The left
and right values calculated in the characteristic tracing step at a given edge are locally
second-order accurate estimates of the solution at that edge at the half time level. The
purpose of solving the Riemann problem is simply to resolve the instantaneous wave
interactions of the left and right states in order to obtain an upwind state at the cell
edge.

2.1. Limited central difference approximations. The first step of the algorithm cal-
culates (AU), a monotonized central difference approximation to (OU/Oz) Az at each
cell center:

N

k--1

The rk5 are the right invectors of A(U). The ak, are calculated as follows. Define
three vectors, ac, aL, and an, by

ozC Lj(1/2(Uj+l Uj_l)),

aL Lj(Uj Uj-1),

R nj(Vj+l Vj),

where Lj is the matrix of left eigenvectors of A(U’). ak,j is then given by

(2.3)
R Ca, min(lacI, 21al 21a l) sgn(a L Rif aa > O,

0 othenvise.

We call the values ak,i expansion coefficients. In a given cell j, the expansion coefficients
are the slopes of the linear profiles of the solution in the space of the right eigenvectors
ofA(U). We refer to (2.3) as the slope limitingprocedure because it generally sets ak,i
C unless there are nearby local extrema or large gradients in U.

Remark. The slope limiting procedure is an attempt to preserve monotonicity in
each characteristic field [37]. Additional dissipation can be added near strong shocks by
a slope-flattening algorithm [11], [14].

2.2. Characteristic tracing. The second step of the algorithm computes the time-
r.nW1/2 Vnbl/2centered left and right states at the cell edges, "j+l/2,t and j+/2,r" The left and right

states at a given cell edge are computed by second-order accurate Taylor expansions
about the cell centers of the cells to the left and the right of the edge. In computing
the left state, however, we use a characteristic projection operator that discards those
components in the OU/Ox term corresponding to characteristics which do not originate



830 RICHARD B. PEMBER

in the cell to the left ofthe cell edge, i.e., only characteristics with positive speeds are used
in the calculation ofthe left state. A similar procedure is followed for the right state. This
procedure has no effect for problems in which F(U) AUwhere A is a constant matrix,
since the discarded components do not affect the solution of the Riemann problem in
that case. However, using the characteristic projection operators results in a more robust
algorithm for strongly nonlinear problems [11].

We first look at the calculation of the left state. (k,j, lk,j, and r, are the kth
eigenvalue, left eigenvector, and right eigenvector, respectively, of A(U).) From Tay-
lor’s theorem,we have

ou
+V s(u; )-u;+-- o

1( At
A ) Atu; + - (v;) (v) +s (v;,j),

where (.) denotes evaluation at (tn, jAx). We now replace

I-
At
A (u;)) (v)

in the above expression by

where Pz is defined by

(2.4) PL(W)= Z (lk,j’W) rkS.
k:Ak,j>0

TTn+I/2The resulting algorithm for calculating "j+1/2, is

( )rr+1/2 1 Z 1--xx,kk,j ak,jrk,j+1/2, U +
:,>o

At

Similarly, rr+/+1/2,r is given by

Uj+1/2 :U 1 (( AtA U ) ) At
-F1/2,r jTX P I -}- xx (j-l-l) (AU)j+ -S (ujn.+l, (j Jr- l)Ax),

where PR is defined by

(2.5) Pn(w) Z (lk,j+x w)rk,j+.
k:,Xk,j+l <0
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The resulting algorithm for calculating U’+j+l/2,r is

,..+1/2,,.rr’+1/2 U+ 1 .’,+’<o 1 + xx,,+ oz,+r,+ +--S (U+, (j + 1)A).

Remark. The slope limiting procedure and the characteristic projection operators
together guarantee that the following is true in the calculation of each left and right
state at each edge: The origin of the characteristic in each characteristic field used in
computing the value of the state is in the cell in which the linear profile corresponding
to that field cannot contain new local extrema.

3. Second-order Godunov method for stiff relaxation. We now modify the nonstiff
method to obtain a second-order Godunov method which computes higher-order accu-
rate solutions of a stiff hyperbolic system of conservation laws with relaxation without
fully resolving the effects of the stiff source terms. We refer to this method as thefrozen
method because its Riemann solver does not account for the equilibrium equation.

We consider a hyperbolic system ofconservation laws with relaxation for which there
is a single rate equation, i.e., a system of the form

(3.1)

OU OF(U) =S(U,x)+U(U), t>O, -oc<x<oc,Ot Ox

U=U(x,t), F(U), S(U,z), H(U) eRN,

where

OU OF(U) s(v, x)Ot Ox

is a hyperbolic conservation law with nonstiff source terms. H(U) has the form
(0, 0,..., O, h(U))T. Define M N 1 and Um to be a vector of the first M com-
ponents of U. We assume that a function UN f(Um) is defined implicitly by h(U) c
for all values of c. The equilibrium value of UN equals u, (Urn), where u, (Urn) satisfies
the equation h(Um, u,(Um)) 0. We refer to (3.1) as the nonequilibrium system. The
equilibrium system corresponding to (3.1) is

(3.2) UM OF,(UM) S(UM x),Ot Ox

where F,(UM) F(UM, u,(UM)). We assume that the characteristic speeds of (3.1)
and (3.2) are all distinct and that they satisfy the subcharacteristic condition (1.1) for
all Urn. We also assume that all M characteristic fields of the equilibrium equation are
either genuinely nonlinear or linearly degenerate. We finally assume that

Oh(U)
O(UN U, (UM

<0

for all U. The reciprocal of the absolute value of the left-hand side of this inequality is
the relaxation time T(U).

In our second-order Godunov method for (3.1), we want to use the time step given
by (2.2) to advance the solution at time t, even though the system may be stiff, i.e.,
max,j(/XX/T(U’))/I,V,.l >> 1. We therefore make the algorithm in 2 semi-implicit
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with respect to H(U) by modifying the second and fourth steps of the nonstiff method.
We also make modifications to the characteristic projection operator used in the charac-
teristic tracing step and to the limiting procedure (2.3) of the central difference approx-
imation step. The first of these two changes ensures that the method is second-order
accurate for stiff problems with smooth solutions. The second change helps the char-
acteristic tracing step maintain some of the same properties as the tracing step in the
nonstiff method.

The third step of the nonstiff method, the Riemann solver, does not have to be mod-
ified for the purpose of accuracy. On the other hand, the Riemann solver should satisfy
(1.2) so that the overall method is an upwind-centered difference scheme for all nonneg-
ative values of the relaxation time. At the present time, we believe that the development
of a Riemann solver that satisfies (1.2) for a general hyperbolic conservation law with
stiff relaxation is an open problem. Bolstad et al. [4] have made some progress in this
area for a particular system. (See the comments in 1 for further discussion.) In the
method presented here, we solve the same Riemann problem as in the nonstiff method
in 2, i.e., assuming H(U) O. In all our applications of the method in this paper, we
use an exact Riemann solver.

In our presentation of the frozen method, we discuss the characteristic tracing step
before the central difference approximation step in order to motivate the changes we
make to the limiting procedure.

3.1. Characteristic tracing. We now modify the characteristic tracing step of the
method in 2. This step requires two modifications. The first one is simply that the stiff
source term H(U) be treated semi-implicitly in the Taylor expansions, i.e., in the case of

TTn+I/2a left edge, H must be evaluated at "j+z/2,t, not at U:

Similarly,

n+1/2 1( AtA(U))(AU)j+1/2, g+ I-/z

n+1/2
4--

1( At
A+ 1/2 v?+ + v?+

The second modification is in the definitions of the characteristic projection oper-
ators PL and Pn defined in (2.4) and (2.5). This change is needed to maintain second-
order accuracywhen the source term is stiff. The numerical method should essentially re-
duce to a second-order method for the equilibrium equation as T(U) O. The method,
then, should not "discard" any components of OU/Ox used by such a method. If the kth
field of the equilibrium equation is needed for a second-order accurate solution of the
equilibrium equation, the method should use the components of OU/Ox corresponding
to the kth or the (k + 1)st characteristic fields of (3.1) as T(U) 0, since disturbances
carried by the kth field of the equilibrium equation must be present in the disturbances
carried by theo fields of (3.1) [27], [43]. If the projection operators as defined in [11]
are used, however, the method may "discard" some components of OU/Ox which are
needed for second-order accuracy.
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For example, suppose that the kth equilibrium characteristic speed in the jth cell is
positive. The method should then use the kth and the (k + 1)st characteristic fields of

rl-n+l/2(3.1) in computing ,+/,t" Since the subcharacteristic condition is satisfied, the compo-
nent of OU/Oz corresponding to the (k + 1)st characteristic field is not discarded by the
projection operator PL in the nonstiff method. However, the kth characteristic speed
can be positive or negative. If it is negative, the component of cOU/Ox corresponding to
the kth characteristic field is discarded, and accuracy is lost as r(U) 0.

We therefore modify the characteristic projection operators in order to avoid a loss
of accuracy as the relaxation time tends to zero. We use the following criteria so that a
direct calculation of the equilibrium characteristic speeds is unnecessary:

lrrn4rl/2(1) Use the kth characteristic field in the computation of ’j+1/2,1 if k N and
,k,j > 0 or k < N and Ak+1,j > 0.

un+l/2(2) Use the kth characteristic field in the computation of j+l/2,r if k 1 and
,k,j+l < 0 or k > i and ,k-l,j+l < 0.

These criteria are conservative in the sense that more components of OU/Oz may
be kept than are necessary for second-order accuracy.

One result of using these criteria is that additional limiting may be needed in some
of the expansion coefficients a,, i.e., the magnitude ofa, may have to be smaller than
the magnitude calculated in (2.3). In order to minimize the additional amount of lim-
iting, we find two sets of expansion coefficients in the central difference approximation

ll.nq-1/2step. We compute coefficients at,j, which are used in the calculation of "j+l/2,t, and
rTn+l/2Ck,yr which are used in the calculation of "+1/2,"

The resulting algorithm for calculating Un+1/2
+l/,t is the following:

(3.3)

ujn+1/2 1

k:,,k,j >0 o:r Ak+l,j >0

1
At

Similarly, the algorithm for Un+l/2
j+l/2,r is as follows:

ujnq-1/2 1
+1/2,r g?+ 2

k:k,j+l <0 or )k-l,j+l <o
(3.4)

( )1 + ,j+ Ork,j+lrk,j+l

At
-I-- (S (U+1, (j d-1)Ax)d- H ,j+1/2,r))

]rTn+l/2Both expressions are explicit for UM but implicit for Uy. The Nth components of,j+l/2,t
and U+1/2+1/2, are found by solving the equations defined by these expressions for Ug.

3.2. Limited central difference approximations. Our method for stiffrelaxation may
generate unacceptable oscillations in the numerical solution of a nonstiff strong shock
problem if it uses the same central difference approximation step as the nonstiff method.
This possibility arises because of the characteristic tracing algorithm, (3.3) and (3.4).
Suppose, for example, that a characteristic field corresponding to a characteristic with
a negative speed is used in the calculation of a left state at a cell edge. The origin of
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that characteristic is in the cell to the right of the cell edge. In that cell, the linear profile
corresponding to that field which originates in the cell to the left of the edge may contain
new local extrema; the slope-limiting procedure (2.3) prohibits the introduction of new
local extrema only within the cell where the profile originates [36].

To eliminate the introduction of new extrema, our method uses a more restrictive
slope-limiting procedure to calculate two sets of expansion coefficients. One set is used
in the calculation of left edge states (3.3); the other is used in the calculation of right
edge states (3.4). Although we could use a single set of expansion coefficients for both
cell edges, we use two sets to minimize the dissipative effect [37] of the additional slope
limiting. We now show the details of calculating a the expansion coefficient for thek,j’

lTn+l/2kth characteristic field used in calculating ,+/,, the details of the calculation of the
TTn+I/2expansion coefficients used in calculating ,+/, are similar.

ac, az, and cn are defined as in 2.1. If ), > 0, (2.3) is used to find a,. How-
ever, if ,, < 0, c, is given by the following:

(3.5)

L Rc,j min (I VI, 2 I, I) sgn (akC) if L Rtk Cek > O

0 otherwise,

where

(3.6)
At

The CFL condition implies that 2 a _</ _< 2. Since/ is bounded away from 1, our
method is still second-order accurate. (See van Leer [37] for further discussion.) Sup-
pose A, < 0 and the kth characteristic field is used in the calculation of "y+x/,r The
value of fl,j calculated in (3.6) is then the largest possible value that can be used in (3.5)
which guarantees the following: if the kth characteristic field is used in the calculation of
n+l/2
+/2,t, the linear profile corresponding to that field does not contain any value outside

the range of values determined by cells j and j / 1.

3.3. Conservative differencing. We now modify the fourth step of the method in 2.
Suppose we wanted to obtain a globally second-order accurate numerical solution to the
stiff ordinary differential equation

(3.7) duN
dt

h(UM, UN)

using a time step At >> T(U) where UM is fixed. We want the numerical solution of Ug
to decay rapidly to u. (UM) as T(U) - O. Hence, we require a second-order method that
is L-stable. An L-stable method is one for which numerical solutions of the test equation
y’ Ay decay rapidly to zero as A - -. (See Lambert [24] for a detailed discussion
of numerical methods for stiff ordinary differential equations.)

We see from this discussion that ideally we want to incorporate a second-order,
single-step, L-stable method intothe fourth step of the Godunov method to account
for the contribution of H(U). The condition that the method be single step requires
us to use an L-stable, implicit R-stage Runge-Kutta method, R _> 2. These methods,
however, can be computationally expensive since each stage requires the solution of a
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nonlinear equation. Yee [45] discusses alternatives to using a second-order, single-step,
L-stable method.

In this paperwe defer the issue of a second-orderL-stable method because our main
concern is with maintaining second-order accuracy as the relaxation time approaches
zero. Hence, for the purpose of this paper, it is sufficient to use any L-stable method,

un+l (TTn+Isince any such method would set N,j to u.,M5 in the limit of 7- 0. The method
used to calculate the numerical results in this paper has a conservative differencing step
which incorporates the backward Euler method, a first-order L-stable method:

(3.8)
U;+1 V;+ xx ,’J-1/2 --’J+1/2 ) +Atn(v;+11

+at )
This expression is explicit for UM but implicit for uN. UN is updated by solving the

un+lequation for N, defined by (3.8).
We note that the method used in calculating the results in this paper is second-order

accurate only in the limit r(U) 0. For long relaxation times, the method is only
first-order accurate because a second-order L-stable method is not incorporated into its
conservative differencing step.

4. Three variant methods. We now briefly present three variants of the method in
3. These methods should not be considered potential alternatives to the method in the
previous section. We introduce these variants solely to help us analyze and illustrate
through numerical results certain features of the frozen method.

The first variant is a fractional step method which uses Strang splitting. In the first
and third fractional steps, a second-order L-stable method is used to integrate

OU
H(U)

for time steps of At/2. In the second step, the second-order Godunov method for non-
stiff source terms is used to integrate

OU OF(U)
Ot Ox

for a time step of At. The time step is governed by the CFL condition (2.2). We will refer
to this variant as thefractional step method. We will use the method to demonstrate that
an operator split treatment of the stiff source term is insufficient for obtaining higher-
order accuracy.

The second variant is nearly identical to the method presented in the previous sec-
tion. The only difference is that the characteristic projection operators Pz and P are
identical to the ones used in the nonstiff method. We will refer to this variant as the non-
stiffprojection method. We will use the method to demonstrate that the characteristic
projection operators in the frozen method must differ from the operators of the nonstiff
method to obtain higher-order accuracy.

The third variant is also nearly identical to the method presented in the previous
section. The only difference is that a Riemann solver for the equilibrium equation (3.2)
is used in place of a Riemann solver for (3.1) to find the first M components of "j+1/2,

]r/n+l/2 [[rr xn+l/2the nth component of ,j+1/2 is set to u, (tM)j+1/2 )" We note that this variant is strictly
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applicable only in the limit 7-(U) 0. We will refer to this variant as the equilibrium
method. We will use the method to demonstrate that the method in 3 may be improved
if its Riemann solver satisfies (1.2).

5. Formulation of model system and test problems. In this section, we formulate a
model hyperbolic system of conservation laws with relaxation. We then formulate two
specific test problems. The model system is derived from the system in [31] by applying
the following change of coordinates to that system:

Our model is an example of the system examined by Liu [27]. It is also similar to the
combustion model considered by Majda [29]; see the discussion in [31].

5.1. A model system for relaxation. We consider the following system of hyperbolic
conservation laws with relaxation:

(5.1)
0 w 0 u +aw

/-zOt z az ( o )
where u w qoz, and a, K, qo, m, and uo are constants satisfying K > 0, q0 < 0,
m < 0, and uo > 0. a can be zero, positive, or negative. The relaxation time of the
system is 1/K. The system has characteristic speeds Al(W, z) a and A2(w, z) u + a.
We consider only those problems for which u > 0 for all x, t.

The equilibrium equation for (5.1) is

+ + 0,

where u, (w) is defined by

(5.3)
m

z, (w)
1 + mqo

z, (w) is the equilibrium value of z for a given value of w. The equilibrium characteristic
speed , is

(5.4) A, (w) u, (w)u, (w) + a + a.
1 +mqo

We obsee that when u > 0, the frozen and the equilibrium characteristics satis
the subcharacteristic condition.

5.2. o test problems. We now formulate and solve o problems of the model
system. Both problems consist of finding the limit as K of the solution of an initial
value problem of (5.1). The problems are formulated so that the initial values are in
equilibrium and u,(w) > 0 for all x, t. Weassume the results of Liu [28] and calculate
these limits indirectly by finding solutions of the equilibrium equation. The solution of
the first problem is a rarefaction wave of the equilibrium equation; the solution of the
second is a shock wave.
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The first test problem is to find limg__, w(z, t) where

(,, )(, o) (, , (,)), X < XO

(o, , (o)), > 0,

and 0 < ut wt qoz,(wt) < ur wr qoz,(w). The solution of this problem is

x Xo Ullim wx," "’) w, < + a,
K- t 1 + qom

x--x0 > ur + a,wr, t 1 + qom

x x0 otherwise.
t

We will refer to this problem as the rarefaction test problem.
The second test problem is to find limK__, w(x, t) where

(o, z)(x, o) (,o,, , (,)), X < XO

(, z, (o)), > xo,

and ut wt qoz,(wt) > u w qoz,(wr) > O. The solution of this problem is

lim w(x, t) wt, x < xo + st,
g--+oo

Wv X > Xo q-

2where s 1/2(u -u)/(wt-w). We will refer to this problem as the shock test problem.

6. Analysis ofnumerical methods for stiff problems. In this section we analyze how
well the methods in 3 and the variant methods in 4 approximate solutions of the model
equations (5.1) as K ---, . There are two main goals of this analysis. The first is to
show that two of the features of the method in 3, the coupling of the source term in the
Godunov method and the modified characteristic tracing step are, in some sense, nec-
essary features of a second-order Godunov method for stiff relaxation. The other goal
is to show that the method in 3 may be more robust for stiff problems if the Riemann
solver is modified so that the solver satisfies the property in (1.2). We accomplish the
first goal by showing that the method in 3 is a second-order accurate method while the
fractional step method and the nonstiff projection method in 4 are first-order accurate
methods. The second goal is achieved by showing that the method in 3 does not reduce
to an upwind method for the equilibrium equation as the relaxation time tends to zero.
The equilibrium method, on the other hand, is an upwind method for the equilibrium
equation by construction.

The analysis in this section is based on an observation and an assumption. The ob-
servation is that for the model equations in 5, the method in 3 and the three variants
in 4 can be expressed in the following form as K --+ oc:

At ( ,+1/2 _f’+1/2w+1

( n+lZ+l Z, kWj

fn+1/2 1 [ n+1/2 n+1/2 2
q- aw_._x
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n+i/2The only difference among the methods in this limit is in the calculations of wj+I/2 and
n+1/2
z+/2 The assumption is that Liu’s conjecture [28] is true for the model system, i.e.,
solutions of (5.1) tend to solutions of (5.2) as K cx. The analysis then reduces to
examining how well the four methods calculate solutions of the equilibrium equation in
the limit K .

In the analysis of accuracywe use the fact that all four methods are upwind-centered
difference schemes. Any one of these methods, then, is a globally second-order accurate
method (i.e., a locally third-order accurate method) in the limit K - cx if and only if

+1/2 ~+1/2the local truncation errors in the calculation of .wj+/2 and j+/2 are O (Ax2), i.e.,

(6.1)

and

+ o ()

=wj+n (Ax2 At2 (u, (w)u,’ (w)+a))(Ow)n:i
+ O (Ax2)

(6.2)

z.,+, z. ’" + + T + (Xx=)

z. ()
1 (Ax- At (u, (w2)u, (w) + a))+’, () + o (A),

where (.). denotes evaluation at t, jAx.
Most of this analysis consists of examining the truncation error of the characteristic

tracing step in each method. We assume that Aw/Ax and Az/Ax are first-order ap-
proNmations to Ow/Ox and Oz/Ox, i.e., we do not attempt to include the effect of slope
limiting, (2.3) or (3.5).

.1. Characteristic tracing: aetinal step method. We first demonstrate that an
unsplit methodolo is necessa for obtaining second-order accurate solutions of the
model system as K + . We veri this by showing that the Godunov step in the frac-
tional step method in 4 is only first-order accurate in this limit.

It is sufficient to consider the case a > 0. When a > 0, the Riemann solver sets
n+1/2 _n+1/2
Zy+/= Zy+le,r We expand in Taylor’s series the terms of the expressions used in the

n+1/2characteristic tracing step to calculate z+l, as follows:

n+1/2 1 ( At, aZ, Z + 1- (Az).

l
(Ax Ata) ( Oz )

n

z. () + +o(.=)

l(Ax_Ata) (w) -x=z.() + , + o (xx=)
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Since the difference between (6.2) and the last expression on the right is O(Az), the
fractional step method is only first-order accurate.

6.2. Characteristic tracing: Nonstiff projection method. We demonstrate that the
characteristic projection operators in the tracing step of the frozen method must differ
from those operators in the nonstiff method. The characteristic projection operators
must be different in order for the frozen method to produce second-order accurate so-
lutions of the model system as K . We verify this by showing that the nonstiff
projection method in 4 is only first-order accurate as K when the frozen and the
equilibrium characteristic speeds of the model system do not have the same sign.

It is sufficient to consider the case a < 0 < u / a for all u under consideration.
_n+l/2When a < 0 < u / a for all u, the Riemann solver calculates Wj+l/2 as follows:

(6.3) w. w. qoz, + qoz,

We expand in Taylor’s series the terms ofthe expressions used in the characteristic tracing
n+l/2 hA-l/2 .hA-l/2 ~n4-1/2step to calculate Wj+l/2,t, wj+l/2,r, zj+l/2,t, and zj+/2,r as follows:

n+1/2 1
w.,+ , wj + - (Ax- (u, (w]) + a)At)(Aw’]- qoAz’])

+ + o (),

+ 1 (+ (, () + a)at)(+ qoazS)W. WiT3+g,r

. 1
( + t)(1 (2)) Nw + z u, + o (z),

+] [ +]z.+, z, )

z, (2) + z: (2) (a at (, (2)’, () + a)) N
+ O (axe),

’+1/2 z,
( +1/2 ’z+1/2, %+1/2,)

1
(Ax + Ata)(1 (w2)) x ., (2) + z, () Xx- -u,

+O(x).
ter substituting the above expressions into (6.3), we obtain after some manipulations
the following equation:
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Since the difference between the expression on the right and (6.1) is O(Az), the nonstiff
projection method is only first-order accurate.

Remark. We emphasize that the first-order accuracy of the nonstiff projection
method does not depend in any way on the order of the L-stable method incorporated
into the conservative differencing step. In the analysis above, we examined the nonstiff
projection method in the limit K c. In this limit, the method performs in the same
manner regardless of the choice ofL-stable scheme.

6.3. Characteristic tracing: Frozen method. We now show that the method in 3
_n-{-1/2 nW1/2is second order accurate as K cx. The value of zj+/2 is either z,l,wj+/2,t) or

n-{-1/2 nq-1/2z, ,wj+/2,,.), depending on the sign of a. The value ofwj+/2 calculated by the Riemann
,+1/2 ,+1/2 ,+1/2 1), andsolver is some linear combination of the values of Wj_bl/2,1

n+l/2
Z,[Wj_kl/2,r }. It is sufficient, then, to show that the truncation errors in the calculations

n+l/2 n-kl/2of wj+l/2, and wj+l/2, are O(Ax2).
We expand in Taylor’s series the terms of the expressions used in the characteristic

nq-1/2 nq-1/2tracing step to calculate wj+l/2, and w+1/2, as follows:

Hence, the method is second-order accurate in the limit
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6.4. Riemann solvers: Frozen vs. equilibrium. We now compare the Riemann
solvers in the frozen method in 3 and in the equilibrium method in 4 in order to show
that the frozen method does not reduce to an upwind scheme for the equilibrium equa-
tion (5.2) as K . The following are necessary conditions for either method to be an
upwind scheme [21] for (5.2) in this limit:

n+1/2 nh-1/2(1) If A, tWj+l/2,t) < 0 and A,[Wj+l/2,r) < 0, then

+1/2 -+1/2 -+1/2 -+1/2 -+1/2w. =w. and z. =z. =z,
3+ 3+,r 0+ +,r (wj+1/2,r).

[.. n+1/2 nh-1/2(2) If A,.wj+l/2,t) > 0 and A,,wj+l/2,,. > 0, then

The Riemann solver for the method in 3, which we will call the frozen Riemann
solver, solves the Riemann problem for the system

0--- + -x + au =0,

Oz 0
(az) O.o--i +

(This system is derived from the system

w
Ot + -x + aw -0,

Oz 0
(az) 0o--i +

by using w u+qoz and substituting the second equation into the first.) The equilibrium
Riemann solver solves the Riemann problem for the equilibrium equation (5.2). Both

n+l/2Riemann solvers calculate the same values of W+l/ and Z+l/ if the frozen and the
equilibrium characteristic speeds of the left and right states at a cell edge all have the
same sign. However, if the characteristic speeds are not all of the same sign, the two

n+l/2solvers may calculate different values of wj+l/2 and zj+l/2
As an example, we consider the following situation. If

nW1/2 n+1/2a<u. ,t/(l+mq0)+a<0<u. + a,

,+1/2 ,+1/2a<u. /(l+mqo)+a<O<u. +a,
3,r 3,r

n.-I-1/2 n.-b1/2
U..+- ,l Uj+1/2 ,r’

both Riemann solvers find that the solution of the Riemann problem contains a shock
n+l/2 n+1/2separating u+1/2, and u+1/2,,.. However, the frozen Riemann solver calculates a pos-

n+1/2 n+1/2itive shock speed and sets uj+l/ u+l/,, while the equilibrium Riemann solver cal-
,+/ ,+1/ Consequently, the methodculates a negative shock speed and sets u+l/ U+l/e,.
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in 3 does not reduce to an upwind method for the equilibrium equation. As a result,
the method in 3 is more likely than the equilibrium method to generate numerical os-
cillations or overshoots at shocks [35] as K --, o when solving problems in which the
frozen and the equilibrium characteristic speeds do not all have the same sign. By the
same reasoning, however, the equilibrium method is more likely to generate oscillations
for nonstiff problems. The equilibrium method is thus not suitable for long relaxation
times.

7. Numerical results: Model system. In this section we use the numerical method
developed in 3 and the three variant methods presented in 4 to solve examples of
the test problems formulated in 5 in order to verify the analysis of the methods in 6.
We look at three sets of numerical solutions of rarefaction and shock test problems.
The first set of solutions are generated by the fractional step method in 4 and by the
frozen method in 3. The results show that the fractional step method produces less
accurate solutions than the frozen method as K - o. The second set is generated by
the nonstiff projection method in 4 and by the frozen method. The results show that the
nonstiff projection method also produces less accurate solutions for stiff problems. The
last set of solutions is generated by the frozen method. The results are consistent with
the method being second-order accurate for smooth solutions as K - o. Furthermore,
the results the frozen method for the shockproblems inwhich the frozen and equilibrium
characteristic speeds are not all of the same sign contain no oscillations or overshoots at
the shocks. Hence, there is no degradation in the numerical solution due to the fact that
the Riemann solver does not satisfy (1.2).

In every problem discussed in this section, we define the parameters (except a) of
the model system in 5 as follows:

q0 -1.0.

m -1.0,

u0 3.0,

K 108.

The value of a is set in each problem; we use different values in different problems in
order to illustrate certain numerical properties of the methods. We define the initial
conditions of the rarefaction problems by

ul 2.0,

zt m(ut u0) 1.0,

w u / qoz 1.0,

ur 3.0,

z m(u uo) 0.0,

w,. u,. / qoz,. 2.0.

We define the initial conditions of the shock problems by reversing the roles of the left
and right states. In each rarefaction problem, we set the position of the initial disconti-
nuity, x0, according to the value of a so that the solutions of all the rarefaction problems
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are identical at t .3:

u(z, t .a) 9., z <_ .7,

(7.1) 2 + (x- .7)/(.85- .7), .7 < x < .85,

3, x > .85.

In each shock problem, we set x0 in a similar fashion so that

(7.2)
u(x, t .3) 3, z < .775,

2, x > .775.

We use a grid spacing of Ax .0025 and a Courant number of a .9 in each run. We
also use the following measure of error so that we can compare the numerical results of
the different methods:

1 m
n(7.3) error lueq(x , u l"m

j=l

Uq(X, t,) is the exact solution of the equilibrium equation (5.2) given by (7.1) or (7.2),
while u is the numerical approximation to the solution at (x, t,). ra is the number of
computational cells.

7.1. Frozen method vs. fractional step method. In this set of problems, we set a
1.0. We use the fractional step method in 4 and the method in 3 to solve a shock
test problem and a rarefaction test problem. The values of the numerical solutions at
t .3 are displayed in the graphs in Fig. 1. We can see from the figure that the results
generated by the fractional step method are less accurate than those generated by the
frozen method. Specifically, in the numerical solutions produced by the fractional step
method, the representations of the trailing and leading edges of the rarefaction and the
representation of the shock are more smeared than those in the solutions produced by
the frozen method. The errors at t .3, as given by (7.3), in the shock and the rarefaction
solutions calculated by the frozen method are 1.108 x 10-a and 1.104 10-a. The
corresponding values for the fractional step method are 1.931 10- and 4.149 10-.

7.2. Frozen method vs. nonstiff projection method. In this set of problems, we set
a -.9 so that the frozen and the equilibrium characteristic speeds do not all have
the same sign. We expect in this case that the numerical solutions generated by the
nonstiff projection method will be less accurate. We use the nonstiff projection method
in 4 and the frozen method in 3 to solve a shock test problem and a rarefaction test
problem. The values of the numerical solutions at t .3 are displayed in the graphs in
Fig. 2. We can see from the figure that the results generated by the nonstiff projection
method are less accurate than those generated by the frozen method. Specifically, we
see that the representations of the trailing and leading edges of the rarefaction and the
representation of the shock are more smeared in the solutions produced by the nonstiff
projection method than in those produced by the frozen method. The errors at t .3, as
given by (7.3), in the shock and the rarefaction solutions calculated by the frozen method
are 1.170 10-a and 1.117 10-a. The corresponding values for the nonstiff projection
method are 6.684 x 10-3 and 1.291 x 10-2.
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Fractional Step Method: 1,00

,,,
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265,

Frozen Method: 1,00
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Fractional Step Method: 1.00
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i-

Frozen Method: 1.00

FIG. 1. Numerical solutions oftest shock and rarefactionproblems by thefractional step andfrozen methods
fora= 1.

7.3. Frozen method. In this set of problems, we set a -3.25, -2.5, -1.75, -1.25,
-.9, and 1.0. For each value of a we use the method in 3 to solve a shock test problem
and a rarefaction test problem. The resulting twelve problems correspond to twelve
different relations among the frozen and the equilibrium characteristic speeds of the left
and right states. For example, when a -3.25 the frozen and equilibrium characteristic
speeds of the left and right states are all negative. The values of the numerical solutions
for the first four values of a at t .3 are displayed in the graphs in Figs. 3 and 4. The
results for a -.9 and for a 1.0 are displayed in Fig. 2 and Fig. 1, respectively.
The results are consistent with the method being second-order accurate, i.e., the frozen
method produces sharply defined equilibrium shock and rarefaction solutions for all six
values of a. The errors at t .3, as given by (7.3), in the solutions to the six shock
problems are, in order of increasing a, 1.069 10-a, 1.046 10-a, 1.182 10-, 1.213
10-, 1.170 10-, and 1.108 10-a. The corresponding values for the six rarefaction
problems are, in order of increasing a, 1.058 10-3, 9.671 10-, 1.099 10-, 1.138
10-3, 1.117 10-, and 1.104 10-.
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Non-Stiff Projection Method: -0.90

35I
Non-Stiff Projection Method: -0.90

Frozen Method: -0.90

Frozen Method: -0.90

FIG. 2. Numerical solutions of test shock and rarefaction problems by the frozen and the nonstiffprojection
methodsfor a -.9.

8. Numerical results: Eulerian gas dynamics with heat transfer. In this section we
investigate using the method in 3 and the three variant methods in 4 to solve the Eu-
let equations for gas dynamics, coupled with a simplified heat transfer rate equation, in
one space dimension. The corresponding equilibrium equations are the Eulerian equa-
tions for isothermal flow. We formulate two initial value problems of the system whose
time-asymptotic solutions are simple waves, an isothermal rarefaction, and an isother-
mal shock. We then look at three sets of numerical solutions of these two problems. The
numerical results are consistent with the conclusions of the analysis in 6 for the model
system.

8.1. Formulation of equations and test problems. We consider the Eulerian equa-
tions governing the one-dimensional flow of gas in contact with a constant temperature
bath:

(8.1) 0-- pu + x pu2 + p 0

pE puE + up -Kp(T To)
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FIG. 3. Numerical solutions oftest shockproblems by the frozen methodfor a -1.25,-1.75,-2.5, and
-3.25.

In this system, p is the density, u the velocity, E e + u2/2 the energy per unit mass, e
the internal energy, T the temperature, and p the pressure. Away from equilibrium we
assume that the gas is a 3’-law gas, i.e., p (3’- 1)pe. We choose units of temperature so
that T e. K and To are positive constants. K is the heat transfer coefficient. To is the
temperature of the constant temperature bath. The frozen characteristic speeds of the
system are c, u, and u + c, where c (3"p/p)l/2. At equilibrium, the flow is governed
by the Eulerian equations for isothermal flow:

(8.) 0- pu -x pu + p, 0

The pressure p, is governed by an isothermal gas law: p, (p) (3’ 1)peo, where eo is
the internal energy of the gas at T To. The equilibrium characteristic speeds are u- c,
and u + c,, where
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FIG. 4. Numerical solutions oftest rarefaction problems by thefrozen methodfor a 1.25, 1.75, -2.5,
and -3.25.

c, ((’)’- 1)eo)

The frozen and the equilibrium characteristic speeds thus satisfy the subcharacteristic
condition (1.1).

We now formulate two general initial value problems of (8.1). Under the assumption
that Liu’s conjecture [28] extends to (8.1), the solutions of these two problems tend to
simple wave solutions of (8.2) as K ---, c. We specify the solution at t 0 in terms of
the primitive variables p, u, and p as follows:

(8.3)
X < XO

p, x > zo.
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The left and right states of an initial value problem whose solution as K is an
isothermal shock with speed s satisfy the following:

W ((7- 1)eoPtPr)

w (, ,) (. )o (p p,).

(8.4) p p, (p,).

p =p, (p),

S
prUr plUl

Pr Pl

(W is the Lagrangian isothermal shock speed.) The left and the right states of an initial
value problem whose solution as K is an isothermal rarefaction in the u + c,
characteristic family satisfy these relations:

((7 1)eo) 1/2 In P_r_ u utPl

(8.5) Pt P, (Pt)

p =p, (p).

We now use the results stated in the previous paragraph to formulate a set of test
problems for the numerical methods. We define the constants in (8.1) as follows:

To eo 1.0,

K 108,

1.4.

At equilibrium, then, c .748 and c, .632. Since K >> 0, i.e., the relaxation time
is much smaller than the time scales associated with the fluid velocity and sound speed,
we expect that a solution of (8.1) whose initial conditions satisfy (8.3) rapidly develops
in time to a time-asymptotic solution of (8.1) which closely approximates a solution of
the isothermal flow equations (8.2). The shock problems are defined as follows:

.6,

2.5,

(8.6) Pr 1.0,

Pl 1.0,

For a given value of ur, we set the location x0 of the initial discontinuity so that the
location of the shock at t .4 is x .81. The rarefaction problems are defined as
follows:
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(8.7)

ur us + .5795,

pt 1.0,

Pr 2.5,

Pl --.4,

p 1.0.

For a given value of us, we set the location x0 of the initial discontinuity so that the
rarefaction wave extends from x .664 to x .904 at t .4. We use a grid spacing
of Ax .0025 and a Courant number of a .9 in each run. We also use the following
measure of error for the rarefaction problems so that we can compare the numerical
results of the different methods:

1
m

(8.8) error lUiso(Xj, tn) Ujm
j=l

Uiso(x, t,) is the value of u, the fluid velocity, in the exact solution of the equations of
isothermal flow (8.2) for the initial value problem given by (8.3) and (8.7), while u is the
numerical approximation to the value of u in the solution at (x, t). m is the number
of computational cells.

Remark. We need to make two statements about our claim that, given our particular
choice of parameters, a solution of (8.1) whose initial conditions satisfy (8.3) rapidly
tends to a time-asymptotic solution of (8.1) which closely approximates a solution of
(8.2). First, there is an assumption that the spatial scale (and, by the CFL condition, the
time scale as well) onwhichwewant to resolve the solution is too small to fully resolve the
relaxation process. We are assuming, then, not that K itself is large but that KAx is large
compared to the magnitudes of the sound speeds and the fluid velocities, where Ax is the
desired spatial resolution. Our second remark is that there are at this time no definitive
theoretical results regarding the time-asymptotic behavior for N N hyperbolic systems
of conservation laws with relaxation where N > 3. There are definitive results only for
2 2 systems [8]. For our particular set of problems, however, the numerical results
below do suggest that the time-asymptotic behavior of solutions of the frozen equations
(8.1) is determined by the equilibrium system (8.2).

$.2. Frozen method. We use the frozen method of 3 to solve a series of isothermal
rarefaction and shock problems of (8.1). The initial conditions of the rarefaction prob-
lems are given by (8.3), (8.7), and us -1.4,-.8,-.3, .3, and .8. The initial conditions
of the shock problems are given by (8.3), (8.7), and u -1.4,-.8,-.3, .3, and .8. The
resulting ten problems correspond to different relations among the frozen and the equi-
librium characteristic speeds of the left and right states. For example, when ut -1.4,
the frozen and the equilibrium characteristic speeds of the left and right states are all
negative. The values of u in the numerical solutions of the rarefaction problems at t .4
are displayed in the graphs in Fig. 5. The values of p in the numerical solutions of the
shock problems at t .4 are displayed in the graphs in Fig. 6. We can see from the
figures that the results are consistent with the method being second-order accurate as
K c, i.e., the frozen method produces sharply defined equilibrium shock and rar-
efaction solutions for all the test problems. Furthermore, the numerical results show
approximately the same level of accuracy. The numerical solutions are oscillatory at dis-
continuities, however, in some of the shock problems for which the equilibrium and the
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FIG. 5. Numerical solutions of isothermal rarefaction problems by the frozen method for ul
1.4, -.8, -.3, .3, and .8.

frozen characteristic speeds do not all have the same sign, i.e., when ut -.8 and -.3.
The errors at t .4, as given by (8.8), in the solutions to the six rarefaction problems
are, in order of increasing ut, 2.185 10-, 2.261 10-, 2.534 10-, 2.506 x 10-,
and 2.508 10-.

8.3. Fractional step and nonstiff projection methods. We use the fractional step
and the nonstiffprojection methods of4 to solve two ofthe isothermal rarefaction prob-
lems discussed in 8.2. The initial conditions of the rarefaction problems are given by
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Frozen Method:

Frozen Method:

Frozen Method:

FIG. 6. Numerical solutions ofisothermal shockproblems by thefrozen methodfor tr 1.4, -.3, .3, and .8.

(8.3), (8.7), and zz -.8 and -.3. The values of t in the numerical solutions at t .4
are displayed in the graphs in Fig. 7. We can see by comparing this figure with Fig. 5
that the results generated by the two methods are less accurate than those generated by
the frozen method of 3. In particular, the positions of the trailing and leading edges of
the rarefactions calculated by the fractional step method correspondingly trail and lead
the same positions as calculated by the frozen method. The lower accuracy of the non-
stiff projection method is even more apparent. We see that there are numerical "kinks"
in the two solutions produced by this method. These appear where one of the frozen
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FIG. 7. Numerical solutions ofisothermal rarefaction problems by the fractional step and the nonstiffprojec-
tion methodsfor uz -.8 and -.3.

characteristic speeds u or u + c equals 0. The errors at t .4, as given by (8.8), in the
two solutions produced by the fractional step method are 2.479 10-3 when ut -.8
and 2.867 10-3 when ut -.3. The corresponding values for the nonstiff projec-
tion method are 3.021 10-3 and 2.675 10-3. The values for the frozen method, for
comparison, are 2.261 10-3 and 2.534 10-3.

8.4. Frozen method vs. equilibrium method. We use the equilibrium method of 4
to solve the two shock problems discussed in 8.2 for which the frozen method produced
oscillations at the discontinuity. The initial conditions of the problems are given by (8.3),
(8.6), and ur -.8 and -.3. The values of p in the numerical solutions at t .4 are
displayed in the graphs in Fig. 8; graphs of the solution produced by the frozen method
are included for comparison. The solutions produced by the equilibrium method are less
oscillatory than the solutions produced by the frozen method.

9. Additional considerations and extensions. In this section we discuss some
considerations in developing a Riemann solver which satisfies (1.2). We also propose
how to extend the methodology in 3 to the equations of gas flow with vibrational and
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Frozen Method: -.8 Equilibrium Method: -.8
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FIG. 8. Numerical solutions ofisothermal shockproblems by the equilibrium andfrozen methods for ur

-.8 and -.3.

chemical nonequilibrium, and, more generally, to systems in which one or more of the
frozen characteristic speeds coincide.

9.1. Riemann solver. The numerical results in 8 demonstrate that a Riemann solver
which satisfies (1.2) is a desirable component of a higher-order Godunov method for hy-
perbolic conservation laws with stiff relaxation. We now briefly evaluate five possible
approaches to the development of such a Riemann solver.

One approach is simply to switch from a frozen Riemann solver to an equilibrium
Riemann solver when -/Az drops below some threshold. We performed a numerical ex-
periment to test this approach. We consider a traveling wave problem of (8.1) for which
the states at +oo satisfy the isothermal shock relations (8.4). We numerically solve a se-
ries of traveling wave problems of this type in which K alone is varied. We use the frozen
method of 3 and the equilibrium method of 4 to obtain solutions for K 50, 400, and
108. The results are displayed in Fig. 9. For K 50, the frozen method produces a
reasonable numerical solution, while the equilibrium method does not. (Note that the
exact solution at K 50 is a traveling wave consisting of a shock followed by a smooth
compression wave.) For K 108, the equilibrium method produces a nonoscillatory
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Equilibrium Method: 50

Equilibrium Method: 400

Equilibrium Method: 1.0e8

Frozen Method: 50

Frozen Method:

Frozen Method: 1.0e8

o.9’

FIG. 9. Numerical solutions of traveling wave problems by the equilibrium and the frozen methods for k
50,400,108

representation of an isothermal shock, while the frozen method does not. However, for
K 400, both methods produce oscillatory results. Hence, it appears that a Riemann
solver that simply switches between a frozen and an equilibrium Riemann solver de-
pending on the size of the relaxation time would not significantly reduce the problem of
numerical oscillations at shocks for nonzero, finite relaxation times. Furthermore, for a
certain range of relaxation times, it appears that the Riemann solver must do something
other than simply solve the frozen or the equilibrium Riemann problems.
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The next three approaches also have shortcomings. One approach is to find the
solution of the nonequilibrium system (3.1) for the initial value problem

(9.1)
U(x, O) ,+1/2,, x < O,

,+1/2,, x > 0

and evaluate the solution at t 0. (Methods that use approaches similar to this are
discussed in [3] and [17].) We do not actually gain anything by using this approach rather
than the approach used in 3; however, because in effect its results are the same as a
Riemann solver for the system with S(U, x) =_ H(U) 0 except at equilibrium. Another
approach is to find the time-asymptotic solution of the nonequilibrium system for the
initial value problem (9.1) and evaluate that solution at t 0. This approach has the
opposite problem of always solving the Riemann problem for the equilibrium equation
except when the relaxation time is infinite. A third approach is to somehow average the
solutions of Riemann problems for the nonequilibrium equations and the equilibrium
equations according to the value of the relaxation time. Although this approach works
for zero and infinite relaxation times, it is unclear whether this technique is appropriate
for intermediate values.

Another possible approach to this development could be based on redefining what
is meant by an upwind method for a hyperbolic conservation law with relaxation. In
particular, it may be the case that speeds other than the characteristic speeds should be
used in determining upwind states. Linear [6], [22], [25], [39], [43] and nonlinear [8], [27]
analyses suggest that this might be the case. In general, these analyses show that although
wave fronts move with speeds determined by the frozen characteristic speeds, the overall
signal carried by a wave moves at a speed intermediate to the frozen and equilibrium
characteristic speeds. Perhaps one could apply these results in developing a numerical
flux function which is appropriate for hyperbolic conservation laws with relaxation.

9.2. Flow with chemical and vibrational nonequilibrium. We assumed in develop-
ing the method in 3 that the frozen and equilibrium characteristic speeds were all dis-
tinct. This assumption is often not met by hyperbolic conservation laws with relaxation
that are based on physical systems. In these systems, two or more of the frozen charac-
teristic speeds often coincide. We now briefly examine one such system and show how
to extend the method to that system.

We consider the equations describing gas flowwith chemical and vibrational nonequi-
librium. (See [39] for a more complete description.) For the sake of a simple exposition,
we assume that the internal energy has two components, a translational component that
is a function of temperature, etr, and a nonequilibrium component, q, i.e., e etr + q.
We assume q is governed by a rate equation which takes the following form in Lagrangian
coordinates:

Oq q, (p, s) q
0- h(p, s, q)

7"(p,s,q)

s, q,, and 7- are the entropy, the equilibrium value of q, and the relaxation time, respec-
tively. The Eulerian equations of motion are then given by the following:
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(9.2)

p pu 0

(9 pu t9 pu + p 0
0- pE

+ -x puE + up 0

pq puq ph(p, s, q)

The frozen characteristic speeds are u c, u, u, and u + c, while the equilibrium speeds
are u c,, u, and u + c,. c and c, are the frozen and the equilibrium speeds of sound.
c (Op(p, 8, q)/Op) 1/2 and c, (Op(p, s, q,(p, s))/Op)/2, where s is the entropy of the
gas. We assume that c, < c.

We now modify the method in 3 for the system of equations (9.2). Specifically, we
modify the characteristic projection operators in the characteristic tracing step. We use
the following criteria to determine which characteristic fields to include in the computa-

]rrn+l/2 ]rrn+/2tion of "j+/,t, the criteria for the computation of "j+l/Z, are similar:

(1) Use the u c characteristic field if u > 0.
(2) Use the two u characteristic fields if uj + cj > 0.
(3) Use the u + c characteristic field if uj + cj > 0.
Remark. The above methodology is easily extended to cases in which there are any

number of nonequilibrium components of the internal energy, as long as the frozen and
the equilibrium speeds of sound c and c, satisfy c, < c for all possible states. However, if
this inequality is not always satisfied (and, in particular, if any of the relaxation processes
involved are exothermic in nature, such as in the case of chemically reacting flow), then
it is necessary to resolve the time scales of the relaxation processes which contribute to
the violation of the subcharacteristic condition. Otherwise, the numerical solution may
contain nonphysical waves. See the remark at the end of 1.

10. Discussion and conclusions. We have completed the initial stage of develop-
ment of a second-order Godunov method for stiff hyperbolic systems of conservation
laws with relaxation. Our method produces higher-order accurate solutions using time
and space increments governed solely by the nonstiffpart ofthe system, i.e., without fully
resolving the effect of the stiff source terms. The method (3) is a semi-implicit version
of a second-order Godunov method [1], [11] for hyperbolic conservation laws with non-
stiff source terms. Our method, which we refer to as thefrozen method, differs from the
nonstiff method in three ways. These differences are needed to ensure that the method
is stable and second-order accurate for stiff problems.

(1) In the monotonized central difference calculation, two sets of expansion coeffi-
cients are calculated. One set is used in the calculation of left edge states in the charac-
teristic tracing step; the other is used in finding the right edge states. The slope-limiting
procedure is modified to account for the characteristic projection operator.

(2) In the characteristic tracing step, the stiff source term is treated in a semi-implicit
fashion. Furthermore, the characteristic projection operators allow certain characteris-
tic fields corresponding to negative frozen characteristic speeds to contribute to the value
of left edge states, and certain fields corresponding to positive speeds to contribute to
the value of right edge states.

(3) In the conservative differencing step, the stiff source term is treated in a semi-
implicit fashion.

We note that these key components--the slope-limiting procedure, the characteris-
tic projection operator, and the implicit differencing in the tracing and the conservative
differencing steps---can be readily incorporated into the two-dimensional method de-
scribed in [11].
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The reasons for the modifications to the nonstiff method are easily stated. The stiff
source term is treated semi-implicitly for stability. The modifications to the characteristic
projection operators are necessary for the method to reduce to a second-order method
for the equilibrium equation as the relaxation time tends to zero. As this limit is ap-
proached, disturbances carried by a given characteristic field of the equilibrium equation
must be present in the two corresponding characteristic fields of the nonequilibrium sys-
tem [27], [43]. Hence, the projection operator must take into account the signs of the
equilibrium characteristic speeds as well as the signs of the frozen speeds. Given the
modified projection operators, the modified slope-limiting procedure helps minimize
oscillations at discontinuities in strongly nonlinear problems.

We have analyzed the method as applied to a simple model system and used the
method to produce numerical solutions of the model system and of the Euler equations
for gas dynamics with heat transfer. Our analysis shows that the method is second-order
accurate for smooth solutions. Furthermore, analytical and numerical results show that
the unsplit nature of the method and the modified characteristic projection operators
are necessary for second-order accuracy as the relaxation time approaches zero.

Our method lacks one key desirable feature, namely, that it reduce to an upwind
method for the equilibrium equation as the relaxation time tends to zero. We have shown
that as 7- 0, the numerical results obtained with a method using a Riemann solver for
the equilibrium equation are better than the results obtained with the frozen method in
that the former are less oscillatory at shocks. These results suggest that the method in
3 would be improved if its Riemann solver satisfied the following: that it reduce to a
Riemann solver for the equilibrium equation as - 0, and that the numerical method
using the solver be an upwind scheme for all nonzero relaxation times. The development
of such a Riemann solver is a topic for future work.
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OPTIMIZING THE NUMERICAL INTEGRATION OF INITIAL
VALUE PROBLEMS IN SHOOTING METHODS
FOR LINEAR BOUNDARYVALUE PROBLEMS*

L. R/NDEZ

Abstract. In this paper two new embedded Runge-Kutta (RK) methods RK5(4) specially designed for
linear ODEs [L. 17. Shampine, J. Cornput. Appl. Math., 15 (1985), pp. 293-300] are derived with (a) "small"
principal truncation terms in the fifth-order formula, and (b) minimum number ofJacobian matrix evaluations
per step. Numerical tests comparing their efficiency to the classical RKFS(4)#2 [E. 17ehlberg, Tech. Rep. R-
315, NASA, 1959],.with the SUPORT code [M. R. Scott and H. A. Watts, SIAMJ. Numer. Anal., 1 (1977), pp.
40-70], are presented.

Key words, boundary value problems, shooting methods, Runge-Kutta methods
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1. Introduction. Let us consider the numerical solution ofthe linear boundaryvalue
problem (BVP)

(1.1)a y’(t) J(t)y(t) + g(t), t e (a, b),

(1.1)b Bay(a) c, Bby(b) fl,

where y, g E jm, j mxm, Ba (m-k)xm, Bb e kxm, Oz m-k, and/3 JRk,
by shooting methods. Such a class of methods reduces the BVP (1.1) to solving a linear
system of equations involving the numerical integration of initial value problems. Usu-
ally, the method of superposition [1], [2], [5], [6], [9], [10], [13] is used to represent the
solution as a combination of the fundamental and particular solutions, and it is necessary
to integrate them numerically, e.g., by a Runge-Kutta (RK) method. The most popular
method is the RK pair RKF4(5)#2 of formulas of orders 4 and 5 due to Fehlberg [4]
and implemented as a BVP solver in the codes SUPORT [13] and MUSL and MUSN
[1], [10].

In the numerical solution of (1.1) we can use algorithms for nonlinear problems, ig-
noring the linearity of the problem, butwe cannot expect to obtain a particularly efficient
algorithm in this way [6]. So, the most recent codes for solving BVP are split in linear
and nonlinear problems (MUSL, MUSN, respectively [1]).

For nonlinear problems, the author [12] has proposed a combination of a RK triple
for the differential equation and a special RK for the variational problem, but if it is used
in linear problems, we can expect a loss of efficiency.

Since the initial value problem (IVP) to be integrated has the differential equation
given by (1.1)a, it is worth noting that a large portion of the cost of evaluating the deriva-
tive function comes from evaluating functions of the independent variable, i.e., mainly
the Jacobian matrix J(t). So, to advance from tn to t, + h, the RKF4(5)#2 requires

a 12 1, 1/2). Because no pair of successiveevaluations at t + ch where the c are (0, 4, s,
evaluations is at the same point, this RK needs six Jacobian evaluations per step and the
same number of stages.

The main idea of this paper is to exploit the linearity of the problem, because an im-
portant part of the multiple shooting method is the integration of the associated IVPs.

Received by the editors November 13, 1991; accepted for publication (in revised form) July 28, 1992.
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While Shampine [15] proposed using extrapolation with England’s method, we prefer
to develop new special explicit embedded pairs of RK formulas of orders 4 and 5 with
six effective stages, but with a reduction in the number of Jacobian matrix evaluations
involved in the process by using more than one function value corresponding to a single
independent variable value, i.e., with several c’s equal and consecutive. We construct
two new pairs that require three and four evaluations of Jacobian matrix per step, re-
spectively. Furthermore, the ratio between the size of the truncation error coefficients
of the new pairs when compared with the RKF4(5)#2 are about 3 and 10 times smaller,
respectively, for the new pairs.

These pairs are developed for general IVP, mainly because no substantial reduction
is achieved in the number of order conditions for linear variable coefficient problems
(the elementary differentials up to fourth order are the same, and only one for fifth
order and three for sixth order are not present) and are also able to integrate nonlinear
problems, for example, quasi linearization. Afeature ofthe new formulas is the provision
of a continuous solution, e.g. to plot the graph of the solution or to be used in a quasi
linearization of a nonlinear problem.

The paper is organized as follows. In 2we construct a family ofRKpairs of orders 4
and 5 depending on four parameters such that it only requires four Jacobian evaluations
per step. A similar analysis is carried out in 3, but now the RK pair requires only three
Jacobian evaluations per step. In 4 a fourth-order continuous RK method is proposed
for each method with no extra cost. Finally, in 4, some numerical tests showing the effi-
ciency of the new pairs relative to Fehlberg’s pair are presented using the code SUPORT
[131.

2. The family ofembedded RK5(4) methods. We are concerned with the numerical
integration of the IVP associated with the BVP (1.1). In particular, we consider an IVP
like

/ J(t) +(2.1)

to be solved by an explicit RK method with six stages. The intermediate function evalu-
ations are

(2.2) gi J(t + cih) z + h aijgj + g(t + cih), i= 1,..., 6,
j=l

and the approximation z,+l to z(t,+l) is given by

6

(2.3) Zn+l Zn + h bigi,
i=1

where h is the stepsize, and ay, b, and c are parameters defining the RKmethod. Using
matrix notation A (a) x6, b (bi), c (c) , the procedure can be
specified by its Butcher table of coefficients

c A
(2.4) b.

It is important to observe from (2.2) that if the coefficients cs are different, it is necessary
to evaluate the Jacobian matrix J(t) at least six times; but if c 1, the last evaluation
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of the current step can be re-used as the first one of the next step. So, the goal is the
construction of RK methods with several coefficients cs equal and consecutive in order
to save Jacobian evaluations.

Throughout this paper, we will use the notation RKp(q)l for an embedded pair of
orders p and q (p > q + 1) requiring Jacobian evaluations per step. Note that for the
pair RKF5(4)#2, p 5, q 4, and 6.

Let z(t; t, z) be the local solution of (2.1) at the point (t,, z,). Then the local error
of the method (2.2), (2.3) at the point t,+l is defined by

hp(’r)
e(tn+l) Z(tn + h; ,tn, Zn) Zn+l Z C(T)Fn(T)

()>_

where T denotes a rooted tree of order p(T), the vector Fn(T) flm is the elementary
differential associated with 7- at (tn, Zn), and the scalar C(T) is the corresponding weight.
It must be remarked that F,(T) depends only on the differential equation (2.1) and the
point (t,,, z,), while C(T) depends only on the parameters (A, b). The RKformula (2.2),
(2.3) has order p if and only if e(t+) O(hP+).

To construct a family of RK methods of order 5 with six stages, assume that the
parameters (A, b) satisfy

(2.5) bTA bT (b.c)T,

(2.5)b Ac c2/2 (c2/2)e2,

(2.5)c 82 0,

where cO (c1,..., cg)T, ej is the vectorwith components (ej), 6,i, and (u.v) denotes
the componentwise product of vectors u and v, i.e., (u.v)i uivi. Obviously, the last
equation of (2.5) implies c 1, so the last evaluation of the Jacobian matrix in the
current step can be re-used in the following step. It can be verified that (2.2), (2.3) has
order 5 if and only if b2 0 and

bTcj 1/(j + 1), j 0,..., 4,
(2.6) bT(Ac2.c) 1/15,

bT(Ae.c) O.

Operating with the above set of equations, it is easy to show that there exists a family of
methods with five free parameters (c2, c3, ca, c5, aa2).

In order to embed the fourth-order formula, the so-called FSAL (first same as last)
condition is assumed. This means that for the fourth-order solution a new stage which
is identical to the first evaluation of the next step is used. So, the table of coefficients for
our pairs will have the form

A
bT

bT.- bT

with the solution of fourth order given by

(2.7)
7

n.-]-I Zr - h Z-igi.
i--1
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For the fourth-order solution (2.7) it is very easy to see that the order conditions reduce
to b2 0 and

(2.8)
-T 1/(j + 1),
T2 1/12,
T e2 0.

j 0,...,3,

Clearly, the linear system (2.8) is satisfied by the fifth-order solution. So, we will use
the value a42 to make (2.8) compatible. From the first five equations of (2.8), we have a
linear system in b, ba,..., b whose matrix is singular if

C3
c4 2(5c 4c3 + 1)"

Solving the linear system and taking c2, {33, C4, C5, and b7 as parameters, we arrive at the
value

C4
2 (3C3 2C4)

a42
2C3C2

to compatibilize the coefficients of the fourth-order solution.
The choice of the parameters 7 (c2, ca, c4, c, bT) leads to the following cases

studied in this paper.
(i) Taking the values c2 ca 31/100, c4 38/45, c 251/272, and b7 1/20

as tuning parameters of the embedded pair leads to the formula RK5(4)4 presented in
Table 1. For this formula, the g2 norm of the principal truncation term in the fifth-order
solution is IIC6b’,’ )11- 3.20 10-4.

(ii) Taking c2 c3 (5-/-)/10, c4 c (5+ v/)/10, b 1/5, and 11/50
as tuning parameters of the embedded pair leads to the formula RK5(4)3 presented in
Table 2. Here, we obtain IIC6( , " )11 9.92 10-4,

TABLE 2

0

10

10

order 5

order 4

3o-6
25

5 12

1__ 0 ,5 1:3 1 I__ 012 12 60 5 12

0 ,5 59 1.._.1 11--3v/’ 3Jf-V
12 12 300 50 240 80

Note that for the formula RK5(4)3, the main drawback is that for quadrature prob-
lems, the local error estimate is zero. In this case, we can use the pair RK5(4)4 to
avoid this deficiency, but in the numerical tests it has not been observed, since in general
J(t) # O.
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On the other hand, we give in Table 3 some characteristic values of the new pairs
proposed by Prince and Dormand [11] where

A()(7) IIC6(, r)ll,
g(6)()--IIG(-,r)ll/
c(6) (-) 116(T,’) C6(T,’)II / II5(T,’)II,

and I1,+111 (or I1,+111, I1+11) is the ez norm of the coefficients in the expansion of
the local error of z,+l (,+1, respectively), i.e.,

(2.9)

D is the largest coefficient of the RK method, S is the interval of absolute stability for
the pth-order formula, and s is the number of stages.

TABLE 3

Method p(q) A(6) B(6) C(6) D S S s

RKF5(4)#2 5(4) 0.00336 3.15 2.10 8.00 -3.6 -3.2 6

RK5(4)3 5(4) 0.00099 1.22 1.29 3.06-3.1 -3.1 6(7)

RK5(4)4 5(4) 0.00032 1.65 1.69 9.38 -3.4 -3.4 6(7)

3. A fourth-order interpolant for the RKS(4) pairs. If the pairs developed in the
last section are used in a quasi-linearization process, the provision of a continuous so-
lution may be important. So, the aim of this section is to develop a fourth-order family
of interpolants for the RK pairs of the above section with no additional function evalu-
ations.

To construct such a continuous solution we follow the interpolatory approach of
Shampine [14]. We have at our disposal

J(tn)Zn q-g(tn), Zn+l, Zn+ J(tn+l)Zn+l -t-g(tn+l),Zn Zn

where zn+’ and z,+’ are O(h6) approximations to the local solution and its derivative at
tn+l, respectively. Since we are interested in a local Hermite interpolation polynomial
offourth degree in the interval [t,, t, / hi, we need an additional datum. We askwhether
there are cr E (0, 1) and i, i 1,..., 7 such that

7

(3.1) z,+,, z, + h E/’g’
i=1

is a fourth-order approximation, i.e.,

(3.2) IIz(t / ah; t, zn) z,+ll O(h5).
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We have found that an approximation satisfying (3.1) and (3.2) exists for all a E (0, 1)
with the coefficients D given as the solution of the linear system

cz ca c 1

c33 ca3 c53 1

c] c c 1

a32 a42 a52 a62 ]

3 a/2 7
4 r2/3 [7
5 3/4 ,
,6 o

in the case c2 c3, where/ is an arbitrary parameter, and

(33 C4 1 1

a32 a42 a62 0

x4
X5
X6

a2/3
a3/4

/,(a a:)

in the case c2 c3, c4 c5, where 5 is an arbitrary parameter and the values of the
vector D are given by

)3 =X3, D4 =X4--5, 6 =X5, D7 =X6,
i--3

with a 5"
We select the value of the free parameter to minimize the quantity

r*(u) r(O) dO with r(O) IIC0()ll
IIC()ll

where u is the free parameter.
Here, I1 ( )II 2,44 10-3 is the 2 norm of the coefficients ( of the elementary

differentials of the local error of the fourth-order solution of the RK5(4)4 pair. For
the RK5(4)3 pair we obtain Ildb’)ll 2.85 x 10-3, and IIC0( ’)ll is the corresponding
value of the continuous solution (3.1). These quantities have been computed with the
help of the program developed in [8], which provides a FORTRAN code to evaluate the
expressions (2.9) for a given RK formula for any order.

By a numerical search it was found that r* (0) is minimized for

27/1000 for the RK5(4)4 and 5 13/2000 for the RK5(4)3,

and the coefficients Di for each pair in a 1/2 are shown in Table 4.
Finally, to show the quality ofour interpolants we have plotted in Fig. 1 the functions

r(O) for the optimal interpolants. From Fig. 1, it is clear that the interpolant shows a very
satisfactory behavior at intermediate points.
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TABLE 4

RK5(4)4

80930065829/383908315200
0

3647975007125/4638810400146

-281400845553/2124186104768

63405740574112/284886846312075

-2508796489/21949452000

27/ooo

RK5(4)3

17/96
0

(40 + 15v/g)/96

(4922- 1875V)/12000
13/2000
(--189x/+533)/9600
(63x/-- 211)/3200

RK5(4)4
RK5(4)3

0.2 0.4 0.6 0.8 1.0

FIG.

4. Numerical experiments. The new RK5(4) pairs obtained in the above section
have been tested on several IVPs, but we give only results obtained with the linear prob-
lem A3 from DETEST [3], which is

y’(t)=cos(t)y(t),

y(O) 1

t e (o, 2o),

in unscaled form, for absolute tolerances in the range 10-9,..., 10-8 and local extrapola-
tion. Then, in Fig. 2(a) we plot, for each tolerance, the maximum global error Ig, g(t,)l
over the whole interval against NFCN, the number of function evaluations required. In
Fig. 2(b) we plot the maximum global error against NJAC, the number of Jacobian eval-
uations.

Any code for solving linear BVPs, such as MUSL or SUPORT, is susceptible to a
change of integrator, but as we have the SUPORT code of Scott and Watts [13], it was
modified so that Fehlberg’s pair and our new pairs might be used. With each pair, the
numerical exampleswere integrated with a mixed absolute-relative control for tolerances
10-2,..., 10-8. Briefly, we give results of two of the problems that appear in [13].
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log0(err) -4

5-

-9
0

o RKF5(4)#2
o RK5(4)3, RK5(4)4

b500 1000 15 0

NFCN

(a)

loglo(err) -4

5-

6-

7-
8-

-9

RKF5(4)#2
RK5(4)3
RK5(4)4

0 500 1000 1500

NJAC

(b)

FIG. 2

Example 1. The first problem we wish to consider is

y"(t) + 3(cotan(x) + 2tan(x)) y’(t) + 0.7 y(t) O,

subject to the boundary conditions

y(30) 0, y(60) 5.

It is worth noting that the independent variable t is taken in degrees, as in [13]. In this
case, the problem is hard to solve due to a sharp spike in the solution. On the other
hand, the two eigenvalues of the differential equation are negative. So, integrating the
equations from 30 to 60, the problem is easily solved. However, when the integra-
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tion proceeds from 60 to 30 we have a difficult problem, due to the instability of the
associated IVP. We give results only for the more difficult case.

In Fig. 3(a) we plot the maximum relative error in the solution at 15 points across
the interval against NFCN, and in Fig. 3(b) we plot the maximum relative error against
NJAC, the number ofJacobian evaluations. In all computations the number oforthonor-
malizations performed by the SUPORT code was 7.

logl0(err)

-3-

-10
0

o RKF5(4)#2
o RK5(4)3
<a RK5(4)4

3000 6000 9000 12000

NFCN

(a)

log0(err)

o RKF5(4)#2
o RK5(4)3
< RK5(4)4

9000 12000

NJAC

(b)

FIG. 3

Example 2. Consider the boundary value problem [13]
3ey" + ( + t2

y O,

y(-0.1) -0.1(e + 0.01) -1/2,
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which has the exact solution

t(, +
This problem was chosen by Scott and Watts [13] because it requires no orthonor-

malizations and it has a boundary layer of thickness v/ centered about t 0. So, it
is necessary for the code to have an efficient procedure for varying the stepsize of the
integration.

The results of using the three integrators for e 10- are presented in Figs. 4(a)
(global error against NFCN) and 4(b) (global error against NJAC). The maximum abso-
lute error in the solution was sampled at 21 uniformly spaced points about the origin.

loglo(err)
-4

-5

--6-

--8-

-9
0

RKF5(4)#2
o RK5(4)3, RK5(4)4

600 900 1200 15b0
NFCN

(a). e 10-6.

logl0(err)
-4

-5

6

s
-9

0

RKF5(4)#2
o RK5(4)3

4)4

2’19300 1 0600 90
NJAC

1500

(b). e 10-6.

FIG. 4

The computations were carried out in double precision (16 significant digits) on a
VAX STATION 3100 at the University of Zaragoza.
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5. Conclusions. We feel that the solution of the initial value problem is a very im-
portant part of a shooting method code. So, with the new pairs developed in this paper,
we get better numerical results with less computational cost. In the case of the RK5(4)3
pair, it uses 50% fewer Jacobian evaluations than the RKF5(4)#2 pair, while the size of
the truncation error is about 3 times smaller; and the RK5(4)4 uses about 67% of the
Jacobian evalutations used by RKF4(5)# 2, while the size of the truncation error is 10
times smaller.

In addition, the numerical experiments carried out in the preceding section show the
importance of the study and construction of new special RK pairs for structured ODEs.

Finally, if intermediate values are required the two new pairs provide a fourth-
order interpolant with no extra cost. In contrast, the RKF5(4)#2 requires one additional
evaluation per step in order to obtain a fourth-order interpolant [7].

Acknowledgments. The author wishes to thank the referees and Prof. R. D. Skeel
for their suggestions, which greatly improved the original paper.
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ESTIMATING WAVEFORM RELAXATION CONVERGENCE*
B. LEIMKUHLERt

Abstract. Critical limitations of the waveform relaxation method concern the unsolved problems of es-
timating convergence and controlling the iteration. In this paper, waveform relaxation is applied to a linear,
second-order model system and is studied in the Laplace domain. By placing the iteration in a weighted space,
computable estimates for a window of rapid convergence are developed. Numerical experiments illustrate the
utility of the approach.

Key words, waveform relaxation method, splittings, circuit simulation, parallel computing
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1. Introduction. The waveform relaxation (WR) method can be applied to exploit
parallel computers in the solution of large systems of ordinary differential equations
(ODEs). The method was originally proposed for very large scale integration (VLSI)
circuit simulation [8], but has since been adapted to problems in multibody dynamics [5]
and to solving systems of spatially discretized partial differential equations [14].

WR relies on a splitting or decoupling of a given system of differential equations
into a set of weakly coupled subsystems. At each sweep, the equations modelling each
subsystem are solved independently in a fixed interval or window, treating the solutions
or waveforms from other subsystems as input functions determined at the previous sweep
or at an earlier stage of the current sweep. Although this paper is largely self-contained,
the reader may find the book by Sangiovanni-Vincentelli and White [19] or papers by
Miekkala and Nevanlinna [9], [10], useful background material.

The interest is in waveform relaxation as a parallel (or distributed processing)
method for accelerating the time-domain simulation of a large ODE system. Although
WR has not yet fulfilled its promise in terms of parallel speedups in general implemen-
tations, the method is highly competitive in many cases. The primary limiting factor in
the development of waveform relaxation as a general method for VLSI circuit simula-
tion has been the need for an efficient automatic partitioning algorithm that identifies a
rapidly convergent splitting [16]. We do not present such an algorithm here, but we do
examine conditions for the rapid and stable convergence of WR, which could be used as
acceptance criteria in a partitioning algorithm.

We restrict ourselves primarily to splittings (decouplings) of the block Jacobi form
which might be used in a parallel implementation. We avoid the issue of discretization
here, relying on the work in [11] to insure that for sufficiently small stepsizes, the discrete
version of the iteration will mimic the behavior of the continuous one.

In 2, a model linear second-order system is examined and several concepts (e.g.,
stable convergence) are discussed. Stable convergence of waveform relaxation is related
to spectral properties of the iteration matrix in the Laplace transform of the waveform
relaxation iteration. The matrices which define a linear system are decomposed using the
stamp representation of electronic circuit simulation. Using the stamp representation, it is
easy to obtain relations between the quadratic forms on the various matrices. A concept
of the speed of the splitting is defined in terms of a proportionality constant between
quadratic forms of the matrices defining the splitting.
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The problem of determining the spectral radius of the Laplace domain iteration
matrix R(z) is then considered in 3. Sufficient conditions for p(R(z)) < w are derived.
These estimates generalize earlier estimates of [10] for convergence rate on an infinite
interval.

Section 4 contains two numerical experiments. In particular, a curious relationship
between block size and convergence rate for the equations describing a linear resistor-
capacitor (RC) network (or, alternatively, the spatially discretized one-dimensional dif-
fusion equation) is explained in terms of our theory, and a spring-mass particle system
is used to illustrate the correctness of an estimate obtained for undamped problems.

2. Linear systems. In this section we describe the WR iteration, and outline the
methods used for its analysis for a model class of linear ODE systems that includes mul-
tiparticle mechanical systems [3] and linear VLSI resistor-inductor-capacitor (RLC) cir-
cuits [8]. These results could also be extended to nonlinear problems via linearization
or to include constraints (e.g., as indicated in [6] or [5]).

We consider here the following second-order problem:

(1) Mi5 -Kp D[9 + f(t), p(0) P0, /(0) q0.

For multiparticle systems, K and D are, respectively, spring and damper matrices which
have N N symmetric, positive semidefinite structure. For such a network, M, also
N N, would typically be positive and diagonal, butwe assume only positive definiteness
for the moment. Note that the springs in (1) have zero rest states. In general, nonzero
rest states lead to nonlinearities. It is also straightforward to interpret (1) in terms of
RLC circuits, where the condition that M be positive definite can be interpreted to mean
that there is a capacitor to ground from every node.

Given a splitting (K K+ K-, D D+ D-) of the system (1), we define the
WR iteration process by the equation

(2)
MiS(k+l) _K+p(:+) D+f(k+) + K-p(k) + D-j9(k) + f(t),

P(k+)(0) P0, /5(k+)(0) q0.

Note that this framework does not allow the matrix M to be split.
Following the approach of [10] and [6], we analyze the iteration in the Laplace do-

main:

z2M(k+l) -K+/(k+l) zD+(k+l) q- K-(k) q- zD-(k) + 4),

where 4) consists of terms involving ] and the initial values, so that

(k-ki) R(Z)(k) .qt_

with

(3) R(z) (zgM + zD+ + K+)-(zD + K-).

We will be concerned with spectral properties of R(z).
2.1. Growth and the window of stable convergence. Although the iteration on fi-

nite intervals is always (eventually) superlinearly convergent, during the early sweeps
of the iteration on long intervals, convergence may be quite slow or there may even be
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substantial growth; theoretically, all growth eventually settles down, but numerically
speaking, the increase in the initial sweeps of the iteration can lead to serious insta-
bility. One problem is to estimate the length of a window ofstable convergence wherein
the growth during the early stages of the iteration is moderate in some sense. More
generally, the problem is to estimate the length of a window wherein convergence is
approximately geometric with a given rate of decay.

Although proper window length is a highly problem-dependent quantity, and it is
apparent that any general-purpose program must incorporate an adaptive estimator for
the proper window length, good theoretical estimates are needed to guide the develop-
ment of such algorithmic devices.

Another motivation for pursuing this sort of spectral analysis of the WR iteration is
for the purpose of making qualitative comparisons between splittings.

Separating nonphysical behavior in the computation of sweeps due to inaccuracies
in the WR iteration from the true dynamics of the physical problem requires some esti-
mation of the growth or decay mechanism of the iteration; here we use the exponentially
weighted norm (following [13]) to try to find an interval where the convergence is rapid.

The starting point for our discussion is the formula of Proposition 2.1 (first shown
in [10] in a slightly different setting) which affords us a means of computing the spec-
tral radius of the iteration operator in a weighted space. Let 7"Z represent the iteration
operator for (2).

PROPOSITION 2.1 (Miekkala-Nevanlinna). Let p(.) be the spectral radius in L,,
the -weightedL space, > O, whose norm satisfies

sup
te[0,)

with I. [the Euclidean norm. Then

(4) p(R)= sup p(n(z)).

It can also be demonstrated that, in case the poles of R(z) are located to the left of
the vertical line Re(z) , then the supremum in (4) is always achieved on that line.

We would like to choose a T for which IR’fiT, the sup norm of the nth iterate on
[0, T], has moderate growth. It is convenient to treat f as a function whose domain is
[0, ) and whose support is in [0, T]. Then for > 0,

by the assumption placed on f.
It is difficult to obtain simple, computable estimates for the norms of powers of

but, as we shall see in the next section, an estimate of the spectral radius is obtainable.
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The sequence of norms of powers of R. does not necessarily obey a uniform geometric
decay. Although it is possible to obtain a bound on which insures that 117Zll , < (see
[17] and [7] for the techniques used in special cases), we expect spectral estimates to be
somewhat finer, mimicing the situation for linear splittings of linear algebraic equations
[201.

One can say that as Re{z} o, the matrix R(z) looks like an O(1/z) perturbation
to a normal matrix, which suggests that the spectral radius will, asymptotically as T ---, 0,
model the convergence rate of the iteration (even in the early sweeps).

DEFINITION 2.1. The abscissa ofw-convergence is defined as

, inf{ p(R) < w}.

ThenLet and T T --S"

where the symbol : means "approximately bounded by." Up to the quality of this ap-
proximate bound, T is an estimate for a window of convergence with rate w.

If the concept of w-convergence were formulated in the time domain, it would cor-
respond to the notion of the "uniform convergence" defined by Sangiovanni-Vincentelli
and White [19]. The translation of the results developed in the Laplace domain for the
abscissa of w-convergence to the time domain by simple inversion of the Laplace vari-
able is a simplification, but as our numerical experiments show, enough of the important
phenomena are captured by it for the technique to be of some usefulness for comparison
of splittings and relative assessment of choices of window size.

2.2. Structure of linear systems: The stamp representation. We would like to re-
strict the class of splittings to a subset with practical benefit for parallel processing,
namely, block Jacobi splittings. We first discuss the structure of the matrices involved
in the description of (1) using stamps, and then describe the splitting matrices with the
same tool.

We refer the reader to Collar and Simpson [3] for a discussion of formulating me-
chanical systems, and to Singal and Vlach [18] for a discussion of the stamp representa-
tion in the context of electronic circuits. The stamp representation is a powerful tool for
decomposing the structure of a system of differential equations defined on a network.

We assume, first of all, that the networkwe are studying is connected. Furthermore,
we assume that actions take place in some relative coordinate ame: one node of the
network is distinguished and fixed. (The choice of this node is arbitrary, and there may
be more than one fixed node.) Let N be the number of nonfixed nodes.

The flow of information in many network problems is determined by three types of
elements: those (K) which relate solution values z, those (D) which relate the deriva-
tives of the solution 5, and those (M) which relate second derivatives . The equations
describing the flow of information are obtained by summing the three types of contri-
butions and setting the sum equal to any driving term f. The structures of the N N
matrices K and D and ofM are precisely analogous, so we analyze only the first.

Let nK elements of type K have positive coefficients kl,k2,... ,kn:. Suppose
element connects node l with node r. The matrix K may be written as a sum of simple
rank-1 stamp matrices K, where, if neither terminal of element number i is fixed, the
(li, li) and (ri, ri) elements of Ki are ki, the (li, ri) and (ri, li) elements are -ki, and the
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matrix is otherwise zero. (If either of the terminals of the element is a fixed node, this
formula must be slightly modified: the associated stamp has just one nonzero element
in the diagonal position corresponding to the index of the nonfixed terminal; its value
is k.)

The block Jacobi splittin relaxes the interconnections between subsystems, so that
D+ and K+ in (2) have a block diaonal structure (or may be permuted to a block di-

aonal matrix). We will assume that with a certain partitioning of the nodes of the net-
work, the type M elements connect only nodes of a given block. We assume that all the
interface elements (elements linking nodes of separated subsystems) connect a pair of
nonfixed nodes.

We can very easily define the described splitting technique using stamps. If element
is a splitting element, let/i represent the diagonal part of Ki. Let Spl(K) denote the

corresponding set of indices of the splitting elements. With in (1,..., ng},

i.Spl(K) iESpl(K)

(k,-K,).
Est(K)

A similar decomposition may be used for D.
For future reference, we denote by G the graph that underlies the network, and by

6K (6D) the subgraph with nodes corresponding to all nodes of the network and edges
corresponding to elements of type K (D). We always assume that the type-D and -K
elements together describe a connected graph.

2.3. Bounds on quadratic forms.
eigenvalue pair (u, A) of R(z) is

The equation satisfied by an eigenvector/

(zD- + K-)u A(z2M + zD+ + K+)u.

Multiplying by u* and solving for A, we have

(5)
zS_+_

z2# + zS+ + +

where + u*D+/-u/(u*u), + u*K+u/(u*u), and # u*Mu/(u*u). All these
quantities are real, since they are quadratic forms on real, symmetric matrices. Note,
too, that they are z-dependent, as the eigenvector u is dependent on z.

In the following propositions we give some facts about a+ and
PROPOSITION 2.2. a+ >_ la_l and + >_
Proof. The proofs ofthe two inequalities are precisely parallel; we consider the type-

K case here.
Assume first for simplicity that none of the elements are connected to fixed nodes;

we will see that this is of no consequence. Using the stamp representation of 2.2, we
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have

’/t*U
eSpt(g)

k(lut, 12 + lug, 12)]
where r/> 0 and ai > 0. Similarly, we have

1
u*u

iSr,(g)

1 Z 2kRe{fi,,u, }
* ieSpl(g)

Now,

1

iESpl(K)

By the Cauchy-Schwarz inequality, we may easily observe that r/> 0 and that I(il < a,
and this establishes the desired result.

Now if some of the (nonsplitting) elements were connections to fixed nodes, in the
above would be formulated slightly differently, but ? would remain nonnegative, so the
argument would go through unaltered.

PROPOSITION 2.3. a+ and + are never simultaneously zero.

Proof. Assume the contrary, that a+ 6+ 0. By Proposition 2.2,
_

6_ 0
and it follows that also

u*Ku u*Du
to+ to_ O, 6+ 6_ O,

U*U U*U

so that u is a singular vector of K + D.
The matrix K + D is weakly diagonally dominant since it is the sum of stamp matri-

ces. The associated graph of the matrix K + D is precisely G, the graph underlying the
network; by assumption, this graph is connected. Furthermore, there is some fixed node.
Let the ith node of the network be connected directly to this fixed node. From the stamp
representation, it is evident that in the ith row of K + D, the diagonal element is strictly
greater than the sums of the absolute values of the off-diagonal elements. Evidently the
matrix K + D is irreducibly diagonally dominant, and this contradicts the existence of a
singular vector. ]

Using these facts about the Rayleigh quotients, it is possible to locate the poles of
R(z).
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PROPOSITION 2.4. The poles of R(z) all lie in the closed half-plane C_ {z
Re{z} < 0}.

Proof. If z is a pole of R(z), then there is a C’ such that (Mz +D+z+K+) O.
Taking Rayleigh quotients, letting z z + iy with z, y E R, and examining the real and
imaginary parts, we obtain

/(x y) + x6+ + n+ O, 2xy + y6+ O.

Using the nonnegativity ofthe coefficients, we see that if y 0, then the second equation
implies that z < 0, while if y 0, then the first equation implies that z < 0.

Note that in case there are only type-K elements present (D D+ D-
0), poles occur at each of the points iy, where y is the square root of an eigenvalue
of M-1K+. Observe that for (A, u) an eigenpair of M-IK+, M-K+u Au, so
M-/ZK+u M/Zu, where M-/z is real and symmetric positive definite (s.p.d.).
Thus M-I/ZK+M-/Zw Aw where w M1/Zu, implying that E R+. The poles of
R(z) are continuous functions of the coefficients; as type-D elements are added to the
system, it can be seen that the poles move continuously into the left half-plane.

2.4. Speed of a splitting. It is clear that will depend critically on the extent to
which the system was naturally decoupled at the splitting; in other words, on the relative
influence of the coupling elements. Our estimates for are determined based on the
following concept of the speed ofthe splitting.

DEFINITION 2.2. The speed ofthe splitting ofthe matrix K is the quantity

{ 1
WK inf w > O" inf u*K+u- -lu*K-ul > 0

uC,

The speed ofthe splitting ofthe matrix D is defined analogously.
When wE O, for example, then the subsystems arc coupled only through type-

D elements. From earlier propositions, it is apparent that a;K and WD both lie in the
intervals [0, 1].

If K+ is nonsingular, then we have simply

WK p((K+)-IK-) p((K+)-I/2K-(K+)-/2).

However, WK (or 03D) may also be easily computed in singular cases if we use the graph
structure to partition the matrices K+ and K-. Suppose K+ and K- are obtained
as the splitting network in such a way that all elements of the splitting are connected
between nodes of an index set I (the "interface" nodes). Let J be another set of indices
constructed as follows: for each index i I, J contains i and the indices of all of the
nodes that lie in the component of GK to which node i belongs. We may assume without
loss of generality that the indices in the set J are sequential beginning with 1. Then K+
and K- can be partitioned as follows:

K+= [ KJ+o
and

K-= [ KyO

O]

O]
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where Kff corresponds to the indices in J. The matrixK is weakly diagonally domi-
nant; furthermore, in any connected component of the associated graph there is at least
one node (a node of the interface) for which the corresponding diagonal element of

K+ is strictly greater than the sum of moduli of off-diagonal elements. This is sufficient
to conclude that K+ is positive definite (in particular, it is nonsingular). The speed of
convergence is the least w such that the matrix

is positive semidefinite. K+ is always positive semidefinite. Evidently we must have
Ka+ 1Kj- positive semidefinite. The infimum over all such w occurs when w wg

p((g+)-g).
3. Estimates for o,. Let

z6_ + e;_
r(z) zz + zh+ + +

where z x + iy, with x, y E R. In this section we treat the case M I, so that
# 1. If M I, we make the substitution p M-I/2p in (1), and premultiply by the
equation by the same factor. This results in a simple row and column scaling of K and
D. In this case, the estimate for given in Theorem 3.1, below, instead of depending on
properties of K+ and D+, would depend on analogous properties of M-/2K+M-/2
and M-1/2D+/-M-/2.

3.1. Upper bounds for ,. For fixed w, we derive computable conditions on x >_
0 that insure that supzeR ]r(x + iy)[ <_ w. Note that in light of Proposition 2.4, this
condition insures that SUPRe{z}>m p(R(z)) < w and hence that x >_ .

Define s(x, y) ]r(x + iy)] P(’) whereq(,)’

and

p(, u) (6_ + _) + (6_)

q(, u) ( u: + z6+ + .+): + ( + 6+):u.
If all ofthe coefficients were fixed, we could maximize s(x, y) for y by solving the equation

0
b-(x, ) =0.
y

On the other hand, the coefficients are definitely not fixed with respect to x and y. Since
we do not know the eigenvectors of R(z), the best we can do is to seek a value of x which
causes s(x, y) < w2 when y E R and the coefficients of p and q are determined by any
u C’. The challenge, however, is that this estimate must be computable.

s(x, y) <_ w2 when

q(x, ) p(,) >_ o.

This leads to the relation

( +) + 6_( +) + 26+( +) + 2+( ) + 26++ +
(6) 1 62 ( +)+ 2_._z + ._] > 0.
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By appropriate regrouping of the terms in this expression, it is possible to develop suffi-
cient conditions for s(z, V) < . Assuming the following condition allows us to distin-
guish a case where the bound so derived appears to be particularly computable.

CONDITION 3.1. When the quadraticforms are consistently defined (i.e., determined by
the same vector u C’),

Note that always

1
8+n+ --3_n_ _> O,

DO.)K

so that if w > v/Do.K, then Condition 3.1 holds, but this is a somewhat stronger as-
sumption.

THEOREM 3.1. Suppose that Condition 3.1 holds, then

o <_ max{Ohp(D-), OK V/P(K+), 0},

where

1 1
02 )D

and

[/w -1)]2

Proof. Regrouping the terms in (6), we obtain the relation

(7)
(x2 + y2) ((X + 5+)2 -62--) + 2X (6++ -’ )

+ (x2 + y2)y2 + 2+(x2 y2) + . !2

If z > Oop(D-), then the first term is nonnegative. The second term is nonnegative
when Condition 3.1 holds.

The third term is nonnegative when

x) y4 + (x2 2n+)y2 + 2;+z2 +
/

|1 w:h n_7(y2; > O.
\

Suppose first that w/w2 < 9 and that
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then

then

On the other hand, if w/wz > 1, and if

1 wC 1) +>

<_ max {(1/w- 1/wD)p(D-), 0}.
IfD- O, then

1 V/p(K_).

Proof. In the first case K- 0, Condition 3.1 automatically holds and the third
term on the left-hand side of (7) can be reorganized as

Both of these terms are clearly nonnegative, regardless of z and y; all that is left is the
first term in (7), which is nonnegative under the stated condition.

On the other hand, if D- 0, a sufficient condition for (7) to be satisfied can be
written as

Note that the final result only depends on the speeds ofthe splittings ofK and D and
on the spectral radii of K+ and D-. The result when K 0 is of some special interest
since it corresponds to the case of RC circuits or semidiscretized diffusion equations.
More generally, we have the following useful special cases which follow directly from
eliminating unnecessary steps in the proof of Theorem 3.1 for the cases D- 0 or
K-=0.

THEOREM 3.2. IfK- O, then

This last expression is nonnegative regardless of y if w/w < 5.
It is easy to see that

2 (3-/32 wc> 1 (wc- 1) if w [5,9]

so the second choice is the better bound on whenever it is valid.
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Reorder the terms in powers of y2 to get

ya + 2(x2 tc+)y2 + (x2 + +)2 22_ _> 0.

Clearly, this is satisfied if

(X2 _[_ /+)2 1
t2 >(x2-+)2

Expanding the powers and cancelling, this reduces to

lt2 >0.4+x

Noting that + > I-I it is enough to demand

lt2 >0,

which holds under the condition of the theorem.

3.2. Estimates asymptotically correct as w 0. Although Theorems 3.1 and 3.2
provide insight into the WR process, our experience in computations suggests that a
different line of reasoning can sometimes yield rather better estimates, particularly as
w --, 0. To begin, let us examine the graph of R(z) more closely. As a simple example, we
consider the splitting of the spring network of Fig. 1 into "left" and "right" subsystems,
each containing two of the mass points. With this splitting, p(R(z + iy)) is plotted in
Fig. 2 against z and y. A second graphic in Fig. 3 shows the view along the z-axis looking
towards the origin, demonstrating that the maximum over lines parallel to the imaginary
axis ultimately occurs at y 0 (for large enough z). This illustration is representative of
the general case, and in fact we can say that if z is sufficiently large, the maximum value
of p(R(x + iy)) over y R occurs on the x-axis.

This means that if w is sufficiently small, we may take y 0, and this simplifies the
calculation of.

5

Fixed

O Moving

FIG. 1. A simple spring-mass network.

In what follows we assume K- 0. If K- 0, then one cannot easily improve on
the estimate of Theorem 3.1.

The key idea is to rewrite the left-hand side of (6) as a polynomial in y2:

(y2) y4 + by2 q_ c,
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FIG. 2. Plot ofp(R(z)).

where

and

1 6zb b(x, u; w) 2x2 + 5 + 2x6+ 2+

1
+ +W2

for u 6 C’, the vector on which the quadratic forms are consistently defined. (y) 0
for some y means that p(R(x + iy)) > w.

The following lemmas summarize the character of b and c.
LEMMA 3.3. Ifw < (,Og there exists xw such that (i) c(x, u; w) > 0for all u, and (ii)

c(x, u; w) 0for some
Proof. For x sufficiently large, the quartic term dominates and it is easy to see

that c(x, u; w) > 0 for all u. On the other hand, c(0, u; w)

_
--_ < 0 for

some choice of u, since w < Wg. min,, c(x, u; w) is defined and is a continuous function
of x, and this guarantees the existence of an intermediate value x with the required
properties.

LEMMA 3.4. Let K- O. IfD- 0, then there existpositive constants do and do t 0
such that do >_ wx > ofor w sufficiently small.

Proof. The proof of this fact is slightly technical, but the idea is simple. First,
write e(x, u; w) c+ (x, u) + (x, u), where e_ (x,o, u) (6_x +

_
)2. If x

stays bounded as w 0, the only possibility is max,, c_ (xo, u) --. 0. Returning to the
stamp representation for D- and K-, we know that these are both nonpositive matri-
ces. Then taking u0 to be a vector of all l’s, we see that max,, c_(x, u) > (xdo + ko)
with nonnegative constants do and k0. Evidently, the only situation that would allow
max,, c_(x, u) 0 is if K- 0, we have disallowed by an assumption. The only
possibility is xo , as w 0.
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0.75

0.5

0.25

0
-5 0 5 5

FIG. 3. View toward 0 along the real axis.

4 to getNow divide c(zo, u; w) by z

c(x,,,, u; w) 1  o xg)
If this is to be (i) non_negative for all u and (ii) zero for some u,_then the only possibility
is that do >_ wx >_ do for some nonnegative constants do and do.

LEMMA 3.5. For w sufficiently small, b(x, u; w) > 0for all z
The proof follows by grouping the terms in the expression for b as, e.g.,

2 2n+ + + (x, + +)b(x.,, u; w) x., -xo.
1 ]

The first term is ultimately positive since x ec. The second term can be seen to be
ultimately positive by use of the proof of the previous lemma.

LEMMA 3.6. Ifw is sufficiently small, then the maximum value ofp(R(x + iy) for all
y is uniquely achieved at y O.

Proof. For w sufficiently small, b(x, u; w) > 0 independent of u. Since c(x,, u; w) >
0, clearly (y) > 0 for all y 0. On the other hand, 4)(0) reduces to the term c(x, u; w),
which we know is zero for some choice of u. In other words, p(R(x)) >_ w, and
p(R(x + iy)) < for y 0. Clearly, then, for w sufficiently small, the maximum
value of p(R(x. + iy)) over y is achieved at y 0.

THEOREM 3.7. Suppose K- O. IfD- O, then, asymptotically as w O,

w _< max{(1/w- 1/wD)p(D-), 0}

(independendent ofK).
IfD- O, then the asymptotic estimate becomes

max { v/(1/w 1/wg)p(K-), 0},
Proof. For w sufficiently small, by Lemma 3.6, we may take y 0 in (6), yielding

(8) ( -52 ) ( 1(5 ) lt2 >0x2 (x + 5+)2 52 + 2x 5++ -5 -- + 2t+x2 + gl-
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as the condition for z >
If D- 0, then one requires only that

which reduces to the stated condition.
If, on the other hand, D- : 0, divide the inequality (8) by z2 to get

(9) (x+6+)21622( 1 ) e;+ 2-+ -x 5+n+ --W5__ + 2+ + x9
_>0.

Now fix e > 0. Define , (1/w 1/wD)p(D-) and let x (1 + e), then the
left-hand side of (9) becomes

(10) ( + 6+)2 1 62----- 2^2+2e2w(w + 6+) + e xw

2( 1 )+- 6+n+- 6_n_

(11) +2t+ + x2

Clearly the first term here is nonnegative. Furthermore, as w --. 0, making use ofLemma
3.4, the second term is positive and O(7), while the third and fourth terms are, respec-
tively, O() and O(1). Evidently, x (1 + e) implies that x >_ ,. Since e was
arbitrary, the best choice for the estimate is, asymptotically speaking, .

This confirms our observations in many computational experiments that the D-type
elements dominate the convergence behavior of the iteration in the late sweeps or on a
short window. On long windows, or in the early sweeps, it is our experience that the K-
type elements are more important since they introduce oscillatory modes that are often
difficult to resolve.

4. Numerical experiments. We first detail some experiments with the simple RC
interconnect (or RC line) of Fig. 4, and then turn to a multiparticle mechanical system.

Fro. 4. RC line.

A problem similar to the RC line was considered in [10] and it has recently been
examined in more detail by Leimkuhler and Ruehli [7] from another point ofview. Here
we compare the observed convergence rate of the iteration for several block sizes and
several window sizes and attempt to relate our observations to the estimates obtained
in the last section. In doing so, we must be careful to understand those estimates in
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TABLE 1
Observed convergence ratefor block G-J iteration.

Block size s ]l Time interval
[0,1l t0,.51 [0,.25]

1 .49/.38 .25/.20 .16/.12
2 .27/.22 .15/.12 .084/.064
4 .28/.21 .16/.12 .087/.065
30 .29/.21 .16/.12 .087/.065
60 .28/.21 .16/.12 .086/.065

the proper context: they are essentially heuristic in that they are based on a simplified
transition from Laplace to time variable and on assumptions that are only strictly valid
asymptotically as Re{z} ---, c or as w 0. Despite the limitations, the examples of this
section show that the estimates do have practical value.

The equations describing the nodal voltages in Fig. 4 are the familiar Az, where
A is the tridiagonal matrix with 1, -2, and 1 on, respectively, the sub-, main, and super-
diagonal. A pseudorandom initial vector was supplied to insure that all parts of the
circuit were approximately equally active over the time interval. We used the backward
Euler method and a sufficiently small fixed stepsize h 0.025 so that the convergence
results were not substantially different for smaller values of h (and hence mimic the be-
havior ofthe time-continuous iteration). In Table 1, we give our observations for the con-
vergence rate of the iteration obtained by splitting the equations of the RC line of length
120 into various size blocks. The entries in the table are of the form ra/r6, where ri rep-
resents the rate of convergence observed over the first i sweeps (computed as (ei/el)i-1,
where e is the difference between the ith and i- 1st iterates in maximum over both time
and components). The pair of entries is just meant to give some indication of how much
variation there is in the first few sweeps (bear in mind that the convergence rate will ul-
timately tend to 0 as i , due to the superlinear convergence). We can also directly
compute the spectral radius of the iteration matrix when z 0, or WD for the purposes
of our estimation technique, and establish that for the given problem, the spectral radius
p((D+) D- varies between about .983 and .997 in this case.

We were surprised to see that the rate of convergence fell so dramatically when the
block size s changed from 1 to 2, while the change was nearly insignificant going from,
e.g., s 2 to s 4, although this behavior has been observed in other computations [15].
We are prepared to give a partial explanation based on our estimates for convergence.

First note that there is substantial agreement between the values of spectral radius
of (D+)- D- for all cases. Thus no explanation is found in the existing spectral frame-
work (in Lz([0, ))). On the other hand, computing p(D-) for each splitting, we find
that p(D-) 2 for s 1 and p(D-) 1, s > 1! This agrees qualitatively with the
observations, since taking C/T (1/ 1/a;c)p(K-), we have

Tp(D-)wD
Tp(D-) + C’

which is essentially proportional to Tp(D-) in case (as here) OD i regardless of split-
ting and Tp(D_) is small.

We can get some indication of how good of a quantitative window estimate
is by substituting an observed convergence rate r into P C/ and comparing with
the time interval on which r was observed. These calculations have been performed in
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TABLE 2
C/rfor observed convergence rate r, C 2.7.

Block size s I! Time interval

II [0,!] 1.[0,,.5] [0:..25!
1 1131 .4 .26
2 1.00 .51 .25
4 1.05 .51 .26
30 1.10 .51 .26
60 1.05 .51 .26

Table 2; the number r3 corresponding to the third sweep convergence rate estimate was
used in each case; the number in the table should be compared to the endpoint of the
time interval given at the top of the column in which it appears. We found that taking
C 2.7 gives reasonable agreement with the computations in all but the s 1, 7’ 1
case. The results are certainly in keeping with our expectations, bearing in mind the
points mentioned in the first paragraph of this section.

4.1. Multiparticle system. We conducted a large number of experiments with
spring/mass networks. These problems were solved using an experimental multiparti-
cle system solver developed by the author to serve as a software laboratory during the
formulation of the mathematical theory. Here we summarize the results for Fig. 5 which
were representative of our findings.

k

Fixed
k k x

FIG. 5. Spring-mass network.

The network of Fig. 5 was split into three subsystems, each containing a single node.
The splitting spring coefficient was varied from k 1 to k 4 and the integration was
conducted on windows ranging from [0, .3] to [0, .9]. The observed convergence rates
(r3) are summarized in Table 3.

We then inserted the estimates into the formula ofTheorem 3.7 and scaled using the
constant multiple C 3.9. The results are given in Table 4. Again, there is reasonable
agreement, given the substantial complexity of the phenomenon.
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TABLE 3
Observed convergence rates.for varying k.

[o,.3]1[o,.4]1[o,.5][[o,.6]1[o,.7]1[o,.81[[o,.9]
1 .01 .03 .04 .05 .07 .08 .10
2 .02 .04 .06 .08 .10 .13 .16
3 .03 .06 .08 .11 .15 .19 .24
4 .04 .06 .10 .14 .19 .25 .32

TABLE 4
Computed estimatesfor convergence window.

[o,.3]1[o,.4]1[o,.5]1[o,.6]1[o,.7]1[o,.8]1[o,.9]
.28 .49 .57 .64 .77 .83 .95

2 .28 .40 .50 .58 .66 .77 .87
3 .28 .40 .47 .57 .68 .79 .92
4 .28 .35 .46 .56 .68 .81 .98

5. Conclusion. The techniques used here can also be applied to handle constrained
systems through a projection technique [5].

Although a priori estimates cannot tell the whole story, particularly as we turn to
nonlinear systems and attempt to apply the spectral procedure to a linearization of the
equations, the a priori estimates do give substantial useful information for little compu-
tational expense, and should guide the development of adaptive algorithmic estimates.

Acknowledgment. The author thanks Olavi Nevanlinna, Ulla Miekkala, Ralph By-
ers, and the referees for many thoughtful comments on the work.
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Abstract. Several new variants of the hierarchical basis (HB) preconditioner and Bramble, Pasciak, and
Xu’s multilevel preconditioner (BPX) are presented and studied, and new parallel algorithms are introduced
for both methodologies. It is shown that the performance of both preconditioners is improved by not solving
the linear system associated with the initial (coarsest) grid, which need not be a trivial grid. For a class ofprob-
lems consisting of anisotropic and "piecewise anisotropic" problems, a grid-generation strategy that relates the
multilevel preconditioners to the underlying operator is developed, and it is demonstrated that this strategy is
effective in terms of both iteration counts and elapsed time. In addition, a new parallel algorithm is presented
for the BPX preconditioner that is as efficient as parallel algorithms for the HB preconditioner, requiring O(j)
parallel steps for problems with j levels; and a parallel algorithm is presented for the HB preconditioner that
requires O( [log2 j] parallel steps. Numerical results on a Connection Machine are reported.

Key words, hierarchical basis, multilevel preconditioners, anisotropic problems, parallel algorithms, Con-
nection Machine

AMS subject classifications. 65F10, 65F50, 65N20, 65W05

1. Introduction. Consider the model elliptic partial differential equation

(1)

d 0 OU
S

u Ioa= 0,

on fZ C Rd,

where {ai(x)} satisfy 0 < m <_ ai(x) <_ M for positive constants m and M, independent
of x E f and i. Discretization of (1) by finite difference methods or finite element
methods leads to a linear system of equations

(2) Ax_ __b,

where A is the stiffness matrix, which is symmetric and positive definite. We are in-
terested in solving the system (2) using the preconditioned conjugate gradient method
(PCG), for which it is known that an upperbound on the number of iterations for conver-
gence is proportional to the square root of the condition number of the preconditioned
matrix; see, e.g., [6]. We study in this paper two multilevel preconditioners, the hier-
archical basis (HB) preconditioner [10], [17] and the Bramble-Pasciak-Xu (BPX) mul-
tilevel preconditioner [3], [13]. HB is known to be nearly optimal for two-dimensional
boundary value problems, producing condition numbers that grow like O((log h-l)2)
[17]. BPX is proved in [3] to be nearly optimal, with condition numbers growing like
O((log h-l)2) for both two-dimensional and higher problems. (Recently Oswald [11]
proved that the condition number of the BPX-preconditioned system can actually be
bounded independently of the level numbers.)
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Both ofthese preconditioners are defined in terms ofan initial grid, and both require
the solution (at each step of PCG) of a linear system with coefficient matrix A0, where
A0 is the stiffness matrix associated with the initial grid. Unless the initial grid is coarse,
the cost of the direct solution may be expensive, especially in three dimensions. To avoid
the expense of the direct solution, one may replace A0 by an appropriate preconditioner,
as suggested in [3], [13], and [15]. In this paper, we consider variants of HB and BPX
preconditioners in which A0 is simply replaced by the identity matrix. We refer to these
variants as incomplete multilevel preconditioners, and we refer to the multilevel pre-
conditioners that apply A-1 as complete multilevel preconditioners. We demonstrate
empirically that the incomplete versions actually converge at about the same rate as or
faster than the complete versions, as long as the initial grid is not very fine. Moreover,
the incomplete versions appear to be superior in terms of total cost for a fairly large
range of nontrivial initial triangulations.

The HB method is defined only in terms of meshes, and not in terms of the differ-
ential operators. Because of this, the performance of the preconditioner may vary dra-
matically depending on the underlying operator. (This phenomenon can be observed
from numerical experiments in this paper.) One method developed to make the HB
preconditioner more closely related to the differential operator is to combine diagonal
scaling with the hierarchical basis method [7]. Diagonal scaling is economical but it is
ineffective for highly anisotropic problems. Another approach is the hierarchical ba-
sis multigrid method (HBMG), developed by Bank, Dupont, and Yserentant [2], which
combines the multigrid idea with the hierarchical basis. HBMG is sophisticated but
appears to be expensive. Aimed at a class of problems comprised by anisotropic and
"piecewise anisotropic" problems, we develop another technique to relate the multilevel
preconditioners to the underlying operator. Our idea is to choose the initial grid accord-
ing to properties of the underlying operator coefficients, i.e., the initial grid is chosen in
such way that data movement associated with the multilevel preconditioners mimics the
physical process modeled by the differential equation. This technique does not need any
extra work and it is very effective in terms of both iteration counts and elapsed time, and
it works well for both the HB and BPX methods.

Implementations of the two multilevel preconditioners on parallel computers have
been studied in various references. The hierarchical basis preconditioner has been con-
sidered on a shared memory Flexible-32 [1], [9], a Cray X-MP/24 [10], an NYU Ultra-
computer Prototype [7], and a Connection Machine [4], [12]. An implementation of the
BPX preconditioner has been considered on an iPSC/2 in [16]. The implementations of
the HB preconditioner use a parallel version of the algorithm given in [17]. Essentially,
this algorithm parallelizes all operations on each level, and different levels are treated
serially. Thus, the cost of this parallel algorithm is O(j), where j is the number of levels.
Based on this parallel algorithm for the HB preconditioner, we will present a parallel
algorithm for the BPX preconditioner that also costs O(j). In two dimensions, this par-
allel algorithm makes the cost of BPX preconditioner exactly the same as that of the
HB preconditioning equation. In addition, we will present in this paper a new parallel
algorithm for the HB preconditioner that is more efficient than the standard version.

The paper is organized as follows. Section 2 introduces the HB and BPX precon-
ditioners and briefly discusses their relationship from a matrix point of view. Section 3
shows the performance of the incomplete versions of the two multilevel preconditioners.
Section 4 describes the effect of diagonal scaling and introduces a new efficient technique
that uses the initial triangulation to relate the multilevel preconditioners more closely to
the underlying partial differential operator. Section 5 examines parallel algorithms for
the multilevel preconditioners.
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All the numerical experiments described in this paper were done on a Connection
Machine-2 (CM2). Computations were done in bit serial double precision with a zero
initial guess, and the stopping criterion for convergence was

where r(t:) is the residual at the kth iteration and 11 112 is the vector Euclidean norm.
Unless otherwise specified, the CM times reported in this paper came from a CM2 with
8,192 physical processors, and the HB preconditioner was implemented using Algorithm
I of 5.

The following test problems on a unit square (for two-dimensional problems) or on
a unit cube (for three-dimensional problems) will be used for our numerical experiments
throughout the paper:

Problem 2-1. d 2, al a2 1, u Xl (Xl 1)x2(x2 1).
Problem 2-2. d 2, al 100, a2 1, u Xl(Xl 1)x2(x2- 1).
Problem 2-3. d 2, f 1,

t’
j 100 if0<xl<0.5,

al
1 if 0.5<x1<1;

t’
j 1 if 0 _< Xl < 0.5,

a2
100 if 0.5 <_ x _< 1.

Problem 2-4. d 2, f 1,

1 if0.25

_
Xl,X2 < 0.75, | 100 if0.25

_
Xl,X2 < 0.75,

al 62
100 otherwise; 1 otherwise.

Problem 3-1. d 3, al a2 a3 1,u Xl (Xl 1)x2(x2 1)x3(x3 1).
Problem 3-2. d 3, al a2 a3 0.01 + x + x2 + x, u Xl(Xl 1)x2(x2

1)xa(xa- 1).
Problem 3-3. d 3, f 1,

100 for x < 0.5, 1 for x < 0.5,

al 50.5 for Xl 0.5, a2 aa 50.5 for x 0.5,

1 for Xl > 0.5; 100 for Xl > 0.5.

Problems 2-2, 2-3, 2-4, and 3-3 are used to examine the effects of anisotropy and discon-
tinuous coefficients. Problem 3-2 is used to examine the effects of variable coefficients.

2. Two multilevel preconditioners. In this section, we introduce the HB and BPX
preconditioners and briefly discuss their relationship from a matrix point of view. Let
To,..., T denote a nested family of triangulations of f, as defined in [17]. For simplicity,
assume that the finite element method with linear elements is used. Let Mt: denote
the finite dimensional space of all continuous piecewise linear functions on T. Let Aft:
denote the set of unknown nodes (vertices) of T (e.g., the set of all interior nodes for
Dirichlet boundary conditions), let L/t: denote the set of new unknown nodes introduced
at level k, and let nt: denote the number of nodes in Aft:. Clearly,

.Aft: C .hft:+l, nk <_
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Let H0(ft) denote the usual Sobolev space; see, e.g., [5], and let 2"k: H(f) Mk
denote the interpolation operator such that

w
-r,() }teAr, where ,() is a piecewise linear polynomialDefine the nodal basis ofM as

on T and has value 1 at node and value 0 at all other nodes of T. The hierarchical
ilkbasis ofM is defined as 8=0tv’t

Let A denote the global stiffness matrix derived from the nodal basis, let S denote
the transformation matrix from the hierarchical basis to the nodal basis, and let A0 de-
note the nodal basis discretization matrix with respect to To. Assume that A0 LoL’ is
the Cholesky factorization. It is known [10], [17] that

(M-1A) < I C(j2) intwodimensions,
(3)

C(2i) in three dimensions,

with the preconditioner defined by

(4) M-1

where (.) stands for the condition number,

Lo
0

and

(

hd -211
d-2h2 I2

d-2
\ hj Iy

Here, we order all nodes in a hierarchical ordering, i.e., we order the nodes in/do first,
followed by those in b/l, etc. I is the identity matrix of order nk n_x, with n_ 0.

Evaluating LffTv() and Lffv(), i.e., solving two triangular systems Lo x() v()

and Lox() v(), could be expensive except for a very coarse initial triangulation To.
To avoid solving these systems, we define a new preconditioner by omitting L0 and L0,
giving

(5) M)-x SDIST.
We refer to the preconditioner defined by (4) as the complete hierarchical basis (CHB)
preconditioner and that defined by (5) as the incomplete hierarchical basis (IHB) pre-
conditioner.

We can derive an upper bound on the condition number of the IHB-preconditioned
system as follows. For any vector x # 0,

(Ax, x) (Ax, x) (Mx, x)
(MIX, x) (Ux, x) (U.rx, x)
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where for vectors z and y, (z, y) is the usual Euclidean inner product. Thus

Am=(M-IA) max
(Ax, x)

:#o (MIX, x)
(Az, x)< max

#o (Mz, z)

min(M-xA) min
(Az’ z)

z#o (MIX, x)

> min
(Ax’ x)

x0 (Mz, z)

(Mx, z)x max
o (Mzz, z)

x min
(Mz, x)

and therefore

a(M-1A) .max(M- A)
Amin(M[1A)

_< a(M-1A) x a(M/1M).

By (3) and the fact that

n(M[M) n(Ao) < Chff2,

where h0 is the minimum mesh size of To, we get the following theorem.
THEORE 2.1. IfMz is defined by (5), then

(6)
in two dimensions,

in three dimensions,

where ho is the minimum mesh size of To.
We next consider the BPXpreconditioner, using the algebraic framework developed

in [13] and [15]. Let T denote the representation matrix of the nodal basis ,(l}e.-
in terms of the nodal basis tw’a(l }e..

In matrix form, the BPX preconditioner is defined by [13]

j-1

(7) M-1 2-ahj I+Z.2-ar
"k l k Ik + h-dTAITo,

k--1

where hk is the mesh size of T and d is the number of dimensions. (We assume here
that a uniform mesh is used; for locally refined meshes, see [3] and [13].) It is shown in
[3] and [13] that

(8) (M-A) <- ! C(j2)

( cj

in general,

for regular problems.
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More recently, it has been shown [11] that the condition number of the BPX-precondi-
tioned matrix can actually be bounded independently of mesh size.

As above, one may avoid applying Aft1 by using a modified preconditioner defined
by

j--1

(9) M-I 2-dhj I -- Z t.2-drrTrr
ttk k k.

k=O

We refer to the preconditioner defined by (7) as the complete BPX (CBPX) pre-
conditioner, and that defined by (9) as the incomplete BPX (IBPX) preconditioner. It
is shown in [13] that

(10) a(M-iA) <- I C(h2j)C(h2 + j)j in general,

for regular problems.

As in the proof of Theorem 2.1, we can also show that the IBPX-preconditioned matrix
has condition number bounded by Ch2, based on the results in [11].

The HB and BPX preconditioners are closely related to each other [13], [14], [15],
18]. Here, we briefly discuss the relation between them from a matrix point ofview; see
[15] for some related analysis. Let rrk+ be the matrix that represents the nodal basisk

{,() ,(+)
w }e, in terms of the nodal basis tv’ }e,+

(11) Tk+l

’,gnk Wnk+

Clearly,

Tk T+ T_lo

Define k k )T.(T_1 Then (7) can be rewritten as [13]

(12) M-1 2-d=h I+- 2-4hk_ (sj k)(
k--2

and (9) can be rewritten as

(13) M- h2-4I + y hk_2-d( k)([" ]’).
k--1

Now consider the matrix S which transforms the hierarchical basis to the nodal basis.
can be factored as [17]

S=Si...Si.
Given u E A4i, its nodal basis coefficients are {ui u(zi) zi E Af } and its hierarchical
basis coefficients are {(Z Zk_x)u(zi) zi E b/k, 0 _< k _< j}, where 2-_1 0. Let v
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denote the vector of the hierarchical basis coefficients of u. Then ,.% is the vector of
the nodal basis coefficients of u. Sk describes the computation of {ui i E b/k} from
{(2-Z_)u(zi) [zi b/} and {ui [i N’_}. Thus, in order to evaluate the action
of S, one first needs to evaluate the function Z_1 at nodes from b/. This turns out to
be a simple interpolation process 17]. Then one adds the values ofZu-Z_lU at these
nodes to the interpolated values, giving the values of u at nodes from b/. Ifwe order the
nodes in a hierarchical ordering, then for 1 < k < j, S has the structure

(/0

(14) Sk

/k+l

In terms of entries of Sk, the interpolated values ofZ_u at nodes from b/ are given by

k-1

(15) - R,u__,,
8--0

where u8 is the vector of values of u at nodes from/18.
On the other hand, since Z_lu .Mk_I andZ_lU(Xi) u(zi) ui for i A/’-I,

Z 05(k--1) k-1).k-lU- Uir ( ,’rnk_l

i=1

we have

From (11) and the equality k k(Tk_l)T, one obtains

Therefore

Ul

Unk_

Ul

k-lU ((k) d)(k))k,r-,lk

Unk_l

and the values of 2"k_ lU at nodes from Af are then given by

Ul

Unk-
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But Zk_lu(xi) ui for i E Ark-l, so that k has the structure

It is now easy to see that the interpolated values of Zk_u at nodes from b/k are repre-
sented in terms of entries of S as

k-1

(16) /su
8--0

Since (15) and (16) both represent the same interpolated values ofZk-lU at nodes from
L/k, it follows that

R8 =/, s O,...,k- 1.

In other words, is composed of the first k block columns and the first k + 1 block rows
of Sk"

(17)

Ro
Ik-I

Rk-1

Sk is square and of size nj nj, whereas k is rectangular and of size nk nk-1.

3. Performance of the II-IB and IBPX preeonditioners. We now present the results
of some numerical experiments that give us insight into the computational properties
of the incomplete multilevel preconditioners. In our numerical experiments, the finite
element method with linear elements is used for two-dimensional problems. The trian-
gulation has the uniform mesh size h l/n, and the initial triangulation corresponds to
a uniform grid with h0 l/no, where no n/2J and j is the number of levels excluding
the initial level. For simplicity of implementation, the standard seven-point centered
difference scheme on a uniform mesh is used to discretize the three-dimensional prob-
lems, and our multilevel preconditioning matrices correspond to those derived from the
finite element method with trilinear elements, except that A0 is the matrix derived from
the difference scheme. From the spectral equivalence of the standard seven-point cen-
tered difference operator and that derived from the finite element method with trilinear
elements, we know that the HB and BPX preconditioners have the same convergence
properties as those given in 2.

Table 1 shows the number of PCG iterations using the complete and incomplete
versions of the HB and BPX preconditioners for Problem 2-1, where "-" stands for "data
not available." Table 2 shows analogous results for Problem 3-1. We see that when the
initial grid is not very fine, the incomplete versions ofthe preconditioners actually require
about the same number of iterations (and fewer, in many cases) as the complete versions.
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TABLE 1
Iteration countsfor Problem 2-1 (constant coefficients).

n=32 n=64 n=128 n=256
IHB

74
61 70

49 57 67
38 45 55 70
35 43 58 92
33 47 81 138
39 67 122 214
43 88 178 358

n=32 n=64 n=128 n=256

n=32 n=64 n=128 n=256
CHB

78
64 85

51 70 75
40 57 62 59
44 48 47
36 36 34
23 22 21
1 1 1 1

n=32 n=64 n=128 n=256
IBPX CBPX

28 28
27 28 26 29

24 26 31 24 26 31
22 24 29 46 21 24 29 31
21 26 42 80 22 26 28
23 39 74 144 23 24 24
34 66 128 243 19 19 18
43 88 178 358 1

TABLE 2
Iteration countsfor Problem 3-1 (constant coefficients).

n=8 n=16 n=32 n=64
IHB

5 161
4 102 140
3 62 87 106
2 31 51 65 82

27 38 54 91
0 12 24 49 103

n=8 n=16 n=32 n=64
IBPX

5 44
4 35 38
3 27 31 36
2 19 25 31 53
1 18 26 43 82
0 12 24 49 103

n=8 n=16 n=32 n=64
CHB

169
106 140

64 85 99
31 50 59 76
31 34 43

1

n=8 n=16 n=32 n=64
CBPX

43
35 37

27 30 32
19 24 26 31
17 20 26
1 1 1

Taking into account the extra work for the complete versions to apply Aft, particularly
in three dimensions, we see that PCG with the IHB or IBPX preconditioner costs less
than with its complete counterpart, at least when the initial grid is not very fine.

Note that the upper bounds of the IHB- or IBPX-preconditioned matrices in 2 in-
crease as j decreases. However, from Tables 1 and 2, we see that as j decreases from its
largest value (i.e., as we vary the initial grid from very coarse to slightly less coarse), the
iteration counts for both the IHB and IBPX preconditioners essentially do not increase.
Since the cost per PCG step decreases as j decreases, we conclude that better perfor-
mance will be achieved when the initial grid is not as coarse as possible. This conclusion
is further substantiated by Tables 3 and 4, which show the CPU times of PCG with the
IHB and IBPX preconditioners for Problem 2-1 and Problem 3-1, respectively, with dif-
ferent numbers of levels. Here the CM times for the three-dimensional 64 x 64 64 grid
problem come from a CM2 with 16,384 (instead of 8,192) physical processors.
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TABLE 3
CMtime (seconds) ]’or Problem 2-1.

n=32,,,,,1 n=64 ,,I n,--,,128,,,1 n=256
IHB

n=32 n=64 n=128 n=256
IBPX

4.84
3.80
2.94
2.73

83.24 34.55
17.36 71.18 8.80 31.08

"]13 14.41 59.90’ 3.77 7.23 30.36’
5.69 12.11 53.82 3.03 3.29 7.17 38.53
4.63 10.84 58.88 2.48 3.01 8.55 56.25’
4.59 12.26 72.73 2.19 3.65 12.23 84.35
4.59 14.61 90.54 2.56 5.03 17.11 116.08

TABLE 4
CMtime (seconds) forProblem 3-1.

n=8 n=16 n=32 n=64
IHB

437.79
68.36 338.40

10.08 49.10 224.88
4.30 6.91 31.31 149.70
3.07 4.66 21.61 134.37

n=8 n=16 n=32 n=64
IBPX

137.76
25.64 106.29

4.83 19.73 87.29
2.93 3.79 16.82 105.76
2.26 3.16 18.24 126.88

Remark. We saw the same general behavior for problems with variable and discon-
tinuous coefficients, and also with random initial guesses, although only the results of
the Laplacian with a zero initial guess are reported here.

4. Relating multilevel preeonditioners to the underlying operator. The HB and
BPX preconditioners under consideration are defined independently of the underlying
differential operator, and their effectiveness may vary dramatically depending on this
operator. In this section, we examine two techniques for relating multilevel precondi-
tioners to the differential operator.

One strategy is to use a diagonal scaling, as suggested for the HB preconditioner
by Greenbaum, Li, and Chao [7]. Combining a diagonal scaling with IHB leads to the
preconditioner

(18) M-1 qD-1ST,

where D is a diagonal mattrix. One choice for D is D diag(.), where . is the global
discretization matrix derived from the hierarchical basis. A drawback of this choice is
that the matrix , is a preconditioned matrix that is pically not explicitly formed. An
alternative that avoids the cost of computing diag(A) is the choice D diag(A), as
suggested in [7]. Numerical experiments with these two choices for D produce almost
identical iteration counts for discrete partial differential operators with continuous coef-
ficients of the partial differential equations, as reported in [7] for two-dimensional prob-
lems with the complete hierarchical basis diagonal scaled preconditioner. Therefore, we
will only use D diag(A) for diagonal scaling. We refer to (18) with D diag(A) as
the incomplete hierarchical basis diagonal (IHBD) scaled preconditioner. One can also
combine diagonal scaling with BPX [3], [13], [15], [19], and define the incomplete BPX
diagonal (IBPXD) scaled preconditioner by

J
M-1 2-d -1hj Dj +h2-d’k k I)D-(IT kT),

k=l
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where Dk is the submatrix of diag(A) corresponding to the nodes from Ark. This can be
thought of as a Jacobi preconditioner at level k; cf. [15] for generalizations of this idea
that more closely relate the preconditioner to the underlying operator.

Table 5 reports the iteration counts of PCG with IBPX and IBPXD preconditioners
of all possible levels for Problem 3-2, and Table 6 reports some of the corresponding
CPU times, together with the CPU time of red-black ICCG(0) [8] for comparison. In
Table 6, CGD stands for PCG with the preconditioner D diag(A), and the parallel
algorithm developed later in 5 is used for both the IBPX and IBPXD preconditioners.
Tables 5 and 6 suggest that the diagonal scaled multilevel preconditioners work well for
the problems with variable coefficients. We also see from Table 6 that with the diago-
nal scaled multilevel preconditioners, better performance is achieved when the initial
grid is not as coarse as possible, as we observed with the IHB and IBPX preconditioners
in 3.

TABLE 5
Iteration countsfor Problem 3-2 (variable coefficients).

n=8 In=161n=321n=64
IBPX

204
151 204

91 152 213
45 91 160 247
45 99 187 333
36 91 204 429

n=8 n=16 n=32 n=64
IBPXD

44
35 39

28 31 41
20 25 36 65
19 31 57 112
20 40 83 172

TABLE 6
Problem 3-2. IBPXD(k) means that initial grid is 2k 2 x 2. k i corresponds the coarsest initial grid.

A 16KCM2 is usedfor case 64

method
CGD
ICCG

IBPXD(1)
IBPXD(3)

n=8
20
14
20

Iteration counts
n=16 n=32
40 83
25 48
28 35
31 36

CMtime (seconds)
n=64 n=8 n=16 n=32 n=64
172 1.60 2.94 20.77 160.11
96 2.01 3.33 22.33 164.36
44 3.16 5.08 25.89 139.33
41 3.78 19.72 99.92

Diagonal scaling has little or no effect on another class of problems, comprised by
anisotropic problems, such as Problem 2-2, and "piecewise anisotropic" problems, such
as Problems 2-3, 2-4, and 3-3. For instance, for any of these problems (with a uniform
mesh), diag(A) cI for some scalar c and IHBD (or IBPXD) reduces to IHB (or IBPX).
We now describe a technique, aimed at this class of problems, to relate the multilevel
preconditioners more closely to the underlying operator. Note that the solution of the
elliptic partial differential equation (1) can be interpreted as a distribution of heat, where
the coefficients {a} are the conducting coefficients. Thus, for example in two dimen-
sions, if a > a, then heat conducts more rapidly in the horizontal direction than in
the vertical direction. We would like our computational algorithm to mimic the physical
process, by patterning data movement after the physics. The initial triangulation used
for the multilevel preconditioners provides a natural vehicle for achieving this.

For an example, assume that the discretization is made on a 4 4 grid, as in the top
picture of Fig. 1. Three possible choices for the initial grid are shown in the second row
of Fig. 1, and they give rise to the three partitionings of the nodes shown in the third row
of Fig. 1. Assume that zxl(), zx2() E No are the two nodes that are directly connected
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4x4
Final grid

2x2

,/,/
////

4x2
Three possible initial grids

2x4

I

I

Partitioning of nodes. Numbers stand for level numbers.

Rectangles of initial grids

FXG. 1. Three refinement strategies leading to a 4 x 4final gtid.

to the node z E b/l, and that the data at node zi is stored in X(i). When we apply the
HB preconditioner with a uniform mesh, the following algorithm may be used [17]"
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for i L/
x(n(i) x(n(O)+

x(o/ 
next i
fori b/
x(i) x(i) + +
ne i

It is useful to take the point of view that each node xi corresponds to a processor,
processor i, on a parallel computer. Thus, to apply the HB preconditioner, processor i
needs to communicate with processors I1(i) and I2(i), to send some data to processors
I1(i) and I2(i) and then to get some data from them. For the partitioning on the left in
the third row of Fig. 1 (derived from an initial 2 2 grid), node (1,1) will communicate
with its NE and SW neighbors, node (0,1) with its N and S neighbors, and node (1,0) with
its E and W neighbors; for the partitioning in the center (derived from an initial 4 2
grid), every node from level 1 will communicate only with its N and S neighbors; and
finally for the partitioning on the right (derived from an initial 2 4 grid), every node
from level 1 will communicate onlywith its E andWneighbors. Therefore, the initial 22
grid results in data movement at the same rate in the horizontal and vertical directions,
the initial 4 2 grid results in more rapid data movement in the vertical direction, and
the initial 2 4 grid results in more rapid data movement in the horizontal direction.

Note that the initial 4 2 and 2 4 grids result in nonnested sequences of finite el-
ement subspaces (A/}=0, i.e., M0 M, because some triangles at level 0 cannot be
expressed as unions of triangles at level 1. However, each rectangle of the initial triangu-
lation can be expressed as a union of some rectangles of the next level triangulation, see
the last row of Fig. 1. The analysis of the HB and BPX preconditioners applies only for
the nested case [3], [10], [13], [17]. Nevertheless, all analysis is based on elementwise ar-
guments, i.e., all inequalities and equalities are proven on each element and the sum over
all elements is taken to get the results on the domain. Replacing triangle by rectangle,
one can generalize the analysis of HB and BPX [3], [10], [13], [17] in a straightforward
manner to cover the nonnested case described above.

As an example of the use of such initial triangulations, consider Problem 2-2. Table 7
shows the iteration counts for various initial grids. The results indicate that the initial
2 2 grid does not give the best performance among all possible initial triangulations. In
this case, an initial 2 16 grid gives the best or almost best performance for both IBPX
and IHB. The data of Table 7 typifies our experiments. In general, assume both a and
a2 are constant and without loss of generality assume a2 > al. Numerical experiments
indicate that an initial 2 x m0 grid will be close to optimal when (m0/2)a is as close to
a/al as possible.

TABLE 7
Iteration counts on grid 256 x 256for Problem 2-2.

Initial grid [[ 2x 2 2x4 2x8 2x16 2x32 2x64 2x 128 2x256
IHB II 15 98 64 55 51 5. 76 121
IBPX 14zl 75 47 33 39 51 66 95

This idea can also be generalized to piecewise anisotropic problems. Consider Prob-
lem 2-3 first; see Fig. 2. For this problem, the discussion above suggests that the initial
grid on the left half subregion should be finer in the y-direction than in the x-direction,
and the opposite should hold on the right half subregion. Suppose again that the dis-
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cretization is on a 4 x 4 grid. One way to choose such an initial triangulation is so that
,ox (1/2, 1/4) on the left half region and t() h(v)vox (1/4, 1/2) on the right
half region, where h() and h(v) are the step sizes of the corresponding initial grid in the
x- and y-directions, respectively; see Fig. 2. (The initial triangulation is designed in such
a way that conforming finite element methods can be applied; see, e.g., [5].)

at--100 al:l

a2=l a2=100

FIG. 2. Left: Problem 2-3. Center: initial grid. Right: partitioning ofthe nodes.

Table 8 reports the iteration counts ofPCGwith the IHB and IBPX preconditioners
for Problem 2-3, where initial grid 2 x 2 means that t(0) h(u0)vo (1/2, 1/2) on both
the left and right half regions, and initial grid 2 x 16, 16 x 2 means that (h(), h(u))
(1/2, 1/16) on the left half subregion and t() h(u)vo (1/16, 1/2) on the right half
subregion.

TABLE 8
Iteration countsfor Problem 2-3.

Initial grid n=32 n=64 n=128 n=256
IHB

2X2 132 13396 15502 169
2X16,1fiX2 61

n=32 n=64 n=128 n=256
IBPX

41 50 63

We can apply our technique to Problem 2-4 (Fig. 3) in a similar way. We will choose
the initial triangulation such that the corresponding initial grid is finer in the x-direction
on the inner subregion and it is finer in y-direction on the outer subregion. Figure 4
shows one such initial triangulation, together with the refined ones, for an 8 x 8 grid.
Numerical results for various initial grids are reported in Table 9, where initial grid 2 x
2 means that ((o) h(vO),o (1/2, 1/2) on both inner and outer subregions, and initial

grid 2 16, 16 2 means that (h(), h(u)) (1/2, 1/16) on the outer subregion and
,o (1/16, 1/2) on the inner subregion.

TABLE 9
Iteration countsforProblem 2-4.

Initial grid n=32 n=64 n=128 n=256
IHB

2X2 119 lS41S 661S 191
2X 16, 16X2 45 75

n=32 n=64 n=128 n=256
IBPX

1171559117702118744 76

The generalization of this technique to higher dimensional problems is straightfor-
ward. Table 10 shows the iteration counts for a three-dimensional problem, Problem 3-3,
where initial grid 2 x 2 x 2 means that (h(), h(v), h(.)) (1/2, 1/2, 1/2) on the whole
region, and initial grid 2 x 8 x 8, 8 x 8 x 2 means that .oxt() h(v) h(.)) (1/2, 1/8, 1/8)
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al =100

a=l

a1=1
a=lO0

FIG. 3. Problem 2-4.

///,,,’////

////////
FIG. 4. Sequence ofangulationsfor Problem 2-4.

on the subregion xl < 0.5, and t,() h() h()vox (1/8, 1/8, 1/2) on the subregion
0.5 < Xl.

TABLE 10
Iteration counts oflBPX-preconditioned CGforProblem 3-3.

Initial grid n=8 n=16 n=32 n=64
2x2x2 39 82 146 201

2x8x8,882 24 47 67 90

The new technique has the feature that it does not need any extra work and the
implementation of the technique does not create any extra difficulty. For example, Ta-
ble 11 reports iteration counts and CPU times for PCG with various preconditioners for
Problem 2-4. We see from this table that our technique does work well for piecewise
anisotropic problems. The technique can be generalized to problems with variable coef-
ficients by first freezing the coefficients on each element of the initial triangulation, i.e.,
defining some constant value of the coefficients on each element, and then applying the
technique to the corresponding stiffness matrix.

5. Parallel algorithms for multilevel preconditioners. In this section, we discuss
parallel algorithms for the IHB and IBPX preconditioners. For simplicity, all algorithms
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TABLE 11
Results for Problem 2-4. IHB-1 (IBPX-1) is IHB (IBPX) with initial gd 2 x 2 and IHB-2 (IBPX-2) is

IHB (IBPX) with such initial grid that (h(), h(u) (1/16, 1/2)on the inner subregion and (h(), h(u)
1/2, 1/16) on the outer subregion.

Iteration counts CM time (seconds)
Method n=32 n=64 n=128 n=256 n=32 n=64 n=128 n=256
CG 134 287 607 1248 6.28 13.29 52.21 397.09
ICCG 69 144 305 625 6.41 13.21 53.40 397.59
IHB-1 119 148 168 191 18.64 25.95 58.43 267.73
IHB-2 45 51 61 75 7.74 9.97 21.14 110.14
IBPX-1 117 151 172 187 17.33 26.41 61.26 260.85
IBPX-2 44 59 70 76 6.78 10.11 24.24 111.97

are described in detail only for one-dimensional problems; some issues for higher di-
mensional problems are outlined. Since each node corresponds to a unique index, we
do not distinguish a node z from its index i.

With the IHB preconditioner, the core of solving the preconditioning equation is to
compute STy and Sv for an arbitrary vector v. Suppose the hierarchical basis coefficients
are stored in a vector X. Given a node z
and xi2(i) min{x x Jfk-1, xi < x}. We refer to Xll(i and Xi2(i as the parents of
x and to x as a child of its parents. Assume that a uniform mesh is used. The standard
parallel algorithms for computing Sv and STv are the following straightforward variants
of the serial algorithms of [17]. Here and in the sequel, we are assuming that there are
as many processors as grid points.

Parallel Algorithm I Sv:
1 fork=ltoj, do
2 for all
3 X(i) X(i) + (X(Ii(i))+ X(I2(i)))/2
4 all in parallel
5 next k

Parallel Algorithm I STv:
1 fork=jtol, do
2 for all k, do
3 X(Ii(i)) X(Ii(i))+ X(i)/2
4 X(I2(i)) X(I2(i))+ X(i)/2
5 all in parallel
6 next k

Lines 2-4 of the algorithm for Sv compute the action of Sk, and lines 2-5 of the
algorithm for STy compute the action of Sff, where S’k (k 1,..., j) are the factors
of S defined in 2. Figures 5 and 6 show two symbolic representations of these algo-
rithms. Figure 5 shows the flow of data between processors during the course of the
computation for j 3; arrows indicate the required interprocessor communication. In
Fig. 6, the column associated with L/k contains a compact representation of the contents
of all processors handling nodes in b/k, where n/m means that all processors handling
x b/k now contain (2",u 2,u)(x). For example, after step 2, all processors han-
dling z E L/2 contain 2u(z), whereas for k _> 3, all processors handling z /,/k contain
(2-ku 2-k_lu)(z). It is obvious that both Sv and STay require j parallel steps and each
step costs O(1). Thus, this algorithm costs O(j).
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node

values

Step 0

level #

values

Step 1

level #

ValUes

Step 2
level :#:

values

Step 3

level #

node

0 1 2 3 4 5 6 7 8

u2W2u4 U6 UT-- U8U3 U4 US-- u4 + u6
f

u6+ us
2 2

Sv

0 1 2 3 4 5 6 7 8

Step 3

level

Step 2
level

0 3 2 3 1 3 2 3 0

0 3 2 3 1 3 2 3 0

Step 1
level # 0 3

Step 0

level

2 3 1 3 2 3 0

2 3 1 3 2 3 0

FIG. 5. ParallelAlgothm for the IHBpreconditioner.
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step

o 3/2 6/5

1 1 2/1 3/2 4/3 5/4 6/5 7/6

2 2 3/2 4/3 5/4 6/5 7/6

3 3 4/3 5/4 6/5 7/6

4 4 5/4 6/5 7/6

" 6 7/6

FIG. 6. Symbolic representation ofParallelAlgorithm Sv.

We now present a parallel algorithm for the BPX preconditioner that is based on
Parallel Algorithm I for the HB preconditioner and also costs O(j). From (13), we have

(19) M-1 hj2-d

A high-level description of the BPX algorithm based on (19) is as follows.

Algorithm BPX
1 v =v
2 for k-- j down to 1, do
3 vk-1 ^T k=Skv
4 end
5 w=h-dv0

6 fork=ltoj, do
7 wk h2k-dvk + kwk-1
8 end
comment: M-iv wj

This algorithm has been developed independently by Xu and Qin [15]. We now discuss
how to implement it efticiently on a parallel computer.

As shown in 2, S is a block submatrix of S. Thus we may use Parallel Algorithm
I for the HB preconditioner to compute kv and ^TSk v as follows.

Algorithm kv
1 for all
2 X(i) (X(II(i))+ X(I2(i)))/2
3 all in parallel

Algorithm Sk
1 for all i
2 X(Ii(i)) X(Ii(i))+ X(i)/2
3 X(I2(i)) X(I2(i))+ X(i)/2
4 all i in parallel
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where 11 and I2 are defined as in Parallel Algorithm I for the HB preconditioner. We
summarize the above algorithms for BPX as follows.

Parallel Algorithm BPX
1 for all i E Aft, do
2 v (i) v(i)
3 all in parallel
4 for k j down to l, do
5 for all E b/k, do
6
7 vk-(I2(i)) Vk(I2(i)) / vk(i)/2
8 all i in parallel
9 next k
10 for all i Af0, do
11 X(i) h-dv(i)
12 all i in parallel
13 fork=ltoj, do
14 for all i
15 X(i) (X(Ii(i)) + X(I2(i)))/2
16 all i in parallel
17 for all i Ark, do
is + x(i)
19 all i in parallel
20 next k

For two-dimensional problems, the scaling factors (h-a}=0 equal 1 and this algo-
rithm costs exactly the same as Parallel Algorithm I for HB. For three or higher dimen-
sional problems, the BPX preconditioner needs j + 1 parallel multiplications to evaluate
the action of the scaling by the factors (h-a}=0 The HB preconditioner also needs
to be scaled by a diagonal matrix Da consisting of {h }=0" But the action of Da
can be evaluated with only one parallel multiplication. Therefore for three or higher
dimensional problems, the parallel BPX algorithm requires j more multiplications than
Parallel Algorithm I for HB.

Note that both Figs. 5 and 6 indicate that Parallel Algorithm I for the HB precondi-
tioner leaves many processors idle, especially in the part of the computation correspond-
ing to the coarse grids. We now describe an alternative parallel algorithm that makes use
of some of these idle processors and requires fewer steps than parallel Algorithm I. The
new algorithm is depicted symbolically in Figs. 7 and 8, which are analogous to Figs. 5
and 6. The computation of Sv can be defined precisely by the following three rules.

RULE I. Let ]0c2 (c =0 or 1). /d is updated at step k + 1 if and only if
Ck=l.

This rule determines when a level is updated. For example, 7 20 + 2 / 22 so that
/,/7 is updated at steps 1, 2, and 3, whereas 5 20 + 22, so that//5 is updated at steps 1
and 3, but not at step 2. (See Fig. 8.)

To specify the second rule, we will say that level depends on level d if all processors
handling b/t contain (Ztu T.dU)(X) (where d 0 for d < 0).

RULE II. Let ,k=o Ck2k (Ck =0 or 1). Level depends on level d 2k +
k-1
=o (1 c)2 after step k.
To see how this rule applies, consider the case of 5 2o + 2e. (See Fig. 8.)

Initially, d 5 2, so that level 5 depends on level 4. After step 1, d 5 2 so that
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node

values

Step 0
level #

values

Step
level #

0 1 2 3 4 5 6 7 8

uo Ul_U0+tt2 _UO+2U4 u22+u4 u0+u8 u4+u6 $6_tt42+u8 UT_uf+u8
2 u2 u3-- u4-- 2 u5 2 2 u8

0... 3 .2 3 1 3 .2 3 0

uo 2 3- u4 5- 6- 2 7- u8

0 1

values uo Ul u2 U3 U4 U5 U6 U7 U8

Step 2
level # 0 3 2 3 1 3 2 3 0

node 0 1 2 3 4 5 6 7 8

Step 2
level # 0 3 2 3 1 3 2 3 0

Step
level 0 3 2 3 1 3 2 3 0

Step 0
level # 0 3 2 3 1 3 2 3 0

FIG. 7. ParallelAlgorithm IIfor the IHBpreconditioner.

28= (0 2),level 5 depends on level 3, and after step 2, d 5 22 + Y8=0(1 c8) 5 4+ +
so that level 5 still depends on level 3. Note that according to Rule I, the update of level
5 with level 3 is not performed until step 3.

To specify the third rule, we need some additional notation. Let J [log2 j]. Given
a node i, let l(i) denote its level number, i.e., l(i) is the integer such that i
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step 0 1 2 3 4 5 6 7

0 0 I/0 2/1 3/2 4/3 5/4 6/5 7/6

I I

2 "" a

4/3 513 615 715

FIG. 8. Symbolic representation ofParallelAlgorithm II Sv.

Let (co(i),.. CJ-1 (i)) be the vector such that l(i) Y8=0J-1 c8 (i)2 (c 0 or 1), let
(do(i),..., dj(i)) be the vector such that level l(i) depends on level dk(i) after step k in
the sense of Rule II. Note that {/(i)}, {ck(i)} and {dk(i)} are just more precise delin-
eations of the quantities l, ck and d used in Rules I and II. Finally, let I1(i) (or I2k(i))
denote the nodes closest to node among all nodes from Afak (0 on the right (or left) side
of i. Thus, i lies between I1(i) and I2k(i) and no node from Afdk (i) lies between Ilk(i)
and I2k(i). We call Ilk(i), I2k(i) the parents at level k of node i. For example, after
step 1 of the computation of Sv, the parents of node 7 are Ilx (7) 8 and 121 (7) 4.
These are the sources of the arrows between steps 1 and 2 in the top part of Fig. 7. Let X
be the vector initialized with the hierarchical basis coefficients and let A/’k 0 for k < 0.

RULE III. When level is to be updated according to Rule I, the data at a node i E L/k
will be updated in the following two steps:

if Ilk-1 (i) JV’d_ (i) \ .hfd(i), then
I2_x(i)-i X(IXk_l(i))X(i) X(i) + I2k_l(i)--llk_x(i)

end if
if I2k-l(i) d_(0 d(), then

I1_(i):X(I2k-1 (i))x(i) x(i) +
end if

Lines 1 and 4 of Rule III are necessary for Rule II to be satisfied, i.e., for all processors
handling z /,h to contain (2tu 2a(0u)(z). Note that given the values X(Ilk_l (i))
and X(I2k_l (i)) at the parents Ilk-l(i) and I2k_1 (i), the value of their linear inter-
polant at node is

[ I2k_l(i) i ] [ Ilk_l(i) ] X(I2k_l(i)),
I2k-l(i) Ilk-l(i) X(Zlk-l(i)) + Ilk-l(i) I2k-1(i)

where the terms in brackets are the corresponding linear interpolation coefficients.
To see how Rule III applies, consider node i 1 in the example shown by Fig.

7. (All nodes are numbered from left to right starting with 0.) Since/(1) 3
20 / 21, node 1 will be updated at steps 1 and 2 according to Rule I, and node 1 will
depend on levels 2, 1 and -1 after step 0, 1 and 2, respectively, according to Rule II, i.e.,
(do(i), dl (i), d2(i)) =(2,1,-1). Here (Ilo(i), 111(i)) (2, 4) and (I2o(i), 121(i)) (0, 0).
Thus, one adds only 1/2X(2) to X(1) at step 1, since Ilo(i) 2 e Af2 \ 3/1 and I2o(i)
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0 Af2 \ All. At step 2, one adds both 1/4X(4) and X(0) to X(1), since both I11 (i) 4
and I21 (i) 0 are in All \ Af_

Combining the three rules, we formulate the new parallel algorithm for computing
Sv as follows.

Parallel Algorithm II Sv
1 fork=ltod, do
2 for all i E L/(i) such that s_(i) 1, do
3 If Ilk-1 (i) jrdk_x (i) \ Jfd(i), then

I2k_x(i)--i (i)X(ilk (i))4 x(i) x(i) + _()-n_
5 end if
6 If I2k- (i) A/’d_x (i) \ Jfdk(i), then

I_x(i)-i (i)X(i2k_(i))7 X(i) X(i) +
8 end if
9 all i in parallel
10 nextk

The analogous algorithm for computing STy is as follows:

Parallel Algarithm II STy
1 for k J down to 1, do
2 for all i b/(i) such that sk_x (i) 1, do
3 if I1_1(i) A/’a_l (i) \ Afar(i), then

I2_1 (i)-i (i)X(i)4 X(Ilk_(i)) X(Ilk_l(i))+ I2_x(i)-I_
5 end if
6 if I2k_ (i) Jfdk_x (i) \ Jfdk(i), then

z_(i)-7 X(I2k_(i)) X(I2k_l(i))-q- ii_(i)_12_(i)X(i)
8 end if
9 all i in parallel
10 next k

For higher dimensional problems, Rule III has to be modified slightly. For example,
the modification for the two-dimensional problem is as follows: (a) For each node i
there are three parents I1 (i), I2 (i), I3 (i) at level k < l, which are defined as the three
vertices of the element at level k including node i inside or on the boundary. (For the
case on the boundary, there are two elements at level k including i, and we choose one of
them.) (b) The linear interpolation coefficients are the barycentric coordinates of nodes
i with respect to Ilk(i), I2k(i), I3k(i). The barycentric coordinates Aj Aj(x), 1 _< j _<
d + 1 of any point x Rd, with respect to the (d + 1) vertices aj of a simplex, are the
(unique) solutions of the linear system:

-d+l
z.j= ajj x

z-j=l ’j 1.

Now consider the costs of Parallel Algorithm II. Rule I implies that for all nodes at
level l, no update is required after step [log l]. Consequently, this algorithm requires at
most [log j] parallel steps. A direct comparison of its costs with those ofAlgorithm I for
the HB preconditioner is somewhat problematic. For the computation of Sv, each step
of Algorithm II requires O(1) arithmetic operations, so that the total cost of arithmetic
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is O( [log j] ). However, for step k of the computation of STY, as many as O(4ft- #] -k)
processors send data to one individual processor, say processor i, and the numerical sum
of these data is then stored. (See Fig. 7.) If processor i performs the summation serially,
then this leads to an arithmetic cost of C x-’g Jl 4[log. j]-kz_,= O(j). This is of the same
order of magnitude as the cost of Algorithm I. Moreover, it is evident that Algorithm
II has more complex communication patterns than Algorithm I. To get some further
insight into the comparative costs ofthese algorithms, consider their performance on the
Connection Machine. This computer has the feature that if a set ofnumbers is sent to an
individual processor and the numerical sum is to be stored there, then for items that meet
at other processors en route to their final destination, partial sums are computed. This
process of "enroute combining" reduces congestion and speeds up both communication
and arithmetic, because as messages are combined their number is reduced. For one-
dimensional problems, Fig. 9 shows the CPU times of the two algorithms. The results
indicate that for both the Sv and ST"v computations, the cost of Algorithm II is close
to O( [log2 j] ). Moreover, the new algorithm is more efficient than Algorithm I for all
but the smallest problems. In two or higher dimensions, a larger number of levels is
required for Algorithm II to be superior to Algorithm I. Based on an extrapolation of
experimental results for two-dimensional problems up to eight levels (the largest number
of levels we could fit into memory), we estimate that Algorithm I becomes more efficient
for roughly 20 or more levels.

X0.01

O0
number levels

X0.01 S^{T}v
115

11
:i

FIG. 9. Comparison between two algorithms for the HB preconditioner in one dimension, with bit serial
doubleprecision and 8K CM.
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PARALLEL COMPACT FFTs FOR REAL SEQUENCES*

RICHARD B. PELZ’

Abstract. Eight algorithms for the in-place, compact, fast Fourier transform (FFT) of real and conjugate-
symmetric sequences are presented for single instruction multiple data (SIMD) and multiple instruction
multiple data (MIMD) distributed-memory multiprocessors. The "conditional ordering" is introduced for
conjugate-symmetric sequences as the natural ordering that leads to minimal communication costs. For a
transform of a real, naturally ordered, input sequence of length N distributed evenly across P processors,
2 + log2 P nearest neighbor communication exchanges of1/2N/P contiguous elements (/-cycles) are necessary.
For a transform of a conjugate-symmetric, conditionally ordered input sequence, +log2 P/-cycles are
necessary. In all cases the computational complexity is -N/P loga N, and there are no extra memory
requirements. The algorithms require about half the communication of a parallel FFT of a real sequence
that involves a complex FFT and pre- or postprocessing. Communication complexity is based on the
hypercube topology; the algorithms, however, can be implemented on general connection topologies. Some
of the schemes are implemented on an nCUBE/2 MIMD multiprocessor, and timings are given.

Key words, fast Fourier transform, parallel algorithms

AMS subject classifications. 65J20, 65Y05, 65Y20

1. Introduction. Cooley, Lewis, and Welch (CLW) [4] showed that the discrete
Fourier transform of a real sequence can be accomplished with a Fourier transform
of an associated complex sequence of half the length and a pre- or postprocessing
step. Coupled with the FFT of complex data, the CLW algorithm provides an efficient
way to compute the real Fourier transform on scalar and vector computers. A similar
algorithm for two real sequences uses one FFT of an associated complex vector and
pre- or postprocessing.

In Table 1, we give information about the four common, in-place, FFT algorithms
for a complex sequence. The first two, CT1 and CT2, were developed by Cooley and
Tukey [5]. The latter two, GS1 and GS2, were developed by Gentleman and Sande
[7]. Table 2 contains the eight possible FFTs for a real sequence.

TABLE
Characteristics of in-place FFTs. RU refers to roots of unity.

Name Input order Output order RU order Formal inverse

CT1 natural bit-reversed bit-reversed GS2
CT2 bit-reversed natural natural GS
GS natural bit-reversed natural CT2
GS2 bit-reversed natural bit-reversed CT1

Salmon [11] was the first to implement the complex FFT on a parallel machine.
A refined in-place parallel algorithm, which was given independently by Swarztrauber
[13] and Walker [14], has the minimum amount of interprocessor communication on
hypercube, distributed-memory multiprocessors: log2 P + nearest-neighbor communi-
cation exchanges of N/(2P) complex numbers.

* Received by the editors April 16, 1991; accepted for publication (in revised form) June 10, 1992. This
work was supported by National Science Foundation grant EET 88-08780 and by Office of Naval Research

grant N00014-89-J1320.
t Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08855-0909.
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TABLE 2
Characteristics of in-place FFTs for real and conjugate symmetric sequences. RU refers to roots

of unity, CS refers to conjugate symmetric.

Name Input order Output order RU order Formal inverse

CTIR real natural cs bit-reversed bit-reversed GS2CS
CT1CS cs natural real bit-reversed bit-reversed GS2R
CT2R real bit-reversed cs natural natural GSICS
CT2CS cs bit-reversed real natural natural GS1R
GS1R real natural cs bit-reversed natural CT2CS
GS1CS cs natural real bit-reversed natural CT2R
GS2R real bit-reversed cs natural bit-reversed CTICS
GS2CS cs bit-reversed real natural bit-reversed CT1R

On the distributed-memory multiprocessor, the Swarztrauber-Walker FFT can be
used as the first step of the CLW method for the transform of a real sequence; however,
we shall see that the postprocessing step requires as much communication as the
complex FFT on hypercubes. Furthermore, it can be shown that for input data with
n symmetries (e.g., one symmetry is for real transforms, two are for cosine and sine,
three are for quarter-even and quarter-odd), the CLW method requires n times the
amount of communication of the associated complex FFT.

On many distributed-memory multiprocessors, communication time is already a
significant part of the total time in the FFT. Increasing the communication time lowers
the parallel efficiency and reduces the performance of numerical methods that have
the real FFT as an integral part.

A class of FFTs for symmetric sequences, called compact algorithms, were
developed by Swarztrauber [12], Bergland [1], and Briggs [2]. They showed that, by
using the symmetries during each stage, FFTs of symmetric data could be generated
with similar complexity to the CLWFFT, but without the pre- or postprocessing.
Bergland attributes this idea to Edson.

Swarztrauber [12] described the compact FFT, which is equivalent to GS2R or
CT2R depending on how the roots of unity are computed. The real input is in
bit-reversed order and conjugate-symmetric output is in natural order. This transform
is known as the Edson transform. The inverse transforms are CT1CS and GS1CS.
Briggs [2] developed the compact FFT, which is an extension of GS1R or CT1R, again
depending on the roots of unity. The real input is in natural order and the conjugate-
symmetric output is in bit-reversed order. The inverse transforms are CT2CS and
GS2CS.

This paper presents algorithms for the eight compact FFTs of real data given in
Table 2, which can be implemented efficiently on distributed-memory multiprocessors
[17]. Similar work is also reported in [15] and [16] in the context of global climate
models. All the schemes were designed according to the following principles.

1. All communication is in the form of/-cycles, nearest-neighbor exchanges on
a hypercube. The communication is kept to a minimum.

2. The instructions are similar on each processor. This will allow for concurrency
on both MIMD and SIMD multiprocessors.

3. Real and imaginary parts of each element are contiguous in memory and not
distributed across processors.

4. Computational complexity is similar to that of the sequential schemes (divided
by the number of processors).

5. The algorithms require no extra memory.
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For an input sequence that is conjugate symmetric, a new ordering which we shall
call "conditional ordering" replaces the natural ordering. Using natural ordering of a
conjugate-symmetric sequence resulted in an awkward and inefficient communication
structure. Conditional ordering is similar to natural ordering, but results in lower
communication complexity.

As in the Swarztrauber-Walker FFT for a complex sequence, the output is in
"processor-transposed," bit-reversed order. To reorder the output requires at least as
much communication time as the FFT. We shall not consider this reordering nor shall
we consider the conversion of a conjugate-symmetric sequence from conditional to
natural ordering. Because of this, these algorithms may not be useful for general
software libraries. Many applications in computational physics, such as evaluation of
convolutions and nonlinear terms (e.g., the Fourier pseudospectral method for fluid
dynamics [3]), do not require a special ordering of the output sequence. The algorithms
presented here are aimed at such applications.

The structure of the paper is as follows. Information on communication, condi-
tional ordering, and reduced operations due to symmetries are described in 2. In 3
the serial and parallel versions of the CLW FFT algorithm are presented. In 4 and
5, the Briggs and Edson transforms, respectively, are reviewed, the parallel algorithms
are developed, and performance analyses are given. Numerical results and timings are
presented in 6.

2. Preliminaries. In this section we review the /-cycle permutation that will be
used for communication, define the conditional ordering, and define the reduced
operations that occur due to the symmetries of the input sequence.

The length of the real sequence is N, and the number of processors is P. We
denote m log2 N and d log2 P, the dimension of the hypercube. The input sequence
is distributed evenly and contiguously between P processors. We also desire an even
distribution of the output sequence. On a hypercube connection topology, the sub-
sequences are sequentially mapped onto the processors. The index k of the input
sequence is then written in binary form as

(2.1) kin-1 kin-2.., km-d km-d-1.., ko.
The binary index of the processor label is to the left of the vertical bar, and the binary
index of the local memory is to the right.

We shall use an/-cycle 13], which is a binary index-digit permutation, to describe
the communication exchanges in the compact FFTs. Swarztrauber [13] showed that
by using/-cycles in his complex FFT, the communication is minimized. In an/-cycle,
a digit in the processor label (called the target digit) and the left-most digit in the local
memory (called the pivot) are switched. This corresponds to an exchange of the last
half of the subsequence in the processor whose target digit is zero with the first half
of the subsequence in the processor whose target digit is one. It is a nearest-neighbor
exchange of N/2P contiguous elements. No extra memory is required.

DEFINITION. Conditional ordering of a conjugate-symmetric sequence is a way
of packing a conjugate-symmetric sequence of length N into a complex array of length
N/2. First, we select from the conjugate-symmetric sequence only those elements
whose binary index has the following property: the binary place to the left of the first
nonzero bit from the right is zero. For example, for N- 16, the sequence is

(2.2) {0,1,2,4,5,8,9,10,13}.
This reduces the set of elements to N/2 / 1. Since mode 0 and N/2 are real, we pack
them into a complex mode 0. The elements are then placed into position within the
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set equal to each element’s index without the "zero" place. For example,

{(0,8) 1,2,5,4,9,10,13} forN=16 and
(2.3)

{(0,16),1,2,5,4,9,10,13,8,17,18,21,20,25,26,29} forN=32.

Due to the way in which we take advantage of the symmetries of the sequences,
this ordering is necessary to streamline the communication. /-cycle communication
and nonnearest-neighbor communication results if this ordering is used instead of the
first N/2 + 1 elements of a naturally ordered conjugate-symmetric array.

DEFINITION. Second conditional ordering of a conjugate-symmetric sequence is
another way of packing. We first take a sequence of integers 0, 1,..., N- 1; we then
select N/2+ 1 elements of the sequence that have a zero bit to the right of the first
nonzero bit from the left. We pack the first two elements together into a complex
integer. The reduced sequence for N 32 is

(2.4) {(0, 1) 2 4 5 8 9 10 11 16 17 18 19 20 21 22 23}.

The bit-reversed indexing of this sequence is

(2.5) {(0, 16) 8 4 20 2 18 10 26 1 17 9 25 5 21 13 29}.

Two reduced operations that result from the symmetries of the input sequence
are now presented.

DEFINITION. Operation A. Given two real numbers x and y, we define operation
A as x +y replaces x and x-y replaces y.

DEFINITION. Operation B. If we let the output number z be complex, then
operation B is defined as x is the real part of z and y is the imaginary part of z. z then
replaces (x, y) in memory.

3. The parallel CLW algorithm. In this section we present the parallel method
for the CLW algorithm. We begin by reviewing the serial algorithm.

3.1. The serial CLW FFr. Let the Fourier transform of a sequence of N real
numbers, Y(j), j=0, 1,..., N-l, be C(n), n =0, 1,..., N-1. C is conjugate sym-
metric, C(n)= C(N-n)*, and the imaginary parts of C(0) and C(N/2) are zero.

The first step of the CLW algorithm is to create the complex array X from Y, as
follows:

(3.1) X(j) Y(2j) + iY(2j+ 1), j=0, 1,..., N/2-1,

where x/z-f. Then an N/2-point complex FFT, X A, is performed. The final step
is to perform the following operation:

C(n) 1/4{A(n) + A*(N/2- n) iw*u.[A( n) A*(N/2 n)]},
(3.2)

C(N/2- n)= 1/4{A(N/2- n)+ a*(n)+ iwN.[a(u/2- n)- a*(n)]},

where n 0, 1,..., N/4, wN. is the nth root of N roots of unity and (.)* denotes the
complex conjugate.

3.2. The parallel CLW FFF. For the parallel algorithm, we assume that Y is evenly
distributed across P processors. If P <_ N/2, then (3.1) is done within each processor
and no communication is required. The ordering of the input sequence is such that X
is bit-reversed. The complex FFT is performed using the inplace algorithm of
Swarztrauber [13] and Walker [14]. The transformed sequence is in sequential order.
In addition, the processor binary index is transposed such that (no nd- nd-2.., n).
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Operation (3.2) requires a pair of elements reflected about the midpoint of the
sequence and hence requires communication to complete. If A is sequentially ordered,
and P- N/, then the odd index pairs (n and N/2- n) are on opposite vertices of a
d- 1 hypercube. In this case the Hamming distance is d- 1. If P N/2, then the
distance increases to d, because the right-most binary place of the index is not in the
processor label. The processor transposition has no effect on the Hamming distance.

Operation (3.2) requires only one major communication of data if the binary
reflected grey code mapping is used. Unfortunately, this also increases the communica-
tion distance in the FFT to next-nearest-neighbors. Both mappings produce a similar
product of distance times amount of communicated data.

We are led to the conclusion that operation (3.2), while requiring little computation,
requires nearly as much communication (defined as message length times Hamming
distance) as the complex FFT. For an example of the degradation of performance in
the Fourier pseudospectral method for Navier-Stokes simulations, see [8]. For a
discussion of this algorithm on distributed SIMD and MIMD multiprocessors, see [9]
and 10] and 16], respectively.

4. The parallel, compact FFT for a real, naturally ordered input sequence. In this
section, we present an extension of the compact FFT presented by Briggs [2] for the
transform of a real, naturally ordered input sequence (CTIR). His approach was to
develop an FFT for a conjugate-symmetric sequence in bit-reversed order in a manner
similar to Swarztrauber [12]. The output sequence is real and in natural order. The
inverse of this transform is then what is desired.

4.1. A serial CTIR algorithm. There are many ways to implement the CTIR
transform. We shall describe one that is easily parallelizable. We denote the binary
index of the real input sequence as

(4.1) (k,,,_ krn-2.., ko),

and the binary index of the complex output sequence as

(4.2) (no n,... rt,n-1).

Because the output is complex, only m- 1 bits have the range [0, 1]. We shall pack
the zero- and N/2-mode coefficients that are real into a zero-mode complex number.

The fact that the input array is real can be used during each stage of the transform.
The first stage, the summation over k,,_l, has real output, if the input is real. This is
operation A as defined in 2. The binary index kin-1 of the input vector is replaced
by n,,_ in the output index.

The second stage proceeds in two parts. If nm-1-0, then the summation over

km-2 is similar to that of the first stage. If nm-1-- 1, then the output of this stage is a
complex number in which the k,,_2 =0 element is the real part and the associated
k,,_2 1 element is the imaginary part. The element with rim-E--1 is the complex
conjugate of the element with nm-2 0. Only the n,,_2 0 element is calculated. This
is operation B as defined in 2. The real and imaginary parts are placed in contiguous
memory. The binary index of the output of the second stage is then

(4.3)
(rlrn- 0 rim--2 kin-3 kin-4.., kl ko) and

(n,,_ 1 n,,_2- 0 km-3 k,,_4. k ko c),

where c represents complex elements.
The third stage has three parts. For r/m_ r/m_2 --0, the summation over k,,-3 has

real input and real output (operation A). For n,,_l-0 and n,,_2 1, the complex
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elements are formed as in the preceding stage (operation B). For nm-- 1, CT1
operations for a complex input sequence are performed. The binary index of the output
is

(n,._-0 n,_2 0 n,,-3 k-4.., kl k0),
(4.4) (n,,_ 0 n,,__ 1 n,,_3 0 k_4.., kl ko c), and

(n,,,_l 1 nrn-2 0 nrn-3 k,-4. kl ko c).
The remaining stages are similar to the last. After the mth stage, there will be two

real numbers with index nm-1 nm-. n 0; these correspond to the elements
of the zero mode and the N/2 mode and will be contiguous in memory. The other
N/2-1 elements are complex and are indexed such that at least one of the m binary
digits is one.

The output sequence is in the second-conditional, bit-reversed order. Table 3
illustrates how this ordering occurs with an example.

TABLE 3
Example of the reduced sequencefor a compact transform n 16. y yes, the element is

needed, n no, the element is the conjugate of an existing element and is not needed.

Bit-reversed
Base 10 Base 2 Stage Stage 2 Stage 3 Stage 4 Remaining base 10

0 0000 y y y y 0000 0
0001 y y y y 0001 8

2 0010 y y y y 0010 4
3 0011 y y y n
4 0100 y y y y 0100 2
5 0101 y y y y 0101 10 6*
6 0110 y y n n
7 0111 y y n n
8 1000 y y y y 1000
9 1001 y y y y 1001 9 7*
10 1010 y y y y 1010 5
11 1011 y y y y 1011 13 3*
12 1100 y n n n
13 1101 y n n n
14 1110 y n n n
15 1111 y n n n

The inverse transform can be accomplished by reversing the stages and operations.
The input data should be in the same order as the output of the forward transform.
This corresponds to the GS2CS algorithm.

4.2. The larallel CTIR algorithm. Now we present the parallel extension of the
CTIR algorithm just desribed. Table 4 shows the binary index of the vector during
each step of the transform for m 6, d 3.

In order to perform the first stage, operation A, the/-cycle with the (m 1)st digit
as the target is executed. The first stage is then performed on all processors as described
above, and the input digit k_ changes to the output digit n_. Anticipating the fact
that complex numbers will be created during the second stage, and that real and
imaginary parts are to be contiguous, a local rearrangement of the sequence is done.
The transpose leaves the index of the array as shown in Table 4. Note that since km_d_
has moved into the processor label, it must be moved back using an/-cycle to complete
the FFT; hence, the number of communications is at least d / 1.
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TABLE 4
Binary index table of the compact transform with a real, naturally ordered input sequence and conjugate-

symmetric, bit-reversed order output sequence. The cj represents a complex number composed of real elements
of binary digit j. m 6, d 3.

ks k4 k3[k2 k ko
k2 k4 k31k5 k ko
k k ka[n5 k ko
k k k3[ k ko n5

k2 k ka k4 ko n5
k k k31n ko05 k k k31c ko 15
k k k3105 ko/’/4 k k k 15 ko 4

k2 k 051k3 ko n4 k2 k 151k3 k

k2 k 051/13 ko 04 k2 k 0513 ko 14 k k 15 In3 ko 4
k2 k 05104 ko/13 k2 k105114 ko c3

04kOsIk2kon3 14kOsIk2koc3 n3k 151k2koc4
OakOsIn2ko03 OnkOsIc2ko13 lakOsI/12koc3 /13kl 151n2koc4
04k05103kon2 04k05113koc2
04 03 05 kl ko/12 04 13 05 kl ko c2 14/12 05 kl ko c3 /13/12 15 kl ko c4

040305[n ko02 0403051c ko12 04 13051nl koc2 14 /’/205[/11 koC3 /13 /’/2 151/11 ko4
040305102kon 04 03 05112k0c

040305102n00 040305102c01 040305112n0c 0413051/1/10c2 14n2051nnoC3 /13n2151n1/10c4
0403051020n 04 03 051021
04 03 05102 0 n0 04 03 051021 c0 04 03 05112 /12 c 0413 051/11n0 c2 14n2051nnoC3 n3/12151nnoC2

Input
1st /-cycle

Stage
Transpose

2nd/-cycle
Stage 2

Digit switch

3rd/-cycle
Stage

Digit switch

4th /-cycle
Stage 4

Digit switch

5th /-cycle
Stage

Digit switch

Stage 6
Digit switch

Output

In the second/-cycle the (m- 2)nd digit is the target. Because another k digit has
moved to the processor label, the total number of/-cycles needed for the transform
is at least d + 2. State 2 is then performed on all processors as described above. This
is a combination of operations A and B. The complex elements formed are then
positioned contiguously in the last half of the distributed array using a local left-
most/right-most digit switch. This positions n,,_l in the pivot place; hence the maximum
number of/-cycles will remain at d + 2 after the next/-cycle.

The third/-cycle brings km-3 into the pivot. In the third stage, all processors with
n,,_l 1 perform a third CT1 stage on their subsequence. The other processors perform
an operation that is similar to the second stage including the local digit switch.

To make this stage efficient on a SIMD multiprocessor, we must make the combined
operations A and B look similar to a CT1 operation. As is evident, operation A is
performed on all even elements of the subsequence. This is similar to a CT1 operation
with roots (1., 0.). Operation B, which is executed on all odd elements, does not
conform to a CT1 operation. One way of accomplishing this is to change the CT1
operation
(4.5) from x + w"y to Wx + to"y,
where W is a real array. The roots-of-unity array and W can then be set so that each
processor, given the same instruction, will perform either a CT1 operation or an A/B
operation. The local digit switch, however, must be a masked operation.

The fourth to the dth stages proceed similarly to the previous stage. On the ith
stage, only those processors with n,,_l n,,-2 ni+2=0 perform an operation
equivalent to stage 2. These stages are not seen in Table 4 since d 3.

The next two stages also require/-cycles before they can be executed. The/-cycles
reposition k,,,-d- and k,,-d-2 into the pivot. On the (d + 2)nd stage, only processor 0
performs the stage 2 operation. For the remaining stages, d + 3 to m, no communication
is required. Processor 0 executes an (m- d-2)-stage CT1 transform, and the others
complete their stages. Figure 1 shows a graph of the complete CT1R algorithm for
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FIG. 1. Graph of the CT1R algorithm with m 5, d 3. The input is a real, naturally ordered sequence
and the output is a complex, bit-reversed, second-conditionally ordered, processor transposed sequence. Operation
A is executed on the first stage on the first and third, and second and fourth elements. The transpose is shown
just below that. The second stage involves operation A on even elements and B on odd. The digit switch is

shown just below. On the third stage, the odd processors execute the complex CT1 operation, shown as a single
butterfly with a root of unity.

m 5, d 3. This completes the description of the transform; there is a total of d + 2
/-cycles.

4.3. Ordering, roots, and inverse transform. In addition to the output sequence
being in the second-conditional, bit-reversed order, the processor index is not in the
proper bit-reversed order. The two left,most digits should be on the right. It requires
d + 2/-cycles and local permutations to correct this.

For the CT1R algorithm we have chosen to precompute the roots of unity. For
stages 3 to d +2 with d _> 2, each processor requires one root per stage. For the pth
processor, we first form Po by

(4.6) Po 4p/P + 4(p)mo, P/4,

which is the adjusted processor label. Let j be the first nonzero binary digit from the
left in Po. Then the adjusted processor label is modified so that the 1 in the jth place
is moved one place to the left,

(4.7) Pl 2j+l + (Po)mod2/.
The argument for root of unity is then- 27r/P bit-reverse (p with d + 1 places).(4.8) 4

The roots from stages d + 3 to m build on the roots from stage d + 2 in the standard way.



922 RICHARD B. PELZ

The inverse transform can be accomplished by reversing the stages,/-cycles, and
local permutations. The input data should be in the same order as the output of the
forward transform. As in the serial case, this corresponds to the GS2CS algorithm.

4.4. Performance analysis. In order to estimate the parallel performance of the
algorithm presented above, we first must establish the operation count for each
processor during each stage. We shall analyze the load imbalance that occurs at each
stage and note the amount of local memory transfers. We shall denote the number of
transforms by q. It is then a simple matter to calculate the amount of communication
overhead. Together with the communication time, we shall predict such measures as
overhead and parallel efficiency.

In the first and second stages the computations are completely balanced; the total
number of floating-point operations is qN/P for each processor. There are (m- d-
1)qN/2P elements exchanged in the local transpose and qN/2P elements exchanged
in the local digit switch. For stages 3 to d /2, processors either perform the real
summation with an operation count of 1/2qN/P or the CT1 operation with a count of
5qN/2P. In stages d /3 to m the total operation count is 5q(m-d-2)N/2P-2qN/P
for processor 0 and 5q(m-d-2)N/2P for the others.

Totaling only the maximum operation count for each stage and ignoring the local
memory exchanges, the operation count for the transform is

(4.9) T,’= (5m-2)Nq/2P,

which is similar to the operation count for a complex FFT of length N/2.
d + 2/-cycles are required for the transform; hence there are d + 2 nearest-neighbor

communication exchanges of contiguous data of length Nq/2P. The equivalent number
of floating-point operations required by the /-cycles is then

--p 2(d +2) a+fl
Nq

where c is the number of floating-point operations per communication startup, and
/3 is the number of floating-point operations per word transmitted.

Overhead is defined as

(4.11) f- (PTp T1)/ T,,

where T1 is the number of operations required for the transform run on one processor.
The operation count for the serial algorithm is (5m-2)Nq/2. The overhead for the
real transform is then

(4. f- m
+

The first term in the parentheses comes from the message-passing communication. The
last is message staup and is inversely propoional to the granularity Nq/2R It will
most likely be small when granularity is large. Multiplying the expression is approxi-
mately log P/log N. The overhead is propoional to the dimension and inversely
propoional to m.

The eciency is [1 +f]-l. Neglecting staup and taking the first term of the
binomial series, it can be expressed as

2d+2
(4.13) el .

5m-2
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An efficiency close to one is expected for problems with large granularity and multi-
processors with small/3 (ratio of message passing to computational rates).

4.5. A serial GSIR algorithm. An attraction of the GS1 forward transform is that
it has a less complicated power distribution for the roots-of-unity multiplication than
does the CT1 transform. The former has sequentially ordered roots while the latter
has bit-reversed ordered roots. For completeness and simplicity, we present a discussion
of a parallel GS1R algorithm for a real, naturally ordered sequence in this and the
next two sections. We have chosen this particular way of implementing the GS1R for
ease in parallelization.

As in the CT1R algorithm, the first step involves only the k,_. summation, which
is operation A. In the output, km_ is replaced by n,_.

The second step is split into two parts. For input data with nm-1 --0, the oN term
is unity and the kin-2 summation (operation A) is done. The index of the output is
(n-i =0 n,_2 k,-3.., ko) and the data are real. For n,_ 1, we combine the roots
calculation with the k,_2 summation. Since the input sequence is real, the output with
n,_2 1 are the complex conjugates of the corresponding output data with n_2 0;
hence, the former output data are not calculated. The oN/ term is unity for the output
calculated. This is operation B with a roots-of-unity multiplication.

The third stage is split into three parts. For the real subsequences with nm- n,,,_2

0, the k,_3 summation is performed and the output is real. For n,_l 0 and n,,_ 1,
we have a situation similar to the second part of stage 2. The last part of stage 3 is for
complex input sequences with n,_ 1; the GS1 stage is executed.

Stages 4 to rn proceed similarly to the proceeding stage. If all n digits to the left
of the current place are zero, then the summation of real input to real output is
performed. If all n digits to the left are zero except the adjacent one, then the
real-to-complex operation is executed and is similar to stage 2. In all other cases, the
GS1 operation stage is executed.

The output vector has the second-conditional, bit-reversed ordering; the inverse
is the CT2CS algorithm.

4.6. The parallel GSIR. The previous section provided a description of the GS1R
algorithm for a real, naturally ordered sequence. Now we develop the parallel version.

Table 4 contains the index representations at each stage and/-cycle for the parallel
GS1R (as well as CT1R) for m =6 and d 3. All the communications and local digit
permutations are the same as the CT1R algorithm; the only differences are the roots
of unity and the operations at each state. Figure 2 shows a graph of the GS1R with
m=5, d=3.

Stage 1 is operation A. Stage 2 is in two parts. If n,_ 0, then just the operation
A is executed. If nm-1 1, then the complex number is created (operation B) and then
multiplied by the suitable root of unity. The local digit switch is then done.

The third /-cycle brings the (m-3)rd place to local memory and moves n,_ or

q,_2 to the processor label. In all subsequent/-cycles, only n or q indices will move
into the processor label. Thus, the number of/-cycles for the transform stands at d + 2.
The third stage is split into three parts. If n_ n,_2=O, then the simple real
summation is performed. If nr- 0 and nm-2 1, then the complex number/roots-of-
unity operation is done followed by a reindexing with q replacing n. If qm-2 1, then
a standard GS operation is done. A local index switch is done on those processors
with n,_ =0.

The subsequent stages 4 through d + 2 proceed similarly. Stages d +3 to m and
index switches proceed as shown in the table. The resulting index order is shown in
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FIG. 2. Graph of the GS1R algorithm with m 5, d 3. The input is a real, naturally ordered sequence
and the output is a complex, bit-reversed, second-conditionally ordered, processor transposed sequence. Thefirst
stage is the same as in Fig. 1. On the second stage, even elements execute A and odd execute B plus a
roots-of-unity multiplication. On subsequent stages the single butterfly with root represents a complex GS1
operation.

the last entry of the table. This completes the development of the parallel GSIR
algorithm.

4.7. Ordering, roots, and the inverse transform. The ordering of the output data
is the same as in the parallel CT1R algorithm.

We have chosen to compute the roots of unity in the standard way by precomputing
the first root, or the increment for each stage,

(4.14) 6ooj =exp (izr/2m-J), where j is the stage index.

During each stage, the actual roots are calculated. With this method, the starting
root for each processor is not necessarily (1, 0) and so a starting root of unity; to(k)
must also be precomputed for each processor and each stage.

One way of computing the starting roots of unity for d > 1 is

to(k) exp [i(km-3, kin-4,..., km-d-2)rr/2P],
w(k) exp [i(km-3, kin-4,..., k,,_d_2)’n’/P],
toa(k) exp [i(km-4,..., kin-d-2, 0)Tr/P],

(4.15) to4(k) exp [i(k,,-3,..., k,,,-d-2, O, 0)Tr/P],

toOd+,(k)(k) =exp [i(k,-a-z, 0,..., O)Tr/P],
toy(k) (1, O) for j d + 2 to m.
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If d 1, then

(4.16) to(k)=exp[l(m-2).a’/2P], w(k)=(1,0) for j=2 to m.

The inverse transform can be accomplished by reversing the stages and operations.
The input data should be in the same order as the output of the forward transform.
This corresponds to the CT2CS algorithm.

4.8. Performance analysis. The first and second stages have completely balanced
computations; the total number of floating-point operations is Nq/P and N/2P(5q + 3)
for each processor, respectively. For stages 3 to d + 2, processors also have a balanced
computational load of N/2P(5q+3). The total operation count for stages d +3 to m
is N/2P[(m d -2)5q +6] for processor 0 and N/2P[(m d -2)5q + 3] for all others.
Since processor 0 has slightly more work and the local permutation, an imbalance may
occur. Totaling the maximums for each stage, the operation count for the transform is

(4.17) T,ale N/2P[(m 3/5)5q + 3d + 9].

The second term in parentheses comes from redundant roots-of-unity calculations
during stages 2 to d + 2.

There are d +2 nearest-neighbor communication exchanges of contiguous data
of length n/2P. The communication time is

(4.18) "r’cmm 2(d + 2)(ce +/3pq)p

The operation count for the serial algorithm is N/2[(rn-3/5)5q+ P]. The overhead
for the real transform is then

(4.19) f =[3d/q+Z(d
+2)a][2P/Nq+Z(d +2)/3].
rn 3/ 5) + 9/ q

The first term in the numerator comes from the redundant roots-of-unity calculations
and is small for large q. The second term is from message startup and is inversely
proportional to the granularity Nq/2P. The third term is from the message-passing
communication and is proportional to the dimension and message-passing rate. For
large granularity, defined as a//3 << Nq/2P, and large, q, q >> d, the overhead tends to
2/3 d/m.

The efficiency is [1 +f]-. Taking the first term of the binomial expansion, the
efficiency is

(4.20) e 1 2/3 d/m

for the assumptions made above.

5. The parallel, compact FFY for a conditionally ordered, conjugate-symmetric
sequence. In this section we present the parallel compact CT1CS and GS1CS
algorithms. The conjugate-symmetric input sequence is conditionally ordered and the
real output sequence is in bit-reversed order.

5.1. The parallel GSICS algorithm. To describe the algorithm, we first describe
the inverse transform CT2R, which has as its input, a real, bit-reversed sequence. Much
of this algorithm is the same as CT1R; the reader is referred to 4.1 and 4.2 for
details of the operations at each stage.

Let the binary index of the real sequence be

(5.1) (no hi... t/m-l).
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The index of the distributed, bit-reversed sequence is then

(5.2) (n,,_ n,,_ n,,-a n,,-a-1 n,,-a- no).
We also assume that the input sequence has the processor transposition 13]; the index
of the input sequence is then

(5.3) (llm-d l’lm-1 l"lm-2 ’lm-d+l n,,-a-, nm-d-2 no).
Table 5 has an example of the index configurations in the transform for m 6,

d 3. The first stage of the algorithm is the summation over no, which is operation A
described in 2. The second stage is a summation over nl. If ko =0, then operation
A is executed; if ko 1, then operation B is executed and a complex number is created
from the two real elements. The complex number is denoted by a cl in the table. The
indices k and ko are switched.

TABLE 5
Binary index table of the inverse compact transform with a real, bit-reverse-ordered input sequence and

conjugate symmetric, naturally ordered output sequence. The cj represents a complex number composed of real
elements of binary digit j. m 6, d 3.

n3 n5 naln2 nl no
n3 n5 n41 n2 nl ko

n3 ns naln2 kl O0 n3 ns naln2 cl lo
n3/15/141n2 00 kl n3 n5 n4ln2 10 cl

n3 n5 n4l k2 00 01 /13 n5 nalc2 00 11 n3 n5 hal k2 10 ci

n3 n5 n4101 00k2 /13 ns n4111 00c2

01 /’/5 /141/13 00 k2 11 /15/14 ]/13 00 c2 k2/15/14 [/13 10171
01//5/’/4 k3 00 02 01/15 /141t73 00 12 11/’/5/14 k3 00 2 k2/’/5/’/4 k3 10 Cl
01 ns n4102 00 k3 01 n5 n4112 00 c3

01n5021nn00k3 01na121nn00C3 11nsk31n400c2 k2nsk31nnlocl
01 n502{k40003 01/15 021c4 0013 01/15121k4 00 c3 11 n5k3lk400c2 k2nsk3lk4 locl
01 ns021030ok4 01 n5021130oC4
01 03 02 I/’/5 00 k4 01 13 021/15 00 c4 01 k4 121/15 00 173 11 k4 k31/15 00 (?2 k2 k4 k3 I//5 lo 1

01 03 02 k5 00 04 01 03 0215 00 14 01 13 02 k5 00 c4 01 k4 12 k5 00 173 11 k4 k3 k5 00 c2 k2 k4 k3 k5 10 171
01 03 02104 00 k5 01 03 02114 00 c5

04030210100k5 14030210100c5 k5130210100c4 ksk41210100c3 ksknk311100c2 ksk4k31k210cl

Initial index
Stage
Stage 2

Digit switch
Stage

Digit switch

1st/-cycle
Stage 4

Digit switch

2nd /-cycle
Stage

Digit switch

3rd /-cycle
Stage 6

Digit switch

4th/-cycle

The third to (m-d)th stages proceed as follows. On the jth stage, operation A
is executed if all k bits are zero. Operation B is executed if all k bits are zero except
kj_2. Complex CT2 operations are executed on the complement. In a local memory
exchange, indices kj_2 and k_ are switched.

Before the (m- d- 1)st stage, an/-cycle places the right-most target bit into the
pivot position. On the (m- d- 1)st stage, the lower half of the processors execute a
combined A/B operation, and the upper half execute CT2 operations.

For the next d- 1 stages, m- d + 2 to m, we first perform/-cycles with the target
starting from the right-most processor bit and moving progressively to the left with
each stage. Those processors with zero k bits execute operation A/B and the local
digit switch, while the complement execute the CT2 operations. Finally, after an/-cycle
with the right-most bit as the target is done, the transform is complete and the complex
output sequence is in conditional order.

Figure 3 shows the graph of the GS1CS transform for rn 5 and d =3. The
complex input, which is part of the conjugate-symmetric sequence, is in conditional
order. The first/-cycle has the right-most processor bit as the target. Processor 0 must
execute an operation (A/B)- and the others a GS1 operation. The resulting index of
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FIG. 3. Graph of the GS1CS algorithm with m 5, d 3. The input is a complex, conditionally ordered
sequence, and the input is a real, bit-reversed, processor-transposed sequence. The zero processor executes a digit
switch and A- on the even elements and B- on the odd. The rest of the processors execute complex GS1
operations. On the final stage, operation A- is executed on first and third, second, and fourth elements.

real elements is shown. Note that first a digit switch is done to make the (A/B) -1

operation have a similar form to that of GS1. Operations (A/B)-1 and GS1 can be
combined as in (4.5) for SIMD multiprocessors. The argument for the starting roots
of unity is

____p(5.4) 2(Pmod P/Z) - P/2’
where p is the base-10 processor index.

The second/-cycle has the middle processor bit as the target. We define a reduced
processor index on stage j as

(5.5) Pj =Pj-1- 2a-,
where pl p. All processors with positive reduced processor index execute GS1 oper-
ations; the complement execute operation (A/B)-. Hence, on the second stage,
processors 0 and 2 execute (A/B)-1. The argument for the roots on the jth stage is

(5.6) 2r2- Pmod P/2)/2N.

The target in the third /-cycle is the right-most processor bit. The lower half of
the processors execute (A/B) -a and the upper half execute GS1. The final /-cycle is
the same as the first. All processors execute (A/B)- on the fourth stage and A-1 on
the fifth. The last line has the index of the bit-reversed real sequence.
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This completes the description of the algorithm. Only d + 1 /-cycles are necessary
to transform a conjugate-symmetric sequence in conditional order into a real, rn
bit-reversed, processor-transposed sequence. The starting roots of unity for each pro-
cessor for each stage are given in (5.4) and (5.6), and the increment is given in (4.14).
The transform CT2R is obtained by formally inverting the GS1CS operations and
/-cycles. The parallel performance is similar to the GS1R algorithm. See 4.6 for more
details.

5.2. The larallel CTICS algorithm. We have presented three parallel algorithms
(and their inverses) for the transform of real data. In the first two, a real naturally
ordered sequence was input, and a complex sequence of bit-reversed, second-
conditional ordering was the output. The third, based on the compact GS1 algorithm,
has a complex input sequence in conditional ordering and a real bit-reversed output
sequence. The final transform has the same ordering of sequences as the third, but is
based on the CT1 algorithm.

The evolution of the binary indices is the same as in the previous transform and
is best explained using the inverse transform. Table 5, which was used to illustrate
GS1CS, is also valid for CT1CS.

Figure 4 shows a graph of the forward transform for rn 5, d 3. The scheme
follows the GS1R scheme in reverse except that the sequences are in a different ordering.
The CT1CS has a conjugate-symmetric, conditionally ordered input sequence and a
real, bit-reversed output sequence, whereas the GS1R scheme has a real, naturally
ordered input sequence and a conjugate-symmetric, second-conditionally ordered,
bit-reversed output sequence. Roots of unity can be obtained from (4.6) to (4.8). We
chose to precompute the roots of unity; the operation count is the same as in the CT1R
algorithm (4.9). The inverse of this transform is GS2R.

6. Results. To complete the presentation of parallel compact FFTs for real sequen-
ces, we give timings of four of the eight algorithms as implemented on the nCUBE/2,
an MIMD multiprocessor with version 3.0beta of the operating system. All code is
written in FORTRAN-77 with explicit calls to the communication routines and run
using single precision (32 bit words).

A 64-processor machine was employed for the tests. We chose to report one
sequence length, 4096, with the number of sequences being 1, 8, and 16. With these
parameters all the tests could be run on one processor (4 Mbytes RAM per processor),
so that parallel efficiencies could be computed. The scheme that was run on one
processor is the same as was run on multiprocessors. The transpose and index switch,
not necessary for the single-processor run, was nonetheless executed. Due to limitations
on the communications buffer, a few low-dimension tests could not be run. All results
reported are an average of times over all processors. The timings are taken from a
forward/inverse pair after many pairs have been executed.

Tables 6(a), 6(b), and 6(c) show the times in milliseconds for the CT1R (forward)
transform and the GS2CS (inverse) transform. The first column is the processor
dimension, which is the log (base 2) of the number of processors used to calculate the
transform. The other columns from left to right are the total time for one transform,
the calculation time, the communication time including idle time, the time taken in
the transpose and index switches, and the parallel efficiency. These columns are repeated
for the inverse transform.

Immediately obvious is that the time for index switch, which consists of local
memory references only, takes from 37% to 14% of the total time, depending super-
linearly on the processor number. In order for these algorithms to be competitive with
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FIG. 4. Graph of the CT1CS algorithm with m 5, d 3. The input is a complex, conditionally ordered
sequence, and the input is a real, bit-reversed, processor-transposed sequence. The first and last stages are the
same as in Fig. 3. On the second stage processor 2 executes a digit switch, roots-of-unity multiplication and B-1.

CLW, local memory referencing must be done more efficiently; transpose and index
switch routine should be coded in assembler.

The calculation time diverges from linear scaling as the dimension increases. Loop
overhead is thought to be responsible for this behavior. Since the roots of unity are
precomputed and stored in this implementation, the nonlinear (in P) term in (4.17)
is not present in the operation count. The less-than-linear scaling of the communication
time reflects the fact that message startup time scales as the dimension and the
message-passing time scales as the dimension/P (see (4.18)). An efficiency of 58% is
obtained on 64 processors and a subsequence length of 64.

Comparing the inverse transform GS2CS to the forward transform in Table 6(a),
the higher total time is due to the normalization performed on the inverse, which
increases the calculation time. The communication time is higher also. The reason for
this is that the forward transform, executed first, sets a certain processor synchroniz-
ation, which causes an increased idle time on the inverse. The transpose and index
switch times of the inverse are essentially the same as those of the forward. Efficiencies
of the inverse are slightly lower than those of the forward.

Table 6(b) contains information similar to Table 6(a), except that eight sequences
are transformed instead of one. An example of loop overhead can be seen in the
comparison of the dimension 0 calculation times of Tables 6(a) and 6(b). There is a
factor of 4.6 instead of 8 between them. The calculation and communication times
scale more linearly with processor number for eight transforms. Transpose and index
switch times still scale superlinearity. An efficiency of 77% is achieved on 64 processors.
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TABLE 6(a)
Averaged milliseconds per Cooley-Tukey FFT of a real, naturally ordered sequence (forward transform)

and the Gentleman-Sande FFT of a conjugate-symmetric, bit-reverse ordered sequence (inverse transform).
Sequence length: N=4096; number of sequences: q= 1.

CTIR forward transform GS2CS inverse transform

Dim Total Calc Comm Sw Eft Total Calc Comm Sw Eli

0 279.94 173.44 0.00 104.83 1.00 290.69 182.14 0.00 107.26 1.00
144.83 86.72 8.32 48.58 0.97 151.49 92.35 8.70 49.73 0.96

2 72.99 43.71 5.79 22.46 0.96 77.57 46.37 7.33 22.85 0.94
3 37.46 22.06 4.08 10.38 0.93 40.80 23.33 5.92 10.50 0.89
4 20.01 11.30 3.06 4.79 0.87 22.53 11.77 4.89 4.79 0.81
5 11.58 5.69 2.48 2.20 0.76 13.59 5.97 4.27 2.18 0.67
6 7.60 3.04 2.47 1.04 0.58 9.41 3.21 4.13 1.04 0.48

TABLE 6(b)
Averaged milliseconds per Cooley-Tukey FFT of a real, naturally ordered sequence (forward transform)

and the Gentleman-Sande FFT of a conjugate-symmetric, bit-reverse ordered sequence (inverse transform).
Sequence length: N =4096; number of sequences: q-8.

CT1R forward transform GS2CS inverse transform

Dim Total Calc Comm Sw Eli Total Calc Comm Sw Eli

0 1108.35 798.98 0.00 308.22 1.00 1166.21 858.24 0.00 306.18 1.00
2 297.89 190.62 41.15 65.25 0.93 323.68 215.52 42.34 64.86 0.90
3 150.50 95.17 24.74 29.58 0.92 166.64 108.08 28.16 29.39 0.87
4 77.74 47.86 15.54 13.38 0.89 85.78 54.14 17.37 13.29 0.85
5 41.05 24.29 9.79 5.95 0.84 44.92 27.33 10.64 5.92 0.81
6 22.60 12.35 6.47 2.69 0.77 24.58 13.89 6.97 2.67 0.74

TABLE 6(c)
Averaged milliseconds per Cooley-Tukey FFT of a real, naturally ordered sequence (forward transform)

and the Gentleman-Sande FFT of a conjugate-symmetric, bit-reverse ordered sequence (inverse transform).
Sequence length: N =4096; number of sequences: q= 16.

CT1R forward transform GS2CS inverse transform

Dim Total Calc Comm Sw Eli Total Calc Comm Sw Eli

0 2055.30 1513.73
3 280.27 179.12
4 143.82 89.92
5 74.78 45.41
6 39.80 23.04

0.00 540.42 1.00 2164.86 1626.88 0.00 536.83 1.00
48.42 51.74 0.92 312.85 203.97 56.37 51.41 0.86
29.70 23.29 0.89 160.28 102.26 33.98 23.00 0.84
18.03 10.32 0.86 82.92 51.40 20.22 10.24 0.82
11.15 4.55 0.81 43.77 25.96 12.27 4.53 0.77

The calculation and communication times are slightly higher for the inverse due to
the same reasons as in Table 6(a).

Timings for the transform of 16 sequences are shown in Table 6(c). Comparing
calculation times of Tables 6(b) and 6(c), it is seen that loop overhead is small and
that scaling is nearly linear with the processors’ number. Memory references still take
a significant amount of the total time. Efficiency is 81% for 64 processors. The timings
for the inverse have a trend similar to Table 6(b).
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Tables 7(a), 7(b), and 7(c) show the times in milliseconds for the GS1R (forward)
transform and the CT2CS (inverse) transform for 1, 8, and 16 sequences of length
4096. The columns are arranged similarly to those in Table 6(a), 6(b), and 6(c). The
roots of unity are not precomputed, although the root increments are precomputed
and stored.

As can be seen in the comparison of Table 6(a) to Table 7(a), the calculation
times for the GS1R are higher than the CT1R. This is due to the roots-of-unity

TABLE 7(a)
Averaged millisecondsper Gentleman-Sande FFT ofa real, naturally ordered sequence (forward transform)

and the Cooley- Tukey FFT ofa conjugate-symmetric, bit-reverse ordered sequence inverse transform). Sequence
length: N 4096; number of sequences: q 1.

GS1R forward transform CT2CS inverse transform

Dim Total Calc Comm Sw Eli Total Calc Comm Sw Eli

0 342.91 236.54 0.00 105.22 1.00 320.51 211.71 0.00 106.88 1.00
177.02 119.04 8.19 48.83 0.97 176.51 107.39 18.30 49.60 0.91

2 89.60 60.06 5.70 22.53 0.96 95.17 54.53 16.67 22.85 0.84
3 46.29 30.72 4.06 10.38 0.93 52.66 28.02 13.18 10.54 0.76
4 24.75 15.82 3.10 4.76 0.87 30.13 14.42 9.91 4.80 0.66
5 14.06 8.15 2.52 2.15 0.76 18.16 7.34 7.32 2.13 0.55
6 8.95 4.34 2.44 1.04 0.60 12.01 3.92 5.96 1.04 0.42

TABLE 7(b)
Averaged millisecondsper Gentleman-Sande FFT ofa real, naturally ordered sequence (forward transform)

and the Cooley- Tukey FFT ofa conjugate-symmetric, bit-reverse ordered sequence inverse transform). Sequence
length; N =4096; number of sequences: q=8.

GS1R forward transform CT2CS inverse transform

Dim Total Calc Comm Sw Eli Total Calc Comm Sw Eli

0 1322.62 1011.20 0.00 309.63 1.00 1263.36 954.75 0.00 307.33 1.00
2 358.30 250.24 41.09 65.70 0.92 364.99 238.72 60.22 65.12 0.87
3 181.30 124.43 26.02 29.87 0.91 192.30 118.75 42.82 29.66 0.82
4 92.38 61.66 15.97 13.47 0.89 102.47 59.40 28.78 13.35 0.77
5 48.01 30.83 9.98 6.06 0.86 55.87 29.73 19.16 5.99 0.71
6 26.10 15.79 6.45 2.69 0.79 32.36 15.08 13.55 2.67 0.61

TABLE 7(C)
Averaged millisecondsper Gentleman-Sande FFT ofa real, naturally ordered sequence (forward transform)

and the Cooley- Tukey FFT ofa conjugate-symmetric, bit-reverse ordered sequence inverse transform). Sequence
length: N-4096; number of sequences: q= 16.

GS1R forward transform CT2CS inverse transform

Dim Total Calc Comm Sw Eli Total Calc Comm Sw Eli

0 2449.28 1904.13 0.00 543.23 1.00 2345.98 1805.44 0.00 538.37 1.00
3 336.83 232.58 51.09 52.16 0.91 353.04 223.79 76.77 51.57 0.83
4 170.72 115.10 31.00 23.50 0.90 186.17 111.16 50.78 23.20 0.79
5 87.30 57.22 18.63 10.41 0.88 98.99 55.46 32.25 10.33 0.74
6 45.66 28.45 11.44 4.58 0.84 53.91 27.71 20.65 4.54 0.68
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calculation. We have chosen to normalize on the forward transform, which also adds
to the calculation time. The communication time, transpose and index switch times,
and efficiencies are effectively the same as for the CT1R transform.

When compared to the forward transform GS1R, the inverse transform CT2CS
has a lower calculation time, which results from no normalization being performed.
A higher idle time is reflected in a higher communication time and is caused by a
particular processor synchronization, which minimizes the idle time of the forward
transform. These two factors combine to create lower parallel efficiencies for the inverse.
Similar comparisons are found for all three sequences.

Tables 8(a), 8(b), and 8(c) show timings for transforms of real sequences using
the CLW algorithm. We shall briefly review the implementation; see [8] for more
details. Walker, Worley, and Drake [16] have implemented the CLW algorithm on the
Intel iPSC/860. The real input sequence is treated as a complex sequence following
(3.1). The ordering of the complex array is assumed to be bit-reversed. A CT2 transform
is then performed on the complex sequence. The roots of unity are not precomputed.
The output from the transform is in sequential order to simplify the postprocessing
step, (3.2).

Before executing (3.2), the sequence is written into a work array which is then
redistributed in index-reversed order. As discussed in 3.2, the reordering takes at
least d 1 communications. Because we chose here to completely reorder the sequence,
the message length is (Nq/p-1). After the reordering of the work array, (3.2) is
executed and the conjugate-symmetric output sequence is in sequential order. The
inverse proceeds with a preprocessing step and a GS1 transform of a complex sequence.
The suffixes f and p on the column headings of Tables 8(a), 8(b), and 8(c) relate the
complex FFT and the pre- and postprocessing, respectively.

Because of the roots-of-unity computation it is best to compare the results of the
GSIR/CT2CS transform (Tables 7(a), 7(b), and 7(c)) with the results of the CLW
transform (Tables 8(a), 8(b), and 8(c)). Comparing dimension 0 timings in Tables 7(a)
and 8(a), we see that the total time for CLW-CT2 is about half that of GSIR. The
GSIR calculation time is about 30% higher. Similar trends, though progressively less
severe, are seen in the dimension to 5 results. The d / 2 communications of the GS1R
can be compared to the d / 1 communications of the complex FFT of CLW (commf).
Results of dimension 6 show that the total time of the GS1R is less than CLW-CT2.
The calculation time ofthe CLW-CT2 is still less than that ofGS1R, but the postprocess-
ing communication has become dominant over the index switch time.

Comparing Table 7(b) to Table 8(b) for the transform of eight sequences, the
dimension 0 case shows that the total time for the CLW-CT2 is still lower than the
GS1R, but the calculation times are about the same. This latter result is reinforced by
estimates of operation count. For dimension 2 and higher, the total and communication
times for GS1R are less. The GS1R communication times are comparable to the commf
times of the CLW-CT2. The commp times are greater than the commf times because
the message lengths are higher. The differences increase with dimension. Tables 7(c)
and 8(c) show similar trends illustrated in Tables 7(b) and 8(b). The timings of the
inverse transform CLW-GS1 are similar to those of the forward transform.

To conclude the experimental comparison of the CLW and compact transforms
for real sequences, the computational times of the two are about the same. The
differences in the dimension 0 timings are not understood, however. The index switch
time makes up a nontrivial percentage ofthe total time for low dimensions and decreases
the viability of the compact transforms. The local movement of data could be speeded
up considerably by efficient use of cache. The communication times for the compact
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TABLE 8(a)
Averaged milliseconds per FFT ofa real sequence (forward transform) and a conjugate-symmetric sequence

(inverse transform). The Cooley-Lewis-Welch algorithm is used. Sequence length: N=4096; number of
sequences: q--- 1.

CLW-CT2 forward transform

Dim Total Calcf Calcp Commf Commp Eit Total

CLW-GS1 inverse transform

Calcf Calcp Commf Commp EiI

0 177.15 158.59 18.56 0.00 0.00 1.00 175.36 157.82 17.28 0.00 0.00 1.00
106.05 79.42 15.23 5.63 5.44 0.84 104.51 78.34 14.85 5.63 5.38 0.84

2 59.20 40.74 7.68 4.54 5.66 0.75 58.24 40.06 7.46 4.67 5.60 0.75
3 33.57 21.09 3.89 3.38 4.53 0.66 32.88 20.43 3.79 3.44 4.54 0.67
4 19.78 10.95 2.00 2.62 3.31 0.56 19.46 10.66 1.98 2.69 3.38 0.56
5 12.73 5.63 1.00 2.19 2.68 0.43 12.55 5.50 1.02 2.34 2.67 0.43
6 9.11 3.06 0.57 2.19 2.26 0.30 9.02 2.94 0.56 2.22 2.26 0.30

TABLE 8(b)
Averaged milliseconds per FFT ofa real sequence (forward transform) and a conjugate-symmetric sequence

(inverse transform). The Cooley-Lewis-Welch algorithm is used. Sequence length: N=4096; number of
sequences: q 8.

CLW-CT2 forward transform

Dim Total Calcf Calcp Commf Commp Ett Total

CLW-GS1 inverse transform

Calcf Calcp Commf Commp Eft

0 1003.52 889.98 113.41 0.00 0.00 1.00 980.61 877.70 102.91 0.00 0.00 1.00
2 344.67 224.38 46.08 31.87 42.02 0.73 340.86 221.70 44.22 32.32 42.02 0.72
3 190.18 113.02 23.01 21.74 31.79 0.67 188.34 111.74 22.16 21.95 31.81 0.65
4 104.93 56.98 11.55 14.08 21.58 0.60 104.22 56.41 11.14 14.30 21.62 0.59
5 58.68 28.81 5.86 9.10 14.03 0.53 58.42 28.56 5.60 9.28 14.06 0.52
6 33.66 14.57 2.95 6.01 9.00 0.47 33.46 14.36 2.83 6.19 8.97 0.46

TABLE 8(C)
Averaged milliseconds per FFT ofa real sequence (forward transform) and a conjugate-symmetric sequence

(inverse transform). The Cooley-Lewis-Welch algorithm is used. Sequence length: N=4096; number of
sequences: q 16.

CLW-CT2 forward transform

Dim Total Calcf Calcp Commf Commp Eft Total

CLW-GS1 inverse transform

Calcf Calcp Commf Commp Eft

0 1947.78 1725.95 221.82 0.00 0.00 1.00 1907.33 1706.50 200.70 0.00
3 368.90 217.90 44.85 42.38 63.06 0.66 366.10 216.50 43.12 42.66
4 202.41 109.60 22.58 27.06 42.38 0.60 201.29 109.04 21.60 27.35
5 111.22 55.15 11.29 16.86 26.99 0.55 110.90 54.97 10.86 17.16
6 61.96 27.81 5.66 10.68 16.74 0.49 61.88 27.73 5.48 10.92

0.00 1.00
63.09 0.65
42.42 0.59
26.94 0.54
16.70 0.48

transforms are about half those of the CLW scheme. When the communication time
becomes significant, i.e., at higher dimensions, the compact transforms offer a time
savings over CLW.

7. Summary. We have presented eight in-place, compact FFTs of real sequences
for distributed-memory multiprocessors./-cycles are used for communication and result
in minimal communication costs on hypercubes. While the algorithms are written for
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MIMD processors, by suitable redefinition of operations, they can be implemented
efficiently on SIMD processors also. If the real sequence is naturally ordered, then the
transform requires d + 2/-cycles, where d is the dimension. If the conjugate-symmetric
sequence is in conditional ordering, which is nearly natural ordering, then only d / 1
/-cycles are required. The communication time is comparable to the complex FFT due
to Swarztrauber [13] and Walker [14], whereas the computational complexity is
comparable to the parallel CLW [4] algorithm.

The parallel overhead for all the schemes scales as fl d/m in the large granularity
limit, where fl is the message-passing rate, d is the processor dimension, and m is the
base 2 log of the sequence length.

We believe that the conditional ordering is the key to efficient algorithms for
cosine, sine, and quarter-wave transform.

A comparison of the compact and CLW algorithms as implemented on an
nCUBE/2 multiprocessor shows that while computational times are similar, the com-
munication times are about half in the compact algorithms. Local memory access time
must be increased, however, for the compact schemes to compete at low dimensions
with the CLW scheme.
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THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS,
WITH APPLICATION TO THE TWO-BODY PROBLEM*

M. P. CALVOf AND J. M. SANZ-SERNA"

Abstract. The authors develop and test variable step symplectic Runge-Kutta-Nystr6m algorithms for
the integration of Hamiltonian systems of ordinary differential equations. Numerical experiments suggest
that, for symplectic formulae, moving from constant to variable stepsizes results in a marked decrease in
efficiency. On the other hand, symplectic formulae with constant stepsizes may outperform available standard
(nonsymplectic) variable-step codes. For the model situation consisting in the long-time integration of the
two-body problem, our experimental findings are backed by theoretical analysis.

Key words, symplectic integration, Kepler’s problem, Runge-Kutta-Nystr6m methods
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1. Introduction. In mechanics, optics, chemistry, etc., situations where dissipation
does not play a significant role may be modelled by means of Hamiltonian systems of
ordinary differential equations (ODEs) or partial differential equations (PDEs) [2].
Hamiltonian systems of ODEs are of the form

(1.1) pl=_oH/Oq,, glI=OH/Op l<-_I<=d,

where the integer d is the number of degrees offreedom, the Hamiltonian H H(p, q)
H(pl,... ,pd, ql,..., qd) is a sufficiently smooth, real function of 2d real variables,
and a dot represents differentiation with respect to (time). There has been much
recent interest in the numerical integration of (1.1) by means of so-called symplectic
or canonical integrators, starting with the work of Ruth [12], Feng [7], and Channell
and Scovel [4]. An extensive list of references can be found in the survey [14].

In order to explain in simple terms the meaning and relevance of symplecticness,
it is advisable to consider first the question of how to tell, from the knowledge of the
solutions of a system of ODEs, whether the system is of Hamiltonian form or otherwise.
More precisely, let 5 be an autonomous system of ODEs for the dependent variables
(p, q), and let us introduce the 2a-valued function qgt(Po Po) such that, for fixed Po
and qo and varying t, (p(t), q(t)) qt(Po, qo) is the solution of be with initial condition
p(0) Po, q(0)=qo. If we now see as a parameter and Po, qo as variables, q,(Po, qo)
defines a transformation in the space E2a (the phase space). This transformation is
the flow of the differential system O. If we were given qt and at the same time were
concealed from us, could we tell whether if’ is a Hamiltonian system or otherwise?
The answer to this question is affirmative. The system be is Hamiltonian if and only if
for each t, qt is a symplectic transformation. Now a transformation - in phase space
is said to be symplectic [2] if for any bounded two-dimensional surface D in phase
space, the sum of the two-dimensional (signed) areas of the d projections of D onto
the planes (p, qt) is the same as the sum of the two-dimensional (signed) areas of
the d projections of -(D) onto the planes (p, qt). Thus the symplectic character of

* Received by the editors December 18, 1991; accepted for publication (in revised form) April 30, 1992.
This research was supported by Junta de Castilla y Le6n under project 1031-89 and by Direcci6n General
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" Departamento de Matemfitica Aplicada y Computaci6n, Facultad de Ciencias, Universidad de Val-
ladolid, Valladolid, Spain (Maripaz@cpd.uva.es and sanzserna@cpd.uva.es).
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the flow is the hallmark of Hamiltonian systems. Hamiltonian problems have many
specific features not shared by other systems of differential equations. All such specific
features (absence of attractors, recurrence, etc.) directly derive from the symplecticness
of the corresponding flow [2].

A one-step numerical method used with steplength h defines a transformation in
phase space ff/h (P0, q0) that advances the solution h units of time, starting from (Po, q0).
Of course, q’h(Po, qo) is an approximation to qh(P0, q0), and the numerical method
approximates qnh q, by iterating n times ’h. For Hamiltonian problems integrated
by classical methods, such as explicit Runge-Kutta methods, the transformation ’h
turns out to be nonsymplectic. Then the numerical method misses the important specific
features associated with symplectic transformations. However, there are symplectic
methods for which q’h is guaranteed to be symplectic for Hamiltonian problems.

Numerical experiments have shown that for Hamiltonian problems, symplectic
integrators may well be an improvement over their nonsymplectic counterparts.
However, the development of symplectic methods has so far been confined to constant
stepsize formulae and, accordingly, numerical tests have used as reference algorithms
constant stepsize implementations of classical methods. Such implementations are, by
modern numerical ODE standards, very naive, and the question arises of whether, for
Hamiltonian problems, a symplectic method with constant stepsizes, may actually be
more efficient than a modern variable-step code. Before we carried out the experiments
reported in this paper, we felt that the answer to that question would be no. On the
other hand, we suspected that for Hamiltonian problems, variable stepsize symplectic
algorithms would improve on standard variable stepsize algorithms. Accordingly, we
decided to develop variable stepsize symplectic algorithms.

In this paper we report on our experience with the construction and assessment
of variable-step, symplectic, explicit Runge-Kutta-Nystr6m algorithms. We used Runge-
Kutta-Nystr6m (RKN) methods rather than Runge-Kutta methods because all sym-
plectic Runge-Kutta formulae are implicit 13]. It appears that both our guesses above
were wrong: constant stepsize symplectic methods may beat standard variable stepsize
codes, but variable stepsize symplectic codes are not more advantageous than standard
variable stepsize codes.

Section 2 is devoted to the construction of the symplectic RKN code. The results
of the numerical experiments are presented in 3, where we use as a test problem the
well-known two-body (Kepler) problem. In 4 we analyze our experimental findings.
In particular, we provide a complete theoretical study of the performance of general
one-step numerical methods in the integration of the two-body problem. Finally, in

5, we present our conclusions.

2. Construction of a symplectic RKN code.
2.1. RKN methods. We restrict our attention to systems of the special form

(2.1) f(q), l:P

(i.e., to second-order systems ii f(q)). If f is the gradient of a scalar function -V(q),
then (2.1) is a Hamiltonian system with

H H(p, q): T(p)+ V(q), T(p) 1/2pp.

In mechanics, the q variables represent Lagrangian coordinates, the p variables the
corresponding momenta, f the forces, T is the kinetic energy, V the potential energy,
and H the total energy [2].
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An explicit RKN method for (2.1) takes the form [5], [8]

Qi q,, + hy, p,, + h 2 ce0f(Qj)
j<i

(2.2) Pn+l Pn + h bif(Q,),
i=1

q,,+l qn + hpn + h2 /3,f(O,),
i=1

where we assume, unless otherwise stated, that the following well-known condition
[5], [8] holds:

(2.3) t3, t,(- ,), <-i<-_s.

As in [5], we consider first same as last (FSAL) methods, i.e., methods with

(2.4a) y 0, % 1,

(2.4b) aj =/3, lj<=s-1.

Note that (2.4a) implies, via (2.3), that/3 0, and then the last stage Q of the current
step coincides with q,+, which, in turn, is the first stage of the next step. Therefore,
a step of an FSAL s-stage method requires only s-1 evaluations of f.

The method (2.2) is symplectic if [21], [11], [3], [14]

(2.5) co= bj(y-y) i>j.

For symplectic methods with s stages, we have s coefficients b and s coefficients y
as free parameters; the coefficients /3i and a are determined by (2.3) and (2.5),
respectively. On the other hand (2.3), (2.4a), and (2.5) imply (2.4b), so that a
symplectic FSAL method has s coefficients bi and s- 2 coefficients y, 2 <= <= s- 1, as
free parameters.

2.2. Derivation of a fourth-order, symplectic, FSAL RKN method. To construct a
variable-step symplectic code, we decided to begin with a fourth-order formula. While
higher-order formulae are expected to be more efficient, they are also more difficult
to construct. For a method (2.2)-(2.3) to have order four, the coefficients should satisfy
seven order conditions [8]. However, for symplectic methods, not all order conditions
are independent [1], [3], [14], [15] and, in fact, it turns out [3] that it is sufficient to
impose only six of them. For FSAL symplectic methods, four stages furnish six free
coefficients, and after imposing order four, no room is left for "tuning" the formula.
We then settle for five-stage FSAL symplectic methods, for which a two-parameter
family of order-four methods exists. Following a standard practice (see [5] and [6])
we choose among the members of this family the method with "smallest" truncation
error.

For smooth problems the p-truncation and q-truncation errors of an RKN method,
respectively, possess Taylor expansions of the form [5], [8]

(2.6a) h’+l c’+’)FJ
i=o

and

(2.6b) Y h’+’ c+)F),
i=1 k
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where the Fi) are the elementary differentials that only depend on the problem (2.1)
being integrated, and the ,.,i/l) and Ck_j are polynomials in the method coefficients
ao, yi, , b. In (2.6a), the sum in j is extended to all special Nystr6m trees with + 1
nodes, while in (2.6b), the sum in k is extended to all special Nystr6m trees with
nodes. For fourth-order methods, c() and ci) vanish for -< 4 and we try to minimize

c(5) and c5). We proceed as follows. Let us denote by e’() and e(), respectively, the
vectors with components c() and c), and set

(2.7) a’(5= a
(The norm is the standard Euclidean norm.) We consider b (A’(5)2+(A(5)2 as a
function of the eight free coefficients 3’, 2_-< i-<4, and bj, 1 _-<j =< 5, and use the NAG
subroutine E04UCF to minimize b subject to the six equality constraints that impose
order four and subject to bounds -1.5=< 3’i, bj =< 1.5. Of course, the minimization
subroutine requires an initial guess for the minimum and converges only to a local
minimum that depends on the initial guess. A thousand random initial guesses (subject
to -1.5 <= 3’i, b <-1.5) were taken, and we kept the local minimum with the smallest
value of b. The method thus obtained does not satisfy to machine precision the
conditions for order four, because the NAG routine fails in exactly enforcing the
equality constraints. We then kept the values bl and b2 provided by the minimization
routine and determined 3’i, 2 -< =< 4, and bj, 3 -<j -< 5, by solving the six equations for
order four by means of Newton’s method in quadruple precision. This of course
resulted in a solution that, while being close to that provided by the minimization
procedure, satisfies the order conditions to a very high precision. The coefficients are
given by

)’2 0.205177661542286386,

(2.8) 3’3 0.608198943146500973,

3’4 0.487278066807586965,

3’5 1,

along with (2.3) and (2.5).

bl 0.061758858135626325,

b2 0.338978026553643355,

b3 0.614791307175577566,

b4 --0.140548014659373380,

b5 0.125019822794526133,

For this method the quantities in (2.7) are A’(5) =0.00067 and A(5) =0.00071. As
a reference method for the numerical tests, we employ the fourth-order, FSAL, nonsym-
plectic formula of Dormand, E1-Mikkawy, and Prince [5, Table 3]. This has four stages
(three evaluations) and A’(5) =0.0018, A(5 =0.00046. Thus, per step, the reference
method achieves an accuracy comparable to that of the symplectic method (2.8), but
is cheaper by a factor of 3/4. In general, symplectic integrators require, for the same
accuracy, more work than their nonsymplectic counterparts since, to impose symplectic-
ness, free parameters are sacrificed that could otherwise be directed at achieving
accuracy.

2.3. Error estimation. The standard way [5], [8] of estimating the errors in a

pth-order RKN method (2.2) is to supplement (2.2) with formulae

fi,,+lP,, + h bf(Qi),
i=1

(2.9)

,+, q, + hp, + h 2 /,f(Q,)
i=1
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in such a way that (p,, q) (n+l, n+l) is an RKN method of order q < p (usually
q =p-1 or q =p-2). Of course, the computation of (n/l, n+l) employs the same
function evaluations f(Qi) that are used to compute (P,/I, q,/l). The difference between
the low-order (,+1, ,+1) and high-order (P,+I, q,+l) results is then taken to be an
approximation to the local error at the step n - n + 1. For (2.8), we take the order q
of the embedded method to be 3.

The weights bi, 1 5, must satisfy four., equations for the local error in n/l to

be., O(h4). These equations are linear in the bi’s and it is a simple matter, to express
b, 1 =<i -< 4, in terms of bs, which remains a free parameter. The value of b5 is chosen
according to a procedure suggested by Dormand and Prince. The quantities

(2.10) C’(5)= IIc’<>-’<>ll n’<>- I1’<)11
[[z,<4>ll

should be made as small as possible (letters with a hat refer, of course, to the lower-order
method). The Taylor expansion of the p-component of the error estimator Pn+l--n+l
has coefficients _4) in the order O(h4) terms and coefficients c5- 5) in the order
O(h 5) terms (cf. (2.6a)). Thus, a small C’5) ensures that, in the (p-component of) the
error estimator, the leading O(h4) term dominates over the next, O(hS), term of the
Taylor expansion. This is beneficial, since the mechanism for stepsize selection assumes
an O(h4) behaviour in the estimator. On the other hand, a small B’5) ensures that the
third-order formula used for estimation is sufficiently different from the fourth-order
formula used for timestepping. (Note that as the third-order formula comes closer to
the fourth-order formula, the denominator in B’5) tends to 0 and hence B’5) tends to
infinity.) We minimize the function 4(t)= (B’(5))2+ (C’(5))2 by the simple procedure
of evaluating b at uniformly spaced values of b% (the spacing used was 0.01). This
yields b5 0.2.

The coefficients/3i, 1 _-<i_-< 5, are seen as free parameters, i.e., they are not derived
from / through (2.3). For the local error in ,+1 to be O(h4), the/3, 1 _-< i_-< 5, must

satisfy two (linear) euations; this leaves three free parameters. We arbitrarily set

/35 0 and expressed/31 and/32 in terms of/3 and/4. The free 3, /4 are now chosen
to minimize (B5))2 + (C5))2, where

The minimization was again performed by sampling the objective function on a grid
with 0.01 x0.01 spacing. The weights of the third-order formula (2.9) embedded in
(2.5) are as follows:

bl -0.127115143890665440,

2 0.698831995430764851,

(2.12) b3 0.375269477646788521,

b4 -0.146986329186887931,

b5 0.2,

1 0.110014238746029571,

f12 0.189985761253970428,

3 0.25,

4 --0.05,

= 0.

With this choice the quantities in (2.10) and (2.11) are

C ’5) 1.06, B ’5) 1.06, C5)=0.47, B5) =0.25.

For the fourth-order nonsymplectic scheme used as a reference method, Dormand,
E1-Mikkawy, and Prince [5] provide an embedded formula with

C’5)=1.19, B’5)=1.20, C5)= 1.02, B5)=1.03.
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This shows that the minimizations we carried out above are as successful as those
in [5].

2.4. Implementation. The embedded pair (2.8), (2.12) and the reference-embedded
pair of Dormand, E1-Mikkawy, and Prince were implemented in a standard way
following very closely the code DOPRIN in [8].

3. Numerical results. Several test problems, including integrable and non-
integrable Hamiltonians, were used. The main conclusions as to the relative merit
of the various algorithms do not greatly depend on the particular test problem,
and hence we only report on the results corresponding to the Newton potential [2]
V(q 1, q2)--1/llqll with initial condition

/1 + e 2pl 09 p2=
1-e’

q =l-e, q =0.

Here e is a parameter 0<= e < 1. The solution is 27r-periodic and its projection onto
the (configuration) q-space is an ellipse with eccentricity e and major semiaxis 1.
Initially, the moving mass is at the pericentre of the ellipse (i.e., the closest it can be
to the coordinate origin). After half a period (apocentre), its distance r to the origin
is 1 / e. Thus rmax/rmi (1 + e)/(1 e), which is large for large eccentricities. Moreover,
the ith derivatives of the force f behave like r-+2, so that, for large eccentricities,
the elementary differentials of high order may vary by several orders of magnitude
along the orbit. In fact, this well-known test problem with large e (say, e -0.9) is often
taken as a "severe test for the stepsize control procedure" of ODE algorithms [6].

The test problem was integrated by combining each of the eccentricities 0.1, 0.3,
0.5, 0.7, and 0.9 with each of the final times 10 27r, 30 27r, 90 27r, 270 x 27r, 810 x 27r,
243027r, 7290x27r, and 2187027r. We were particularly interested in long time
intervals, as it is in this sort of simulation that the advantages of symplecticness should
be felt (see 14]). For short time intervals, the local error of the formula is of paramount
importance, and it is as the time interval gets larger that advantages derived from a
better qualitative behaviour become more prominent. In celestial mechanics very long
time integrations are often required with potentials that are small perturbations of the
two-body potential considered here.

In the tests we used the symplectic variable-step code (SV), the nonsymplectic
variable-step code (NSV), and also fixed-step implementations of the symplectic
formulae (SF) and nonsymplectic formulae (NSF). The variable-step codes were tried
with absolute error tolerances of 10 -4, 10-,..., 10-, and the fixed-step algorithms
were run with stepsizes 27r/16,27r/32,...,2r/2048. Errors were measured in the
Euclidean norm of E4.

Figure 1 gives, for e 0.5 and a final time of 21870 periods, the final error against
the computational effort measured by the number of f-evaluations. The figure contains
information for the runs that yielded errors in the 10- to 10 -4 range, namely,

(i) SV with tolerances 10 -10, 10 -11 (plus signs joined by a dashed line);
(ii) NSV with tolerances 10 -9, 10 -1, 10 -11 (circles joined by a solid line);
(iii) SF with timestep 27r/256, 27r/512, 27r/1024 (stars joined by a dashed-dotted

line);
(iv) NSF with timestep 27r/2048 (a x sign).
Let us first compare the results of SF and NSF. Recall that these RKN formulae

have error constants of roughly the same size, but SF has four evaluations per step
against three evaluations per step in NSF. Thus, on local error considerations alone,
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10-3

104
107 l0 109

FIG 1. Error against number offunction evaluations, after 21870 periods, e =0.5.

we would expect that for the same global error, the numbers of evaluations of the
NSF and SF would be in a ratio 3/4. On the contrary, the experimental results show
that, for the same error, the symplectic formula is four times less expensive than the
nonsymplectic process (ratio 4/1). This shows that there is something in the error
propagation mechanism of the symplectic algorithm that gives it a clear advantage
over its nonsymplectic counterpart. In the next section we prove rigorously that in the
asymptotic expansion of the global error of the symplectic formula, the coefficient of
the powers ha, h 5, h6, and h7 grows linearly with the integration time t. Thus in the
symplectic formula, for small errors, we need h to be small with respect to -1/4. On
the other hand, for the nonsymplectic formula, the coefficient of the leading h4 term
of the global error also increases linearly with t, but the h 5, h6, and h7 terms possess
coefficients that grow like 2. If is large, for small errors, h should be small with
respect to -/5. This is to be compared with h << -1/4 for the symplectic case. This
shows that for large symplecticness pays. In fact, when e 0.5, SF improves on NSF
if tfinal is larger than, say, 30 periods.

Turning now to a comparison between NSF and NSV, we observe that for the
formula of Dormand, E1-Mikkawy, and Prince the use of variable-stepsizes results in
a gain in efficiency by a factor of two. In the apocentre, the variable-stepsize code
takes stepsizes about seven times as large as those it takes near the pericentre, with
the result that, as expected, NSV saves on function evaluations for a given error. Note
that the line which joins the NSV points has slope -5 in spite of the method having
order four. This is again due to the fact that the coefficient in the leading ha term in
the global error grows linearly with t, while the coefficients of the subsequent terms
grow like t; for large, th>> th4 and the method behaves as if its order were five
(see 3).

On the other hand, for the symplectic formula, going from fixed to variable-
stepsizes results in a decrease in efficiency. We will return to this point later. For the
present, let us note that, with variable stepsizes, the line joining the points of the
symplectic algorithm are in agreement with fifth-order behaviour of the error. In fact,
SV and NSV show very similar behaviour. The only difference between them lies in
the fact that, for a given error, the costs of NSV and SV are in a ratio 3/4, i.e., in the
ratio we would have anticipated from a study of the local errors without taking
symplecticness into account.



VARIABLE-STEP SYMPLECTIC INTEGRATION 943

Like Fig. 1, Fig. 2 corresponds to a final time 21870x2r, but now e =0.3. Again
we have displayed the results corresponding to runs for which the errors lie in the
10-1 to 10-4 range. These are the following:

(i) SV with tolerances 10-1, 10-11 (plus signs joined by a dashed line);
(ii) NSV with tolerances 10 -9, 10-1 (circles joined by a solid line);
(iii) SF with timestep 27r/128, 2r/256, 2r/512 (stars joined by a dashed-dotted

line);
(iv) NSF with timestep 27r/1024, 27r/2048 (x sign, dotted line).
We see that the overall pattern is not changed by changing the eccentricity. The

NSV and SV algorithms have efficiencies that are still in the predicted 3/4 ratio. On
the other hand, with e 0.3, the advantages of NSV over NSF are less marked, as we
would have expected. In fact, for e 0.3, both variable-step codes only vary the stepsize
along the orbit by a factor of 3. The NSF points, which for e 0.5 were to the right
of the SV dashed line, are now exactly on this SV line.

Figure 3 corresponds to the same final time with e 0.7. The following runs are
represented (results for NSF are not reported for stepsizes used, as errors below 10-1

could not be obtained):
(i) SV with tolerances 10-1, 10 -4 (plus signs joined by a dashed line);

10

10-2

10-3

10-4
10 10’ 109

FIG. 2. Error against number offunction evaluations, after 21870 periods, e =0.3.

10-1

10-2

10-3

FIG. 3. Error against number offunction evaluations, after 21870 periods, e =0.7.
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(ii) NSV with tolerances 10-l, 10-11 (circles joined by a solid line);
(iii) SF with time step 2r/512, 27r/1024, 2r/2048 (stars joined by a dashed-dotted

line).
Now SV and NSV become more efficient and change h by a factor of 22.

Nevertheless, SF is still the most efficient method" the advantages of symplecticness
are not offset by the disadvantages of constant h.

For the smaller values of /final that we tried, the picture is very much the same,
except if/final is not large and e is large, SF is the most efficient method, NSV is second,
and SV is 4/3 times worse than NSV. For fixed tna, as e approaches 1, the benefits
of variable steps become more prominent and NSV improves on SF. For fixed e, as
/final increases, the benefits of symplecticness dominate and SF improves on NSV.

Figure 4 gives, for e-0.5, error against time for SV (tolerance 10-1), NSV
(tolerance 10-9), SF (h 27r/1024), and NSF (h 27r/2048). For SF the error shows
a linear behaviour with respect to t, as stated earlier. For the other methods the error
grows like 2.

Figure 5 displays, for e=0.5, the error in energy IH(p,, q)-H(p(t,), q(t,))l
against time. Of course, the theoretical solution preserves energy H(p( t), q( t))
H(p(0),q(0)) and consequently the error in energy equals the energy growth

10-1

10-2

10-3

10-4

10-5

10-6

10-7

FIG. 4. Error against time in periods, e 0.5.

10-8

10-9

10d0

10-1]

10-12

10-13

’[lOd4

10
10 10 10 10 10

FIG. 5. Error in energy against time in periods, e--0.5.
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[H(p,, q,)- H(p(0), q(0)) I. The runs displayed are similar to those shown in Fig. 4. In
SV, NSV, and NF the error in energy grows linearly with t. This is somewhat surprising
since for SV, NSV, and NF, the errors I(Pn, qn)- (P(t,), q(t)) grow like 2. Also note
that SF fails in exactly conserving energy, but its energy errors are much smaller than
those associated with the remaining algorithms.

4. Integration of Kepler’s problem by one-step methods. We now investigate
theoretically some of the experimental findings presented above. Our analysis is not
restricted to the RKN case and covers general one-step methods.

4.1. Some remarks on Kepler’s problem. Let us begin by rewriting Kepler’s problem
in the compact form

(4.1) ": F(Y),

where y=[pl, p2, ql, q2]r and v=[f,or], with f=f(q) the force (cf. (2.1)). The
notation G G() will be used to refer to the gradient VH of the Hamiltonian H with
respect to . Note that F and G are orthogonal at each point because H is an
invariant quantity for (4.1).

We consider (4.1) in the region f of Y-space covered by elliptic motions, i.e., the
region where the energy H is less than 0 (so that escape to is not possible), and the
angular momentum does not vanish (thus avoiding the case where the trajectory in
q-space degenerates into a straight segment). All solutions in are periodic with a
period

(4.2) T= T(H)= 27r//(21nl)3,
which only depends on the energy H. A reference for Kepler’s problem is, e.g., [2, 8E].

Let us, once and for all, fix an initial condition o f and set Fo F(o), Go
G(o). We denote by the one-period map ro, To T(H(o)). The analysis to follow
relies heavily on the properties of the differential of at Yo (this is sometimes
referred to as the monodromy operator of the periodic solution that goes through o).

LEMMA 1. The differential dp) is a rank-one modification of the identity given by

(4.3) =I+WoG,
with Wo T’(H(Yo))Fo a nonzero vector in R4 tangent at Yo to the solution of Kepler’s
problem being investigated. Equivalently, dP’o is the linear operator in 4 such that, for
vectors V orthogonal to Go,

(4.4) (I)V V

and

(4.5) (I)Go Go+ (GorGo)Wo.

Proof We present two different proofs. The first is analytic and is due to R. D.
Skeel. Set

,(y): (,())(Y))= (Y),

where r To-T(H(Y)) is a function of Y. Then

’(Y) ’(Y) +( (Y))(V r) r

/o’(Y)- rr (V) T’(H(Y))G(Y)r’
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and, since q, as a function of satisfies (4.1),

’(V) ’(Y) F(q(V)) T’(H(Y))G(Y) r.
Now evaluation at Y Yo leads to " 0 and hence to q equal to the identity map so
that q’(Yo)= I and (4.3) follows.

The second proof is more geo.metric. Consider a vector V orthogonal to Go and
consider the new initial condition o o+ eV with e small. Since the increment eV
is orthogonal to the energy gradient Go, the new energy H(’o) equals the old energy
H(Yo) and the new period T(H(to)) equals the old period To (see (2.1)). Here and
later "equal" is understood to mean "equal except for O(e2) terms." Hence (I)(’o)=
qTo(’o) equals ’o, which implies, by the definition of differential, that (eV)= eV.
This proves (4.4). Assume now that the new initial condition is chosen to be Yo
Yo+ ego. Now the new energy is in excess of H(Yo) by an amount e(GorGo) and,
accordingly, the new period is in excess from To by an amount 6 eT’(H(Yo))(GGo).
Hence after To units of time Y has not had time to return to its initial position and
rather lags behind by a vector 6Fo, because Fo is the velocity of the flow at Yo. This
proves (4.5).

After (4.3) it is a simple matter to compute the Nth power of. This is given by

(4.6) tI:’ I + NWoGr

This formula essentially says (cf. the second proof of the lemma above) that if ’o is
an initial condition of the form Yo+ eV, e small, then after N time increments of length
T, the solution qNTo(0) that starts at ’o differs from the solution qNO(Yo)=0 by
terms eV+ eN(GV)Wo. The difference grows linearly with N; this growth is in the
direction of Wo, tangent at o to the solution curve, and furthermore only depends
on the initial deviation eV through its component e(GorV) in the direction of Go.

4.2. Basic error estimate. Let us consider a smooth one-step method (fth for the
numerical integration of Kepler’s problem. This method is assumed to be convergent
of order p, i.e., 07,(Yo)- q7,(Yo) O(h p) as h--)0 with nh in a bounded time interval.
Furthermore, we assume that the differentials (Jacobian matrices) ($)’(Y) also con-
verge with order p to the differential of the flow, i.e., ($)’(Y) (q7,)’() O(hP), h --)

O, nh bounded. This is automatically satisfied by most standard methods, including
Runge-Kutta and Runge-Kutta-Nystr/Sm methods.

For simplicity, we only consider the case where the steplength h is of the form
To/v, with v a positive integer, and look at the difference E between the numerical
(o) and theoretical ,n(Yo) qnro(Yo) Yo after N periods of the motion. The
extension to general values of h and times which are not whole multiples of To is
possible but messy, and provides no further insight.

Set h SO that h is the mapping that advances the numerical solution To
units of time. We can then write

EN (Yo) Yo +h(+-l(yo)) Xih (Yo) + E,

+E_, + O(IIE N-I[[ 2) - E1
IEN + E1 + O(hap)

(PEn_ +E + O(h:P).
Here and later, the constant implied in the O symbol depends on N. By induction,

EN =[I+(P+... +)N-1jE+O(h2P).

We apply (4.6) to conclude the following theorem.
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THEOREM 1. Under the hypothesis above,

(4.7) EN NE1 +1/2(S2- S)(GorE1)Wo+ O(h2P).
In other words, except for O(h2p) terms, the error Err after N periods of the

solution have been computed grows quadratically with N. The leading N2 growth is
in the direction tangent to the solution at Yo, corresponding to a phase error along
the trajectory. After taking the inner product of (4.7) and the energy gradient Go, we
conclude, in view of the orthogonality of Go and Fo, that the energy error after N
periods is, except for O(h2p) terms, N times the energy error after the first period (cf.
Fig. 5).

4.3. The symplectic case. In this subsection we look at the situation where ff-/h is
symplectic. The key fact for the analysis 14] is that, given an arbitrarily large positive
in,teger q, it is possible to construct a modified autonomous Hamiltonian function
Hh --H + O(h p) such that ffJh is consistent of order q with the Hamiltonian problem
with Hamiltonian h, i.e., h qh,th O(hq+l), where qh,h is the h-flow ofthe problem
with Hamiltonian Hh. In other words, the mapping ffJh we are using to integrate Kepler’s
problem can be seen (except for O(hq+l) terms) as the exact flow of a nearby
Hamiltonian problem with Hamiltonian Hh. Here we choose q 2p. The computed
points Y,, which are O(h p) away from the solution Y(t,) of Kepler’s problem, are
only O(h2p) away from the solution through Yo ofthe modified problem. In particuular,

h(Yo) qro,(Yo) O(hp)

and, by implication,

(4.8) h(h(Yo))- h(qro,(Yo))- O(hZP).
On the other hand, Hh is a conserved quantity for the flow qro, so that (4.8) can be
rewritten

(4.9) /’h (+h (Yo))- h(Yo)= O(h2p).

Taylor expansion of the left-hand side of (4.9) yields

(4.10) /h (XPh (Yo))- h(Yo) GohE h- o(llElll 2) Go E + O(h2P),
where Goh is the gradient of /h at Yo. Comparison of (4.9) with (4.10) shows that
GohE1 O(h2P); the error after one period E1 is "almost" orthogonal to the gradient
Goh of the modified energy /h- Finally,

IGE,[ i(Go Go)rE hTl+ Go E,] --< IlCo- Gohll IIElll + I.Goh Eli O(h2P).
Here we have used the fact that the derivatives of Hh approximate the derivatives of
H to the same order, O(hP), to which H approximates H; see [14]. The last bound
implies that for a symplectic method the component GrE1 of the error E1 is O(hP),
so that in view of (4.7), we may state (cf. the dashed-dotted lines in Figs. 4 and 5) the
following theorem.

THEOREM 2. For a constant-stepsize symplectic method,

EN NE1 + O(h2p).

Furthermore, the energy error satisfies
H((Yo))- H(Vo) O(h2p).

4.4. The nonsymplectic case. In this section we explain the experimental fact that
the fourth-order method NSF employed in 3 behaves as if its order were five. We
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consider a general one-step method as in 4.3, but now assume that the order p is
even (p => 2) and, furthermore, that ffJh possesses some symmetries. First, we assume that

(4.11) (P, q)- ffh(Po, qo) :: (-P, q)= ff-h(--Po, q0).

This symmetry holds for the flow of any problem of the form (2.1). Note that according
to (2.2), RKN methods obey (4.11). Second, we assume that (p, q) h (Po, qo) inherits
from t the rotational symmetry of Kepler’s problem. Again, this is true for standard
methods.

Let us denote by M(t) the coefficient of the leading O(h p) term in the asymptotic
expansion of the global error of the method h. It is well known that M satisfies the
variational equation

(4.12)
dM(t)

j(t)M(t) / L(t),
dt

where J(t) is the Jacobian of the vector field evaluated at the theoretical solution
t(Yo), and L(t) is the coefficient of the leading O(hp/) term in the expansion of the
local error. We need the following lemma.

LEMMA 2. Let dy/dt-f(y) be any smooth differential system with a conserved
quantity H. Let

(4.13)
dm(t)

J(t)m(t)/ l(t)
dt

be the corresponding variational equation at a solution of the system. Then,

d
d--- ((VH)rm)= (VH)rl.

Proof. From (4.13),

d
-VH m.

Differentiation with respect to y of the identity (VH)rf___ 0 and evaluation of the result
at the solution of dy/dt-f(y) leads to (VH)rj+(dVH/dt)r-O, and the proof is
complete.

The application of Lemma 2 to (4.12) reveals that

d GrM GrL.
dt

We integrate over one period to get

(4.14) GorM(To) GrL

Now let us express GrL in terms of polar coordinates r, , 0, 0. The rotational symmetry
assumed above implies that GrL does not depend on 0. By conservation of angular
momentum along the solution, 0 can be expressed in terms of r. Thus, in (4.14) the
integrand is a function of r and . Furthermore, 131rL must be odd in . This is because
hP+GrL is the leading term in energy error after one step, and by (4.11) such an error
remains invariant when h is changed into -h and into -, while keeping r constant.
Now, as increases from 0 to To, the solution takes each value of r twice with opposite
values of . (This occurs when the moving point passes through points in Kepler’s
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ellipse that are symmetric with respect to the major axis.) Hence, the integral in (4.14)
vanishes and GoM(To)=0, i.e., GE1 O(hP+). When this information is taken into
(4.7) we see that EN contains O(Nh p) and O(N2hp+) terms. Assume that N is very
large. The terms Nh P, N2h p/ are ofthe same size when h 1/ N, which is unrealistically
small since for h I/N, Nh p-- N2hp+-- N-P+<< 1. Hence, for realistic choices of
h, N2hP+ is much larger than Nh P, and the method behaves as an order p + 1 method
with a large N2 error constant.

4.5. Variable stelS. Let us now study the situation for the variable-step integrators.
In the experiments we only used one initial condition o. The choice of initial condition
and tolerance determines the sequence of stepsizes hl, h2,.., used in the integration.
In a "thought experiment," let us imagine that even if other neighbouring initial
conditions had been used, we would have still employed the same sequence hi, h2,...
used for Yo, rather than letting the step-changing mechanism dictate the choices of
stepsizes. This is actually a recommended procedure that ensures that the output of
an automatic code is a smooth function of the initial data [8, 11.5]. In our context it
also ensures that, if a symplectic formula @h is used, then the transformation Ph., th,
which advances the solution from time =0 to time t,, h +... + hm, is indeed a
symplectic transformation. In extending the analysis above to the variable-step experi-
ments, we encounter some difficulties. Previously, we used the fact that we advanced
the solution from time 0 to time NTo by iterating N times an operator h that
advances the solution To units of time. This is not quite true now; it is possible for To
not to be a steppoint t,. But even if it is a steppoint, the sequence of stepsizes employed
to go around the orbit in the second, third,.., period is likely to be slightly different
from the sequence used in the first period. These difficulties will be ignored for the
analysis" we assume that To is a steppoint tin, and that the sequence of stepsizes used
to cover the nth period (n 1) To <= _<- nTo is just a duplicate of the sequence used to
cover the first period 0 -< =< To. These assumptions are "almost" satisfied for small
tolerances; see [20], where it is rigorously shown that, essentially, variable-step
algorithms employ a steplength that only depends on the current point in phase space
so that, for periodic problems, stepsizes repeat themselves periodically. With our
assumptions, the solution after N orbits is given by (Yo), where Ith--Ihm’ rlhl.
Then the analysis in 4.2 leading to Theorem 1 holds with h, the maximum stepsize.
Furthermore, the cancellation described in 4.4 also holds. The functions M and L
still make sense [16] provided that the stepsizes satisfy

h=y(t)h+O(h),

with 3’ a stepsize function; (4.12) must be replaced by [16]

dM(t)
J(t)M(t) + ),(t)L(t),

dt

and (4.14) becomes

GM(To) 3,PGrL at.

From here we conclude that GorE1 O(h p+) under the extra hypothesis that 3’ takes
the same value as the moving body passes through points in configuration space that
are mutually symmetric with respect to the major axis. This hypothesis is certainly
reasonable.
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On the other hand, the material in 4.3 does not appear to be extensible to the
variable-step situation. Indeed, the experiments indicate that it cannot be extended.
When trying to extend the analysi,s in 4.3 to variable steps, we encounter the difficulty
that the modified Hamiltonian Hh depends on the steplength,. The computed (Pl,
is close to the solution $1 of the system with Hamiltonian Hh which at 0 passes
through (Po, qo). The computed (P2, q2) is close to the solution $2 of the system
associated with Hh2 that at hi passes through (Pl, ql), etc. Clearly, S S2 (unless
/’h =/h2) and we do not have a single trajectory near which the computed points
stay. There is not a single pseudoenergy Hh "almost" conserved by the numerical
points, and nothing can be said of the projection GoE1, whose smallness is the key
to the success of the symplectic constant-stepsize integrators.

4.6. Remarks and extensions. The fact that for Kepler’s problem standard
integrators lead to quadratic error growth while symplectic constant-stepsize integrators
lead to linear error growth has been noted before in the literature; see Kinoshita,
Yoshida, and Nakay [10]. In [22], Yoshida studies the energy error in the symplectic
integration of Kepler’s pro,blem. His analysis is only formal and, like ours, resorts to
a modified Hamiltonian Hh. Yoshida assumes that the modified Hamiltonian can be
chosen to satisfy

(4.15) @h (h, lY-lh O,

i.e., that a modified Hamiltonian problem exists so that the computed points exactly
solve the modified problem. However, it is known that for nonlinear problems, while
it is possible to construct a divergent formal power series for h fulfilling (4.15), no
actual function Hh can satisfy (4.15). Therefore, the analysis in [22] is only of heuristic
value. (Note that rather than (4.15), we assumed only that I]1h --(h, IY-Ih O(h2P).)

On the other hand, the ideas used in the analysis in this section are not restricted
to Kepler’s problem. For instance, in 4.2-4.4, it is enough to assume that all solutions
of the problem being integrated are periodic with a period that only depends on the
value of the energy H (and actually changes with H). These assumptions are satisfied
by all nonlinear one-degree-of-freedom oscillators, such as the well-known pendulum
equation. Therefore, the conclusions in 4.2-4.4 hold for such oscillators. This proves
Conjecture 3 in IV.6 D of Stotter’s thesis [18], which states that for nonlinear
oscillators, standard methods have quadratic error growth, and that symplectic methods
produce errors that only grow linearly. (Nonlinearity is essential to guarantee a
nontrivial dependence of the period on the energy, leading to Wo 0 in (4.6).)

5. Conclusions. Let us summarize our findings.
(i) The experiments with Kepler’s problem reported above and experiments with

other Hamiltonian problems (not reported in this paper) reveal that constant-stepsize
symplectic integrators can be more efficient than variable-step codes. This provides
motivation for the further study of symplectic integration. Comparisons between
symplectic and nonsymplectic formulae presented so far in the literature (see [14] for
references) have concentrated on constant stepsizes. Our experiments indicate that it
is reasonable to expect that, in the future, symplectic software can be developed which
outperforms, on Hamiltonian problems, standard variable-step codes. The paper by
Herbst and Ablowitz [9], written after the present work was completed, provides a
dramatic example of a simple symplectic algorithm outperforming NAG library
software.

(ii) The advantages of using symplectic formulae are lost when these formulae
are used in a variable-stepsize environment. This came as a surprise to us. However,
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after completing this work, we discovered that in 1988, Stotter [19] had argued that
symplectic integrators should not be used with variable stepsizes. His argument is as
follows. Integrating a system of ODEs dy/dt f(y) with a variable-step algorithm is
"equivalent" [20] to integrating, with constant stepsizes, a transformed problem
dy/dr r(y)f(y), where the new time r is related to the old time by dt/dr r(y). The
transformed system is not Hamiltonian, even if the original system is, so that the
advantages of symplecticness are lost in the transformation. An alternative argument
to justify the failure of variable-step symplectic algorithms has been put forward in
[14]. A key property of symplectic formulae h for a Hamiltonian problem with
Hamiltonian H is the existence of a modified Hamiltonian Hh in such a way that @h
"almost" coincides with the h-flow bh,/h of Hh. "Almost" means that, given any large
integer q, h can be found in such a way that d/h--Ch,l:lh O(hq+l). With constant
stepsizes, it is possible to interpret the error in a "backward" way: a numerically
calculated solution corresponding to H is "almost" an exact solution of a neighbouring
Hamiltonian Hh. In 4.5 we saw how such a backward-error analysis interpretation
fails in a variable-stepsize situation. An additional reference useful in connection with
variable steps for symplectic integrators is [17].

(iii) For the particular cases of Kepler’s problem and nonlinear one-degree-of-
freedom oscillators, a complete analysis has been presented of the performance of
symplectic and nonsymplectic integrators. It has been shown that the advantages of
symplectic integrators include not only better qualitative behaviour, but also better
quantitative properties in the error growth mechanism.
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ITERATIVE DEFECT CORRECTION AND MULTIGRID ACCELERATED
EXPLICIT TIME STEPPING SCHEMES FOR THE STEADY

EULER EQUATIONS*

MARIE-HILINE LALLEMANDt AND BARRY KOREN:

Abstract. Analytical and experimental convergence results are presented for a novel pseudo-unsteady
solution method for higher-order accurate upwind discretizations of the steady Euler equations. Comparisons
are made with an existing pseudo-unsteady solution method. Both methods make use of nonlinear multigrid
for acceleration and nested iteration for the fine-grid initialization. The new method uses iterative defect
correction. Analysis shows that it not only has better stability but it also has better smoothing properties.
The analytical results are confirmed by numerical experiments, which show better convergence and efficiency.
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1. Introduction.
1.1. Equations. The equations considered are the steady, two-dimensional, com-

pressible Euler equations

(1 1)
OF(W) OG( W)
/-0,

Ox Oy

where

p pu

(1.2) W=
pu

F( W) OuZ +p G( W)
pv puv
pe pu(e+p/p)

pv2+p
pv(e+p/p

Assuming a perfect gas, the total energy e satisfies e=p/(p(y-1))+1/2(uZ+v2). The
ratio of specific heats 3’ is assumed to be constant.

1.2. Spatial discretization. The computational grid is obtained by a hybrid finite
element--finite volume partition. A (possibly unstructured) finite element triangulariz-
ation is used as the basic partition. A cell-centered finite volume partition is derived
from the finite element partition by connecting the centers of the triangle sides in the
manner illustrated in Fig. 1. The finite volume grid gives us the easy possibility of
grouping together the nodes associated with contiguous finite volumes. If we take
unions ofcontrol volumes this results in a new coarser mesh. Repetition ofthis operation
gives coarser and coarser meshes. For details about this hybrid way of constructing
finite volume grids, see [1]. For applications in single-grid Euler and Navier-Stokes
flow computations, we refer to [5] and [23], respectively. For details about the
coarsening process (multilevel gridding), we refer to [16].

* Received by the editors April 17, 1989; accepted for publication (in revised form) August 4, 1992.
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through Avions Marcel Dassault-Br6guet Aviation (AMD-BA).
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court, B.P. 105, 78153 Le Chesnay Cedex, France.

Centrum voor Wiskunde en Informatica, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.
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FIG. 1. Finite volume C.

On the finest grid, for all finite volumes Ci, 1, 2,..., N, we consider the integral
form

(1.3) (F(W)nx+G(W)ny)ds=O, i=l,2,...,N,
Ci

with nx and r/y the x- and y-component of the outward unit normal on the volume
boundary OCi. For the Euler equations, because of their rotational invariance, (1.3)
may be rewritten as

(1.4) T-l(n,ny)F(T(n,ny)W)ds=O, i= 1,2,..., N,
Ci

where T(n, ny) is the rotation matrix

(1.) T(n, n)

1 0 0 0

0 --ny n 0

0 0 0 1

For simplicity, we assume the flux to be constant across each bisegment OCj of the
boundary OCi, where OCo OCi f) OC is the common boundary between the neighboring
volumes C and Cj (Fig. 2(a)). Hence, OC U OCo,j-- 1, 2,..., n, with ni the number
of neighboring volumes C. (In the example of Fig. 1; n 5.) Since we have assumed
that the flux is constant along OCo, it is equal to the flux across the straight segment

(a) (b)

FIG. 2. Segments in between finite volumes Ci and Cj. (a) Bisegment OCij. (b) Straight segment
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0Ci connecting the two extreme points of 0Ci (Fig. 2(b)). If we introduce the outward
unit normal f0 ((fx), (fy)0) r along each -C.i,j= 1,2,..., hi, with the assumption
of a constant flux, the contour integral (1.4) can be rewritten as the sum

(1.6) , lF(ijWij)lij-O i= 1,2,..., N,
j=l

where To. T((fx)ij, (fly)ij), where W is some value of W depending on for instance
W and W, and where l is the length of the segment OCo.

Crucial in (1.6) is the way in which the cell face flux F(Tj W) is evaluated. For
this we use an upwind scheme that follows the Godunov principle [8], which assumes
that the constant flux vector along each segment OCo is determined only by a uniformly
constant left and right cell face state (W, and W). The one-dimensional Riemann
problem, which then arises at each cell face, is solved in an approximate way. With
this, (1.6) can be further written as

(1.7) f’’O( jW, .i W)lij O, 1, 2,..., N,
j=l

where denotes the approximate Riemann solver. Several approximate Riemann
solvers exist (see, for example, [20] and [22]). In this paper, without any particular
motivation, we restrict ourselves to the application of Osher’s approximate Riemann
solver [20].

The flux evaluation, and so the space discretization, may be either first- or
higher-order accurate. First-order accuracy is obtained in the standard way; at each
finite volume wall, the left and right cell face state, which must be inserted in the
numerical flux function, are taken equal to those in the corresponding adjacent volumes

(1.8a) W= W,

(1.8b) W= W.
Whereas the first-order accurate discretization is applied at all levels, the higher-order
discretization is applied at the finest grid only, using the finite element partition existing
there. Higher-order accuracy is obtained with a MUSCL approach [18]. Here, W,
and W are derived from linear interpolations. On each volume C around the
triangle-vertex an approximate gradient, denoted by (V W)i, is derived by integrating
the gradient of the linear interpolant of W over all the triangles that have as a vertex:

(1.ga) (VW)

with

Isupp (i)(oW/Ox) dxdy
(1.9b) -x Iupp (, dx dy

(1.9c) (_yW) Isupp(i)(OW/Oy)dxdy
Isupp (i) dx dy

Here, supp (i) denotes the union of triangles which have as a vertex. Then for each
pair of neighboring vertices (i,j) we compute the extrapolated values

(1.10a) W W "1/2( W)i "i,

(1.10b) W W 1/2( W)j. .
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On equidistant grids, this higher-order accurate discretization can be formally proved
to be second-order accurate. The proof is still valid for nearly equidistant grids. In
this paper we do not analyze orders of accuracy; the discretization is already known.
It has been described in more detail in other papers; see, for example, [7].

In order to ensure monotonicity, while preserving the higher-order accuracy in
smooth flow regions, the higher-order values Wij and Wij according to (1.10) can be
replaced by limited values that do not affect the order of accuracy.

1.3. Existing solution method. To solve the steady discretized system (1.7), we
consider the unsteady, semidiscrete system of ordinary differential equations

(1.11) dW_ Ri, i= 1,2,..., N.
dt

The natural choice for Ri is

1
/1(I)( ij Wij ij W, l,(1.12) Ri Xj=I

where Ai is the area of finite volume C.
As an upwind analogue to Jameson’s central method [13], in [16] and [17] an

explicit four-stage Runge-Kutta (RK4) scheme is applied for the temporal integration
of (1.11)-(1.12). The benefits of the upwind analogue are evident: better shock captur-
ing, greater robustness, and no tuning of explicitly added agificial viscosity. Similarly,
just as in [13], in [16], multigrid is applied for accelerating the solution process.
Fughermore, just as in [13], time accuracy is not pursued, and optimal Runge-Kutta
coecients are applied to get good stability as well as good smoothing propegies. It
seems that the solution method presented in 16] is already competitive with Jameson’s
method, without the introduction of a fugher acceleration technique such as, for
example, residual averaging.

It is interesting that the upwind analogue allows a fugher eciency improvement
by exploitation of the direct availability of the corresponding first-order upwind
discretization, with its better stability and smoothing propeies. Since a first-order
central discretization is not readily available, a standard central method does not easily
allow this improvement.

2. Novel solution method.
2.1. Explicit time stepping. Compared with the existing solution method, the new

solution method only uses a more extensive right-hand side in the explicit time stepping
scheme. The extension consists oftwo first-order upwind defects; one which is evaluated
at each stage of the multistage scheme, and another which is kept frozen during a
fixed number of t RK4 time steps (et 1), and which compensates for the other
first-order defect by its opposite sign. Fughermore, significantly, the higher-order defect
is kept frozen as well during t RK4 steps. The four-stage time stepping scheme is
written as

(2.1a)

(2.1b)

(2.1c)

00W/0’4 :--- Wi’ i= 1,2,..., N

for from 1 to z’t do

wT,O := Wi 1,4, i= 1, 2, N
for k from 1 to 4 do

wT"k: WT’nu AtiakR7"k-1 i= 1,2 N

enddo

enddo
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Here, v is the time step number, k the stage number, Ati the local time step, and ak
the kth Runge-Kutta coefficient. In the existing higher-order method the right-hand
side R’k-1 is

(2.2) g’k-1 E ((W)’k-1 0(W})’k-’)li,
Ai j=l

with (W) ’k- and (W) ’k-1 higher-order accurate. So, nothing is kept frozen in the
existing method’s right-hand side. For the novel method, we take

1

(2.3) R"k-’ E l (,(j w,k-1, j w;,k-l)__,(j ,0, j,0)A
+*( L(w )’,

where only (W)’ and (W)’ are higher-order accurate. The frozen first-order cell
face states (,o and .o) and the frozen higher-order cell face states ((W)’ and
(W)’) are updated in an additional outer iteration, which will be explained in the
next section. In the following, for convenience, W’4 will also be denoted as
W4(, R’, W’).

2.2. Complete solution method. The novel solution method is of defect correction
type [2]. Though defect correction iteration is not as necessary for a pseudo-unsteady
solution method as it is for a solution method that directly tackles steady discretized
equations [12], [14], [15], it may lead to an improved eciency. In 3, we will show
that the defect correction method proposed here can take advantage of a greater stability
domain (larger local time steps) guaranteed by the first-order defects in the right-hand
side. Fuhermore, we will show that with multigrid as an acceleration technique,
advantage can also be taken of better smoothing propeies.

The new solution method can be divided into two successive stages. The first stage
is nested iteration [10, p. 98], also called full multigrid (FMG) method [4], which is
applied to obtain a good initial solution on the finest grid. The second stage is an
iterative defect correction (IDeC) method [2], 10, p. 282], which is used to iterate until
the higher-order accurate solution is obtained. The initial solution for the defect
correction process is the solution obtained by the nested iteration. The inner iteration
of both stages is a nonlinear multigrid method 10, p. 181 ], viz. the full approximation
storage (FAS) algorithm [3], [4]. In the following sections we discuss successively"
the nested iteration ( 2.2.1), the iterative defect correction method ( 2.2.2), and the
building block of these two iterations" the nonlinear multigrid iteration ( 2.2.3).

2.2.1. Nested iteration. To apply multigrid we construct a nested set of grids. Let, f12,..., flL be a sequence of nested grids with the coarsest and L the finest
grid. (For a description of the coarsening rule applied here, we refer to [16].) The
nested iteration (FMG) staas with a user-defined initial estimate of W" the solution
on the coarsest grid . To obtain an initial solution on 2, the solution on 1 is first
improved by a few FAS cycles. (The number of FAS cycles that is applied in each
FMG step can be either fixed, FAS= constant, or dependent on the residual.) After
this, the improved solution W1 is prolongated to . The process is repeated until OL

has been reached.
The prolongation ofthe solution can be the simple piecewise constant prolongation

I_, 2 N N L, or it can be a smoother one. If we denote the area of finite volume C
tby nat level by A, and the number of neighboring volumes CJ of C , a smooth
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prolongation operator #_ is defined by

AI(II-I(Wt-1)),+Y’.7, aJ(II_,(W’t_,)):
2<=l<=L.(2.4) (#’,_, W/_I))i AI +XT: a

We note that since Itt_ strictly obeys the physical conservation laws by the prolongation
of cell-integrated amounts of mass, momentum, and energy, 5t_ is strictly conservative
as well.

2.2.2. Iterative defect correction. Let [(WL)=0 and ff(W/)=0 denote the
first-order and higher-order discretized Euler equations, respectively, on the finest grid.
Then, IDeC can be written as

(2.5a) :[(W) 0,

(2.5b) [(W) ;[(W-1) (w-l), r/= 1, 2,..., r/iDeC

where W is the solution yielded by FMG. From (2.5b), it is immediately clear that
at convergence (W W-l= WL), we have solved the higher-order discretized Euler
equations (W/) =0. Therefore, we emphasize that the present defect correction
method is not mixed defect correction iteration 11 ]. (A mixed defect correction method
would yield a solution whose accuracy is not well defined; its solution would be a
vague mixture of the first-order and higher-order accurate solutions.) Though both
theory [6] and practice [6] show that IDeC gives poor convergence of the residual,
theory [9], [10, p. 282] and practice [12], [15] also show that for smooth problems, a
single IDeC cycle (noec- 1) is sufficient to obtain second-order solution accuracy.
Furthermore, for solutions with discontinuities, a few IDeC cycles (niD=5) may
improve the accuracy to a sufficient extent [12], [14]. In summary, for both smooth
and nonsmooth flow problems, numerical experiments with IDeC show this
phenomenon of slow convergence but offast solution improvement [6], [12], [14], [15];
a phenomenon that is understood by theory [6], [9], [10, p. 282].

In each IDeC cycle we must solve a first-order system with an appropriate
right-hand side. From [14] it is known that it is inefficient to solve this system very
accurately. With a steady approach, application of only a single FAS cycle per IDeC
cycle appears to be the most efficient strategy in 14]. In this paper, with our unsteady
approach, we will re-investigate what is the most efficient number of FAS cycles per
IDeC cycle (see 3).

2.2.3. Nonlinear multigrid iteration. Let us denote by (Wt) v,....post)( VFAS, Rl, Wl)
the solution obtained on level 1, after VAS FAS V(vpre, Vpost)-cycles have been applied
to (Wt) Rl, with initial solution W. A single FAS V(vpre, Vpost)-cycle on level
1, 1 <_-1 <_-L, is then recursively defined by the following successive steps:

(i) Improve on the grid ll the initial solution W by applying Vpre RK4 steps to

(2.6) o(Wt) Rt.
Let us denote the resulting solution (W)R4(Vpr, Rt, W) by

(ii) Coarse-grid correction step: Approximate on the underlying coarser grid !-1

the solution of

(2.7a)

(2.7b)

O72.1’-/e/-1 (W/-1) Rl-1,

Rt_-- ;_(Itt-’( I))- 11--1(,_( /)_
by applying a single FAS V(Ppre, Vpost)-cycle on level l- 1. Let us denote the resulting
approximate solution (W/-1)v(p....pos0(1, Rl-1, I!-1(/)) by q1-1.
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(iii) Improve the solution on ft by first correcting the approximate solution V
obtained in step (i)"
(2.8) := + I’,_1(A W_I),
where AV_ "g/_, 1-’ is the result ofthe coarse-grid correction step (ii). Further-
more, improve Wt by applying Vpost RK4 steps to (2.6)" W := (W)R4(Vpost, R, W).

In the FMG-stage in step (i), we have on each starting (locally finest) grid, 1 <= l<= L: Rl =0. Hence, the initial solution for IDeC as obtained by FMG is at
most first-order accurate. In the IDeC stage the starting grid is always the globally
finest grid, and there we have: Rt [(Wt) .(W). This higher-order right-hand
side is kept frozen during VAS FAS V(Vpr, Vpost)-cycles per IDeC cycle. Note that
with the novel method, we evaluate the higher-order operator at most once per FAS
V( Vpre, Vpot)-cycle, instead of4 x vp+ Vpot) + 1 times per FAS V( Vpre, Vpot)-cycle with
the existing method.

In step (ii), note that in the RK4 scheme, the complete right-hand side Rt_ is
kept frozen. Just as the prolongation operator II_, the restriction operator I- is such
that it also exactly obeys the conservation of cell-integrated mass, momentum, and
energy. The restriction operator [- restricts the defect in the standard way; by
summation of mass, momentum, and energy defects over fine-grid cells whose union
is a coarse cell. On the coarsest grid (f), step (ii) (the coarse-grid correction step) is
skipped of course.

To illustrate the structure of the complete novel solution method, we give two
examples of a complete higher-order solution schedule in Fig. 3. The schedule in
Fig. 3(a) is fixed by L 2, Vpre 1, roost 2, VAS 2, nIoeC 2. The schedule in Fig. 3(b)
is fixed by L= 3, Vpre roost 1, VrAS 1, nDC 3. In both figures, the marker D
denotes a single RK4 step (over f) preceding a coarse-grid correction, whereas the
marker denotes a single RK4 step after the coarse-grid correction. The marker O
denotes the computation of R,. (W,.)-(W). Note that the corresponding
first-order variants of both schedules (i.e., the variants without any marker O) are
simply obtained by taking nt)ec 0.

FMG-stage ..]j IDeC-stage

(a)

3

FMG-stage IDeC-stage

()
FIG. 3. Examples ofcomplete solution schedule. (a) L 2, Vpre 1, Vpost 2, YEAS 2, nIDeC 2. (b) L 3,

//pre--" //post-" 1, //FAS-- 1, nlDeC-- 3.



960 MARIE-HILINE LALLEMAND AND BARRY KOREN

2.3. Analysis. To analyze the convergence properties of the IDeC method pro-
posed, we consider the unsteady, linear, scalar, one-dimensional model equation

Ow Ow
(2.9) +c=0, c>0.

Ot Ox

For the spatial discretization, we consider a grid with a uniformly constant mesh size
h. Then we have, for fixed time t, for the first-order upwind discretization,

(2.10)
Ow -wi-l+wi+O(h).ox h

As a higher-order upwind discretization, we take the Fromm scheme (i.e., van Leer’s
K-scheme [19] with K =0), which leads to

(2.11)
Ow wi_2- 5Wi_l W 3Wi W Wi+l + O(h2).
Ox 4h

For these two spatial discretizations and the existing explicit solution method, the
following Runge-Kutta coefficients can be derived by maximizing the maximally
allowable CFL number: al 0.11, O =0.2767, a3 =0.5 (see [17]). Consistency requires
O4 1. The optimization can be redone for our new solution method. However, in the
next section we will show that if we simply omit the optimization, the new method
already yields both better stability and better smoothing with the ak’S given above
(i.e., the ak’S found for the existing higher-order method).

2.3.1. Stability analysis. First we will perform a stability analysis for IDeC with
an explicit RK4 scheme as the inner solution method. Let us denote the steady-state
analogue of (2.9) by

dw
(2.12) Aw=c.

dx

Assuming that we have periodic boundary conditions, we denote by A1 and A/ the
first-order and higher-order accurate, linear operators, approximating A. Then, the
IDeC process to solve the discrete linear system

(2.13)

can be written as

(2.14a)

(2.14b)

A+W=0

A1 W=0,

A1 W" (A A+) W"-, n 1, 2,..., MIDeC,

where A denotes the matrix resulting from the first-order discretization. Assuming A
to be invertible, the corresponding amplification matrix M reads

(2.15) M=I-AA+.
From (2.15) it is clear that to have convergence of IDeC, the spectral radius of M
should be smaller than one. It is also clear that the better the resemblance between
A and A+, the faster the convergence of IDeC. (Also important for good efficiency
of IDeC is, of course, that A can be inverted in an efficient way.)

Instead of solving each W from (2.14b) exactly, we approximate it by means of
the explicit RK4 scheme (2.1) with

(2.16a) W’= W"-1,
(2.16b) R’k-= -(a W’k--(AI-A+) W’).
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With v the number of RK4 steps which allows us to define an (approximate) solution
Wn, we now investigate how the corresponding amplification matrix My is related to
the amplification matrix M, which corresponds with the exact solution of W from
(2.14b). If we consider the approximate solution W’4, for v- 1 we have

(2.17)

with

(2.18a)

(2.18b)

(2.18c)

W1,4=(P+Q(A,-A+))W"-’,

P- P(-AtA),

Q= I-A-(1P,

P(Z) I + Z + 03Z2- 03a2Z3 -]- 030201Z4.
We can easily verify that A1Q QA1, and that A7 P PA7. Hence, for M we can write

(2.19) M,=P+Q(A-A+).

For u > 1, we can easily find the recurrence relation

(2.20) M PM_I + Q(A1- A+),

which leads to

(2.21) M=(I+P+P+ +P-)Q(A1-A+)+PL

THEOREM. Let I1" be some matrix norm. If IIPII <1 ana if P is invertible, then
lim M M.

Proof For all v > 1, I + P+ p2 +... + p-l= (I p)-l(i p). If IIPII < 1, then
lim (I- P)-(I- P) (I- p)-l. Hence,

lim M=(I-P)-Q(A1-A+)=(AIQ)-aQ(A-A+)

A-’ Q-XQ(A1- A+) M. I3

Local mode analysis, applied to (2.14b) with A and A+ according to (2.10) and
(2.11), respectively, yields for the maximally allowable value of tr-= cAt/Ax, tr=l 2.21
and O’li ,"-2.12. Note that the difference between both values is very small. For an
arbitrary , it is safe and still efficient to take tr 2.12. The value r 2.12 is lower than
that for the existing method applied to the first-order upwind system (tr 2.5105), but
higher than that for the existing method applied to the higher-order system (tr 1.9186).

For tr 2.12 and for increasing u, Fig. 4 shows the behavior of the convergence
factor/, versus the frequency 0 in the range [0, zr], for the new higher-order method.
Already for , 1, it appears that the convergence behavior of the new higher-order
method is better than that of the existing higher-order method (Fig. 5). Clearly visible
for increasing u is the rapid improvement of the smoothing (i.e., the convergence in
the range 0 r/2, zr]) and the tendency towards coincidence of the curves. The curves
converge to the one that corresponds with the exact solution of (2.14b)"/ 1/2 sin 0, 0
[0, r]. In the next section we will further investigate the smoothing properties of IDeC.

2.3.2. Smoothing analysis. Local mode analysis yields that with the new method,
optimal smoothing of the highest frequency, 0 =r, is obtained for cr 1.8921 and
cr 1.4869. Just as for r 2.12 (Fig. 4), Figs. 6 and 7 give the convergence behavior
for tr- 1.8921 and o-- 1.4869 with increasing ,. For both values of o- the smoothing
is clearly better than for r- 2.12. For r- 1.4869 it is best.
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0
(c)

FIG. 4. Convergence behavior novel higher-order method, for o" 2.12. (a) u 1, 3, 5. (b) u 1, 5, 9. (c)
1, 10, 19.

1.00

0.75

# 0.50

0.25

0.50 1.00 1.50 2.00 2.50 3.00

0
FIG. 5. Convergence behavior existing higher-order method, for o" 1.9186.
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0.50 1.00 1.50 2.00 2.50 3.00

(a)

1.00

0.75

0.50

0.25

,,.--- v= 5 / \

"’i,.,.,.,:,
ii

0.50 1.00 1.50 2.00 2.50 3.00

(b)

1.00

0.75

0.50

0.25

0.50 1.00 1.50 2.00 2.50 3.00

(c)

FIG. 6. Convergence behavior novel higher-order method, for cr 1.8921. (a) v 1, 3, 5. (b) v 1, 5, 9.
(c) v 1, 10, 19.

In Figs. 8, 9, and 10 we show the smoothing behavior for varying o-, the 0-range
considered being [r/2, 7r], and the quantity /x along the vertical axis being the
maximum smoothing factor found over this range. We consider successively: the
first-order method (Fig. 8), the existing higher-order method (Fig. 9), and the new
higher-order method (Fig. 10). When we compare the results ofthe existing higher-order
method and the new higher-order method (Figs. 9 and 10), we find that the new method
clearly has better smoothing properties. The new method appears to have even better
smoothing properties than the first-order method (compare Figs. 8 and 10). Note in
particular that the or-range over which its smoothing is good is much wider.
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FIG. 7. Convergence behavior novel higher-order method, for o" 1.4869. (a) u 1, 3, 5. (b) u 1, 5, 9.

(c) u 1, 10, 19.

3. Numerical results. In order to verify the previously predicted better stability
and convergence properties of the novel higher-order method, we compute the standard
transonic channel flow from [21] with the two-dimensional Euler equations. Three
finest grids are considered: a 161-vertices grid (Fig. 11), a 585-vertices grid that is about
twice as fine (see [16]), and a 2225-vertices grid that is about four times as fine. The
corresponding solution schedules applied are a four-, five, and six-level schedule
(L 4, 5, 6), respectively, all with Upre Upost 1, for all 1.

In Figs. 12(a)-12(c) we present various convergence histories as obtained for
L 4, 5, 6, respectively. The convergence results presented are those of (i) the first-order
discretized Euler equations solved by means of the nonlinear multigrid iteration (dotted
lines), and those of higher-order discretized Euler equations solved by means of (ii)
the existing higher-order method (dashed lines), and (iii) the novel higher-order method
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FIG 8. Smoothing behavior for varying tr, first-order method.
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FIG 9. Smoothing behavior for varying tr, existing higher-order method.

(solid lines). In all three graphs, the residual considered is the L2-norm of the error
in the conservation of mass over all the finest-grid cells. Furthermore, in all three
graphs the number of cycles indicated along the horizontal axis is (i) the number of
FAS cycles in case of both the first-order method and the existing higher-order method,
and (ii) the number of IDeC cycles in case of the new higher-order method. Note that
with the new higher-order method, for UFAS 2, 5, 10 the number of inner FAS cycles
is, respectively, 2, 5, and 10 times larger than the number of indicated IDeC cycles.
(Only for ’FAS-" 1 does the number of FAS cycles equal the number of IDeC cycles.)
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FIG. 10. Smoothing behavior for varying (r, novel higher-order method. (a) u 1, 3, 5. (b) u 1, 5, 9. (c)
1, 10, 19.

FIG. 11. Channelfrom [20], with 161-vertices grid.
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(c)

FIG. 12. Convergence histories" first-order method, existing higher-order method, ----; novel
higher-order method, (a) 161-vertices grid (L=4). (b) 585-vertices grid (L=5). (c) 2225-vertices grid
(L=6).

All convergence histories start at the end of the FMG stage (Fig. 3). In agreement with
the theoretical results found in 2.3, for all four values of VFAS (SO also for VFAS 1),
the new method does indeed give a better convergence than the existing higher-order
method. For decreasing mesh width, the convergence of the new higher-order method
becomes even relatively better than that of the first-order method. (For all four values
of VFAS under consideration, the corresponding convergence histories in Fig. 12 show
a better grid-independency than those of the multigrid method applied to the first-order
discretized equations.) This better performance is probably due to better smoothing
in the new method. (In 2.3, by model analysis, we have found that the new method
has better smoothing properties than the first-order method.)

As for the actual order of accuracy, if we took the converged higher-order accurate
solution obtained on the 2225-vertices grid as the reference solution, we measured
local orders of accuracy in the range [O(hl’4), O(h2"3)] for the solutions on the coarser



968 MARIE-HILi,NE LALLEMAND AND BARRY KOREN

0.1 0.2 0.3 0.’1 0.5

time (hrs.)

(a)

v;xs"= 10

_\ ’xs 5 ",

0 O.’t 0.8 1.2 1.6

time (hrs.)
(b)

time (hrs.)
(c)

FIG. 13. Efficiency histories: existing higher-order method, novel higher-order method, (a)
161-vertices grid (L=4). (b) 585-vertices grid (L= 5). (c) 2225-vertices grid (L=6).

grids (the 585-vertices grid and the 161-vertices grid). The global order of accuracy
appears to be almost O(h2).

Finally, the important question of which of the various higher-order methods is
the most efficient still remains. To answer this question, we give the higher-order
efficiency histories in Figs. 13(a)-13(c). The indicated computing times have been
obtained on a Sequent. (No efforts have been undertaken to make efficient use of the
parallelization features of the machine. What interests us here is the relative efficiency
of the higher-order methods only.) Since the sizes of the three grids considered are
related to each other by approximately a factor 4, we have related the scales along the
horizontal axes accordingly. Concerning the relative efficiency of the novel higher-order
method, for the four values of uAS considered, it appears that for all three grids the
best efficiency is obtained with UVAS 1 (SO just as in [14], for the schedule with only
a single FAS cycle per IDeC cycle). Furthermore, it is significant that the novel method
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with /FAS--" 1 appears to be more efficient than the existing higher-order method. Due
to the better grid-independency of the novel method, this relatively better efficiency
becomes even increasingly better with decreasing meshwidth.

4. Conclusions. Fully implicit solution methods for higher-order discretized
equations may strongly benefit from iterative defect correction when these systems of
discretized equations are not easily invertible, which is often the case with higher-order
accurate discretizations. Fully explicit solution methods may also profit from iterative
defect correction. Here the profits are faster convergence and higher efficiency. The
defect correction method appears to lead to greater stability (and hence to greater
robustness) than the existing (standard) explicit method. Compared to the existing
explicit method, it possesses remarkably good smoothing properties, in fact even better
than the first-order method. Last but not least, its convergence rate appears to be
grid-independent. For upwind discretizations, the "price" which has to be paid for
using defect correction iteration, a slightly more complex algorithm, is negligible,
because ofthe direct availability of an appropriate approximate operator; the first-order
upwind operator.

Acknowledgments. The authors want to thank Joke Sterringa, P. Wesseling, and
the referees for their suggestions in improving this paper.
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THE ASYMPTOTIC SPECTRA OF BANDED
TOEPLITZ AND QUASI-TOEPLITZ MATRICES*

RICHARD M. BEAMt AND ROBERT F. WARMINGt

Abstract. Toeplitz matrices occur in many mathematical as well as scientific and engineering
investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with
emphasis on nonnormal matrices of arbitrarily large order and relatively small bandwidth. These are

the type of matrices that appear in the investigation of stability and convergence of difference ap-
proximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet
boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz
or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for nonnormal ma-

trices) numerically unreliable. An asymptotic (matrix order tends to infinity) approach partitions
the (asymptotic) spectrum of a quasi-Toeplitz matrix into two parts; namely, the analysis for the
boundary condition independent spectrum and the analysis for the boundary condition dependent
spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix

spectrum. Algorithms for computing both parts of the asymptotic spectrum are presented. Examples
are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point
out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are

employed for nonnormal matrices of large order. The analysis for the Toeplitz spectrum also leads to
a diagonal similarity transformation that improves conventional numerical eigenvalue computations.
Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue
problem which occurs, for example, in the stability analysis of Pad6 type difference approximations
to differential equations.

Key words. Toeplitz matrices, eigenvalues, spectrum, stability

AMS subject classifications. 65F15, 65M10, 76N10

1. Introduction. A Toeplitz matrix has the property that the entries are con-
stant along diagonals parallel to the main diagonal. If we define the sequence

(1.1) a_p,a-p+l,"" ,a0,’" ,aq_l,aq; where a_p, aq 0

and p and q are specified positive integers, then the elements of a banded square
Toeplitz matrix of order J and bandwidth p + q + 1 are given by

(1.2) aij aj-i

if aj-i is a member of the sequence (1.1) and zero otherwise. Since the eigenvalue
analysis for triangular matrices is trivial, we have restricted our attention to nontri-
angular matrices (p, q > 0). For example, if we choose p 1 and q 2 and denote

*Received by the editors October 25, 1991; accepted for publication (in revised form) August
28, 1992. The main results of this paper were presented at the 14th Biennial Conference on Numerical
Analysis, Dundee, Scotland, June 25-28, 1991.

?Computational Fluid Dynamics Branch, NASA Ames Research Center, Moffett Field, Califor-
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the banded Toeplitz matrix by A then

(1.3) A

a0 al a2

a-1 a0 al

a-1 a0

a2

al a. 0

a-1 a0 al a2

a-1 a0 al
a-1 a0

where the bandwidth is four and the matrix order J is arbitrary. Our interest is in the
spectra, i.e., the eigenvalues, for banded Toeplitz matrices of arbitrarily large order,
i.e, J -- oc.

A banded quasi-Toeplitz matrix is defined to be a banded Toeplitz matrix where
there are a limited number of row changes constrained as follows: There are at most p
altered rows among the first p rows and at most q altered rows among the last q rows.
Since p and q are fixed and J is assumed to be large, there are only a relatively few
altered rows. Here we use quasi in the conventional sense meaning almost or nearly.
For example, a quasi-Toeplitz cousin of the Toeplitz matrix (1.3) is

(1.4) A

-bll 512 b13 b14
a-1 ao al a2

a_l ao al a2

a-1 a0 al a2

c24 c23 c22 c21

c14 c13 c12 Cll

(The advantage of the unusual indexing for the c entries of A will become apparent in

4.2). We assume that the modified elements are constants and therefore independent
of J. The bandwidth of a quasi-Toeplitz matrix may be larger than the bandwidth of
its pure Toeplitz cousin, e.g., the quasi-Toeplitz matrix defined by (1.4) has a larger
bandwidth than its Toeplitz cousin defined by (1.3).

Another important relative of a banded Toeplitz matrix is its circulant cousin.
Each row of a circulant matrix is constructed by cycling the previous row forward one
element. For example, if the first row of a matrix of order J is

(1.5) [a0, al," aq, 0,.." O, a_p, a-2, a_],

this process defines the circulant cousin of the Toeplitz matrix defined by (1.2). In
particular, the circulant cousin of the Toeplitz matrix (1.3) is
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(1.6)

a0 al a2
a-1 ao al

a_l a0

O
a2

al a2

a2

al a2 O

a-1

a_l a0 al a2

a-1 a0 al

a-1 a0

We will also refer to the matrix defined by (1.5) as the circulant cousin of a quasi-
Toeplitz matrix, e.g., (1.6) is the circulant cousin of (1.4). a circulant matrix is
also Toeplitz because the entries are constant along diagonals. The eigenvalues (and
eigenvectors) of any circulant matrix can be determined analytically [1]. The spectrum
for a circulant banded Toeplitz matrix is a subset of the spectrum for the doubly
infinite (order) banded Toeplitz matrix [9].

Toeplitz matrices are important in mathematics as well as scientific and engi-
neering applications [5], [4]. Our interest [15] arose from an investigation of stability
and convergence of difference approximations to initial-boundary-value problems for
partial differential equations. The analysis of these difference approximations leads
to a study of the spectra for banded quasi-Toeplitz matrices of large order. The ele-
ment changes from the pure Toeplitz matrix are the result of applying non-Dirichlet
boundary conditions to the difference equations. The bandwidth of the matrix is de-
termined by the width of the difference stencil and is small compared with the order
of the matrix. For example, if the method of lines is applied to a scalar hyperbolic
partial differential equation and if a four-point spatial difference approximation is used
to approximate the spatial derivative, one obtains the quasi-Toeplitz matrix

(1.7)

2c+3 6c+1
2 3c+2 2

13 2 6

13 2 O

10 a
13 2

6/--1 --3-- 2

where the parameters c and/ are introduced by the numerical boundary conditions
[15]. If we choose c 6/5 and -4/5 and calculate the spectrum of (1.7) for a
family of increasing matrix orders, we obtain the spectra shown by the open circles
in the complex plane in Fig. 1.1. Note the four "isolated" eigenvalues in Fig. 1.1(d).
(The abscissa and the ordinate of each eigenvalue, respectively, represent the real part
and the imaginary part of the eigenvalue.) In the Lax stability analysis of a difference
method for an initial-boundary-value problem, the location of the spectrum in the
complex plane determines a necessary (but not sufficient) condition for stability. The
GKS (Gustafsson, Zreiss, and SundstrSm [6]) stability analysis involves checking the
Cauchy stability (location of the circulant cousin spectrum) and also checking the
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FIG. 1.1. Spectra for the quasi-Toeplitz matrix (1.7), with c 6/5 and/
-4/5, (o symbol) and the spectra for the circulant Toeplitz cousin (+ symbol) for
matriz order J.

location and asymptotic behavior of "isolated" eigenvalues. The spectrum (spectral
radius) also determines the asymptotic iterative convergence rate for fixed J. For the
purposes of this paper we are interested in the spectrum for large matrix order, e.g.,
Fig. 1.1(d). For reference we have also plotted the spectrum (+ symbols) for the
circulant cousin of (1.7) in Fig. 1.1.

In 2 the eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix is for-
mulated as a difference equation with appropriate boundary conditions. In general, the
resulting boundary value problem is analytically intractable. In 3 we assume that the
order of a quasi-Toeplitz matrix is large (J ec) and use an asymptotic approach to
partition the spectrum into two independent sets. The partition is between boundary
condition independent spectrum and boundary condition dependent spectrum. Algo-
rithms for the computation of both parts of the spectrum are described in 4. These
algorithms involve the solution of algebraic equations with degree proportional to the
bandwidth of the matrix. The algorithm for the boundary condition dependent spec-
trum closely parallels the eigenvalue analysis of Godunov and Ryabenkii [2], Kreiss
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[7] and Gustafsson, Kreiss, and SundstrSm [6]. Plots of the asymptotic spectra of
Toeplitz matrices often exhibit surprising geometrical shapes. Some illustrative ex-
amples are shown in 5. The algorithms for computing the spectra are applied to
both Toeplitz and quasi-Toeplitz matrices in 6. If conventional numerical eigenvalue
algorithms are used to compute the spectra for nonnormal matrices of large order,
errors in the spectra may be encountered. In 7 we introduce a simple similarity
transformation that improves the accuracy of conventional eigenvalue algorithms for a
large class of banded Toeplitz and quasi-Toeplitz matrices. Finally, the algorithm for
the asymptotic Toeplitz spectrum is extended to the generalized eigenvalue problem
in 8.

2. The eigenvalue problem: a difference equation representation. Let
A represent a J J banded Toeplitz matrix defined by (1.2). The eigenvalue problem
for A is defined by

(2.1)

where A is the eigenvalue and is the eigenvector:

(2.2) cT [(1, (2, (J--1, (J].

The eigenvalue problem (2.1) is equivalent to the system of homogeneous equa-
tions

q

m=--p

j- 1,2,... ,J

with p homogeneous Dirichlet boundary conditions at the left boundary and q homo-
geneous boundary conditions at the right boundary

(2.4a) _,=0, rn-0,1,...,p-1,

(2.4b) CJ+m 0, rn 1, 2,... q.

Note that fictitious points have been introduced in defining the boundary conditions
(2.4). It is apparent that (2.3) is the generic or jth equation of the system (2.1). A
difference equation representation of the eigenvalue problem, e.g., (2.3) and (2.4), has
been used for the purposes of analysis, e.g., [13], and occurs naturally in the stability
analysis of finite difference approximations.

Equation (2.3) is a (p + q)th order difference equation for Cj, and we look for a
solution of the form

(2.5)

where is a complex constant. Insertion of (2.5) into (2.3) yields

q

(2.6) A= E a’’"
m----p
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This is an algebraic equation of degree p + q in the unknown . If there are p + q
distinct ’s, the general solution of (2.3) is

p+q

m=l

where the a,’s are the roots of (2.6) and the/3,’s are arbitrary constants. If there
are only d (d < p + q) distinct a’s with multiplicity rl,r2,... ,rd, then the general
solution of (2.3) is

d rm -1

(2.7b) dp E Z tmnjntjm
m--1 n--0

The constants/3 are determined by inserting (2.7) into the boundary conditions (2.4).
If the bandwidth is three, i.e., p q 1, the eigenvalue problem for the pure Toeplitz
problem can be solved analytically [10], [15]. However, if the bandwidth is greater
than three, the problem is analytically intractable.

For a quasi-Toeplitz matrix the difference equation formulation of the eigenvalue
problem differs from the pure Toeplitz problem only in the boundary conditions. The
difference equation (2.3) is still valid if appropriate extrapolation boundary conditions
are generated. These extrapolation boundary conditions depend on the matrix entries
that change the matrix from Toeplitz to quasi-Toeplitz. Extrapolation boundary
conditions have the general form

Pm(E)-,-O, m-0,1,...,p-1,

Qm(E)j+m O, m=l,2,-..,q,

where P,(E) and Q,(E) are polynomial operators and E is the shift operator defined
by ECj j+1. The subscripts on the operators indicate that, in general, the oper-
ators are different for each value of rn. As an example, the extrapolation boundary
conditions for the matrix (1.7) are

(2.9a) P0(E)0 --0,

(2.9b) Q1 (E)j+I 0,

(2.9c) Q2(E)j+2 0,

where, after some algebra, one finds

(2.10a) Po(E) -(E- 1)3(3cE- 1),

(2.10b) QI(E) 1,
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(2.10c) Q2(E) (1 E-1)3(1 + 6E-1).

Although the extrapolation boundary conditions are easy to derive, we will find it more
convenient to implement an eigenvalue algorithm that uses the boundary difference
equations directly. For example, the first row and the last two rows of the matrix

(1.4) have entry changes. For the eigenvalue problem (2.1) the difference equation
(2.3) is still valid at j 2, 3,..., J- 2 and modified difference equations apply at
j 1, J- 1, J. The general form of difference equations for the left boundary is

(2.11) Bb-/D,

where B is a rectangular matrix with p rows and r columns and
The matrix D is a p x r rectangular diagonal matrix with unit entries on the diagonal.
Similar equations apply at the right boundary.

The eigenvalue problem for the circulant cousin of (1.2) is (2.3) with periodic
boundary conditions

(2.12) Cj Cj+j.

It is well known that the eigenvalue problem for any circulant matrix can be solved
analytically. By inserting (2.5)into (2.12), one obtains

(2.13) NJ--- 1.

Hence the ’s are the J roots of unity

(2.14) 6=e, where 06=27/J, g=l,2,...,J.

The circulant spectrum is obtained by substituting (2.14) into (2.6):

As an example, the spectrum of the circulant matrix (1.6) with coefficients

(2.16) [a-l, a0, al, a.] [-1/3, -1/2, 1, -1/6]

reduces to the compact form

(2.17) 6 -4w/3 i[1 + 2w6/3] sin 06,

where

(2.18) we sin2(06/2), 06 27/J, t 1,2,... ,Y.

The eigenvalue locus is the oval shaped dashed curve plotted in Fig. 5.1. In equation
(2.16) and the remainder of this paper we use the underline to indicate the main
diagonal element.
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3. Partition of the asymptotic spectrum. Let Aj be a J x J banded quasi-
Toeplitz (or Toeplitz) matrix. Here Aj denotes the Jth member of a family of matrices
of arbitrarily large order. In the limit J cx one can partition the asymptotic
spectrum into two sets. The partition is between the set which is independent of the
boundary conditions and the set (possibly empty) which is dependent on the boundary
conditions.

First we introduce some definitions. The spectrum of Aj is denoted by

(3.1) ag {AI det(Ag hi) 0}.

DEFINITION 3.1. The asymptotic spectrum of the family {Aj} is the set S defined
by

(3.2) S {A A lim A,, A, e ai, lim im }.

In the special cse where A is a pure Toeplitz mtrix, we denote the symptotic
spectrum by the set B, i.e.,

(3.3)

to conform with the notation of Schmidt and Spitzer [9].
The set 8 (or B) defines the subset of the complex plane which is "filled in" by the
points of ad s J

There are two additional sets that play major roles in the computational algo-
rithms of the next section nd they are defined in terms of the n’s. We assume without
loss of generality that the p + q roots of the algebraic equation (2.6) are ordered s

The crucial inequality in (3.4) is between [np(A)] and n,+l (A)l, i.e.,

DEFINITION 3.2. The (boundary condition independent) set C is defined to be

(3.6) C- {, I,,(,)1- Ip/l()l}

Schmidt and Spitzer [9] proved that the asymptotic Toeplitz spectrum defined by the
set/3 is equivalent to the set C, i.e.,

(3.7)

Let

(3.8) K()
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which is an r x s matrix.
DEFINITION 3.3. The (boundary condition dependent) set 7:) is defined to be

(3.9) { I p( DI < det[(B ,D)Krp] 0 V det[(C ,D)Krq] 0},

where B and C are the left and right boundary matrices with p and q rows, respectively,
and r columns. The matrix D is a p r rectangular diagonal matrix with unit entries
on the diagonal. (As examples of the left and right boundary matrices see (2.11) and
(4.10).)

Kreiss [7] proved that the asymptotic spectrum for non-Dirichlet boundary con-
ditions (the quasi-Toeplitz matrix) is equal to the asymptotic spectrum for Dirichlet
boundary conditions (the Toeplitz matrix) plus a set (possibly empty) of isolated
eigenvalues (set 7)), i.e.,

(3.10) $=u7).

With the Schmidt and Spitzer identity (3.7) we have

(3.11) S-Cu.

The investigation of the set 7) is an integral part of the work of Gustafsson, Kreiss, and
SundstrSm [6]. In the next section we present algorithms for numerically determining
the sets C and T) and thus the asymptotic spectra for banded quasi-Toeplitz matrices.

For a pure Toeplitz matrix the asymptotic spectrum is the set C. For the quasi-
Toeplitz cousin matrix, which can have arbitrary boundary conditions, the set C is a
subset of the asymptotic spectrum . We say therefore that the set C is the boundary
condition independent part of the the asymptotic spectrum and the set 7) is the bound-
ary condition dependent part of the asymptotic spectrum. Note that the asymptotic
spectrum for a pure Toeplitz matrix is the boundary condition independent spectrum.

4. Algorithms for computing the asymptotic spectra. In this section
we present algorithms for computing the asymptotic spectra of Toeplitz and quasi-
Toeplitz matrices. We separate the algorithms for the two sets: (a) boundary condition
independent (pure Toeplitz) set C, and (b) boundary condition dependent set 7). The
application of each algorithm involves the solution of algebraic equations whose degree
is proportional to the bandwidth p + q + 1 of the matrix.

4.1. Boundary condition independent (Toeplitz) spectrum. The algo-
rithm for the pure Toeplitz asymptotic spectrum (set C) is based on the observation
that separated the spectrum into two sets, i.e., we seek those eigensolutions whose
t’s satisfy (3.4) with the equality (3.53). First we seek the solutions of the algebraic
equation (2.6) with two distinct but equal modulus a’s. We denote these t’s by

(4.1) na-kei, ab--ke-i, 0<e<r,

where k is a complex variable. For computational convenience, the interval [0, ] is
divided into M + 1 subintervals of size A where (M + 1)A r and Ce tA, g
1, 2,... M. (The choice of the integer M determines the number of computed points
on the asymptotic spectrum, i.e., the resolution of the spectrum, but does not affect
the accuracy of the computed points.) An equation for k (independent of A) is easily
obtained. Since Na and N;b must each give the same value of , when inserted in (2.6),
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we can eliminate/ and obtain a polynomial in k with coefficients that are functions
of the Toeplitz matrix elements and Ce. In particular,

q q

(4.2) l(a)- E a’keime’ ,(b) E a’kne-{me
m:--p rn:--p

and since

(4.3) (Na) (Nb),

one obtains a polynomial equation of order p + q for k:

q

(4.4) E
rn=--p

a, sin(mCe)k" 0.

The algorithm for the boundary condition independent spectrum, set C, is the
following.

ALGORITHM 4.1.. For each of the M values of "(i) Solve (4.4) for the p + q roots g.
(ii) Check the corresponding s’s to determine if they satisfy (3.4) with (3.5a), i.e.,

that sa and ss from (4.1) are in fact sp and Np+l. This is done as follows.
For each g obtained in (i)
Calculate s and ss from (4.1) and insert s (or Sb) in (2.6) to find A. Substitute
this value for A back into (2.6) and solve the algebraic equation to determine the
remaining (p + q 2) ’s.
If the p + q a’s satisfy the inequality (3.4) with (3.5a), i.e., la[- Itbl--INpl
lap+ll, then is a point on the asymptotic Toeplitz spectrum. If the a’s do not
satisfy the inequality test, discard the .
Return to (iia) until all k’s from (i) have been tested.
Replace e by e+l and return to step (i).
It should be emphasized that the algorithm (4.1) requires the solution of many

algebraic equations but their degree is proportional to the bandwidth of the matrix
and not the order of the matrix. Note that the boundary conditions do not enter
the calculation. An implementation of the algorithm in MATLAB is given in the
Appendix. The algorithm will become more transparent in the examples of 6.

(iia)

(iib)

4.2. Boundary condition dependent spectrum. The algorithm for the
boundary condition dependent asymptotic spectrum (set 79) closely parallels the eigen-
value analysis of Kreiss [7] and Gustafsson, Kreiss, and Sundstrhm [6]. There are how-
ever some differences since their analysis for hyperbolic initial-boundary-value prob-
lems makes two assumptions: (I) Cauchy stability (an assumption about the spectrum
of the Toeplitz matrix’s circulant cousin), and (II) the quarter-plane eigensolutions are
unstable (i.e., the eigenvalues are in a particular part of the complex plane). Since we
are interested in the entire spectrum for any quasi-Toeplitz matrix, we do not impose
conditions (I) and (II). The relaxation of these two conditions leads to a slightly more
complicated algorithm.

The algorithm for the boundary condition dependent part of the spectrum is
straightforward. We seek p (or q) values of t that satisfy (2.6) and satisfy the left p
(or right q) boundary difference equations. The remaining q (or p) a’s must satisfy
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(3.4) with inequality (3.5b). The algorithm for the eigenvalues associated with the left
boundary is as follows.

ALGORITHM 4.2.
(i) Assume a solution of the form

p

E
m=l

Substitute Cj from (4.5) into the p left boundary difference equations (2.11) to
obtain

(4.a) (B D)Krpfl 0,

where Krp is defined by (3.8) and

(4.7) fit [ill, f12," G]"

Equation (4.6) is a system of p equations for the 2p + 1 unknowns: p m’S, p
tim’S, and . This system of p equations is linear and homogeneous in the fl’s and
therefore a nontrivial solution exists if and only if

(4.8) det[(B AD)Kp] 0.

The determinant condition leads to a single equation for the p t’s and . An
additional p equations are required and they are derived from the algebraic equa-
tion (2.6) since each of the p ’s must give the same value of A. This system of
polynomial equations can be reduced to a single polynomial equation for a single
variable and we choose p.

(ii) The roots of the polynomial equation from (i) contain all candidate tp’S for the
(left) boundary condition dependent spectrum. For each p the corresponding
m’S must be checked. This is accomplished by calculating the corresponding
(t gp) from (2.6) and then computing the p + q roots of (2.6) for the given. Finally, we compare those roots with the p am’S which satisfy the boundary
difference equations (2.11). If (3.4) and (3.5b) are both satisfied, the is an
eigenvalue in the boundary condition dependent part of the spectrum.
The algorithm for the eigenvalues associated with the right boundary is similar.

If the algorithm has been implemented for the left boundary problem, it can be used
for the right boundary problem by pre- and post-multiplying A by the permutation
matrix

(4.9) P

O 1

1 O

i.e., PAP. Note that p-1 p. The matrix PAP is most easily obtained by inter-
changing the columns of A "left to right" and then interchanging the rows "up and
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down." The boundary difference equations associated with the left boundary for PAP
are

(4.10) Cb AD.
As an example, the matrices C and D associated with PAP where A is (1.4) are

C21 C22 C23 C24 0 1 0 0

This explains the somewhat unconventional indexing for the c elements of (1.4). (Note
that a pure Toeplitz matrix A is persymmetric, i.e., it is symmetric about its northeast-
southwest diagonal [3]. Consequently AT PAP. However if A is quasi-Toeplitz then
PAP is not the transpose of A.)

The details of the algorithm are illustrated by the examples of 6. Note that there
may be no eigenvalues in the boundary condition dependent part of the spectrum even
if non-Dirichlet boundary conditions are specified, i.e., the set :D may be empty.

The algorithm for the boundary condition dependent spectrum is straightforward,
but finding a polynomial equation in a single variable can be algebraically involved
and the degree of the polynomial can be large. The system of equations for the ’s in

(i) are symmetric polynomials; therefore, the algebraic complexity can be somewhat
reduced by the use of the elementary symmetric functions. We have implemented
Algorithm 4.2 in MACSYMA, and it performs satisfactorily on an IRIS workstation
for the matrix B with two rows and a quasi-Toeplitz matrix A with bandwidths up
to five.

4.3. Alternative boundary condition dependent algorithm. The alge-
braic complexity of the boundary condition dependent algorithm of 4.2 led us to con-
sider alternative methods. In the GKS (Gustafsson, Kreiss and SundstrSm [6]) theory
a GKS (i.e., unstable) eigenvalue is a member of the boundary condition dependent
eigenvalue set T of this paper. Kreiss [7] recognized that it is often very difficult to
find GKS eigenvalues by analytical methods. He proposed finding GKS eigenvalues
(if they exist) by a numerical eigenvalue computation of the finite-domain problem
where the boundary condition (or conditions) to be checked are on the left boundary
and Dirichlet boundary conditions are imposed on the right boundary. Kreiss showed
that GKS eigenvalues converge exponentially fast with increasing J. However, we
found difficulties in numerically delineating the GKS eigenvalues (or other boundary
condition dependent eigenvalues) for nonnormal matrices. The numerical difficulties
are often alleviated if the matrix is rescaled as described in 7.

We have found the following algorithm to be useful although not always com-
pletely reliable since it will sometimes "miss" an eigenvalue. The reliability is improved
if the algorithm is repeated for several matrix orders.

ALGORITHM 4.3.
(i) Place the boundary conditions of interest on the left boundary and Dirichlet

conditions on the right boundary.
(ii) Apply the similarity transformation described in 7 and use a conventional eigen-

value algorithm to find the spectrum for large J.
(iii) Test each eigenvalue found in (ii) using part (ii) of algorithm 4.2.
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FIG. 5.1. Toeplitz matrix [-1/3,-1/2, 1,-1/6] spectra "fill in" for increasing
matrix order J. The symbol o denotes an eigenvalue. Asymptotic spectra (Algorithm
.1) are denoted by solid curves and asymptotic circulant spectra (2.17) by dashed
c’ltrv 8

5. Numerical application of algorithms. Plots of the asymptotic spectra
of Toeplitz matrices present some interesting and sometimes surprising geometrical
shapes. In this section we present some spectra that were obtained with the algorithms
described in 4. The matrix coefficients were selected more or less at random to give
a flavor of the geometric patterns that may occur.

In each figure we show the spectra plotted in the complex plane. Open circles
represent eigenvalues computed using MATLAB eig(Aj) for the matrix order (J)
specified in the figure legend. The "solid" curve (which is formed by closely spaced
dots) is the asymptotic spectrum for the Toeplitz matrix and was computed using
Algorithm 4.1. The star symbol (,) is used to represent the boundary condition
dependent part of the asymptotic spectrum computed using Algorithm 4.2 or 4.3.
The dashed curve represents the asymptotic spectrum for the circulant cousin of the
pure Toeplitz matrix.

5.1. Toeplitz spectra. First we summarize the known properties of the asymp-
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(b) [.5, 0, , 1.5]
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(c) o,
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/

0

(d) [1,-1, 0, .25]

FIG. 5.2. Asymptotic spectra for pure Toeplitz matrices (Algorithm .1) in-
dicated by solid curves and the asymptotic spectra for the circulant cousin Toeplitz
matrices indicated by dashed curves.

totic spectra of pure Toeplitz matrices and show some examples that illustrate these
properties. Definition 3.1 involves a family of matrices Aj where the dimension J
tends to infinity. As J increases a subset of the complex plane is "filled in" by the
spectrum aj and as J --, c one obtains the asymptotic spectrum [9]. This is illus-
trated in Fig. 5.1 for a quadridiagonal pure Toeplitz matrix defined by the sequence
(2.16). Note that the spectrum aj is close to the asymptotic spectrum even for small
values of J.

The asymptotic spectrum of a banded pure Toeplitz matrix is compact and lo-
cally it consists of analytical arcs [9]. Furthermore, it possesses no isolated points
[9]. This property will be of interest in considering the asymptotic spectra of quasi-
Toeplitz matrices. Ullman [14] has shown that the asymptotic spectrum is connected.
Asymptotic spectra illustrating these properties are plotted in Figs. 5.2 and 5.3. The
defining sequence (1.1) is shown under each figure. Algorithm 4.1 is not restricted to
Toeplitz matrices with real coefficients and this is demonstrated in Fig. 5.3(d). As
the bandwidth of the matrix increases, the asymptotic spectrum becomes increasingly
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(a) [1,0, 0, 0, 0, 0, .75]
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(b) [.45, -.45, 0,-.05, -.05]
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(c) [-.2,-.2,-.2, .1,-.2, .2,-.4] (d) [.7i, .3, _0, .5i, .3 + i]

FIG. 5.3. Asymptotic spectra for Toeplitz matrices (Algorithm .1) indicated by
solid curves and their circulant cousin Toeplitz matrices indicated by dashed curves.

complex.
According to Schmidt and Spitzer [9] it is not easy to give a simple geometric

description of the asymptotic Toeplitz spectrum for nonnormal matrices. An exception
is the special case where the defining sequence is [a_p, 0,... 0, aq], i.e., all members
of the sequence are zero except the two "outriders." In this case the spectrum is
a star-shaped figure. Examples of star-shaped spectra for quadridiagonal matrices
are shown in Figs. 5.2(a) and 5.2(b) and for a septadiagonal matrix in Fig. 5.3(a).
The spectrum for the tridiagonal case is known analytically and consists of a straight
line segment (connecting the foci of the ellipse which is the spectrum of its circulant
cousin) [16].

It is a general result [9] that the asymptotic Toeplitz spectrum is "enclosed" by
the spectrum of its circulant cousin. This is illustrated in Figs. 5.2 and 5.3. However,
for finite J the spectrum aa is not necessarily enclosed by the asymptotic spectrum
of the circulant cousin of A. This is illustrated in Fig. 5.4.

5.2. Quasi-Toeplitz spectra. The properties of the asymptotic spectrum of a
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0.4 0.4

-0.4 -0.4
0

(a) J-6
2 2

0.4 0.4

-0.4 -0.4

(c) J- 24

(b) J 12

2 2

(d) J- 48

FIG. 5.4. Spectra for finite matrix order J (o symbol) and the asymptotic
circulant spectrum (dashed curves). Asymptotic Toeplitz spectra indicated by solid
curves. The Toeplitz matrix is [.7, .1, 0, .4, .6].

quasi-Toeplitz matrix are illustrated in Fig. 5.5 for the matrix (1.7). The asymptotic
spectrum consists of the asymptotic pure Toeplitz spectrum, set C plus (possible)
isolated eigenvalues corresponding to boundary condition dependent eigenvalues, set
D. The isolated eigenvalues (see, e.g., Fig. 5.5(5)) must be boundary condition depen-
dent eigenvMues associated with set D because the pure Toeplitz spectrum can have
no isolated points [9]. Note also that, in contrast to the pure Toeplitz spectrum, the
quasi-Toeplitz spectrum may have (isolated) eigenvalues outside the circulant spec-
trum, e.g., Figs. 5.5(5), 5.5(c), and 5.5(d). For a =/ 0 the matrix (1.7) has no
boundary condition dependent eigenvalues and the asymptotic quasi-Toeplitz spec-
trum is the pure Toeplitz spectrum shown in Fig. 5.5(a). In this example set D is
empty. A fundamental property of the eigenvalues associatedwith set D is that the
"left" and "right" boundary dependent eigenvalues are uncoupled. This is illustrated
in Figs. 5.5(b), 5.5(c), and 5.5(d). For/ -.8 there are three isolated eigenvalues to
the right of the pure Toeplitz spectrum. These eigenvalues are completely indepen-
dent of the parameter ( of the left boundary condition (see matrix (1.7)). This fact
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-1

//
//

-1 0

(a) a-0, 3-0

-1

//

\\

-1 0

(b) a- 1.2, /3--.8

-1 -1 ii

-1 0

(d) a=l.2, /3-0

FIG. 5.5. Asymptotic spectra for the quasi-Toeplitz matrix (1.7). Boundary
condition independent spectra computed with Algorithm .1 (solid curve), boundary
condition dependent spectra (, symbol) computed with Algorithm .2, and asymptotic
circulant spectra (dashed curves).

is illustrated by comparing Figs. 5.5(b) and 5.5(c) where/3 is fixed and c is changed.
For c 1.2 there is one isolated eigenvalue to the left of the circulant spectrum. This
eigenvalue is independent of the parameter of the right boundary condition as is
indicated by comparing Figs. 5.5(b) and 5.5(d).

6. Analytical application of algorithms. If the bandwidth of the matrix is
sufficiently small ( 3) the algorithms of 4 can be used as analytical methods. In
this section we elucidate the algorithms of the previous section by considering small
bandwidth examples for both Toeplitz and quasi-Toeplitz matrices.

6.1. Toeplitz tridiagonal matrix. A tridiagonal Toeplitz matrix is defined
by the sequence [a-l, a0, all where p q 1 (see (1.1)). For this case the spectrum
for arbitrary order J can be determined analytically. The solution is "well known"
although the eigenvalue formula does not appear in many references. A derivation is
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given by Smith [10, p. 113]. The algebraic equation (2.6) becomes

(6.1) / a-l
-1 + a0 + alto.

By rewriting (6.1), one obtains

(6.2) a2 + (a0 -/) + a_ =.0.

We denote the roots of this quadratic by/1, t2. The product of the roots is

(6.3) /1/2
a-1

al

We follow the algorithm for the boundary condition independent part of the
spectrum from 4.1. Equation (4.4) for k reduces to

(6.4) ak2 -a_ -0.

In step (i) we solve for the roots of (6.4), i.e.,

(6.5) ; -+- v/a_l/al.

In step (iia) we find

(6.6a) ha v/a-1/alei,

(6.6b) tb v/a-1/ale-,
where we have chosen the positive square root. (The negative square root gives the
same spectrum.) Since there are only two roots of (6.1), i.e., /1 and t2, they must be
a and b. They obviously have equal modulus, therefore equality (3.5a) is satisfied
and the corresponding A is part of the Toeplitz spectrum. (In this simple example
step (ii) of the Algorithm 4.1 is rather trivial.) Substitution of ta given by (6.6a) into

(6.1) yields

(6.7) Ag=a0+2v/ala-lcosCg, 0<g<r,

which is the asymptotic spectrum for a tridiagonal Toeplitz matrix.
Although not part of the asymptotic analysis we note that for the tridiagonal

case, the roots tl and 2 have equal modulus regardless of the order J of the matrix.
In fact, the exact roots are given by

(6.8) l=ke, 2=ke-, where g=gr/(J+l), g=l,2,...,J,

and k is given by (6.5) (see, e.g. [16]). Consequently, the exact spectrum for a J J
matrix is (6.7) where Cg is defined in (6.8). It should be emphasized that if the
bandwidth of a Toeplitz matrix is larger than three, then Algorithm 4.1 is, in general,
exact only in the asymptotic limit J cx.
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6.2. Quasi-Toeplitz tridiagonal matrix. The asymptotic spectrum for a
quasi-Toeplitz tridiagonal matrix is given by (6.7) plus any boundary condition de-
pendent eigenvalues, i.e., set 7). We first show that a pure Toeplitz tridiagonal matrix
does not have any boundary condition dependent eigenvalues, i.e., the homogeneous
(Dirichlet) boundary conditions (2.4) introduce no boundary condition dependent
eigenvalues. For a tridiagonal matrix the homogeneous conditions (2.4) are simply

(6.9a) o 0,

(6.9b) J+1 =0.

By substituting (4.5), i.e.,

(6.10) j /lt
into (6.9a), one concludes that either 1 0 or 1 0. But the product of the
roots (6.3) is nonzero and 1 0. Hence there is no nontrivial eigenfunction and
no eigenvalue is introduced by the (left) boundary condition (6.9a). By substituting
(6.10) into (6.9b), one finds the similar result that no eigenvalue is introduced by the
(right) boundary condition (6.9b).

For the general Toeplitz matrix there are p homogeneous Dirichlet boundary
conditions at the left boundary and q homogeneous Dirichlet boundary conditions at
the right boundary, i.e., (2.4a) and (2.4b). Substitution of (4.5) into the left boundary
conditions leads to a homogeneous system V/ 0 where V is a p x p Vandermonde
matrix and [1,/2,"-,/p]T. The determinant of V equals zero if and only if
two a’s are equal which violates the assumption of distinct a’s. The assumption of
nondistinct a’s also leads to the trivial case f 0. Therefore Dirichlet boundary
conditions introduce no boundary condition dependent eigenvalues, i.e., the set 7) is
empty.

Consider now boundary conditions that introduce nontrivial solutions. Suppose
that when (6.10) is introduced into the left boundary condition we obtain

(6.11) al a,

where a is some nonzero complex constant. Does this introduce an eigenvalue? It
does if inequality (3.5b)is satisfied, i.e., lall < It21. From (6.3)one obtains

(6.12)

Inequality (3.5b) is satisfied if

(6.13) l11--I1 < v/la-1/all
and the corresponding eigenvalue is obtained by substituting aa into (6.1).

We give an example of a quasi-Toeplitz matrix where there is a boundary condition
dependent eigenvalue. Consider the matrix

(6.14) A

0-2 2
-1 0 1

1
0.
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Here

(6.15) a-1 -1, a0 0, al 1, bll 0, b12 -2, b13 2.

The eigenvalue problem is (2.3) with p q 1, and the boundary difference equation
(2.11) is

(6.16) -22

Substitution of (6.10)into (6.16) yields

(6.17) -2al + 2a21 ,k.

The second equation relating 1 and is (6.2) with al and coefficients (6.15)

Elimination of A from (6.17) and (6.18) yields

(6.19) (El 1)2(21 + 1)= 0.

The roots of (6.19) are

(6.20) 1 1, 1,-1/2.

In the tridiagonal case, step (ii) of Algorithm 4.2 is simplified to checking inequality
(6.13). The inequality (6.13), with (6.15),

is satisfied for ;1 -1/2. Substitution of N1 -1/2 into (6.17) gives A 3/2.
The asymptotic spectrum of the quasi-Toeplitz matrix (6.14) consists of two parts.

The boundary condition independent (pure Toeplitz) spectrum, set C, is (6.7)

(6.21) =i2cos, 0<<r,

and the boundary condition dependent part of the spectrum, set :D, is A 3/2. Con-
sequently, the asymptotic spectrum is a line segment on the imaginary axis between
+2i and the single eigenvalue ,k 3/2.

6.3. Toeplitz quadridiagonal matrix. A more interesting example is the
quadridiagonal matrix (1.3) where p 1 and q 2. The algebraic equation (2.6) is

(6.22) A a-in
-1 + a0 + aln + a22.

For the boundary condition independent spectrum (set C), the three roots of the cubic
(6.22) must satisfy (3.4)and (3.5a)

(6.23) I ll 1 21 1’ 31.

The product of the roots of (6.22) is -a-l/a2 and therefore

(6.24)
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The polynomial (4.4) for k becomes

a-1 sin(-/)&-1 -}- al sin()k + a2 sin(2)k2 0

or

2a2(cos )k3 + al;2 a_l 0.

In (i) of Algorithm 4.1 we solve (6.25) numerically for specified coefficients at.
In (iia) of Algorithm 4.1 we proceed as follows. For each root k we substitute

t% =/cei* into (6.22) and calculate the corresponding ,. Then with A given, we solve
the cubic (6.22) for the roots n, n2, n3. Of course, two of the roots are already known,
i.e., ha kei* and nb /ce-*. In (iib) we check to see if the three roots satisfy
inequality (6.23)

(6.26)

If this inequality is satisfied, then the corresponding A is a point of the boundary
condition independent spectrum. If the ’s fail to satisfy inequality (6.26), we discard
the A. We repeat (i) and (ii) for all of the b’s where g 1, 2,..., M.

For the particular example under consideration, the test (6.26) can be simplified
as follows. Recall that the roots of equal modulus/1 and 2 are denoted by (4.1) and
rewrite (6.23) as

and (6.24) as

(6.28)

Inequality (6.27) is satisfied if

(6.29) I1 la-1/a2l 1/3.

Hence if I1 satisfies (6.29), then the corresponding A computed by inserting
into (6.22) is a point of the boundary condition independent spectrum.

The asymptotic spectrum for the Toeplitz matrix (1.3) with coefficients (2.16)
was computed with Algorithm 4.1 (see also the Appendix) and is the solid curve in
each of the figures of Fig. 5.1. The asymptotic spectrum for the circulant cousin (1.6)
is the dashed curve in each of the figures of Fig. 5.1.

6.4. Quasi-Toeplitz quadridiagonal matrix. An example of a quasi-Toeplitz
quadridiagonal matrix is (1.4) where p 1 and q 2. The eigenvalue problem is
equivalent to (2.3), i.e.,

(6.30) /j a-lOj-1 d- aodPj nu alOj+l d- a2j+2, j 2, 3,... J

with left boundary difference equation (2.11)

(6.31) b111 -}- b2 + b133 -}- b144
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The spectrum for the matrix (1.4) is the spectrum for the pure Toeplitz matrix
(plotted in Fig. 5.5(b) for coefficients (2.16)) plus any boundary condition dependent
eigenvalues. For the boundary condition dependent spectrum the roots of the cubic
(6.22) must satisfy

(see (3.4) and (3.5b)).
In the analysis of the boundary condition dependent part of the spectrum, the

left and right boundary conditions are uncoupled and consequently we consider each
boundary separately.

6.4.1. Left boundary dependent spectrum. The left boundary difference
equation is given by (6.31). We follow the algorithm for the boundary condition
dependent part of the spectrum given in 4.2. Recall that for this example p 1 and
in the first step (i), we look for a solution of the form (4.5)

Insertion of this equation into the boundary difference equation (6.31) yields

(6.34) bll %-b12N1%- b13t %- b14N =/.

As a particular example we consider the special case for the matrix (1.4) where
the coefficients at are given by (2.16) and the coefficients blj are given by

(6.35) bll -o- 3/2, b12 36 + 2, b13 -36- 1/2, b14 a.

The algebraic equation (6.22) with =/1 becomes

(6.36) 6,k 3 %- 61 tl
2 --(1 1)(21 5/1 2)/1,

and the boundary difference equation (6.34) with coefficients (6.35) becomes

(6.37) -(c + 3/2) + (3c + 2)/,i; (36 + 1/2)a + aa31 .
If we eliminate from (6.36) and (6.37), the polynomial for gl is

(6.38) (El 1)3(3o1 1) 0.

Note that if we formulate the problem in terms of the extrapolation boundary condi-
tions (2.9), then (6.38) follows by inserting (6.33) into (2.96).

Example 6.1. As our first example we let a 0 and (6.38) becomes

(6.39) (/1 1) 3 O.

The repeated roots of (6.39) are

(6.40) gl 1,
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and from (6.36) the corresponding eigenvalue is A 0. Recall that the roots of the
cubic equation (6.36) are denoted by hi, 2, and 62. By inserting A 0 into (6.36),
one finds that the roots are

(6.416) 1 1,

(6.41b)

It is obvious that inequality (6.32) is not satisfied. Therefore, if a 0 the left boundary
condition does not introduce any boundary condition dependent eigenvalues.

Example 6.2. Although the boundary condition (6.34) with (6.35) and c 0 does
not introduce any boundary condition dependent eigenvalues, they are introduced for
a range of nonzero values of the parameter a. The roots of (6.38) are

(6.42) 1 1, 1, 1, 1/(36) (a # 0).

Are there any values of a for which A 0 is a boundary condition dependent
eigenvalue? For A 0, the roots of (6.36) are

(6.43) 1, n (5 x/-3)/2 -0.372, (5 + xfl3)/2 5.372.

It is obvious that inequality (6.32) is not satisfied if N1 1 which excludes the repeated
roots in (6.42). Inequality (6.32) is satisfied if

(6.44a) tl (5 )/2 -0.372,

(6.44b) 2 1,

(6.44c) 3 (5 + )/2 5.372.

In order to have a boundary condition dependent eigenvalue A 0 we must choose
in (6.42), i.e.,

(6.45) tl 1/(3c)

so that E1 is (6.446). By equating (6.45) and (6.446), one obtains

(6.46) -(5 + x/)/12 -0.895.

Consequently, for this value of c the boundary condition (6.34) with (6.35) will intro-
duce the boundary condition dependent eigenvalue A 0.

If one carries out a GKS normal mode analysis for the semidiscrete approximation
with (2.16) and the numerical boundary condition (6.34) with (6.35), one finds that
the semidiscrete approximation is unstable for c < & where & is defined by (6.46).



994 RICHARD M. BEAM AND ROBERT F. WARMING

An explicit formula for in terms of the parameter a is found by substituting
(6.45) into (6.37)

A (3c- 1)(-18a2- 15a + 1)/(54a2).

If one chooses a particular value of a, the corresponding value of is a boundary
condition dependent eigenvalue if and only if the corresponding ’s satisfy inequality
(6.32).

Example 6.3. I8 it possible to choose c 80 that there is an eigenvalue

(6.48) ) -4/3

which falls on the oval shaped circulant spectrum where the oval crosses the real axis
(see Fig. 5.5a)? This value of/ is an eigenvalue of the circulant matrix (1.6) with
(2.16) as one can easily verify from the formula (2.17) for 0 7r. (The corresponding

for the circulant case is a -1.) By substituting -4/3 into the cubic equation
(6.36) one obtains the roots

(6.49a) a -1,

(6.49b)

(6.49c) t (7 + v/)/2 6.70.

Inequality (6.32) is satisfied if and only if

/’i;1 (7 vf)/2 .298,

(6.50b) 2 -1,

(6.50c) t3 (7 + V/)/2 6.70.

If a in (6.45) is chosen so that 1 is (6.50a), one obtains

(6.51) a 1/(3t1) (7 + x/)/12 1.117.

Hence -4/3 is a point of the boundary condition dependent spectrum for the
value of a given by (6.51).

6.4.2. Right boundary dependent spectrum. In the analysis for the bound-
ary condition dependent part of the spectrum, the left and right boundary conditions
are uncoupled. It is convenient to have a single algorithm for both the left and right
boundary condition problems. This can be accomplished by switching the matrix so
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that the right and left boundary conditions are interchanged. For example, if the
matrix (1.4) is switched as described in 4.2 one obtains the the matrix

(6.52) A

Cll C12 C13 C14

C21 C22 C23 C24

--2 --1 (0 1 O

O t_2 t_ t0 t
g-2 &-i &0 &l
b14 bla b12 bl

where 5j a_j. For this matrix p 2 and q 1 and the left boundary difference
equations are given by

Cll(l -}- C12(/)2 Jr- C13(/)3 -[- C14(4 /(1,

(6.53b) C21(1 nt- C22(2 nL C23(3 -Jr- C244

For the matrix (6.52), the algebraic equation (2.6) is

There are two boundary conditions (6.53) and following the algorithm for the
boundary condition dependent spectrum we seek a solution of the form (4.5), i.e.,

(6.55) (j /1 nc /2.

From (6.53a) and (6.53b)one obtains

Cll(/I,N1 Jr-/2N2) -[- C12(/1N -[- /2N22) -}- C13(/1N;13 -t--/2N23)
Jr-C14(/1 Jr- /224) /(/11 +" /22),

(6.56b) C21(/1N1 Jr- 2N2) Jr- C22(/1N _qL /2N22) --I- C23(/1N31 -t-/2N32)
+(1 +4) (11 +

Since /1 and 2 must each give the same A, we use (6.54) to obtain two additional
equations

(6.56c)

(6.56d)

The system of (four) equations (6.56) has (five) unknowns /1,/2, N1, 2,/. Since the
equations (6.56a) and (6.56b) are linear and homogeneous in /1 and/32 and (6.56)
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are algebraic equations, they can be reduced to a single algebraic equation in a single
variable (we choose h2), i.e.,

(6.5s) o.

The roots of (6.57) are all possible values of h2 that may introduce boundary
condition dependent eigenvalues. Each h2 is tested as follows: Substitute h h into
(6.54). Solve the new equation for ,k(h2). Substitute A(h2) back into (6.54) and solve
the resulting equation for hi, he, ha. If the h’s satisfy (3.4) with (3.5b), i.e.,

(6.58)

then A(h2) is a boundary condition dependent eigenvalue, otherwise it is not part of
the asymptotic spectrum.

If the bandwidth of the matrix is large and the number of rows in the boundary
condition matrix B becomes large, the algebraic reduction of the system, e.g., (6.57),
becomes hopeless even for good symbolic systems such as MACSYMA. In these cases
we recommend the less reliable but more efficient algorithm of 4.3.

An alternative solution procedure for (6.56) is the following. The system of equa-
tions, e.g., (6.56) is symmetric in the h’s so the algebra can be simplified by the
introduction of the elementary symmetric functions. As an example, we consider
the relatively simple right boundary problem for the matrix (1.7) and introduce the
elementary symmetric functions [11]

(6.59) y hl -}- h2

and

(6.60) x

It can be shown that the system (6.56) reduces to

(6.61)

where Cll -33, C12 33- 1/2, and C13 --3 and

(6.62) y (al x2 _lX)/a_2

It is not practical to proceed analytically, so for a particular set of matrix coefficients
we solve (6.61) numerically for z and proceed as in the general Algorithm 4.2.

7. Eigenvector scaling. If conventional numerical eigenvalue packages, e.g.,
IMSL, EISPACK, etc., are used to compute the spectra for nonnormal Toeplitz ma-

trices, large errors in the spectra may be encountered for matrices of relatively low
order. For example if we choose the matrix

(7.1) [-1/6, 1, -1/2, -1/3]
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(c) J 80 (d) J 160

FIG. 7.1. Numerically computed spectra with rounding errors (o symbol) for
the unscaled Toeplitz matrix [-1/6, 1,-1/2,-1/3]. Asymptotic Toeplitz spectra and
asymptotic circulant spectra indicated by solid and dashed curves, respectively.

and use the MATLAB routine eig(A) on an IRIS workstation to compute the spec-
trum, we obtain the sequence of spectra (for increasing matrix order) shown in Figs.
7.1(a) through 7.1(d). The Toeplitz.matrix defined by (7.1) is the transpose of the
Toeplitz matrix defined by (2.16).

The numerical spectra of the Toeplitz matrix (2.16), e.g., see Fig. 5.1, for J
80 and 160, fall on the asymptotic spectra. In general, the numerical spectra of a
nonnormal matrix A and its transpose AT (for sufficiently large J) will differ in spite
of the fact that the analytical spectra are identical. This phenomenon, which is a
result of rounding errors, is discussed at the end of this section.

A nonnormal Toeplitz matrix e.g., (7.1)) can have the property that the spec-
trum is very sensitive to perturbations of the matrix elements. For such matrices,
Trefethen [12] and Reichel and Trefethen [8] suggest that an eigenvalue analysis may
lead to incorrect conclusions, and it is more meaningful to analyze pseudo-eigenvalues.
The erroneous eigenvalues (induced by rounding errors) plotted in Fig. 7.1 are a man-
ifestation of the pseudospectra of the matrix (7.1) for increasing J. The numerical
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1.5
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1.5

u

0 2 3 0 2 3

(b)

FIG. 7.2. Modulus of vs for (a) matrix (2.16) unscaled, u, and scaled, s,
and (b) the transpose matrix (7.1) unscaled, u, and scaled, s.

error can be reduced by using higher numerical precision. However, for any numer-
ical precision the qualitative behavior illustrated in Fig. 7.1 will always appear for
sufficiently large J. Qualitatively, the numerical Toeplitz spectrum approaches the
spectrum of its Toeplitz circulant cousin as J - oe.

The difficulty in numerically computing the eigenvalues of a nonnormal Toeplitz
matrix is related to the exponential character of the eigenvectors. We illustrate this
with an example by comparing the eigenvectors of the matrix (2.16) with the eigenvec-
tors of its transpose (7.1). Since (2.16) is a Toeplitz matrix, the asymptotic spectrum
is independent of the boundary conditions and the roots satisfy (6.23). In this ex-
ample the moduli of the roots of equal modulus (4.1), Ikl, are only weakly dependent
on the angle as illustrated in Fig. 7.2. From (4.4) with coefficients given by (2.16)
and /2 one obtains Ikl 1/. Hence for the roots of equal modulus, one finds

(7.2)

and consequently the modul] of the eigenvector element8 behave a8

(7.3) IOjl (1/)j,

i.e., they decrease exponentially with increasing j.
For the transpose AT, defined by (7.1), one has

(7.4) ]1[ [2[ [3[,

where he check symbol indicates ha he ’8 in (6.23) and (7.4) are no he same. In
fac, he ’8 of (6.23) and (7.4) are reciprocMs. Consequendy, for AT one has

(7.5) 1 31
and the moduli of the eigenvector element8

(7.6) IOjl ()J
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grow exponentially with increasing j.
A simple scaling attenuates the exponential behavior of the eigenvectors. Let A

denote an arbitrary banded Toeplitz matrix. If the ’s of equal modulus (3.5a) are not
on the unit circle, then either A or AT will have exponentially growing eigenvectors.
Assume that A has ’s of equal modulus (4.1) which are outside the unit circle. Define

to be

(7.7) k mean
O<<Tr

For the matrix A we rescale the eigenvectors by

Cj(7.s)

The scaling is effectively a normalization of the ’s so their moduli are approximately
equal to unity.

The scalin9 similarity transformation is

(7.9) S- 1/2 O

0 1/J-1

1/J

Hence the rescaled eigenvalue problem is

(7.10) (S-1AS)S-I ,S-1.

If aij aj-i are the nonzero elements of the Toeplitz matrix A, the elements gij of
the rescaled matrix S-1As are

(7.11) gij aj_i-.
To numerically compute the spectrum of the rescaled eigenvalue problem, one simply
replaces the matrix elements by (7.11). One should not make the numerical matrix
multiplies indicated by S-IAS because of potentially large rounding errors. The
implementation of Algorithm 4.1 in the Appendix computes (), which can be used
to compute (7.7).

In Fig. 7.3 we compare the computed (MATLAB) spectrum of the scaled and
unscaled Toeplitz matrix defined by (7.1). One can predict a bound on the numerical
eigenvalue distribution of a Toeplitz matrix for large J. In Fig. 7.4(a) the outer
dashed curve is the circulant cousin spectrum of the Toeplitz matrix defined by (7.1)
and the inner dashed curve is the circulant cousin of the corresponding scaled Toeplitz
matrix. The solid curve is the asymptotic Toeplitz spectrum. For the unscaled matrix
the outer dashed curve of Fig. 7.4(a) is the bound on the numerically computed
spectrum for large J. For the scaled matrix, the inner dashed curve is the asymptotic
bound on the numerically computed spectrum. For the scaled matrix the circulant
spectrum is tightly "wound" around the asymptotic Toeplitz spectrum and one can
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FIG. 7.3. Numerically computed spectra with rounding errors (o symbol) for
the unscaled Toeplitz matrix [-1/6, 1,-1/2,-1/3], and (b) the scaled matrix. Asymp-
totic Toeplitz spectra and asymptotic circulant spectra are indicated by solid and dashed
curves, respectively.
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FIG. 7.4. Asymptotic circulant spectra for unscaled "outer" dashed curves) and
scaled ("inner" dashed curves) matrices. Asymptotic Toeplitz spectra are indicated by
solid curves.

expect an accurately computed spectrum for large J. These bounds are illustrated by
the numerical spectra shown in Fig. 7.3.

As a second example, we plot in Fig. 7.4(b) the spectra of the unscaled and scaled
circulant cousins of the pentadiagonal Toeplitz matrix defined by

(7.12) [-1.5, 16,-1___5, 0, .5].
The solid curve, i.e., the propeller, is the asymptotic Toeplitz spectrum. Numerically
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FIG. 7.5. Numerically computed spectra with rounding errors (o symbols) for
(a) A- [-1.5,16, -1___5, 0, .5], (b) AT, (c) scaled A, J- 400, and (d) scaled AT,
J- 1000.

computed (MATLAB) spectra of the Toeplitz matrix and its transpose are plotted in
Figs. 7.5(a) and 7.5(b) for J 400. The spectra for both A and AT are erroneous
for large J. The inner dashed curve of Fig. 7.4(b) is the asymptotic bound on
the numerical eigenvalue distribution of the scaled matrix for large J. Numerical
eigenvalue computations for the scaled matrix are shown in Figs. 7.5(c) and 7.5(d).

One can also predict how well the scaling will work. If a graph of [kl vs Ce (see
Algorithm 4.1) for the unscaled matrix is a single flat band as in Fig. 7.2, then the
scaling will yield a tight bound for the circulant cousin around the asymptotic Toeplitz
spectrum as illustrated in Fig. 7.4(a). On the other hand, if Ikl vs Ce forms multiple
and/or nonuniform bands as illustrated in Fig. 7.6, then one has multiple scales and
a simple scaling will not yield a closely wound circulant cousin spectrum as illustrated
in Fig. 7.4(b).

If one starts with a quasi-Toeplitz matrix, then the appropriate scaling is the
same as for its pure Toeplitz cousin.

8. The generalized eigenvalue problem. If Pad type difference approxima-
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FIG. 7.6. Modulus of k vs e for (a) matrix [-1.5, 16,-1___5,0,.5] unscaled, u,
and scaled, s, and (b) the transpose matrix unscaled, u, and scaled, s.

tions are used to approximate differential equations the associated stability analysis
leads to a generalized eigenvalue problem. In addition, the analysis of implicit time
integration schemes leads to a generalized eigenvalue problem. Let A and B represent
J x J banded Toeplitz matrices. The generalized eigenvalue problem is defined by

(8.1) A- ABe,

where is the eigenvector and A is the eigenvalue. Here we assume that the matrix
A is defined by the sequence [ai,--PA <_ < qA] and B is defined by the sequence
[bi, --PB <_ < qB], where PA, qA,PB, qB are positive integers. The eigenvector is
given by

(8.2)

The eigenvalue problem (8.1) is equivalent to the set of homogeneous equations

qA qB

(8.3) E amCj+r--, E b,j+,, j-l,2,...,J
rn-----pA rn=--pB

with p max[pA,PB] homogeneous boundary conditions at the left boundary and
q- max[qA, qB] homogeneous boundary conditions at the right boundary

(8.4a) _,-0, rn-0,1,...,p-1,

(8.4b) )J+m O, rn 1, 2,... q.

Equation (8.3) is a (p + q)th order difference equation for Cj and we look for a
solution of the form

(s.5)
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FIG. 8.1. Spectra for the generalized Toeplitz eigenvalue problem (8..1), (a) A
[2,_0,-1] and B [-2,_2, 1] and (b) A [.38, .13,-.43, .15, .2___5,-.06, .27,-.02, =.26]
and B [.28i, .38i, .50i, .07i, .95_____/, .99i, .49i, .27i, .09i].

where is a complex constant. Substitution of (8.5) into (8.3) yields

qB qA

(8.6) A E b’’- E a’’"
rn-- --PB rn=--PA

This is an algebraic equation of degree p + q in the unknown . The general solution
of (8.3) is (2.7). The constants A/are determined by inserting (2.7) into the boundary
conditions (8.4). If the bandwidth is three, i.e., p q 1, the eigenvalue problem for
the pure Toeplitz problem can be solved analytically [16]. However, if the bandwidth
is greater than three, the problem is analytically intractable.

The eigenvalue problem for the circulant cousin of (8.1) is (8.3) with periodic
boundary conditions (2.12). Insertion of (8.5)into (2.12) yields

(8.7) J- 1.

Hence the ’s are the J roots of unity given by (2.14) and the circulant spectrum is
obtained by substituting (2.14) into (8.6)

qB qB

(8.8) A E b’e’= E a’ei’"
rn-----pB --pB

The partition of the asymptotic Toeplitz spectrum is the same (3) as for the
standard eigenvalue problem. The algorithm follows that of 4.1. To construct the
polynomial for t’s of equal modulus we use (4.1). Since /a and b (defined by 4.1)
must each give the same value of A when inserted in (8.6), we can eliminate / and
obtain a polynomial in P with coefficients which are functions of the Toeplitz matrix
coefficients and . In particular,

qB qA

(8.9a) A(t{a) E b’cke{’= E
--PB
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and since

(8.10) A(a) A(b),

one obtains, after some algebraic simplification,

qA qB

(8.11) E E ambn&(m+n)sin[(rn- n)e] O.
m----pA n=--pB

The algorithm follows that of (i) and (ii) in 4.1. The implementation of the
generalized eigenvalue algorithm is a straightforward modification of the standard
eigenvalue algorithm (Appendix).

As an example of the polynomial (8.11), if we choose A and B to be the quadridi-
agonal matrices represented by the sequences [a-2, a-I, a0, all and [b-2, b-l, b0, bl], the
equation for the n’s of equal modulus is

(8.12)
(albo a0bl)k4 + 2(alb_1 a_lbl) cos(e)t3

+ [(a0b_ a_bo) + (ab_2 a_2bl)(4cos2(2)- 1)]2

-t- 2(a0b_2 a_2b0) cos()fi + (a-lb-2 a-2b-1) 0.

Note that (6.4) and the "transpose" of (6.25) are easily obtained as special cases of
(8.12). As examples of the spectra of the generalized eigenvalue problem we choose two
examples. The spectra for the Toeplitz and the associated circulant Toeplitz matrices
are plotted in Fig. 8.1

9. Concluding remarks. The algorithms presented in 4 provide a practical
and accurate method for obtaining the asymptotic spectra of banded Toeplitz and
quasi-Toeplitz matrices. They are especially useful for nonnormal matrices where
conventional algorithms may give erroneous results. The extension of the algorithms
for the generalized eigenvalue problem for Toeplitz matrices was presented in 8. The
asymptotic analysis also provides a similarity transformation, 7, which can increase
the spectrum accuracy if conventional eigenvalue algorithms (finite J) are employed.

Acknowledgments. We are grateful to Dennis Jespersen, Robert Schreiber,
Nick Trefethen, and an anonymous reviewer for comments and suggestions that im-
proved our manuscript.

Appendix. MATLAB Toeplitz eigenvalue algorithm.

function[teig, spsi, sakap] toeasy(c, r, nn);
%Find the asymptotic (size approaches infinity) spectrum ’teig’
%and t() ’sakap’ and ’spsi’ (see Algorithm 4.1)
%for a banded Toeplitz matrix with first column ’c’ and first row
%’r’ (only banded part of column and row) ’nn’ is a measure of the
% number of points computed on the spectrum
diag c(1);
lr length(r);
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nr lr 1;
lc length(c);
nc= lc- 1;
ct c(2 lc)
rt r(2 lr);
mv nr -1 -nc;
pcO [fliplr(rt) 0 ct];
teig [1: (nc + nr) nn];
spsi [1: (nc + nr) nn];
sakap [1: (nc + nr) nn];
eigct 0;
epst 1000 eps;

for j 1 nn;
psi j pi/(nn + 1);
mvs sin(mv psi);
pe pcO. mrs;
nroot nc + nr;
if (pe(2) 0);
f(abs(pe(1)/pe(2)) < 1000 eps);
pe pe(2 nroot + 1);
nroot nroot- 1;
end;
end;
ke roots(pe);
for k l nroot;
if ke(k) O;

lain -(kap. Amv) pcO.;

kc roots(pc);
akap abs(kap);
akc abs(kc);
skap sort(akc);
test abs((skap(nc) skap(nc + 1))/(skap(nc) + skap(nc + 1)));
if test < epst:skap(nc) > akap (1 epst)&skap(nc) < akap (1 + epst);
eigct eigct + 1;
teig(eigct) -(lain diag);
spsi(eigct) psi;
sakap(eigct) akap;
end;
end;
end;
end;
teig teig(1 eigct);
spsi spsi(1 eigct);
sakap sakap(1 eigct);
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A NEW PREPROCESSING ALGORITHM FOR THE COMPUTATION
OF THE GENERALIZED SINGULARVALUE DECOMPOSITION*

ZHAOJUN BAIl AND HONGYUAN ZHAt

Abstract. In this note a new algorithm is proposed for the preprocessing phase of Paige’s algorithm for
computing the generalized singular value decomposition (GSVD). This new algorithm substantially reduces
the complexity of Paige’s algorithm and makes it much easier to implement. It is also proved that the prepro-
cessing phase is backward stable and a numerical example is demonstrated.

Key words, generalized singular value decomposition, URV decomposition
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1. Introduction. This note is concerned with the numerical computation of the gen-
eralized singular value decomposition (GSVD) of two matrices having the same number
of columns. The GSVD was first proposed by Van Loan [9]. Like the singular value de-
composition (SVD) of one matrix, the GSVD ofmatrix pairs is a very useful tool in many
numerical linear algebra problems. The following formulation of the GSVD is due to
Paige and Saunders [5], and is more suitable for numerical computation.

THEOREM 1.1. Given a matrixpair (A, B) with A E ]Rmxn and B IRpx’*, there exist
orthogonal matrices U, V, and Q such that

UTAQ A( 0 n ), VTBQ EB( O R ),

where R is k k nonsingular upper triangular with k rank(AT, BT)T, and ,A and EB
are m k and p k diagonal matrices such that

Paige’s algorithm for computing the above-mentioned decomposition consists oftwo
phases: (1) reducing the given matrix pairs to upper triangular (or trapezoidal) forms by
orthogonal transformations, which is designated as the preprocessing phase; (2) implic-
itly applying the Kogbetliantz algorithm to find the GSVD of two triangular matrices [6].
The existing preprocessing procedure may result in an irregular triangular pair, which
gives rise to several different cases in the second phase and makes the numerical imple-
mentation quite complicated [2]. In this note the authors propose a new preprocessing
algorithm that essentially leaves only one case in the next phase. More precisely, the
authors reduce the problem to the computation of the GSVD of a matrix pair (A, B),
where A and B are upper triangular and/3 nonsingular, which is called a regular ma-
trix pair. Our current interest in developing algorithms for computing the GSVD stems

Received by the editors March 17, 1992; accepted for publication (in revised form) October 23, 1992.
fDepartment of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
Scientific Computing and Computational Mathematics, Stanford University, Stanford, California 94305.
1The generalized singular values of a regular matrix pair are all finite.

1007
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from Bai’s involvement in the linear algebra software package LAPACK [1]. Paige’s al-
gorithm for computing the GSVD will be included in the future release ofLAPACK. For
an alternative GSVD algorithm via the CS decomposition, the reader is referred to [7]
and [10].

2. A new preprocessing algorithm. The purpose of the preprocessing phase is to
reduce the given matrix pair (A, B) to a condensed form, so that the implicit Kogbetliantz
algorithm can be applied. Our approach is to extract a regular matrix pair from (A, B)
by applying orthogonal transformations to the individual matrices A and/3. A similar
idea was also used in [11] for computing the restricted singular value decomposition of
matrix triplets. The algorithm consists of three steps. The transformation from step k to
step k + 1 is denoted as

(a(k+l) ) ((U(k))Ta(k)(Q,(k)))B(k+) (V(k))TB(k)(Q(k))

where U(k), V(k), and Q(k) are orthogonal; A() and B(k) are the transformed A and B
at step k with initial values

A() A, B() B.

For brevity, in the following description ofthe algorithm, we only specify the transformed
A and B at each step; the corresponding orthogonal transformation matrices can be
easily constructed.

Before we proceed, we need to recall a matrix decomposition, which will be the
building block of our preprocessing algorithm: for any rn n matrix A, there exist or-
thogonal matrices U and V such that A can be decomposed as

0 0

where R is a nonsingular upper triangular matrix. The decomposition is called the com-
plete orthogonal decomposition, or simply the URVdecomposition [3]. Now we are ready
to present the preprocessing algorithm.

Step 1. Compute the URV decomposition of B such that

(A(I))
All) A
o
0 0

whereB is upper triangular and nonsingular.
Step 2. Compute the URV domposition of AI (ifA is not empty) and update

A), so that we have

0 A a
[ A(2) 0 0 a(2

o o
0 0 0
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where A122 is upper triangular and nonsingular, and B)=B).
Step 3. Compute the QR decomposition of A(2) such that23

0 A Aaa
{A(a)’ 0 0 A(aa

o o
0 0 0

where Ai A), Ai A(2)a, andB B). ForA), we need to distinguisho
cases. tA R x.

1. If s r, then

where is r x r upper triangular.
2. If s < r, then the first s columns ofA is an upper triangular matrN. We append

r s rows of zeros to A and denote the resulting matrN, which is also an upper
triangular matrN.

In either case, we end up with a matrN pair (, B)), where) and B are
square upper triangular and of the same size; moreover, B is nonsingular. Therefore,
computing the GSVD of(,B) is equivalent to computing the SVD of (BI)-.
Using the implicit Kogbetliantz algorithm [6], [2], we can find three orthogonal matrices
U, gl, and Q such that

23 V diagonal,

and
rr(a) ()(2) 2a Q R, a Q 2R,

where and 2 are diagonal, R is upper triangular, and

Combining Steps 1-3 and the results from the implicit Kogbetliantz algorithm (2),
and accumulating the corresponding orthogonal transformations, we have

(3) U’AQ= EA O R) and

where

VTBQ=FB(O R),

A 0 21 and B
0 0

0 0

and the upper triangular matrix R is given by

Equation (3) gives the desired GSVD of A and B in Theorem 1.1.
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3. Backward stability and numerical example. In this section, we first discuss the
numerical stability of the new preprocessing algorithm and then present one example as
a demonstration. The crux of the numerical stability of the new preprocessing algorithm
is how to stably compute the URV decomposition. In the current implementation, this
is done by first applying the QR decomposition with column pivoting, and then squeez-
ing the resulting trapezoidal form into upper triangular form by applying a sequence of
Householder transformations. Let quantities with an overbar denote computed quanti-
ties. From the standard backward error analysis of the QR decomposition [3], we know
that for the above preprocessing algorithm, the computed A(3) and (3) satisfy

T(A + E)( fi_(3), T(B + F)( -/(3),

where

IIEIIF rllAIl=, IIFI[F

and where 7- is a user-specified tolerance value, which is used in the QR decomposition
with column pivoting to determine the effective numerical rank of the matrix. We also
mention that there exist more sophisticated algorithms for computing the URV decom-
position, for example, the one proposed by Hanson and Lawson [4] and Stewart [8].

To conclude this note, we apply the new preprocessing algorithm and the implicit
Kogbetliantz algorithm to a numerical example.2 Our emphasis here is the backward
stability of the preprocessing algorithm. The matrix pair (A, B) is given as follows:

/1 2 3 1 5

0 3 2 0 2

1 0 2 1 0

0 2 3 0 -1

1 0 2 1 1

\0 2 1 0

(’1 -2 2 1 1
0 3 0 0 0

1 -2 2 1 1

0 2 0 0 0

2 -4 4 2 2

\I 3211]

After the three steps of preprocessing algorithm with the tolerance value set as
and MIIBII for the matrices A and B, respectively, we have

.(3)

(0
0

0

0

0

\0

3.6017E + 00 -1.7136E + 00

0 -2.6088E + 00

0 0

0 0

0 0

0 0

3.3819E 01

4.4448E + 00

1.8012E + 00 ’4.9805E / 00

-1.0628E + 00 6.4454E 02

0 4.2699E + 00

0 0

0 Oj

2For brevity, only five decimal digits are displayed for all the data, though all the results are obtained
using our FORTRAN routines run in double precision on an HP Apollo workstation with machine precision
M 2.2204 X 10-16.
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0
0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

-6.7823E + 00

0

3.5109E 4- O0 ’6.0559E + 00

0 0

0 0

0 0

o o)

where the partitioning of the matrix pair (.(a),/(3)) corresponds to that in Step 3 of the
preprocessing algorithm. At the second phase, we use the scheme proposed by Bai and
Demmel [2] to compute the GSVD of the (2,3) block of A(3) and the (1,3) block of/();
we obtain

0 4.2699E+00 0 5.7885E-01

and

-6.7823E + 00

0

3.5109E + 00 ) ( 9.8810E 01

6.0559E + 00 0

0

8.1544E 01

where
/

/1 ( -6.9692E + 00

0

\

3.5064E + 00

7.3144E + 00

Combining the above two phases, we have

(4) 7T(A + E)O A(0 /), frT(B + F)Q -,B(O ),

where

( 1.0000E + 00

0

0

0 0 0 ’
1.0000E + 00 0 0

0 1.5379E-01 0

0 0 5.7885E-01

0 0 0

0 0 O/

0 0 9.8810E-01 0

0 0 0 8.1544E-01

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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and

3.6017E + 00 -1.7136E + 00 2.8436E 01

0 -2.6088E + 00 4.2944E + 00

0 0 -6.9692E / 00

0 0 0

with the backward errors of the computed decomposition

1.8104E / 00

5.1107E + 00

3.5064E + 00

7.3144E + 00

IIEIIF IITA0 ,AIIF 4.511SE- 15 ,. MilAIIF,

IIFIIF --II?TBQ BIIF 5.6621E- 15 MIIBI[F.

The computed orthogonal matrices U, V, and Q are orthogonal within machine preci-
sion. The decomposition in (4) gives the desired GSVD of A and B in Theorem 1.1.
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FAST ITERATIVE SOLVERS FOR TOEPLITZ-PLUS-BAND SYSTEMS*
PYMOND H. CHANt AND KWOK-PO NGt

Abstract. The authors consider the solutions of Hermitian Toeplitz-plus-band systems (An + Bn)x
b, where An are n-by-n Toeplitz matrices and Bn are n-by-n band matrices with bandwidth independent
of n. These systems appear in solving integrodifferential equations and signal processing. However, unlike
the case of Toeplitz systems, no fast direct solvers have been developed for solving them. In this paper, the
preconditioned conjugate gradient method with band matrices as preconditioners is used. The authors prove
that ff An is generated by a nonnegative piecewise continuous function andBn is positive semidefinite, then
there exists a band matrix Cn, with bandwidth independent of n, such that the spectra ofC-t (An + Bn) are
uniformlybounded by a constant independent ofn. In particular, we show that the solution of (An+Bn)x b
can be obtained in O(n log n) operations.

Key words. Toeplitz matrix, band matrix, generating function, preconditioned conjugate gradient method

AMS subject classifications. 65F10, 65F15

1. Introduction. In this paper, we consider the solution ofsystems ofthe form (A,+
B,)z b, where A, is an n-by-n Hermitian Toeplitz matrix (i.e., the entries ofA are
the same along its diagonals) and B, is an n-by-n Hermitian band matrix with band-
width independent of n. These systems appear in solving Fredholm integro-differential
equations of the form

L{x(O)} + K(- O)x()d b(O).

Here z(O) is the unknown function to be found, K(O) is a convolution kernel, L is a
differential operator, and b(O) is a given function. After discretization, K will lead to
a Toeplitz matrix, L a band matrix, and b(O) the right-hand side vector; see Delves and
Mohamed [6, p. 343]. Toeplitz-plus-band matrices also appear in signal processing lit-
erature and have been referred to as peripheral innovation matrices; see Carayannis,
Kalouptsidis, and Manolakis [2].

For Toeplitz systems Anx b, fast and superfast direct solvers of complexity
O(n:) and O(n log2 n), respectively, have been developed; see, for instance, Trench
[10] and Ammar and Gragg [1]. However, there exists no fast direct solvers for solving
Toeplitz-plus-band systems. This is mainly because the displacement rank of the matrix
A, + B, can take any-value between 0 and n. Hence fast Toeplitz solvers that are based
on small displacement rank of matrices cannot be applied.

We note that given any vector x, the product (A, + B,)x can be computed in
O(n log n) operations. In fact, A,x can be obtained by fast Fourier transform by first
embedding A, into a 2n-by-2n circulant matrix; see Strang [9.]. Thus iterative methods
such as the conjugate gradient method can be employed for solving these systems. The
convergence rate of the conjugate gradient method depends on the spectram of the ma-
trix A, + B,; see Golub and Van Loan [8]. However, generally, the spectrum of A,,
and hence of A, + B,, is not clustered and the method will therefore converge slowly.
Hence a suitable preconditioner should be chosen to speed up the convergence.

For Toeplitz systems A,x b, circulant preconditioners have been proved to be suc-
cessful choices under the assumption that the diagonals of A, are Fourier coefficients of
a positive 27r-periodic continuous function. In that case, Chan and Yeung [3] proved that
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the convergence rate of the method is superlinear. However, circulant preconditioners
do notwork for Toeplitz-plus-band systems. In fact, Strang’s circulant preconditioner [9]
is not even defined for non-Toeplitz matrices. T. Chan’s circulant preconditioner, while
defined for A,+B,, will not workwell when the eigenvalues ofB, are not clustered; see
the numerical results in 4. Even ifwe approximate A, by a circulant preconditioner M,,
the matrix M,+B, cannot be used as a preconditioner since the system (M,+B,)z V
cannot be solved easily.

In this paper, we use band matrices C, as preconditioners. We will assume that B, is
an arbitrary Hermitian positive semidefinite band matrixwith bandwidth independent of
n, and the diagonals of A,, are Fourier coefficients ofa nonnegative piecewise continuous
function f. In that case, A, + B, will be Hermitian positive definite. We prove that
if the essential infimum of f is attained by finitely many points in I-r, 7r] and if f is
sufficiently smooth around these points, then there exists a Hermitian positive definite
band matrix C,, with bandwidth independent ofn, such thatthe spectra ofC- (A,+B,
are uniformly bounded by a constant independent of n. Hence for a given tolerance,
the number of iterations required for convergence is independent of n. Since the band
matrix system C,z b can be solved in O(n) operations, the total complexity of the
method is O(n log n).

The outline of the rest of the paper is as follows. In 2, we introduce our precondi-
tioners C, and study the spectral properties of A, + B, and C,,. In 3, we show that the
spectra of Cff (A,+B,) are uniformly bounded by constants independent of n. Finally,
numerical examples and concluding remarks are given in 4.

2. Construction of the preeonditioner C’,, To begin with, let C+ be the set of all
nonnegative piecewise continuous functions defined on [-Tr, 7r]. For all f 7+, let

tk[f] f(O)e-ikdO, k 0, 4-1, 4-2,...

be the Fourier coefficients of f. Since f is real-valued,

t_[f] [f], k 0, +1, +2,

Let A, [f] be the n-by-n Hermitian Toeplitz matrix with the (j,/)th entry given by t_t If].
The function f is called the generating function of the matrices A, If]. We recall that a
point/90 is said to be a zero of f with order v if f(Oo) 0 and v is the smallest positive
integer such that f()(Oo) 0 and f(+)(O) is continuous in a neighborhood of 00.

In the following, we denote the essential infimum and the essential supremum of f
by fmi and fmx, respectively. We will assume that f attains fmi at finitely many points
in [-Tr, 7r] and that f is smooth around these points. More precisely, we assume that
f(O) fmi has finitely many zeros in [-Tr, 7r] and that the orders of these zeros are finite
and positive. Notice that the matrix A[f] is unchanged when f is redefined at finitely
many points. Thus we can always assume without loss of generality that f is continuous
at those minimum points.

From the assumptions, we see that fmax 5 fmin. Then by using the fact that

(1) u*A,[g]u
j_

_. 1)12g(O)dO
7r j=l

for any g C+ and any n-vector (u,..., u,)*, Chan [4, Lemma 1] proved that

(2) Amin(A,[f]) > fmin.
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Here min(A,[f]) is the smallest eigenvalue of A,[f]. Since f is nonnegative, A,[f]
is positive definite for all n. In the following, we will assume that the band matrices
B, are Hermitian positive semidefinite matrices with bandwidth 2w + 1 and that w is
independent of n. Clearly the matrix A, [f] + B, is positive definite for all n.

For all n > 0, our preconditioners C, are defined as

(3) Cn :- A[b] + S, + fmin" In.

Here

b,(O) (2- 2cos0)’ 2sin

and it has a unique zero of order 2# at 0 0. We remark that A,[b,] is a symmetric band
Toeplitz matrix ofbandwidth (2# + 1) and its diagonals are given by the Pascal triangle;
see Chan [4]. Clearly, C, is a smetric band matr of bandwidth

2 + 1 m{2# + 1, 2w + 1}.

Moreover, since the minimum of b is 0, it follows from (2) and (3) that

Amin(Cn) Amin(An[b#]) + Amin(Bn) + fmin > fmin 0.

In particular, the preconditionerC is positive definite for all n. We note that in [4, m.
2], we have shown that A[b(O)] + fmi" I is a good preconditioner for A,[y]. us
intuitively, we eect C so defined to be a good preconditioner for A[f] + B.

3. Condition number of the preconditioned matx. In this section, we show that
the spectra of Cff (A +B) are uniformly bounded by constants independent of n. We
first consider generating nctions f in C+ where f(0) fmi has only one zero at 0o. t
the order of 00 be . We note that f() (00) > 0 and must be even. We remark also that
we can assume without loss ofgenerali that 0o 0. In fact the nction f(O+00) fmi
has a zero at 0 0 and

A,[f(O + 0o)] VA,[f(O)]V,,

where V, diag(1, e-i, e-2i,..., e-(n-1)); see Chan [4, Lemma 2].
THEOREM 1. Let f E C+. Suppose that f(0) fmin has a unique zero at 0 0 with

orderequal to 2p. Let C, A,[b,] +B+fmi.’I. Then a(Cff (A,[f] +B,)) is uniformly
bounded]or all n > O.

Proof. By assumption, there exists a neighborhood N of 0 such that f is continuous
in N. Define

f(O)F(0) (2 2 cos 0)# -q- fmin"
Clearly F is continuous and positive for 0 e N \ {0}. Since

1 fmin
lim F(0) f(2#) (0)

fmin 00--,0

is positive, F is a continuous positive function in N. Since f is piecewise continuous
and positive almost everywhere in [-r, r] \ N, we see that F is a piecewise continuous
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functionwith a positive essential infimum in [-Tr, 7r]. Hence there exist constants bl, b2 >
0, such that bx < F(O) < b2 almost everywhere in [-r, 7r]. Without loss of generality, we
assume that b2 > 1 > bl. By using (1), we then have

bl < < b2u*(A,[b,] + fmin"

for any n-vector u. Recall that B, is positive semidefinite and C, A,[b,] +B, + fmin"
I,. We then have

u*(A[.f] + B,)u <_ b
u* C,.,u

for any n-vector u. Hence a(CX(A,[f] + B,)) < b2/b, which is independent
ofn. I:!
We remark that the results can be readily generalized to the case where fmin is attained
at finitely many points; cf. Chan [4, Thm. ]. The bandwidth of C, will be given by

where v are the orders of the zeros of f(O) fmi. and the summation is over all such
zeros.

Next we consider the computational cost and storage requirement of our method.
The number ofoperations per iteration in the preconditioned conjugate gradient method
dependsmainly on the work ofcomputing the matrix-vector multiplication C- (A, [f] +
B,)y; see, for instance, Golub and Van Loan [8]. In this case, the matrix-vector multi-
plication B,y requires only (2w + 1)n operations and the product A,,[f]y can be done in
O(n log n) operations by the fast Fourier transform. The system C,y z can be solved
by using any band matrix solver. The cost of factorizing C, is about 1/22n operations
and then each subsequent solve requires an extra (2/ + 1)n operations. Hence the total
operations per iteration is of order O(n log n) as and w are independent of n. It is well
known that the number of iterations required to attain a given tolerance e is bounded by

1V/a(cffl(A,+B,))log() +12

Since the condition number is uniformly bounded in this case, the overall work required
to attain the given tolerance is of O(n log n) operations.

As for the storage, we need five n-vectors in the conjugate gradient method. The
diagonals ofA, and the bands of B, require extra (w+ 2) n-vectors, and finally, we need
an n-by-(t? + 1) matrix to hold the factors of the preconditoner C,. Thus the overall
storage requirement is about (8 + + w)n, which is significantly less than the O(n2)
storage required by Gaussian elimination method.

4. Numerical results and concluding remarks. To test the convergence rate of the
preconditioner, we considered two different band matrices. The first one is the diagonal
matrix

1 2 n-l]D, fmx’diag 0, n’ n’"" n



TOEPLITZ-PLUS-BAND SYSTEMS 1017

TABLE 1
Number ofiterationsfor Bn Dn.

s,II o. II ohO II s(0)

I II No c,. I’E. Z’. II No c,. . T. II No,l c- - T-
16 16 9 8 16 15 8 8 15 14 12’ 9 14

26 11 9 23 21 9 9 18 18 14 12 16
36 12 11 31 25 9 10 21 23 14 15 19

128 50 14 "16 40 29’ 10 11 23 30 15 ’18 24
256 68 15 21’ 53 32 10 12 25 39 15 23 30

91 15 32 70 34’,10 14 "27’, ’50 ,,15 28" 38’
122 16 64 91 36 10 16 27 63 15 35 47

whose eigenvalues are distributed uniformly in the interval [0, fro=]. The second one is
a symmetric tridiagonal matrix given by

2

271"B(n) (n + 1)
n+l

5 6

2n--I
2

Notice that B2) is the discretization matrix of the operator

2n--1
2

2n

0 101 <,,12,
(0)

1 101 > 12.
The corresponding bandwidths of Cn are 5, 3, and 3, respectively.

For comparison, we also solved the problems with two other preconditioners. The
first one is the T. Chan circulant preconditioner T, corresponding to the matrix A, [f] +
B,. The second preconditioner E,, which has the same bandwidth as C’,, is obtained by
just copying the diagonals of A, If] +B,. We note that some of the E, may be indefinite.
In contrast, C’, and T, are always positive definite. Tables 1-4 show the number of
iterations required for convergence (** means more than 1000 iterations). We see that
as n increases, the number of iterations stays almost the same when (7, is used as the
preconditioner while it increases if others are used.

We conclude that our algorithm solves the system (A, + Bn)z b in O(n log n)
operations for a certain class of Toeplitz matrices A,. The cost is significantly less than
the O(n3) cost required by Gaussian elimination method. We note that the spectra of
C’-1 (A, [f] + B,) generally will not be clustered around 1 although they are uniformly

in [-Tr, 7r]. Clearly, the matrices B(’) are irreducibly diagonally dominant; hence they
are positive definite.

In our tests, the vector of all ones is the right-hand side vector, the zero vector is the
initial guess, and the stopping citerion is IIrll2/llr0112 -< 10-r, where rq is the residual
vector after q iterations. The computations are done with 8-byte arithmetic on a Vax
6420. Three different generating functions were tested. They are 0a, cosh 0, and
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TABLE 2
Number ofiterationsfor Bn B(n).

If II 0, Ii oh0 II :(o)
I1 No I T II No I’T’ll No IOn T

16 17 12 15 16 16 7 ’9 14 16 9 9 16
32 42 15 35 23 31 8 13 16 35 10 14 27
64 107 17 98 32 38 9 18 17 75 12 23 35
128 268 19 372 45 42 9 30 17 162 14 40 42
256 652 21 ** 63 43 9 48’ 17 329 16 75 51
512 22 90 43 10 82 17 670 17 146 61
1024 23 127 43 10 146 16 18 293 74

TABLE 3
Number ofiterationsfor Bn B(n1).

I’ II 04 II oh0 Ii (o)
n No Cn En Tn No Cn En Tn No Cn En Tn
16 16 8 8 16 16 5 6 16 16 5 5 16
32 37 8 10 31 36 5 7 31 36 5 6 32
64 82 8 13 47 82 5 8 46 83 5 8 51
128 188 8 18 70 184 5 9 65 189 5 9 77
256 415 8 23 104 408 5 12 91 418 5 11 112
512 893 8 31 152 826 5 13 130 896 5 14 164
1024 ** 8 40 220 5 16 183 ** 5 17 238

TABLE 4
Number ofiterationsfor Bn B(n).

n No Cn En Tn No Cn En Tn No Cn En Tn
16 16 4 5 17 16 3 4 16 16 3 3 16
32 37 4 5 32 37 3 4 32 37 3 4 32
64 83 4 .5 52 83 3 4 52 83 3 4 52
128 i89 3 5 77 190 3 4 77 190 3 4 77
256 418 3 5 113 417 3 4 114 418 3 4 113
512 897 3 5 166 897 2 4 165 898 2 4 166
1024 ** 3 5 241 2 4 240 ** 2 4 241

bounded. We finally remark that our results in this paper extend those obtained in Chan
[4]. More precisely, in [4], we proved that n(C-lA[f]) is uniformly bounded whenever
f is 27r-periodic continuous. However, using Theorem 1 with B, equal to a zero matrix,
we see that the same conclusion holds whenever f is 27r-periodic piecewise continuous.
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VARIANTS OF BICGSTAB FOR MATRICES WITH COMPLEX SPECTRUM*
MARTIN H. GUTKNECHTt

Abstract. Recently Van der Vorst [S/AM Y. Sci. Statist. Comput., 13 (1992), pp. 631--644] proposed for
solving nonsymmetric linear systems Az b a biconjugate gradient (BICG)-based Krylov space method called
BICGSTAB that, like the biconjugate gradient squared (BICGS) method ofSonneveld, does not require matrix-
vector multiplications with the transposed matrix AT, and that has typically a much smoother convergence
behavior than BCG and BICGS. Its nth residual polynomial is the product of the one of BICG (i.e., the nth
Lanczos polynomial) with a polynomial of the same degree with real zeros. Therefore, nonreal eigenvalues of
A are not approximated well by the second polynomial factor. Here, the author presents for real nonsymmetric
matrices a method BCGSTAB2 in which the second factor may have complex conjugate zeros. Moreover,
versions suitable for complex matrices are given for both methods.

Key words. Lanczos algorithm, biconjugate gradient algorithm, conjugate gradient squared algorithm,
BICGSTAB, formal orthogonal polynomial, nonsymmetric linear system, Krylov space method

AMS subject classification. 65F10

1. From BICG to complex BICGSTAI. The biconjugate gradient method (BICG) of
Lanczos [7] and Fletcher [1] is a Krylov space method for solving (real or complex) non-
Hermitian linear system Az b, where A is, say, a nonsingular N N matrix. (Typically,
this matrix will be the result of applying a preconditioner to the original system matrix.)
Starting from some initial guess z0 for the solution, BICG generates a sequence z, with
the property that the nth residual r, := b Az lies in the Krylov space generated by A
from r0, i.e.,

(1) rn e K:n+I := span (to, Aro,..., Anro),

and is orthogonal to another Krylov space generated from some other initial vector g0

by the Hermitian transpose An

(2) r, 2_ , := span (Y0, AHyo,..., (AH)n-lyo).

The sequence of residual polynomials p,, which are implicitly defined by

(3) rn pn(A)ro,

is in view of (2) a sequence of formal orthogonal polynomials: if we define a linear
functional ,I on the space of polynomials with complex coefficients by setting ,I(k) :=
goAkzo, the formal orthogonality relation ,/,(Trkp,) 0 holds for every polynomial 7rk
of degree k < n; see [5], [3] for further details and references. As a consequence of the
consistency condition for polynomial acceleration methods, these residual polynomials
are normalized by p,(0) 1. They are often called Lanczos polynomials. In general,
neither these polynomials nor the residuals satisfy a minimality condition, in contrast
to the case in which A is Hermitian positive definite and g0 r0, where the method
reduces to the classical conjugate gradient method. Theoretically, the BICG algorithm
terminates in at most v(A, r0) steps if this number denotes the degree of the minimal
polynomial of the restriction of A to the maximum Krylov space generated by A from
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r0. In practice this property is often irrelevant because u(A, r0) may be very large and
the orthogonality (2) is partly lost due to roundoff. What counts in practice is the good
convergence behavior and the small memory requirement of the method.

The algorithm can break down, namely, due to

(4) rn _1_ n+1;

but in most cases such abreakdown or a correspondingnear-breakdown canbe overcome
by a look-ahead step, see [8], [3], [4], [2] and further references cited there.

In the standard version of the BICG method, which we call BIOMIN, a second se-
quence {a,} of formal orthogonal polynomials plays a role. The algorithm is based on
the following mixed recurrence formulas (in whichwe suppress the independentvariable
by writing p, instead of p,(), and tr, instead of a,()):

(Sa)
(5b)

Pn+l := Pn
O’n+l :’-" Pn+l n+lO’n,

where the coefficients w, and b,+l are computed as indicated below. These formulas
are implicitly used to generate two pairs of finite vector sequences

(6a) zn := pn(A)zo, gn := "ffff(AI-I)lo,
(6b) u. := a,.,(A)zo, v. := #-g(An)vo,

satisfying the biorthogonality conditions

(7a) yHn xm 6n6m,n,
(7b) vH Au 66.,,.

(In (6), and have the complex conjugate coefficients of p, and tr,, and in (7),
6, 0, 6’ 0 are constants and 6,,, is the Kronecker symbol. The scaling of the
vectors g, and v is, theoretically, irrelevant; but in practice, a scaling different from the
one chosen here may be more appropriate, e.g., one may choose g, and v, to have unit
length.)

Theoretically one proceeds until the algorithm terminates or breaks down; in prac-
tice, one stops when the residual is sufficiently small. Here, z r, is actually the nth
residual vector ofBICG, but as we will see, there are other algorithms that are also based
on the recursions (5) yet have other residual vectors. In any case, the recurrences (5) are
not used to generate the polynomials, but are translated into recurrences for the vectors
specified by (6). For the iterates z,, an additional recurrence related to the one for the
residual vectors z, r, is easily derived. The coefficients w, and b,+l in (5) are deter-
mined from the biorthogonality conditions (7) and the consistency condition p, (0) 1
(see [5]); in fact, only the case m n + 1 of (7) is enforced:

(8a)
(8b)
(8e)

w. .= 6./(yffAu.) 6,/(vffAu.),
H T,6n+l "= Yn+l n+l

.+x "= (YHn+aun)/(vHn aun) --6,+X/6..

(In the equalities in (8a) and (8c), one makes use of the formal orthogonality of the
polynomials and of the fact that, in view of (5), p,+, a,+, and -,(tr have the same
leading coefficient.)
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It is the great advantage of the Lanczos approach based on (5) that observing the
conditions (7) for m n+ 1 implies theoretically that they hold for all m _< n. The short
recurrences (5) mean very small memory requirements. Moreover, although in practice
the biorthogonality with respect to the earlier constructed vectors (i.e., for large Ira-nl)
tends to get lost due to roundoff, it is this biorthogonality that accounts for the normally
observed gradual decrease of the residual length. The biorthogonality is related to a
Pad6 approximation problem. However, the convergence is still not well understood,
and in practice is often far from monotonic. But for very large problems, Lanczos-type
methods, due to their small memory requirements, are often the best choice.

One disadvantage of the unsymmetric Lanczos process and BCG is that the con-
struction of, requires one application of A in each step in addition to the one appli-
cation of A to compute z and r,. (In BICG, u, and v, are then found without further
matrix-vector products.) In 1984 Sonneveld [11] with his (bi)conjugate gradient squared
(CGS or BICGS) method proposed a way to get around A. He uses a set ofrecurrences
that allows him to compute other iterates z, whose residuals rn :- b Az satisfy

(9) r, p(A)r0,

where the polynomials p, are still the Lanczos polynomials. In fact, the iterates and their
residuals, together with the vectors defined by

(10) 2p "= p,(A)a(A)ro, q, := p,,(A)a,_(A)ro, s, := a,,(A)ro,

can be generated by the Krylov space analogs of the polynomial recurrences

(7
2(lla) Pn+ian pa calf ,

2(11b) p,+la,+l P,+I @,+lp,+la,,

(llc) 2,o,,,+ ,o, , (,o,a, + ,o,+ a,,,),
(lld) 2 2

t+ p+ltT+l b+lP+ltr + +1t7,

which are readily derived from (5). Due to the squaring of the residual polynomial, the
sometimes erratic convergence behavior of BICG is even more pronounced here.

Of course, the recurrences (11) need to be complemented by formulas for deter-
mining w, and ,+. Using (6) and (10), the expressions (8) are readily transformed
into

(12a) w, 6,/(yoHAs,),
(12b) + yoHrn+,
(12C) ,+ --6,+/6,.

As mentioned before, these coefficients w, and ,,+ result basically from observing
the biorthogonality conditions (7) for m n + 1, i.e.,

(13) HX vAu+x O.Yn n+l Or

At this point it is worth noting that for m # n, (7) is equivalent to

(14a) y,., _l_ lC,, x,-, _l_ ,.,
(14b) AHv, +/- K:,,, Au, +/-
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In view of (6) these conditions are not independent; those on the left-hand side are
equivalent to those on the fight-hand side. IfP, denotes the set ofpolynomials ofdegree
at most n, the latter can be expressed as

(15a)
(15b)

yoHTrn(A)Xn+l 0 (/Trn . On),
voHfr(A)Au,,+ 0 (Wr e P).

The conditions (13) are just the special case of (15) with 7r, p, and ,
But the same restrictions can be taken into account by choosing for r and, any other
polynomial of exact degree n. Van der Vorst [14] (following an earlier proposal by Son-
neveld) discovered that a simple implementation and an often excellent convergence
behavior can be attained by choosing for 7rn and , polynomials T,, that are built up in
factored form

(16) "rn(() (1 XO’)(1 Xl’)""" (1 Xn-l’)

by adding a suitable new zero 1/X, at each step. Clearly,

(17) 7"n+1 (1 Xn)T,,

SO that

(18) /gn+17"n+ (1 Xn()Pn+lTn.

Multiplication of (5a) and (5b) by T, and 7"n+1 yields the further recurrences

(19)
(2o)

Pn+lTn pnTn WnO’nTn,

Equations (18)-(20) are a set ofrecurrence relations that after the translation from poly-
nomials to Krylov space vectors can be used to build up the vector sequences

(21) n := p,(A)T,(A)ro, , := p,(A)T,_I(A)ro, , := an(A)T,(A)ro.

Van der Vorst [14], assuming real data (i.e., a real matrix A and b, z0, y0 ]iN), chooses
in the nth step of BICGSTAB the new zero 1/Xn so that the new residual norm In+lll
I1,+1 AV+IX]I is minimized over X, R. Here and in the following, the norm
is the Euclidean one. Our first aim is to generalize this approach to complex data. In
particular, we allow X, C now. Starting from

(22)
-H A- 2 2II+lllz IIW+l AW+xII IIW+ll]z 2 Re {Wn+ Wn+lXn} "+ Xn IIAW+lll

one can conclude by inserting X, , + irh, and computing the partial derivatives
0/0 and 0/0rh, that this minimization leads to

(23) Xn := (An+l)Hn+l

This is no surprise, since one obtains the same formula easier by noting that the mini-
mization problem can be solved by orthogonal projection of ,+x onto Az,+x in
the image of this projection must be equal to An+lXn. (Ifwe had restricted X, to be
real, we would have obtained Xn := Re {(An+I)H,+I}/11AW+1112 instead.)
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Formulas for the coefficients w, and +x are found by modifying (12) for taking
the leading coefficient (-1)’Xo X,- of r, into account. Noting that a, and p have
leading coefficient (-1)’wo w,- and setting := 8(Xo X-t /(wo w-t ), we
get

(24a) w yAs yAa(A)xo yAa(a)r(A)xo yA’
(24b) n+l Yfn+,

together, one obtains the following complex version of BICOST. If applied to
real data, it is identical with Van der Vorst’s algorithm. e letter o denotes the zero
vectoL

ALGORITHM 1 (BICGSTAB). Forsolving Az b choose an initial approximation zo
CN and set o := -o := b- Azo. Choose.yo E CN such that o "= yfo 0 and
Vo := YAgo/o O. Then computefor n O, 1,...

(25a) w,, := 1/o,,
(25b) n+l := f, A,w,,
(25c) X, :-(a)n+l)Hn+l/llan+lll2

(25d) fn+l := n+l
(25e) Zn+l := zn + ,w, + n+lXn
(25f) $,+1 :=

(25g) ,+1 :=

(25h) n+l :’-- r-n+l (n Ag,X,) )n+l
(25i) On+l :=

If,+ o, the process terminates and z,+ is the solution of Az b; if,+ # o but
6,+ 0 or o,+ O, the algorithm breaks down.

We need to comment on the conditions under which this algorithm breaks
down. Clearly, in exact arithmetic, a breakdown of BICG, caused by o, 0 or 6, 0,
see [5], is paralleled by a breakdown of BICGSTAB, caused by o, 0 or 6, 0, since
$, := 6,(X0...X,_l)/(w0...w,_l). However, in the above formulation, BICGSTAB
obviously also breaks down if X, 0. A closer look shows that ,+1 may still be finite
in this ease, ef. (24e), so that one might try to find an alternative formula for (25g). How-
ever, if X, 0, then f,+l b,+l p,+ (A)r,,(A)ro, and it follows from (15a) that
Sn+l :=~Y0nfn+l yonP.+l(A)r.(A)ro yonrn(A)z.+l O. Consequently, X, 0
implies 8,+1 O, so it suffices to check the two conditions ,+1 0 and qo,+l O,
although this conceals the fact that ,+1 0 can be caused by 5,+1 0 or X, O.
The new pitfall here is that we do not advance in the Krylov space if X, O. Then
n+l ( K2n+2, but n+l Pn+l (A)Tn+I (A)ro should be in

2. Two-dimensional local minimization: BICGSTAB2. As is well known and is indi-
cated by (3), the convergence of a polynomial acceleration method like BICG hinges on
the damping properties ofthe residual polynomials p,. Ideally, the lemniscates IPn ()1
e should already for some small e embrace the spectrum of A or, in the case of a nonnor-
real A, rather the pseudospectrum [12]. The residual polynomials pnTn of BICGSTAB
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combine the damping properties of the Lanczos polynomials p, (which not only depend
on A but also on r0 a:0 and /0) with those of r,. If one had p, 1 for all n (which
is impossible since p, has exact degree n), the polynomials r, would be the residual
polynomials of GMREs(1) [10], i.e., of GMREs restarted at each step. The factor
causes a modification of the restart vector, but in any case, one cannot expect r, to have
an excellent global damping effect. Although the success of BICGSTAB shows that
is normally good enough to level out the irregular convergence of the Lanczos polyno-
mials p,, it has an obvious deficiency when the method (in its original version proposed
by Van der Vorst) is applied to a real nonsymmetric system: while generally a nonsym-
metric real matrix A has a complex spectrum, all the zeros of r, are real if z0 and
are real vectors. It is therefore natural to try to modify the method so that in the real
case r, may have pairs of complex conjugate zeros. This is the basic idea for the method
BICGSTAB2 defined next. We formulate it also for complex data, but the reader must
keep in mind that it also brings a major improvement in the real case.

Let us redefine the polynomials r, according to r0 := 1 and the recurrences

(26a) r=,+x := (1
(26b) r2m+2 := (1 m)r2m + (ra +
with X,,, ,, r/, C. (In the case of real data, X,, ,, r/, IR.) Note that r, (0)
1 (for all n) by induction. Clearly, r,+ has, as in the original BICGSTa, the new zero
1/X,, but in the next step r2,+2 is chosen as a linear combination of r2,, r2,+x and
r2,+1, restricted only by r2,+2(0) 1. Hence, the zero 1/X, is dismissed and r2 is
supplemented by two new zeros, i.e., there holds

(27) r2m+2 (1 2,’)(1
where in the case of real dataG and G,+ are either real or complex conjugate. These
zeros can, but need not, be computed. The parameters X,, ,, and r/, are again chosen
to minimize the residual locally (i.e., within a one- or two-dimensional subspace, respec-
tively). But first, we want to look at the recurrences, which are actually independent of
these choices.

Clearly, (19) is again valid for all n, and an analogous relation follows by multiplying
(5a) with r,_ instead of r,:

(28) Pn+rn p,r,

(29) p+r_ pr_--o(rr_x if n > 1.

Equations (18) and (20) remain correct for even n after replacing X, by

(30) p+r+x (1 X)p+r if n 2m,

(31) a,+r,+l p+r+ b,+x(1 X)ar if n 2m.

When n is odd, one obtains instead by using (26b)"

(32) p+r+ (1 ()p+r_ +(p+r +
if n= 2m+1.

O’n+l"t’n+l Pn+lT"n+l bn+lO’nT"n+
(33) Pn+lT"n+l bn+l[(X m)rn’rn-1 + (m +

if n= 2m+1.

This is analagous to the fact that Newton’s method will never lind a complex zero of a real polynomial
when started on the real axis.
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Finally, multiplying (5b) by ’n, we get for all n

(34) O’n+lT"n Pn+l "rn 3n+lO’nTn

The relations (28)-(34) are a set of recurrence formulas for the products p,-,, p,’,-x,
pn’rn-2, trnT"n, and a,T,_. Hence, we must build up the vector sequences

(35a) f, := p,(A)r,(A)ro, , := p,(A)r,_(A)ro, w,’= p,(A)r,_(A)ro,
(35b) , := a,(A)r,(A)ro, "= a,(A)r,_x(a)ro.

The coefficients ton and n+x are found by adapting (24). Since (19) and (28) are
identical, i.e., since ,+t is given by the same formula (25b) as in BICGSTAB, (24a) and
(24b) still hold. Because the leading coefficient of Tn is now (-1)’x0r/0...
if n 2m and (-1)’X0O0... X,-trl,-X, if n 2m + 1, (24c) transforms into

(36) Cn+x "+ { -(-+-)/(-X-) if n 2m,- +(&+.)/(&0.) if n 2m + 1.

Finally, we need to give formulas for the parameters X,, ,, and r/,, which are de-
termined by a one- and a two-dimensional minimization problem, respectively, el. (26),
(30), (32), and (35):

(37a) II,+xll--IlzD,+ AD+xX,II min if n 2m,

(37b) II,,+lll II /3nd-1 -[- (nq-1-- /3nq-1)rn "[- AW.+10.II min if n= 2m+ 1.

Of course, these minimization problems are again solved by orthogonal projection: as
before in (23),

(Azn+l)H13n+l
if n 2m.(38) x. :=

IIA+1112
For the projection onto the two-dimensional subspace spanned by ’/nq-1-- Wn-bl and
A,+x, we define the two-column matrix

(39a) ]Bm+l ": ?3nW1-- Wnq-1 [Az,+l if n 2m + 1,

in terms ofwhich the projection of wn+1 is given by B,+I(BH+IB,+1)-1BH "
m+l Wn+l"

Hence, the optimal coefficients (, and r, for (37b) are

(39b) [m]:=-(BH+IB,+I)-IBHm+I w,+x if n 2m + 1.

The 2 x 2 matrix BH+1B,+ can be singular, namely, when the vectors z,+1 Wnq-
and A,+ are linearly dependent. The solution (,, Ore) ofthe minimization problem
(37b) is then not unique, and one mightwant to compute a particular one in a regularized
fashion. However, since z,+- w,+ K:z,+z, this can only happen if Az,+ is in the
same space, which again means that we.do no longer advance in the Krylov space. Here,
assuming.no previous breakdown, we can even conclude that K:z,+a K:z,+z since the
polynomial (p,+()r,() that corresponds to Az,+ has exact degree 2n + 2. In view
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of n+l E K2n+2, wc conclude as in the discussion at the end of 1 that n+l 0 due to
(15a). The same is true if the minimization problem (37b) has a unique solution, but the
second component, happens to be zero.

Summarizing we obtain the following two-step algorithm BICGSTAB2 for real non-
symmetric or complex linear systems.

ALGORITHM 2. (BICGSTAB2) For solving Az b choose an initial approximation
zo CAr and set o := -o := b- Azo. Choose Yo CAr such that 60 := yffo 0 and
too "= yoA$o/6o O. Then computefor n 0, 1,...

(40a)
(40b)
(40c)

(40d)
(40e)
(40f)
(40g)
(40h)

(40i)
(40j)
(40k)
(401)
(40m)

(40n)
(400)
(40p)

Wn := 1/pn,

w,+t:= w, A,w, (if n > 1),
Zn+l := n Anwn
ifn en, set m := n/2, compute X by (38) and let

n+l := n+l An+lXm,

.+1 :=

.+ .= .+ (. A.)
ee set m := (n 1)/2, computem and Ym (39) and let

.+1 :=W.+l (1 ) +.++A.+,
Z.+l .= [.-1 + .-1.- + ..](1 ) + [z. + ..] .+,
.+1 := y.+l,
.+1
.+ .= e.+l [.(1 ) +.+A.n].+l

endif

A.+ := A.+ A..+1,
.+1 := Yo As.+/$.+.

/f n+l O, the process terminates and Zn+l is the solution of Az b; if n+l : 0 but
6,+ 0 or 0,+1 O, the algorithm breaks down.

Like BICGS and BICGSTAB this algorithm requires two applications of A per step,
i.e., one per degree of the residual polynomial, namely for A, in (40c) and for ACon+t
in (40d) or (40i). A+x is then obtained in (40o). In case of real data all the compu-
tation remains real. But even in the complex case BICGSTAB2 is an improvement over
BICGSTAB since one performs a two-dimensional residual minimization in each other
step. Of course, one could try to accomplish even higher dimensional minimizations in
this framework, but clearly this would further complicate the algorithm and increase the
memory requirement.

The methods BICGSTAB and BICGSTAB2 are examples of a class of methods that
one might callproduct methods and which are characterized by residual polynomials that
are the product ofresidual polynomials emerging from two different methods. Here, one
factor is a Lanczos polynomial, while the other one comes from a one-. or two-step min-
imal residual approach. Such product methods are truly hybrid methods, and deserve
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this name much more than many of the other approaches to which this notion has been
applied. Note that the recursions of BICGSTAB hold whenever the polynomials ’n can
be updated according to (16), and those of BICGSTAB2 are valid whenever these poly-
nomials satisfy (26). Only the definitions of the parameters X,,, ,,, and 0,, must be
replaced.

For example, one might try a hybrid method that first applies another Krylov space
method, say, GMREs, until it becomes too expensive; after computing a real factoriza-
tion of the obtained residual polynomial ’M of, say, degree M, one could from then on
use this polynomial and its powers to create residuals of the form rM P(-I)M(A)*
(A)ro and intermediate ones where not yet all factors of ’M appear with multiplicity k.
The factored form of the GMREs residual TM yields recurrences (27) that can be re-
formulated to conform with (26). First experiments on this approach gave promising
results, but not as good as those of BICGSTAB2.

Moreover, ifin generalization of (26) the polynomials T, satisfy a general three-term
recursion that takes the condition ’n (0) 1 into account, i.e., if

(41) Tn+1 :-- (1 n)Tn-1 + (n -I- On)Tn,

then the system of recurrences (28), (29), (32)-(34) is still valid if we replace X,,, 0, by
X,,, r/, in (32)-(34). In the Krylov space these recurrences turn into (40c), (40b), (40i),
(40m), and (40n), respectively, and they also yield (40j) and (400). Consequently, (40a)-
(40c) and (40i)-(40p) also yield a realization of a product method in which the Lanezos
polynomials are combined with a sequence of polynomials -, satisfying a three-term
recursion (41). For example, one could use shifted and scaled Chebyshev polynomials
here to obtain a Lanczos-Chebyshev method.

It is known, see, e.g., [5], that the zeros of p, and a,, can be determined from the
coefficients ,...,

_
and wo,..., ,,-t. In fact, if

then the eigenvalues of the tridiagonal matrix LnRn are the zeros of pn, and those of
the n x n leading principal submatrix of the tridiagonal matrix R,n+lLn+l are the zeros
of a,. The zeros of either of the two polynomials are often considered as approxima-
tions of eigenvalues of A. (This is, basically, the approach of the unsymmetric Lanczos
algorithm for finding eigenvalues of A.) Experiments indicate, however, that the coeffi-
cients, and w, produced by BICGS and BICGSTAB are less accurate than those found
by BICG or by the Lanczos biorthogonalization algorithm (the "unsymmetric" Lanczos
algorithm).

In BICGSTAB2, the zeros 1/j of the polynomials Tn are, if n 2m, the zeros of the
quadratic factors

(42) 1 + (Ok Xk(k) Okk2, k 0,..., m 1.

These zeros can at best in averyvaguewaybe considered as approximations to individual
eigenvalues of A. Note in particular that they have no influence on the polynomials p,,
and a,, and, afortiori, on their zeros.
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3. Numerical examples. First, we present several examples with non-Hermitian
banded Toeplitz matrices of order N 200. For these matrices, the behavior of the
spectrum in the limit N --, o is known [6], [13], but this is nearly irrelevant here. What
counts for the convergence ofiterative methods is the e-pseudospectrum Ae, which, when
N is large and e is small, is according to Reichel and Trefethen [9] approximately equal
to the following union of three sets:

(43) A, (A + A,) f t

Here, A + Ae denotes the exact spectrum with disks of radius e around each eigen-
value. To describe fl and fn, we need to look at the images (S) and (SR) of the
circles of radius r and R, respectively, under the mapping by the symbol of the Toeplitz
matrix, f and fn contain the points C with respect to which (S) and (Sn) have
positive and negative, respectively, winding number. The radii r < 1 and R > 1 depend
on e and N according to r := (e/c)/N and R := (e/C)-t/g, where c and C are some
constants, which for the plots in [9] have been set to 1. See Reichel and Trefethen [9] for
details and for plots corresponding to some of our examples.

Banded Toeplitz matrices are of relevance in applications, since the discretization
of partial differential equations often leads to such a matrix or a low-rank modification
of one.

Example 1. Let us first consider the tridiagonal matrix

(44) A :=

-2

4

1

-2

with the symbol () -2 + 4 + -x. Its (.unimportant) exact spectrum lies on the
complex interval [4 2ix/, 4 + 2iv/’]. The image f(S), which is the boundary of the
(continuous) spectrum of the associated Toeplitz operator with N is an ellipse
with loci 4 -4- 2ivY, major semiaxis 3 and minor semiaxis 1. The e-pseudospectrum is
the interior of a slightly smaller ellipse with the same loci. Hence, Chebyshev iteration
or second-order Richardson iteration, adapted to the family of ellipses with these foci,
would have asymptotically optimal linear convergence. It is therefore no surprise that the
generalized minimal residual method GMREs converges also approximately linearly.2
As right-hand side b of the system Az b and for the initial vectors z0 and y0 we choose
random vectors. (Of course, the same vectors are used for all the methods tested.)

In Fig. 1 we display the residual norm.convergence ofBIOMN(= BCG), BIOMINSQ
(= BICGS CGS), BICGSTAB, the new algorithm BICGSTAB2, and a brute force imple-
mentation ofGMREs(oo) (= GCR). The numbers on the x-axis give the iteration count,
except for GMREs, where only every other iteration is counted. In GMREs each itera-
tion requires just one application of A, in contrast to the other methods where multipli-
cations both by A and AH are needed; hence, it is fair to divide the numbers of iteration
ofGMREs by two, although, on the other hand, the long recurrences ofGMREs() be-
come very expensive with respect to memory and arithmetic operations when n becomes
large.

2The author is indebted to L. N. Trefethen for this interpretation of his numerical result.
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FIG. 1. The residual norm history (i.e., IIrli/llr011 vs. n) for a linear system with the matrix (44) oforder
200’ solved by BIoMIN BICG (dotted-dashed), BoMrSQ BCGS CGS (dashed), BCGSTAa (dotted),
BICGSTAa2 (solid), and GMREs(oo) GCR (dotted). For GMREs(o) only every other iteration is shown and
counted, i.e., Ir2, l/l lro is plotted.

In this example the convergence of all methods is rather fast, but it is interesting that
the squared method BICGSTAB and BICGSTAB2 are considerably faster than BICG, and
nearly as fast as GMREs(oo), which is optimal with respect to the measure of residual
norm used in our figures. The same general behaviorwill be noted in our other examples.
In this first example, where the matrix is real but the spectrum is complex, BICGSTAB2
is clearly better than the competing methods that require the same amount of work.

Example 2. As our second example we take

(45) A :=

1

2 1

0 2

1 0

with the symbol () + 2 + -2. Its spectrum and pseudospectrum is three-fold
rotationally symmetric with respect to its center at 2; see Fig. 8 in [9] for a plot. This
symmetry increases the chance of breakdown in the Lanczos process, and we noticed in
fact many breakdowns in examples of this type. (Breakdowns also depend on the initial
vectors z0 and g0, but since these are chosen real for this real matrix, they are not really in
general position with respect to the eigenvectors.) In this particular example, BICGSTAB
broke down in step 26.

Our results are shown in Fig. 2. The convergence is slower and rougher than in
Example 1, but the relative performance of the various methods remains the same.

Example 3. While both previous examples are real matrices, we consider now the
complex Toeplitz matrix
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FIG. 2. The residual norm history for a linear system with the real Toeplitz matrix (45) oforder 200. The
selection ofmethods and the labels ofthe axes are the same as in Fig. 1.

(46) A .=

2i

0 1 .7

4 0 1 .7

2i 4 0 1 ".

2i 4 0 "’.

2i 4 "’.

with the symbol () .73 + 2 + 4 + 2i-1. Its pseudospectmm plot is interpreted as
"Picasso’s head of a bull"by Reichel and Trefethen; see their Fig. 7 in [9]. Our results
are shown in Fig. 3. Both our complex BICGSTAB and the (also complex) BICGSTAB2
do very well, but the difference in their behavior is now, not unexpectedly, much smaller.
Again, one needs to point out that the dots for GMREs(o) represent the optimal resid-
ual norm convergence, but that the computational and, in particular, the memory re-
quirements for this method are considerably higher.

Example 4. We finally consider a "real world" example from the Harwell-Boeing
collection of large sparse test matrices, namely OILGEN1, a matrix of order 2205 with
14’133 nonzeros, which comes from an oil reservoir simulation on a 21 x 21 x 5 grid.
Figure 4 shows the convergence .history for BICGSTAB and BICGSTAB2, both applied
without preconditioning. BICG and BICGS were also tried, but the former converges
again only about half as fast (requiring more than 200 iterations to reduce the relative
residual to 10-) and the latter has so many steep peaks in its residual convergence
history that the curve would cover up most ofwhat is now shown in Fig. 4. In this difficult
example these methods are no longer able to produce a smooth convergence curve, but
they do much better than BICG and BICGS.
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FIO. 3. The residual norm historyfora linearsystem with the complex Toeplitz matrix (46) oforder 200. The
selection ofmethods and the labels ofthe axes are the same as in Fig. 1.
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BICGSTAB... BICGSTAB2__

50 100 150 200 250

FIG. 4. The residual norm history (i.e., IIr,ll/llroll vs. n) for a linear system with the OILGEN1 matrix of
the Harwell-Boeing collection, solved with BICGSTAB (dotted) and BICGSTAB2 (solid).

Acknowledgment. The author would like to thank No61 Nachtigal for running Ex-
ample 4 on a test installation of MATLAB 4.

Note added in proof. The algorithm BICGSTAB2 introduced here should not be con-
sidered as a black box solver for sparse linear systems. As we have pointed out, there
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are situations where BICGSTAB2 (as well as BICG and BICGSTAB) can break down or
become unstable. A reliable program would have. to be able to take appropriate mea-
sures in these situations. There are also cases where single steps of BICGSTAB should
be executed between some of the (double) steps of BICGSTAB2; in the present version
of the latter, the zeros of the intermediate steps are always dismissed, and this can be a
disadvantage.
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Abstract. As with many other linear algebra algorithms, devising a portable implementation of sparse
Cholesky factorization that performs well on the broad range of computer architectures currently available is
a formidable challenge. Even after limiting the attention to machines with only one processor, as has been
done in this paper, there are still several interesting issues to consider. For dense matrices, it is well known
that block factorization algorithms are the best means of achieving this goal. This approach is taken for sparse
factorization as well.

This paper has two primary goals. First, two sparse Cholesky factorization algorithms, the multifrontal
method and a blocked left-looking sparse Cholesky method, are examined in a systematic and consistent fash-
ion, both to illustrate the strengths of the blocking techniques in general and to obtain a fair evaluation of
the two approaches, Second, the impact ofvarious implementation techniques on time and storage efficiency
is assessed, paying particularly close attention to the work-storage requirement of the two methods and their
variants.

Key words, sparse linear systems, Cholesky factorization, supernodes, block algorithms, advanced com-
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1. Introduction. Many scientific and engineering applications require the solution
of large sparse symmetric positive definite systems of linear equations. Direct methods
use Cholesky factorization followed by forward and backward triangular solutions to
solve such systems. For any n x n symmetric positive definite matrix A, its Cholesky
factor L is the lower triangular matrix with positive diagonal such that A LLT. When
A is sparse, it will generally suffer some fill during the computation of L; that is, some of
the zero elements in Awill become nonzero elements in L. In order to reduce time and
storage requirements, only the nonzero positions ofL are stored and operated on during
sparse Cholesky factorization. Techniques for accomplishing this task and for reducing
fill have been studied extensively (see [12], [19] for details). In this paper we restrict our
attention to the numerical factorization phase. We assume that the preprocessing steps,
such as reordering to reduce fill and symbolic factorization to set up the compact data
structure for L, have been performed. Details on the preprocessing can be found in [12],
[191.

As with many other linear algebra algorithms, devising a portable implementation
of sparse Cholesky factorization that performs well on the broad range of computer ar-
chitectures currently available is a formidable challenge. Even after limiting our atten-
tion to machines with only one processor, as we have done herein, there are still several
interesting issues to consider. In this paper we will investigate sparse Cholesky algo-
rithms designed to run efficiently on vector supercomputers (e.g., the Cray Y-MP) and
on powerful scientific workstations (e.g., the IBM RS/6000, the DEC 5000, and the Star-
dent P3000). To achieve high performance .on such machines, the algorithms must be
able to exploit vector processors and/or pipelined functional units. Moreover, with the
dramatic increases in processor speed during the past fewyears, rapid memory access has
become a very important factor in determining performance levels on several of these
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U.S. Department of Energy contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.
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machines. To be efficient, algorithms must reuse data in fast memory (e.g., cache) as
much as possible. Consequently, a highly localized and regular memory-access pattern
is ideal for many of today’s fastest machines.

It is well known that block factorization algorithms are the best means of achieving
this goal. Perhaps the best-known example of a software package based on this approach
is LAPACK, a software package for performing dense linear algebra computations on
advanced computer architectures including shared-memory multiprocessor systems [2].
Each block algorithm in LAPACKis built around some computationally intensive variant
of a matrix-matrix (BLAS3) or matrix-vector (BLAS2) multiplication kernel subroutine,
which can be optimized for each computing platform on which the package is run.

The sparse block Cholesky algorithms discussed in this paper take essentially the
same approach; we do not, however, include multiprocessors nor do we tune the kernels
for efficiency on specific machines. We investigate two algorithms:

1. The multifrontal method [15], [24], which is based on the right-looking formu-
lation of the Cholesky factorization algorithm.

2. A left-looking block algorithm that has, until recently, received little attention
in the literature [28].

Both methods will use the same kernel subroutines to do all the numericalwork required
during the factorization. The differences are limited to such issues as:

indirect addressing and other integer operations related to the structural aspects
of sparse factorization,

* the ability to reuse data in cache,
the amount of data movement,. the memory-access pattern, and
the working storage requirement.

In general, variations in the efficiency of the block algorithms and their variants are not
very large. However, our tests indicate significant differences in the amount of working
storage and expensive data movement required.

This paper has two primary goals. First, we will look at the two block Cholesky
factorization algorithms in a systematic and consistent fashion, both to illustrate the
strengths of the blocking techniques in sparse matrix computations in general and to
obtain a fair evaluation of the two basic approaches. Second, we will assess the value of
various implementation techniques on time and storage efficiency, paying particularly
close attention to the working storage requirement of the two methods and their vari-
ants.

Rothberg and Gupta [28] have studied these algorithms independently. They con-
sider the caching issue in more detail and implement a more complicated and effective
loop-unrolling scheme than we do. However, they do not compare the working storage
requirements of the various algorithms as we do. We have introduced enhancements
to the multifrontal algorithm that greatly reduce the amount of stack storage and data
movement overhead required by that algorithm. Also, we consider the performance of
these algorithms on a vector supercomputer and a high-performance workstation with
vector hardware.

This paper is organized as follows. Section 2 contains notation and other back-
ground material needed to present the algorithms, including a discussion of previous
work on block sparse Cholesky algorithms. Section 3 describes the left-looking block
Cholesky algorithm and some of its key features. Presented in 4 are implementation
details and enhancements for both the left-looking block algorithm and the multifrontal
algorithm. Section 5 contains the results of our performance tests on several of the
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left-looking righg-looking

used for modification

modified

FIG. 1. Threeforms ofCholeskyfactorization.

machines mentioned earlier in this section. Finally, concluding remarks and specula-
tions on future work appear in 6.

2. Backound material.

2.1. Column-based Cholesky factorization methods. The bulk of the work in
Cholesky factorization of a symmetric positive definite matrix A occurs in a triply nested
loop around the single statement

Ai A0 AAkj /A.

By varying the order in which the loop indices i, j, and k are nested, we obtain three
different formulations of Cholesky factorization, each with a different memory access
pattern.

1. Bordering Cholesky. Taking i in the outer loop, successive rows of L are com-
puted one by one, with the inner loops solving a triangular system for each new
row in terms of the previously computed rows (see Fig. 1).

2. Left-looking Cholesky. Taking j in the outer loop, successive columns of L are
computed one by one, with the inner loops computing a matrix-vector product
that gives the effect of previously computed columns on the column currently
being computed.

3. Right-looking Cholesky. Taking k in the outer loop, successive columns of L are
computed one by one, with the inner loops applying the current column as a
rank-1 update to the remaining partially reduced submatrix.

The various versions of Cholesky factorization can be used to take better advantage of
particular architectural features of a given machine (cache, virtual memory, vectoriza-
tion, etc.) [11]. For more details concerning these three versions of Cholesky factoriza-
tion, consult George and Liu [19, pp. 18-21].

The bordering method requires a row-oriented data structure for storing the non-
zeros of L. Liu [25] has devised a compact row-oriented data structure for this pur-
pose, but currently the technique has not been successfully adapted to run efficiently on
modemworkstations and vector supercomputers. Consequently, our paper will focus on
block versions of the left-looking and right-looking algorithms (also known as column-
Cholesky and submatrix-Cholesky, respectively). Both the left-looking and right-looking



BLOCK SPARSE CHOLESKY ALGORITHMS 1037

algorithms naturally require a column-oriented data structure, which is easy to construct
[31]. Thus, we restrict our attention to column-oriented implementations of the left-
looking and right-looking algorithms.

We need the following definitions to write down the algorithms. LetM be an n x n
matrix, and denote the jth column ofM by M,,j. The sparsity structure of column j in
the lower triangular part ofM is denoted by Struct(M,,j). That is,

Struct(M.,j) := {s > j: Ms,j 0}.

Column-oriented Cholesky factorization algorithms can be expressed in terms of the
following two subtasks:

1. cmod(j, k) modification of column j by a multiple of column k, k < j,

2. cdiv(j) division of column j by a scalar.
Ofcourse, sparsity in columns j and k is exploited when A and L are sparse. Using these
basic operations, Figs. 2 and 3 give high-level descriptions of the basic left-looking and
right-looking sparse Cholesky factorization algorithms, respectively. (We will refer to
these two algorithms as left-looking and right-looking col-col.)

for j 1 to n do
for k such that Lj,k 0 do

cmod(j, k)
cdiv(j)

FIG. 2. Left-looking sparse Choleskyfactorization algorithm (left-looking col-col).

for k 1 to n do
cdiv(k)
for j such that Lj,k 0 do

cmod(j, k)

FIG. 3. Right-looking sparse Choleskyfactorization algorithm (right-looking col-co1).

Left-looking sparse Cholesky is the simpler of the two algorithms to implement, and
it appears in several well-known commercially available sparse matrix packages [8], [16].
For implementation details, the reader should consult George and Liu [19]. Straightfor-
ward implementations of the right-looking approach are generally quite inefficient be-
cause matching the updating column k’s sparsity pattern with that ofeach column j in the
updated submatrix requires expensive searching through the row indices in Struct(L,,k)
and Struct(L,,j), j E Struct(L,,k) -{k}. Consequently, we will not pursue such an im-
plementation in this paper. However, Rothberg and Gupta [28] have recently reported
that a block version of this approach is reasonably competitive, because for practical
problems the blocking greatly reduces the amount of index matching needed. Note also
that a straightforward implementation of the right-looking approach forms the basis for
a distributed-memory parallel factorization algorithm known as thefan-out method [6],
[18], [20]. In this paper we will study a left-looking block algorithm and also the multi-
frontal algorithm [15], [24], which can be viewed as an efficient implementation of right-
looking sparse Cholesky factorization as we shall see in 2.3.
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Fo. 4. Supemodes]’or 7 x 7 nine-pointgridproblem ordered by nested dissection. x and refer to nonzeros
in A andfill in L, respectively. Numbers over diagonal entries label supemodes.

2.2. Supernodes and elimination trees. Efficient implementations of both the
multifrontal algorithm and left-looking block algorithms require that columns of the
Cholesky factor L sharing the same sparsity structure be grouped together into super-
nodes. More formally, the set of contiguous columns j, j + 1,..., j + t constitutes a su-
pemode if Struct(L,,k) Struct(L,,k+l) U {k} for j _< k _< j + t 1. Most commonly
used in practice is the set offundamental supemodes associated with the factor L. Each
fundamental supemode satisfies the following additional requirement: It is a maximal
supernode for which the first column is the only column of the supernode that can have
more than one child in the elimination tree associated with L. (Elimination trees are
defined in the next paragraph.) The fundamental supernodes for an example matrix is
shown in Fig. 4.

Note that the columns of a supemode {j, j + 1,..., j + t} have a dense diagonal
block and have identical column structure below row j + t. Note also that columns in
the same supernode can be treated as a unit for both computation and storage. (See, for
example, [26] for further details.)

It is convenient to denote a column L.,j belonging to a supemode by its column index j. It should be
clear by context when j is being used in this manner.
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31

5 8 9 11 IP, 16 17 19 :0 P,3 , P,6

FIG. 5. Elimination tree (and supernode elimination tree) for the matrix shown in Fig. 4. Ovals enclose
supernodes that contain more than one node. Nodes not enclosed by an oval are singleton supernodes. Italicized
numbers label supernodes.

The multifrontal method makes explicit use of the elimination tree associated with
L. For each column L,,j having off-diagonal nonzero elements, we define theparent of
j to be the row index of the first off-diagonal nonzero in that column. For example, the
parent of node 9 is node 19 for the matrix in Fig. 4. It is easy to see that the parents of
the columns define a tree structure, which is called the elimination tree of L. Associated
with any supernode partition is a supernodal elimination tree, which is obtained from the
elimination tree essentially by collapsing the nodes (columns) in each supernode into a
single node (block column). This can be done because the nodes in each supernode form
a chain in the elimination tree. Fig. 5 (see above) displays the elimination tree for the
matrix in Fig. 4. The supernodal elimination tree for the partition in Fig. 4 is also shown
in Fig. 5, superimposed on the underlying elimination tree. Throughout this paper we
use N to denote the number of supernodes in L.



1040 E: G. NG AND B. W. PEYTON

2.3. Supernode-based Cholesky factorization algorithms: previous work. Figures
2 and 3 contain high-level descriptions of sparse Cholesky algorithms whose innermost
loop updates a single column j with a multiple of a single column k. The next two subsec-
tions briefly describe two well-known sparse Cholesky algorithms that exploit the shared
sparsity structure within supernodes to improve performance. The first is the left-looking
sup-col algorithm, whose atomic operation is updating the target column j with every
column in a supernode not containing j or with a subset of columns in the supernode
containing j (in either case, a BLAS2 operation). The other is the more widely known
multifrontal method.

2.3.1. Left-looking sup-col Cholesky factorization. The basic idea behind the left-
looking sup-col Cholcsky algorithm is very simple. Let K {p, p + 1,..., p + q} be
a supcrnodc2 in L and consider the computation of L.,j for some j > p + q. It follows
from the definition of supernodes that column A.,j will be modified by no columns of
K or every column of K. Previous studies [7], [26], [27], [29] have demonstrated that
this observation has important ramifications for the performance of left-looking sparse
Cholesky factorization. Loosely speaking, when used to update the target column L.,,
the columns in a supernode K can now be treated as a single unit (or block column) in
the computation. Since the columns in a supernode share the same sparsity structure
below the dense diagonal block, modification of a particular column j > p + q by these
columns can be accumulated in a work vector using dense vector operations, and then
applied to the target column using a single sparse vector operation that employs indirect
addressing. Moreover, the use ofloop unrolling in the accumulation, as described in 10],
reduces memory traffic.

In Fig. 6 we present the left-looking sup-col Cholcsky factorization algorithm. The
reader will find a more detailed implementation of the algorithm presented in [26]. In
order to keep the notation simple, K is to be interpreted in one of two different senses,

for J 1 to N do
Scatter J’s relative indices into indmap.
for j E J (in order) do

for K such that Lj,K 0 do
t - cmod(j, K)
Assemble t into L,, usin indmap.

cmod(j, J)
cdiv(j)

FIG. 6. Left-looking aup-eol Choleskyfactorization algorithm.

depending on the context in which it appears. In one context (e.g., line 3 of Fig. 6), K
is interpreted as the set of columns in the supernode, i.e., K {p, p + 1,..., p + q}.
In the first line of the algorithm, the supernodes are treated as an ordered set of loop
indices 1, 2,..., K,..., N, where K < J if and only ifp < p’, where p and p’ are the first
columns of K and J, respectively. This dual-purpose notation is also illustrated in Fig.
4, where the supernode labels are written over the diagonal entries, yet we can still write
30 {40, 41, 42}, for example. We denote both the last supernode and the number of
supernodes by N.

2Throughout the remainder of the paper the numbers designating a supernode will be italicized, and the
letters denoting a supernode will be capitalized.
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Suppose K {p, p + 1,..., p + q}. Whenever j > p + q and Lj,p+q # 0, the task
cmod(j, K) consists of the operations cmod(j, k), where k p, p + 1,..., p + q. When
j E K, cmod(j, K) consists of the operations cmod(j, k), for k p, p + 1,..., j 1. We
let L,K denote the 1 by ]KI submatrix in L induced by row j and the columns in K.

The indirect addressing scheme used by the algorithm is as follows. The indices in
each list Struct(L.,j) are sorted in ascending order during the preprocessing stage (i.e.,
symbolic factorization). For each row index i Struct(L.,), the corresponding relative
index is the position of i relative to the bottom of the list. For example, 0 for the
last index in the list, 1 for the next-to-the-last one, and so forth. For each supemode
d {p,p + 1,...,p + q}, define

The relative position of each row index i Struct(Z,,,j) is stored in an n-vector
indmap as follows: indmap[i] .-- e. First the update cmod(j, K) is accumulated in awork
vector t whose length is the number ofnonzero entries in the update. That is, the update
is computed and stored as a dense vector t. Then the algorithm assembles (scatter-adds)
t into factor storage, using indmap[i] to map each active row index i Struct(L.,K) to
the appropriate location in/,., to which the corresponding component of t is added.
The notion of relative indices apparently was first proposed by Schreiber [30].

2.3.2. Multifrontai Cholesky factorization. The multifrontal method, introduced
by Duff and Reid in [15], is well documented in the literature. With much of its work
performed within dense frontal matrices, this method has proven to be extremely effec-
tive on vector supercomputers [1], [3], [7], [9]. Moreover, the multifrontal method is
naturally expressed and implemented as a block method, and several of the advantages
it derivesfrom block matrix operations have already been explored in the literature: e.g.,
its ability to reuse data in fast memory [1], [29] and its ability to perform well on machines
with virtual memory and paging [23]. Implementation ofthe multifrontal method is more
complicated and involves more subtleties than do any of the left-looking Cholesky vari-
ants. For the purposes of this paper, it is adequate to restrict our presentation to an
informal outline of the method. For a detailed survey of the multifrontal method and
the techniques required for an efficient implementation, the reader should consult Liu
[24]. The following paragraphs discuss the informal statement of the algorithm, found
in Fig. 7.

The outer loop of the supernodal multifrontal algorithm processes the supernodes
1, 2,..., N, where the supemodes have been renumbered by a postorder traversal of the
supemodal elimination tree. After moving the required columns of A.,j into the lead-
ing columns of J’s dense frontal matrix Fj, the algorithm pops from the update matrix
stack an update matrix UK for each child K of d in the supernodal elimination tree and
assembles these accumulated update columns into Fj. (The postordering enables the
use of a simple and efficient stack for the update matrices.) The update matrix UK is
a dense matrix containing all updates destined for ancestors of K from columns in the
subtree of the supernodal elimination tree rooted at K. The assembly operation adds
each entry ofUK to the corresponding entry of Fj. These are sparse operations requir-
ing indirect indexing because an update matrix generally modifies aproper subset of the
entries in the target frontal matrix. These are the only sparse operations required by the
multifrontal method.

Now with all the necessary data accumulated in Fj, the next step in the main loop
applies dense left-looking Cholesky factorization to the first dl columns in Fj (whichwe
will call a cdiv(d) operation) to compute the block column L.,j and then accumulates
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Initialize the update matrix stack.
for d 1 to N (in postorder) do

Move A,,s into Fs.
for each child K of d on top of the stack do

Pop UK from stack.
Assemble UK into F.

Within F,
compute the columns of L,, (cdiv(d)),
and compute all update columns from L,,
(i.e., cmod(k, d), where k

_
Struct(L.,s)- d).

Move the new factor columns from Fj to L.,j.
Move Uj to the top of the stack.

Fro. 7. Supernodal multifrontal Choleskyfactorization algorithm.

in the trailing columns of Fj all column updates craod(k,j), where j d and k
Struct(L.,) d. At this point, the leading IJ[ columns ofF contain the columns of
L.,, and the other columns have accumulated every update column for ancestors of J
contributed by J and its descendants in the supernodal elimination tree. The algorithm
then moves the newlycomputed columns to the appropriate location in the data structure
for L, moves the update matrix U down onto the top of the stack, and proceeds with
the next step of the major loop.

Three issues will occupy our attention when we take up the multifrontal algorithm
again in 4. First, since all updates from the columns in L., are computed immedi-
ately after the new factor columns are computed, the multifrontal method provides the
opportunity for optimal reuse of columns loaded in cache. Second, the costs of data
movement overhead are potentially significant. We are referring here to the movement
ofmatrix columns between each frontal matrix and L’s data structure, and the movement
of each update matrix from the location in working storage, where it was computed, to
its storage-saving location at the top of the stack. This issue is of particular concern
on machines with cache, where moving large amounts of data in this manner will cause
expensive cache misses not incurred by the left-looking algorithms. Third, we will be
concerned with the amount of storage required for the stack of update matrices, an is-
sue that has received considerable attention in past studies [3], [22], [24].

3. Left-looking sup-sup Cholesky factorization. The idea behind the left-looking
sup-sup Cholesky factorization algorithm is simple: The cmod(j,K) operation is
blocked one level higher, creating a supernode-to-supernode block-column updating
operation cmod(J, K) around which the new algorithm is constructed. The cmod(d, K)
operation performs cmod(j, K) for every column j E J updated by the columns of K
(a BLAS3 operation). The idea of constructing a sparse Cholesky algorithm around this
operation is not new. Ashcraft and Peyton wrote a left-looking sup-sup sparse Cholesky
factorization code, which was mentioned in [7], but was not presented there. The index-
ing scheme they used, however, was unnecessarily complex. Though efficient, it had the
side effect of destroying the row indices of the nonzeros in L so that they had to be
recomputed later for use during the triangular solution phase or any future factoriza-
tions of matrices with the same structure. For these reasons, they ultimately concluded
that their implementation was unacceptable. Ashcraft recently sketched out a high-
level version of the algorithm in a report on a different topic [4]. He has also created a
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single-parameter hybrid sparse Cholesky algorithm that performs a left-looking sup-sup
factorization when the parameter takes on one extreme value and performs a super-
nodal multifrontal factorization when it takes on the opposite extreme value [5]. The
left-looking sup-sup approach was proposed again by Ng and Peyton [26] as a promis-
ing candidate for parallelization on shared-memory multiprocessors. Parts of this work
are steps toward completing the goals stated in the conclusion of that report. Recently
and independently, Rothberg and Gupta examined the caching behavior of three block
Cholcsky factorization algorithms, including the multifrontal and left-looking sup-sup
methods [28].

The following paragraphs discuss the left-looking sup-sup Cholcsky factorization
algorithm in Fig. 8 and its more basic implementation issues. One new item of notation
is introduced; we let Lj,K denote the IJ[ by [K[ submatrix in L induced by the members
of J and the members of K.

for J 1 to N do
Scatter J’s relative indices into indmap.
for K such that Lj,/< 0 do

Compute the number of columns of J to be updated by the columns of K.
T - cmod(J,K)
Gather K’s indices rlativ to J’s structure from indmap into relind.
Using relind, assemble T into

cdiv(J)

FIO. 8. Left-looking sup-sup Choleskyfactorization algorithm.

The bulk of the work is performed within the cmod(J, K) and cdiv(J) operations.
The underlying matrix-matrix multiplication subroutine, which performs most of the
work in the implementation, is used by the block multifrontal code as well, enabling a
fair comparison of the two approaches. As in the left-looking sup-col approach, the up-
date columns are accumulated in working storage. Naturally, far more working storage
is required to accumulate the cmod(J, K) updates than is required to accumulate the
cmod(j, K) updates, which consists of a single dense column no larger than the column
of L with the most nonzero entries. This storage overhead will receive further attention
in 4 and 5.

Another distinction between the left-looking sup-co and sup-sup algorithms is
that the sup-sup algorithm must compute the number of columns of J to be updated by
the columns of K, which it does by searching for all row indices i J Struct(L.,K) in
K’s sorted index list.

The algorithm handles indirect addressing in much the same way that the sup-col
algorithm in Fig. 6 does, with one key difference that generally improves its efficiency.
(See 2.3.1 for other details about the indexing scheme.) The sup-sup algorithm gathers
the indices of K relative to J from indmap into a temporary vector relind: Each active
row index i Struct(L.,K) is replaced by indmap[i] in the integer vector relind. This
single gather operation provides the indexing information for assembling the entire block
update into factor storage (i.e., the storage that will contain L.,j). The sup-co algo-
rithm essentially has to repeat this gather operation each time it assembles a cmod(j, K)
update (j J) into factor storage.
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4. Implementation details and options. Section 5 reports performance statistics for
implementations of the multifrontal and the left-looking sup-sup Cholesky factoriza-
tion algorithms on several powerful uniprocessor computing systems. Our Fortran codes
have not been tuned for performance on any specific machine except for our choice of
the level of loop unrolling. To run efficiently on some of these machines, however, our
implementations cannot afford to ignore other architectural considerations altogether.
Unless they make effective use of data (i.e., columns of the matrix) once they have been
loaded into cache, their performance will be severely penalized by an excessive number
of cache misses. Thus, our implementations must be designed with this goal in mind.
Our codes need to know the cache size on each machine to reuse cached data effectively
(see 4.1). The cache size and the level ofloop unrolling are the only machine-dependent
parameters in our codes. Other implementation options and enhancements, which are
entirely independent of the computer architecture, are also discussed in this section.

4.1. Reuse ofdata in cache. Consider the computation of a cmod(J, K) update dur-
ing the left-looking sup-sup Cholesky factorization. Suppose the operation updates q
columns of J with the columns of K. The number of columns updated may be as few
as 1 or as many as 13I. We can compute cmod(3, K) as a sequence of sup-co:t updates
cmod(j, K) for the q columns j E or. If the columns of K, which happen to be stored
contiguously in main memory, fit into cache memory, then the first cmod(j, K) loads the
columns ofK into cache, while the following q 1 cmods will have extremely fast access
to this data because it is already in cache.

Quite often, however, the columns of a supernode do not fit into the 32K or 64K
caches used on current workstations. This can dramatically increase the number ofcache
misses associated with the final q 1 cmods, as the columns ofK overwrite one another
as they are repeatedly read into cache. To avoid this problem, the algorithm partitions
large supemodes into "panels" of contiguous columns that fit into the cache, as Roth-
berg and Gupta have done in their studies [27]-[29]. If K has been partitioned into two
panels, then the cmod(J, K) update is performed by applying the cmods from the first
panel to the q target columns of J, then applying the cmods from the second panel to
the q target columns of J. We use essentially the same strategy to increase the reuse of
data in cache by our multifrontal codes. This simple strategy has proven effective for the
problems, machines, and factorization methods used in our tests. Extremely large prob-
lems, however, may require more complicated techniques that involve both horizontal
and vertical partitioning and perhaps even sweeping changes in the data structure used
to store L. The reader should consult Rothberg and Gupta [28] for a thorough discus-
sion of these and many other issues associated with improving reuse of data in cache by
both the multifrontal and the left-looking 8tp-sxxp sparse Cholesky algorithms.

4.2. Traversing row-structure sets. The left-looking co].-col algorithm needs ac-
cess to the row-structure sets Rj {k /-,j,k 0} (see Fig. 2). These row-structure
sets must be computed from or traversed within the strictly column-oriented data struc-
ture used by the algorithm. By far the most commonly used method is to maintain the
row-structure sets as linked lists within a single integer n-vector. Every column belongs
to one and only one row-structure list at any given time during the course of the factor-
izati0n. After a column update is completed, the column is placed in the list belonging
to the next column it will modify. Details of this approach can be found in George and
Liu [19, pp. 152-155] and in Ng and Peyton [26]. The same technique applies to the
row-structure sets for the left-looking attp-col and sap-sap algorithms.

There is anotherway to determine the row-structure sets in the left-looking co1-col
algorithm, which relies on the fact that each row-structure set R is a pruned subtree of
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the elimination tree [21], [30]. Consequently, if the elimination tree is made available to
the factorization algorithm, each member ofR can be visited by performing a depth-
first traversal of the appropriate pruned subtree. Implementation details can be found in
Schreiber [30]. Again, the same technique applies to the row-structure sets for the left-
looking aup-co and aup-aup algorithms. This approach is particularly attractive in a
parallel implementation of the left-looking factorization algorithms for shared-memory
multiprocessor systems since it eliminates the need for critical sections when manipulat-
ing the row-structure sets. We are currently pursuing this idea.

For the nap-col algorithm, our tests indicate that the total factorization time us-
ing the tree-traversal technique is slightly larger than that using the linked-list approach.
However, for the aup-aUla algorithm, the difference in total factorization time using the
two approaches is negligible because the total time required to traverse the row-structure
sets is extremely small in this algorithm for both techniques. Because overall factoriza-
tion times differ by so little when the two approaches are compared, we have not included
timing results for the more complicated of the two (the tree-traversal method) in 5. The
important point to note is that either approach can be used in the sup-aup algorithm,
and moreover, we believe that the tree-walking technique may ultimately be preferable
in a parallel implementation for shared-memory multiprocessors [26].

4.. Enhancements to the multifrontal method. The size of the stack of update ma-
trices in the multifrontal method is a major issue associated with this method. A large
stack obviously requires greater storage; perhaps not so obvious is that a large stack usu-
ally creates a great deal of overhead data movement that can erode efficiency. We have
implemented two variants of the multifrontal algorithm. The first is a straightforward
implementation ofthe algorithm in Fig. 7. One standard enhancement has been incorpo-
rated into both the basic and enhanced multifrontal code. Using a technique introduced
by Liu [22], we have reordered the children of each parent in the supernodal elimina-
tion tree to minimize the storage requirement for the stack. This section describes the
techniques incorporated solely into our enhanced version of the multifrontal method.

We are aware of multifrontal implementations [32] that compute the new factor
columns L,,j in factor storage rather than in Fj and then compute only the update ma-
trix U: within the frontal matrix F:. This simple change reduces the size of the frontal
matrix and eliminates the need to move matrix columns back and forth between factor
storage and the frontal matrix. We have implemented this technique and also further
pursued the idea of reducing stack storage and limiting data movement by incorporating
updates into factor storage as early as possible. More specifically, our enhanced version
ofthe multifrontal method computes the update matrix U: in working storage just as the
basic version does. The enhanced version, however, incorporates some leading columns
of U: into factor storage, and thus stores on.the stack only the trailing columns of Uj
that were not incorporated into factor storage. It uses the following two techniques to
implement this scheme in an efficient manner.

First, let P be the parent of J in the supernodal elimination tree. We say that J is
dense relative to P if

If J is dense relative to P, then the update cmod(P, J), which would normally fill the
leading columns of Ua, can be applied directly to L,,p, the columns of P in factor
storage. This shrinks the size of the update matrix Ua, and thus reduces data move-
ment when Ua is ultimately moved to its final position at the top of the stack. Since this
condition usually holds for the root supernode and one or more of its children, both of
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which usually have very large frontal matrices, this simple enhancement can save a lot of
storage.

The second technique pushes this idea a bit further. Consider the update matrix
Uj and again consider J’s parent P. For the multifrontal method, the relative indices of
each child with respect to its parent have been computed in advance. The relative indices
used to assemble Uj into Fp can also be used to assemble the columns of Uj destined
for L.,p directly into factor storage. But there is no reason to limit this technique to the
parentjust because only the indices relative to P are available. If J happens to update its
grandparent supemode P’, then J’s indices relative to P’ can be obtained by gathering
the appropriate indices of P (relative to P’) into an integer work vector relind; they can
then be used to assemble the appropriate columns ofUj into factor storage (i.e., L.,p,).
If J happens to update its great-grandparent P", then the process can be repeated with
the old indices in relind (relative to P’) used to gather some of the indices of P’ (relative
to P") into relind, giving us the indices of J relative to P".

The enhanced algorithm continues this process until it encounters either the last
supemode requiring updates from the columns of d or an ancestor of J that is not up-
dated by the columns of J. In consequence, factor storage for an ancestor supemode
K of J is updated by the columns of J during this process if and only if factor storage
for every ancestor on the path from J to K is similarly updated by the columns of J.
When the first stopping criterion terminates the process, all columns of Uj have been
incorporated into factor storage, and no columns of the update matrix Uj are placed
on the stack. (One could think of it as stacking a null update matrix.) When the second
stopping criterion terminates the process, the algorithm stacks a reduced update matrix,
which includes only the trailing columns of Uj that have not been incorporated into
factor storage. Thus, each assembly into factor storage reduces the amount of storage
required for the reduced version of Uj and the amount of time required to move it to
the top of the stack. The only overhead computation required, the sequence of inte-
ger gather operations, is negligible compared to the savings in data movement, and this
technique is surprisingly effective at reducing the stack storage requirement, as we shall
see in 5.

Last, one commonly used stack-reduction technique is the in-place extension of the
update matrix for the child on top of the stack into the parent’s new frontal matrix, which
is initially set to zero. Liu [22] points out that this technique is used in the Harwell MA27
code, and Ashcraft [3] reports that overlapping the new frontal matrix with the topmost
update matrix in this fashion saves a surprising 15%-27% in stack storage for his test
problems. We have incorporated it into our enhanced multifrontal code.

4.4. Refinements for left-looking sup-co:t and sup-sup Cholesky factorization al-
gorithms. Three refinements have been incorporated into our implementations of the
left-looking sup-co:t and sup-sup Cholcsky factorization algorithms, several of which
concern the incorporation of update columns that arc dense relative to the target col-
umn directly into factor storage. First, whenever K has only one column, the sup-col
(sup-sup) code accumulates the column modification cmod(j, K) (cmod(J, K)) directly
into factor storage, avoiding use of the real work vector t (T) altogether. This is ex-
tremely simple to implement, avoids some useless data movement, and is valuable for
problems with many singleton supemodes. Second, all column modifications where the
source and target columns come from the same supemode are performed as dense up-
dates incorporated directly into factor storage using no indirect indexing. That is, they
are performed as a dense update would be performed. Third, whenever the length ofup-
date columns from K matches the length of a target column(s) from J, it is also handled
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as a dense update. No indirect indexing is used, and the update is accumulated directly
into factor storage.

TWo minor refinements are incorporated into the left-looking sup-sup Cholesky al-
gorithm only. Unlike the sup-col algorithm, the block algorithm explicitly computes
and records relative indices as they are needed. By taking the difference between the
first and the last of these indices and checking the difference against the length of the
target, the algorithm is now capable of checking for all remaining dense updates, thereby
avoiding some data movement and indirect addressing normally associated with these
operations. Finally, note that the size of the block of working storage T needed by the
algorithm is the size of the largest block update cmod(J, K) generated by the algorithm
that is not dense relative to its target factor columns. In practice, the children of the root
supernode are usually dense relative to their parent and, moreover, the largest block up-
date is often found among the block updates they generate for the root. Consequently,
the practice of accumulating dense block updates directly into factor storage often re-
duces the amount ofworking storage needed for the algorithm.

5. Performance results. In this section we compare the performance of various
sparse Cholesky factorization algorithms discussed in this paper, which include

left-looldng co-co Cholesky,
left-looking sup-col Cholesky,
left-looking sup-sup Cholesky,
a basic multifrontal method, and
an enhanced multifrontal method.

All algorithms were coded in Fortran, and all floating-point operations were performed
in double precision, except on the Cray Y-ME The code for left-looking co-co Chole-
sky was taken from SPARSPAK [8]. All codes were compiled with optimization turned
on and were run on a vector supercomputer and a number ofhigh-performance scientific
workstations. It should be noted that identical code was run on each machine, except
for the level of loop unrolling used in the block update routines.

The machines used in the experiments include
an IBM RS/6000 model 530,
a DEC 5000,
a Stardent P3000, and
one processor of a Cray Y-ME

Each of the workstations has 64 kilobytes of cache memory. The cache on the IBM
RS/6000 is four-way set-associative, while those on the DEC 5000 and Stardent P3000
are direct mapped. The cache line size on the IBM RS/6000 is 128 bytes, compared
to 4 bytes on the DEC 5000 and Stardent P3000. The IBM RS/6000 and DEC 5000
have 16 megabytes of main memory, while the Stardent P3000 has 32 megabytes. Since
we restricted our tests to problems that fit into the main memory, there was no paging
and, hence, differences in memory size hadno effect on performance. Both the DEC
5000 and Stardent P3000 use the same central processing unit (MIPS 3000), but they
have different floating-point coprocessors. Moreover, the Stardent P3000 has special
vector floating-point hardware that can be enabled or disabled during code compilation.
The DEC 5000 and Stardent P3000 (with vectorization disabled) are similar in so many
respects that we expect similar performance on these machines.

The vector supercomputer we used, the Cray Y-MP, has no memory hierarchy and
has enough main memory for the largest of our test problems. It is also worth noting
that this machine performs floating-point arithmetic far more efficiently than integer
arithmetic, in contrast to the workstations where integer and floating-point performance
is better balanced.



1048 E.G. NGAND B. W. PEYTON

As we pointed out in previous sections, loop unrolling was employed in our imple-
mentation of the cmod(j, K) and cmod(J, K) block update operations. The optimal
level of loop unrolling varies from machine to machine. In our experiments, we tried
level-p loop unrolling, for p 1, 2, 4, and 8. To limit the amount of data presented in
our tables, we report data for only the level of loop unrolling that performed best on the
specific machine under consideration. The best level was p 4 for the DEC 5000 and
Cray Y-MP, and p 8 for the IBM RS/6000 and Stardent P3000.

Almost all the test problems were taken from the Harwell-Boeing Test Collection
[13], which is widely used in testing and evaluating sparse matrix algorithms. The prob-
lems we selected and some of their characteristics are provided in Tables 1 and 2, respec-
tively. To ensure that no paging occurs, only the small-to-medium-size problems were
run on the workstations. All problems were run on the Cray Y-ME

TABLE 1
List oftestproblems.

problem brief description

BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSIK33
NASA1824
NASA2910
NASA4704

Stiffness matrix- fluid flow generalized eigenvalues
Stiffness matrix- roof of Omni Coliseum, Atlanta
Stiffness matrix- module of an offshore platform
Stiffness matrix Corp. of Engineers dam
Stiffness matrix- elevated pressure vessel
Stiffness matrix- R. E. Ginna nuclear power station
Stiffness matrix- portion of a 3D globally triangular bldg
Stiffness matrix- winter sports arena
Stiffness matrix- 76 story skyscraper
Stiffness matrix buckling model of the 767 rear bulkhead
Stiffness matrix offshore generator platform (MSC NASTRAN)
Stiffness matrix- automobile component (MSC NASTRAN)
Stiffness matrix- automobile chassis (MSC NASTRAN)
Stiffness matrix- pin boss (auto steering component), solid elements
Structure from NASA Langley, 1824 degrees of freedom
Structure from NASA Langley, 2910 degrees of freedom
Structure from NASA Langley, 4704 degrees of freedom

The tables presented in the following subsections contain the times required to run
the factorization algorithms on several different machines. All execution times are in
seconds. For machines that have cache memory, the notation method(s) is used, where
mZhod is either aup-aup or ,, (multifrontal). When s 0, supernodes are not subdi-
vided into panels; when s > 0, large supernodes are subdivided into panels that fit into
the s-kilobyte cache available on that machine. For example, on all the workstations
s 64 when the supernodes are subdivided. It is worth noting that all the test prob-
lems have many supernodes small enough to fit into cache, and both the multifrontal
and left-looking sup-sup algorithms fully "reuse" the columns of such supernodes once
they are loaded into cache, regardless ofwhether or not the larger supernodes have been
subdivided to fit into cache.

5.1. IBM RS/6O0O. Table 3 contains the execution times (in seconds) required by the
various factorization methods on an IBM RS/6000 model 530. We make the following
observations from these results.

First, we see that sup-col consistently reduces factorization times by roughly a fac-
tor of 2 over co1-col. Part of this large improvement is due to reductions in memory
traffic and indirect addressing, which are, in turn, due respectively to the loop unrolling
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TABLE 2
Characteristics oftestproblems.

p
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
NASA1824
NASA2910
NASA4704

Legend:

83,883
63,454
117,816
290,378
428,650
149,090
45,178
159,910
252,241
619,488

2,043,492
1,181,416
2,014,701
591,904
39,208
174,296
104,756

271,671
112,267
651,222
741,178

1,005,859
662,725
420,311
278,922

1,416,568
1,694,796
3,843,435
5,308,247
5,246,353
2,546,802

73,699
204,403
281,472

28,621 599
17,508 503
61,614 1,295
50,365 691
94,225 2,595

116,80" 7,438
49,018 1,522
22,331 414

205,513 7,288
174,77(] 3,231
229,67(] 3,689
330,89 8,304
374,50" 6,927
124,532 1,201
12,58"7 527
25,17(] 599
35,339 1,245

ops
58,550,598
9,793,431

165,035,094
149,100,948
144,269,031
140,907,823
119,155,247
32,429,194

283,732,315
393,045,158
928,323,809

2,550,954,465
1,108,686,016
1,203,491,786

5,160,949
21,068,943
35,003,786

n: number of equations,

IAI" number of nonzeros in A,
ILl: number of nonzeros in L, including the diagonal,
p(L): number of row subscripts required to represent the supernodal structure of L,
N: number of fundamental supernodes in L,
flops: number of floating-point operations required to compute L.

TABLE 3
Factorization times in seconds on IBM RS/6000.

problem
co-co sup-co

BCSS.TK13 7.33 3.59
BCSSTK14 1.32 .69
BCSSTK15 20.40 9.68
BCSSTK16 18.61 8.94
BCSSTK18 17.86 9.30
BCSSTK23 14.71 7.13
BCSSTK24 4.28 2.03
NASA1824 .74 .41
NASA2910 2.81 1.46
NASA4704 4.56 2.29

sup-sup basic I enhanced mf
(o) (64) (o) (64) (o) (64)
3.22 3.04 3.58 3.39 3.32 3.10
.61 .61 .71 .69 .65 .65

8.77 8.08 9.49 8.78 8.98 8.32
7.93 7.47 8.59 8.15 8.01 7.52
8.58 8.07 9.39 9.08 8.99 8.47
6.57 6.00 7.21 6.67 6.78 6.26
1.76 1.72 1.92 1.88 1.78 1.74
.36 .36 .40 .40 .36 .36

1.24 1.23 1.36 1.36 1.26 1.25
2.01 1.94 2.17 2.10 2.03 1.96

and the dense matrix-vector multiplication used to implement the cmod(j, K) opera-
tion. However, the improvement of sup-col over co1-col observed on this machine is
considerably larger than that observed on the other workstations, which obtain the same
reductions in memory traffic and indirect indexing. We believe that the large cache line
size (128 bytes) on the IBM RS/6000 is responsible largely for this phenomenon. The
memory-access pattern of the col-col algorithm is far more disordered and contains
far fewer stride one vector reads and writes than that of the sup-col algorithm. As a
result, the sup-cot algorithm is far more likely to use most or all of the floating-point
numbers in a line as it is loaded into cache. Consequently, it often uses several (up to
16 128/8) double precision numbers at the cost of a single cache miss.

3A stride one read or write accesses contiguous entries in a vector or array.
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We see that sup-sup(O) usually improves performance over sup-col by 10%-15%.
This improvement is partly due to further reductions in the cost of indirect indexing and
the integer overhead associated with the row-structure lists. It is likely, however, that
most of the improvement is due to reuse of data in the cache when the supernodes are
small enough.

By partitioning supemodes whose columns overflow the cache into panels of con-
tiguous columns that fit into cache and, moreover, by organizing the matrix-matrix mul-
tiplication operations to operate on these panels, data in cache is reused more effectively,
and thus the amount of data moved to and from main memory is reduced. This leads to
another 6%-10% improvement in factorization times for sup-sup(64) when it is used
on the medium- and large-sized problems in the test set. Smaller increases are obtained
for the small problems because most or all oftheir supemodes already fit into cache. This
improvement is quite modest compared to that observed on the other workstations. We
further explore this issue in the next subsection.

As expected, subdividing supemodes into panels that fit into cache improves the
performance of both the basic and enhanced multifrontal methods in much the same
manner that it improves the performance of the sup-sup algorithm. Enhanced nag per-
forms significantly better than basic mr, probably because the former method typically
requires much less data movement. Similarly, sup-sup performs slightly better than en-
hanced rag, probably because the former requires more data movement than the latter,
despite the enhancements. Where applicable, these observations hold true on the other
machines as well.

One of the most widely used implementations of the multifrontal method is the
MA27 routine in the Harwell library [14]. To verify that our implementations of this
method are adequate for fair comparisons, we have compared their performance with
that of the MA27 routine in Table 4. Since loop unrolling and techniques for exploiting
cache memory have not been incorporated into MA27, the fairest comparison is between
the first two columns of the table. The second column contains the times required by ba-
sic raf with no loop unrolling and with no subdivision of the supemodes to improve cache
usage. While this code outperforms MA27, the comparison is not really fair because of
the additional cost of MA27’s extremely flexible method for inputting the matrix entries.
In any case, it is clear that our code is quite competitive. The last column demonstrates
the value of the enhancements incorporated into our best implementation of the multi-
frontal method.

TABLE 4
Comparing 3 multifrontal methods: Factorization times in seconds on IBM RS/6000 (basic mf does not use

loop unrolling and enhanced raf uses level-8 loop unrolling).

problem

BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK18
BCSSTK23
BCSSTK24
NASA1824
NASA2910
NASA4704

127 basic
levelffil

5.88
1.31

15.38
15.02
14.95
11.17
3.74
0.74
2.88
3.83

enhanced mf (64)
levelffi8

4.98
.90

13.44
12.22
12.76
10.15
2.65
.50

1.81
2.96

3.10
.65

8.32
7.52
8.47
6.26
1.74
.36

1.25
1.96
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problem
col-col

TABLE 5
Factorization times in seconds on DEC 5000.

BCSSTK13 24.33
BCSSTK14 3.50
BCSSTK15 70.84
BCSSTK16 61.10
BCSSTK18 60.38
BCSSTK23 50.86
BCSSTK24 12.41
NASA1824 1.87
NASA2910 7.96
NASA4704 14.01

sup-col sup-sup basic mf enhanced mf
(0) (64) (0) (64) (0) (64)

18.77 15.02 10.51 17.45 12.92 15.45 10.90
2.53 1.84 1.84 2.40 2.40 1.96 1.97

52.60 44.36 2849 48.86 33.06 45.29 29.31
47.13 36.29 25.90 40.85 30.41 36.70 26.27
46.47 39.44 27.30 46.75 34.38 41.65 29.29
38.80 34.30 21.53 38.75 25.86 35.36 22.49
9.18 6.39 5.67 7.45 6.73 6.47 5.75
1.36 1.04 1.04 1.32 1.32 1.07 1.07
6.01 4.05 3.89 4.99 4.84 4.16 3.99
10.60 7.69 6.28 8.89 7.47 7.82 6.41

5.2. DEC 5000. Table 5 contains factorization times for the various factorization
methods on a DEC 5000. In contrast to the IBM RS/6000, the reduction in factorization
time of sup-col over col-col is only 30%-38%. (All percentages used in comparisons
are relative to the smaller ofthe two times.) Due to the 4-byte cache line size on the DEC
5000, the contrasting memory access patterns of the col-col and sup-col algorithms
do not incur, respectively, nearly as severe a penalty or nearly as great a performance
boost as those noted earlier on the IBM workstation.

However, the improvement of the sup-sup algorithm over the sup-col algorithm
is much more substantial on this machine. Mainly due to the 4-byte cache line and the
larger penalty associated with each cache miss (two misses per floating-point number),
the sup-sup algorithm generally obtains very significant performance improvements
over the sup-col algorithm, whose capacity to reuse data in cache is quite limited for
the larger test problems. The sup-sup(0) algorithm improves performance over the
sup-col algorithm by 13%-30% for the larger problems and 31%-48% for the smaller
problems. The sup-sup (64) algorithm improves performance over the sup-sup (0) al-
gorithm by 40%-59% for the larger problems and 0%-22% for the smaller problems.
The cumulative improvement is 70%-85% for the larger problems and 4%-48% for the
smaller problems. A more detailed look at the the effect of cache size and organization
on the performance of both the sup-sup and multifrontal algorithms can be found in
Rothberg and Gupta [28].

5.3. Stardent P3000 (without vectorization). As mentioned earlier in this section,
the Stardent P3000 and DEC 5000 have identical central processing units but different
floating-point coprocessors. Thus, when vectorization is not used on the Stardent P3000,
we expect performance to be quite similar on these two machines. The results in Tables
5 and 6 indicate that this is indeed the case, with one exception. For reasons we don’t
understand, loop unrolling is considerably less effective on this machine than it is on
the DEC 5000. With the exception of the col-col to sup-col comparison, the various
methods compare with each other very much as they did on the DEC 5000.

5.4. Stardent P3000 (with vectorization). The Stardent P3000 has floating-point
vector hardware, which can be enabled or disabled when the code is compiled. Ta-
ble 7 contains factorization times for the various factorization methods with vectoriza-
tion turned on. An important observation is that subdividing the supernodes into pan-
els that fit into the 64K cache has virtually no effect on performance. To avoid the
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TABLE 6
Factorization times in seconds on Stardent P3000 (without vectorization).

col-col sup-col sup-sup basic all
problem (0) (64) ’(0) (64)

BCSSTK13 28.75 24.80 19.09 12.62 20.97 14.43
BCSSTK14 3.82 3.17 2.15 2.15 2.53 2.54
BCSSTK15 84.70 69.33 56.50 34.20 60.08 37.64
BCSSTK16 72.25 62.84 45.67 31.09 49.11 34.45
BCSSTK18 72.00 61.75 50.09 32.83 55.50 37.96
BCSSTK23 60.66 51.08 44.01 25.85 47.65 29.34
BCSSTK24 14.11 11.84 7.71 6.70 8.40 7.39
NASA1824 2.03 1.69 1.21 1.21 1.39 1.39
NASA2910 8.94 7.64 4.82 4.58 5.44 5.21
NASA4704 16.34 13.87 9.45 7.46 10.25 8.26

eBhanced nff
(o) (6,)

19.49
2.28

57.42
46.26
52.18
45.12
7.74
1.23
4.86
9.54

12.96
2.29

35.00
31.33
34.58
26.81
6.73
1.24
4.64
7.55

TABLE 7
Factorization times in seconds on Stardent P3000 (with vectorization).

problem
sup=col sup-Sup basic mf

(0) (64) (0) (64)

4.98 4’65 4.68 5.01 5.01
1.18 1.13 1.13 1.26 1.26

13.07 12.18 12.13 13.01 12.93
12.68 11.48 11.51 11.98 12.05
13.59 12.80 12.81 13.31 13.33
9.62 9.03 9.01 9.74 9.65
3.11 2.93 2.92 3.06 3.07
.74 .73 .73 .75 .75

2.33 2.20 2.21 2.31 2.32
3.58 3.36 3.37 3.49 3.49

BCSSTK13 20.04
BCSSTK14 3.78
BCSSTK15 55.37
BCSSTK16 51.09
BCSSTK18 48.46
BCSSTK23 39.75
BCSSTK24 11.92
NASA1824 2.10
NASA2910 7.90
NASA4704 12.76

enhanced a
(0) (64)

4.73 4.76
1.20 1.21

12.49 12.45
11.42 11.49
13.23 13.22
9.29 9.26
2..92 2.93
.72 .71

2.20 2.21
3.36 3.37

complication of resolving cache misses during a vector operation, the vector hardware
bypasses the cache altogether, and instead reads data directly from main memory in a
pipelined fashion. This explainswhy paneling the supemodes is entirely ineffective in the
sup-sup and the two multifrontal algorithms. It is worth noting, however, that reduced
integer overhead and reduced indirect indexing in the sap-sup and multifrontal algo-
rithms enable them to run faster than the mxp-co: algorithm. For instance, the sup-sup
algorithm runs 5%-10% faster than the sap-col algorithm (excluding the two small-
est problems from consideration). Evidently, our implementation of the dense matrix
update kernels performs well on the Stardent P3000’s vector hardware. For example,
sup-sup is about 3.8-4.5 times faster than col-col (again, excluding the two smallest
problems from consideration).

5.5. Cray Y-MR Unlike the workstations considered in previous subsections, the
Cray Y-MP has no cache memory. Its floating-point hardware is extremely fast due to
vector pipelining. We have run the codes on a Cray Y-MP, and the results are provided in
Table 8. As observed in [7] and [26], aup-co:t generally outperforms co:t-col by roughly
a factor of 2. The use of loop unrolling, dense matrix-vector multiplication kernels, and
the consequent large reductions in indirect addressing are responsible for these gains
in performance. For medium to large problems, sup-sup outperforms aup-co:t by 6%-
21%. (The performance gains are larger for the smaller problems.) The improvement
is due to reductions in the cost of the indirect indexing and other integer processing
overhead. The differences in performance among sup-sup, basic mr, and enhanced mf
are very small.
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TABLE 8
Factorization times in seconds on CRAYY-ME

problem
BCSSTK13 0.84
BCSSTK14 0.22
BCSSTK15 2.22
BCSSTK16 2.18
BCSSTK17 2.46
BCSSTK18 2.05
BCSSTK23 1.56
BCSSTK24 0.62
BCSSTK25 4.20
BCSSTK29 5.45
BCSSTK30 12.73
BCSSTK31 28.96
BCSSTK32 15.98
BCSSTK33 13.68
NASA1824 0.14
NASA2910 0.43
NASA4704 0.65

0.42
0.15
1.02
1.02
1.29
1.23
0.75
0.32
2.42
2.79
5.52
12.16
7.38
5.61
0.11
0.27
0.40

basic m
0.36 0.38
0.11 0.12
0.90 0.96
0.89 0.92
1.07 1.11
1.14 1.15
0.67 0.72
0.26 0.27
2.13 2.13
2.38 2.47
4.96 5.12

11.48 11.58
6.47 6.63
5.29 5.47
0.09 0.08
0.21 0.21
0.33 0.32

enhanced nff

0.38
0.12
0.95
0.89
1.09
1.22
0.72
0.26
2.20
2.48
4.99

11.43
6.49
5.30
0.09
0.21
0.33

5.6. Working storage requirements. The preceding subsections compare the time
efficiency of the sparse Cholesky factorization algorithms under study on various high-
performance uniprocessor computers. This subsection compares the storage efficiency
of the various Cholesky factorization algorithms. More specifically, we computed the
amount of auxiliary floating-point storage locations required by each method for accu-
mulating column updates. Note that this ignores the floating-point storage required for
the nonzero entries of L, which is the same for each method. It also ignores the amount
of integer working storage required, since it is the sum of a small number of quantities
_< n, where n is the order of A, and, hence, does not vary much from one method to the
next.

The co1-col and nup-col algorithms have the lowest auxiliary working storage re-
quirement because the columns are computed one at a time. For col-col, a floating-
point work array of length n is needed to accumulate the updates. For the nup-col
algorithm, the size of the floating-point work array is the maximum, over all columns
L.,, of the number of nonzero entries in L.,. (Recall that an extra integer n-vector
indmap is required to implement the indirect indexing scheme.)

The sup-sup and mf algorithms require more floating-point working storage. The
two versions ofthe multifrontal method need auxiliary floating-point storage for stacking
the update matrices. The sup-sup algorithm needs auxiliary floating-point storage to
accumulate individual block updates cmod(J, K). Thus, we are particularly interested
in the storage requirements for sup-sup and mr.

Table 9 reports the floating-point working storage requirements for each method,
normalized as apercentage of the number of nonzeros in L. As expected, the sup-col
and co1-col methods do indeed require the smallest amount of floating-point working
storage. Without the enhancements to reduce the stack usage, the basic multifrontal
method requires by far the most working storage. For two problems, the size of the
stack is roughly 60% of the "size" of L. The enhanced multifrontal algorithm required
far less floating-point working storage than the basic multifrontal algorithm requires, but
still considerably more than the sup-sup algorithm requires.

6. Concluding remarks. We have studied three different left-looking sparse Chole-
sky factorization algorithms: the co:t-co:t, sup-co:t, and sup-sup algorithms. The use
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TABLE 9
Floating-point working storage (percent of ILl).

co-co
BCSSTK13 .74
BCSSTK14 1.61
BCSSTK15 .61
BCSSTK16 .66
BCSSTK17 1.09
BCSSTK18 1.80
BCSSTK23 .75
BCSSTK24 1.28
BCSSTK25 1.09
BCSSTK29 .83
BCSSTK30 .75
BCSSTK31 .67
BCSSTK32 .85
BCSSTK33 .34
NASA1824 2.47
NASA2910 1.42
NASA4704 1.67

sup-col

.14

.16

.07

.04

.03

.06

.12

.09

.03

.03

.02

.02

.01

.04

.22

.10

.10

8.63
4.08
5.91
2.63
1.90
5.06
12.18
4.80
2.34
3.05
1.69
3.27
1.10
5.15
4.51
3.96
6.81

basic
mf

58.70
27.49
30.44
17.12
12.43
25.37
60.07
23.45
11.81
17.01
11.22
24.21
,8.50
40.31
39.66
25.93
29.16

enhanced

15.80
6.79
7.79
3.90
2.70
7.46

17.31
5.46
3.27
7.16
2.46
5.49
2.02
9.06
8.59
5.99
8.72

of supemode-to-column updates in the sup-col algorithm (instead of the column-to-
column updates in the col-col algorithm) reduces the amount of memory traffic and
indirect addressing overhead. Our tests have shown the effectiveness of this well known
technique on a wide range of high-performance uniprocessor computers. The use of
supernode-to-supemode updates in the sup-sup algorithm further reduces the amount
of memory traffic on machines with high-speed local memory, such as a cache. For our
test problems, the sup-sup algorithm obtains virtually the same performance improve-
ments via reuse of cached data that the multifrontal method obtains. Similar test results
have appeared in Rothberg and Gupta [28]. On machines without a cache, the sup-sup
algorithm obtains modest improvements over the sup-col algorithm by further reducing
the integer overhead and indirect indexing costs.

Although the performance of the various left-looking factorization algorithms is ma-
chine dependent, it is interesting to note that for three high-performance workstations
(the IBM RS/6000, the DEC 5000, and the Stardent P3000 without vectorization), the
sup-sup algorithm with subdivided supernodes is the most efficient algorithm and often
runs 2.5 times faster than the col-co algorithm. On the Stardent P3000 with vectoriza-
tion, the sup-sup algorithm is roughly 4-4.5 times faster than the col-col algorithm.

For the test problems and workstations considered in this paper, the enhanced mul-
tifrontal algorithm is slightly slower than the sup-sup algorithm (by roughly 5%-10%).
The results also indicate that the enhancementswe have made to the multifrontal method
greatly reduce the amount of auxiliary storage required for the stack and the amount of
data movement required to stack the update matrices. Theworking storage requirement
in sup-sup, however, remains smaller than that inthe enhanced multifrontal method.

One of the goals in this study is to identify the "best" sequential sparse Cholesky
factorization algorithm. This algorithm will be used to evaluate the performance ofvar-
ious parallel sparse Cholesky factorization methods. Based on our results, we conclude
that the left-looking sup-sup algorithm is the most efficient algorithm, both in terms
of its execution time and working storage requirement. Parallel versions of left-looking
col-col and sup-col algorithms have appeared in [17] and [26], respectively. Parallel
implementation of the left-looking sup-sup algorithm is currently under investigation,
and performance results will be reported elsewhere.
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It should be noted that the basic multifrontal method has at least two advantages
over the left-looking methods. First, the multifrontal algorithm has long been recog-
nized as the better candidate for out-of-core implementation: Only the stack of update
matrices and the current frontal matrix are needed in main memory. Second, its supe-
rior data locality is of great value when solving very large problems on machines with
virtual memory and paging [23]. The impact ofpaging on performance is not considered
in this paper because our main concern is the working storage requirement and the use
ofblocking to exploit the first level in the memory hierarchy (i.e., fastmemory or cache).
The paging issue, however, will be investigated elsewhere.
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A MONOTONE PETROV--GALERKIN METHOD FOR
QUASILINEAR PARABOLIC DIFFERENTIAL EQUATIONS*

OISTEIN BOE?
Abstract. To stabilize convection-dominated flows, artificial diffusion is often introduced by upstream

weighting. A fundamental question is therefore: What amount of artificial diffusion should be introduced to
avoid numerical oscillations? Obviously, that amount needs to be minimized, since artificial diffusion causes
smearing of sharp fronts and less spatial accuracy. This paper analyzes the Petrov-Galerkin method with
linear basis functions and quadratic, asymmetric test functions. The author uses the ideas of monotonicity to
control the artificial dision introduced so that the numerical shemes are a priori monotone, i.e., numerical
oscillations will not form if the discrete equations are solved exactly.

Key words. Petrov-Galerkin method, monotonicity, monotonic matrices, M-matrices
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1. Introduction. In this paper we study numerical solutions of the parabolic equa-
tion

(1.1) -- + O, x x t n (0,1) x (0,

(1.2)
cOS

f(S) A(S) + H(S) + D(S)-x.
The convective flux consists oftwo parts, A(S) and H(S). A(S) is a strictly increasing

S-shaped function with A(0) 0. H(S) is a bell-shaped positive function of S with
H(0) 0 and H(1) 0. The diffusive coefficient D(S) is a negative function of S with
possible zeros for S 0 and S 1.

We shall first state a monotonicity property for (1.1). Let I’ ([0, 1] x 0) t.J (0 x
[0, )) t3 (1 x [0, oo)) be the boundary of ft. Then let S and S* be two solutions of (1.1)
in f t.J F. Then the following continuous monotonicity property holds [22], [10]:

If S-S*>O on I’ then S-S*>O in

Equation (1.1), together with appropriate initial and boundary conditions, may
model immiscible two-phase incompressible porous medium flow (such as oil and water)
in a one-dimensional reservoir or core. S is then the water saturation. A(S) represents
the part of convection proportional to the total Darcy velocity u, while H(S) represents
the part proportional to the gravitational acceleration. D(S)OS/Ox represents diffusion
caused by capillary pressure (difference in phase pressures) [20]. In industrial mathemat-
ics it is important to have structurally stable numerical methods at hand. The computer
programs are used over and over for different sets of parameters. In this nonlinear ap-
plication, numerical oscillations may.force us to evaluate the flux function f for unphys-
ical values of S. This may create unstable behavior, especially near the boundaries [4].
Consequently, monotonicity is an important property. In this paper, we will construct
a Petrov-Galerkin method that has proved to give nonoscillatory numerical solutions.
The method is capable of handling both Neumann and Dirichlet boundary conditions
and variable mesh spacing.

Received by the editors September 18, 1991; accepted for publication (in revised form) September 9,
1992.

?Norsk Hydro A/S, Research Centre, N-5020 Bergen, Norway.
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Time t is discretized into time levels tn tn-1 + sn, n 1, 2,... with to 0.
Without loss of generality for the analysis to come, we set s,, s for all n. The space
interval z E [0,1] is partitioned into N intervals defined by N + 1 points, zi zi-1 +
h_x, i 1, 2,..., N with x0 0 and XN 1. Suppose some numerical scheme results
in a discrete solution vector S at time level n. The components of S are {S}, i
0, 1,..., N, where each S represents the solution at the point given by the coordinate
xi. Moreover, let S F(S-1) denote a two-level in-time explicit scheme, and let
G(S’) S-x denote a two-level in-time implicit scheme. F and G are vector functions
having the same dimension as the vector S. Itwill be crucial for monotonicity properties
of a numerical scheme that the discretization of the second-order term is based on the
use of the following potential [1]:

(1.3) (S) D(s*)es*,

where Sr is some reference value. (S) will be referred to as the PSI potential.
We have O/Ox D(S)OS/Ox by the chain rule. (S) is a decreasing function of

S and might be tabulated by using the numerical integration of (1.3). Typical shapes of
the nonlinear functions A, H, D, and are shown in Fig. 1.
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FIG. 1. Nonlinear coefficients.

Methods for avoiding or reducing numerical oscillations have been the theme of
many papers. Much of this research has been concerned with hyperbolic conservation
laws. Harten [12] introduced the concept of the TVD (total variation diminishing) prop-
erty as a discrete version of the nonincreasing variation property of the solution of the
continuous problem. The TVD property forces a condition on the coefficients of the
numerical scheme. These "coefficients" are generally functions of both the discrete so-
lution and its derivative. Many authors have used flux limiters as a tool for derivingTVD
schemes. Such schemes represent a modification of a first-order scheme in the sense
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that they add a limited amount of antidiffusive flux in order to satisfy the TVD property.
Sweby [25] compared various limiters both analytically and numerically. For hyperbolic
conservation laws with variable mesh spacing, Sanders [24] showed convergence in L
for both implicit and explicit monotone difference schemes.

In this paper, we will formulate a discrete version of the continuous monotonicity
property by using the concepts of M-matrices and monotone matrices. These concepts
will be useful for analyzing the monotonicity properties of a numerical scheme. This
analysis is based on examining the Jacobian matrix for the discrete system of difference
equations. Consequently, a discrete equation centered at a certain node will be repre-
sented by a row in the Jacobian. The first and last rows will correspond.to the discrete
equation at the boundaries. Therefore the effect of boundary conditions is taken into
account. The Petrov-Galerkinmethod will be constructed using these concepts.

The Petrov-Galerkin method is used for damping the numerical oscillations in the
Galerkin method by adding numerical diffusion. Numerical oscillations may still form,
although they appear to be more damped than for the Galerkin method. Petrov-Galerkin
methods for diffusion-convection problems have been studied by several authors. It is
well known that the use of linear basis functions and quadratic test. functions will add
numerical diffusion to the Galerkin method [19]. Barrett and Morton [2] introduced
so-ca!led optimal test functions in order to achieve an approximate symmetrization of
the bilinear form arising from the variational formulation. Let H be the Sobolev space
where the functions and their first-order partial derivatives are square integrable. Let
B,(., .) be a symmetric coercive bilinear form on Hx x H. From the Riesz representa-
tion theorem there exists a representerR H x H such that B(v, w) B,,,(v, Rw)
for all v, w H. The idea is to construct a test space Th from the space of basis func-
tions Nh such that span(RTi) span(N/) for each function i. This symmetrization
(or approximate symmetrization in practice) will ensure that the optimal approximation
property of the Galerkin method also holds (or "nearly" holds) for the Petrov-Galerkin
method. Barrett and Morton applied their theory to constant and variable coefficient
problems. The ideas of Barrett and Morton were adopted by Demkowicz and Oden
[8] who presented a method for localizing the optimal test functions and obtained su-
perconvergence results. Dahle, Espedal, and Ewing [7] used this formalism to obtain a
Petrov-Galerkin method for (1.1)-(1.2) with Dirichlet boundary conditions.

The outline of this paper is as follows. In 2we define monotonicity for implicit and
explicit numerical schemes. Thenwe derive sufficient conditions for monotonicity by us-
ing the theory of M-matrices and monotone matrices. In 3 it is shown that monotonicity
is not guaranteed for finite-element methods unless the mass matrix is lumped. Section
4 is concerned with the construction of the a priori monotone Petrov-Galerkin method.
In 5 we present some numerical examples. Finally, we give some closing remarks in 6.

2. Monotonicity for implicit and explicit numerical schemes. We want to construct
numerical schemes that possess a monotonicity property. The following definitions of
monotonicity for numerical schemes approximating (I.i) seem natural in view of the
"continuous" monotonicity property; see [i].

DEFINITION 1. An explicit numerical schemeS F(S’-) is said to be monotone
with respect to time if Sh S > 0 implies F(Sh) F(S > O.

DEFINITION 2. An implicit numerical scheme G(S) S- is said to be monotone
with respect to time if G(Sh) G(S) > 0 implies Sh S > O.

In these two definitions the inequalities hold for all elements of the vectors. The
essence of the two definitions above is as follows. Assume that we want to advance the
solution from time level n- 1 to n and assume S- S-2 > 0. For the explicit schemes
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we have S S-x F(S-x) F(S-2). Therefore, if S-x S-2 > 0, we would
like to have F(S-t) F(S’-2) > 0 so that Sh Sh > 0. For the implicit schemes
we have S-x S-2 G(S’) --G(S’-). For the solution to be monotone in time,
G(S’) G(S’-) > 0 must imply S S-x > 0.

The above conditions for monotonicity in time could be analyzed by the concepts of
monotonic matrices and M-matrices. For these concepts we refer to [3], [6], and [21].
Let A be a regular quadratic matrix with elements {ai } of dimension N + 1, and let
be a column vector of dimension N + 1. If all the elements of A are nonnegative, we
say that A is nonnegative and write A > 0, and if all components of the vector V are
nonnegative, we write V > 0.

DEFINITION 3. The matrix A is monotone if V > 0 AV > 0. The implication is
equivalent to A > 0.

DEFINITION 4. A matrix A is of monotone type if the implication AV > 0 = > 0
holds. The implication is equivalent to A-1 > 0.

DEFINITION 5. A matrix A is an L-matrix if the splitting A B C, where B
diag (hi) is the diagonal matrix bi =aii, has the property B > 0 and C > 0.

DEFINITION 6. A matrix A is an M-matrix if and only if the following conditions
hold: (i) A is an L-matrix.

(ii) There exists a diagonal matrix D diag (di) > 0 such that DA is columnwise
strictly diagonally dominant (i aidi > 0) or AD is rowwise strictly diagonally domi-
nant (E aid > 0).

Let A be an M-matrix with the splitting A B C given in Definition 5. A-X may
be written

(2.1) A-1 B-l(I CB-1)-1.

For the spectral radius p(CB-1) we have

p(CB-1) p(D(CB-1)D-1) p(DC(DB)-1)
(2.2)

cijd.<_ IIDC(DB)-IIx m.ax bjd
< 1.

3

By use of the Neumann expansion [23] for the inverse of the matrix A, we get

(2.3) A-1 B-l(*- CB-1)-i B-i Z(CB-i)k >_ O.

Consequently, an M-matrix is of monotone type.
Now assume that the vector functions F and G have a GRteaux-derivative at each

point ofthe interval [8, 8*]. Assume also that the derivatives ofF and G are Riemann-
integrable. Then the mean-value theorem holds in integral form [23, p. 70]. Let J denote
the vector function F or G

J(S,*) J(S,) (S* S) [J’(S + t(S* S))l dt
(2.4)

E(S* S).

Let the Jacobian J’ be monotone (explicit case) or an M-matrix (implicit case). In both
cases the integrated matrix E will have the same properties.
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Now assume that S*-S _> 0andF’(S) _> 0forallSu [S,S*],thenF(S*)-
F(S) > O. Moreover, given G(S*) G(S) > 0 and the condition G’(Su)-t _> 0 for

S* ** SC-all Sh e h, Sh ], then S _> 0. Consequently, the explicit schemes are monotone
in time if the Jacobian F’(8h) is monotone, and the implicit schemes are monotone if the
Jacobian G’(Sh) is an M-matrix (and hence of monotone type). We remark that these
conditions are sufficient but not necessary for the solution to be monotone. It is an open
question whether or not the conditions are too restrictive.

Using the above concepts it may be shown that one-point upstream weighting is
monotone, while central differencing is not monotone. This will be clear from the anal-
ysis in 4.

Aavatsmark [1] discussed implicit finite-difference approximations and their mono-
tonicity properties of (1.1). The implicit Lax-Friedrichs scheme 18] is monotone under
the restrictive CFL (Courant-Friedrichs-Lewy) condition s/h <_ 1/llflloo. The implicit
variant ofthe first-order Godunov method 11] is unconditionally monotone, but the flux
function A(S) is not continuously differentiable. This may cause problems if Newton it-
eration is used. The Engquist-Osher method [9] is unconditionally monotone, and the
flux function is differentiable. But the Engquist-Osher method introduces more artificial
diffusion compared to the first-order Godunov method.

3. Generalization to finite-element schemes. For finite-element techniques, the
mass matrix in front of the time derivatives generally contains nondiagonal contribu-
tions. Such schemes will be in the form

(3.1) TS’ F*(S-1) + TS’-,
(3.2) TS- G*(S) 4- TS’,

where T is the mass matrix.
To obtain such schemes in the standard form given in Definitions 1 and 2, multiply

(3.1) and (3.2) by T- (assuming that T is nonsingular). The schemes then become

(3.3) Sh T-1J*(S)+ S J(S).

Here J* F*, S S-1, and Sh S’ for the explicit schemes, and J* G*, S S,
and Sh S’- for the implicit schemes. The Jacobian J’ becomes

(3.4) J’ I + T-J*’.

The inversion of the matrix T complicates the monotonicity analysis. For the Petrov-
Galerkin method presented in 4, the matrix T is tridiagonal and nonsymmetric. The
inverse is generally a full matrix. We may avoid this problem by writing

(3.5) J’ I + T-J*’ T-(J*’ + T).

The inverse becomes

(3.6) j,-1 (T_I(j., + T))_I (j., + T)_IT.

According to (3.4), the explicit schemes are monotone in time if the matrix T-x J*’ is
monotone. This condition may be met by requiring T to be an M-matrix and the Jaco-
bian j*’ to be nonnegative. For the implicit schemes we consider (3.6): It is clear that
implicit schemes are monotone in time if the matrix T is monotone and if, in addition,
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the Jacobian d*’ + T is of monotone type. This condition is satisfied if T is nonnega-
tive and d*’ + T is an M-matrix. A nondiagonal, nonnegative matrix T imposes a lower
bound on the time step in order to ensure that d*’ + T is an M-matrix. This is because T
contains nonnegative elements of order O(h/s) outside the main diagonal. In fact, this
condition is also necessary in some cases; see 5 Example 1. This indicates that the mass
matrix T should be lumped (diagonalized) in order to guarantee monotonicity.

4. An a priori monotone time-discretized Petrov--Galerkin method. To simplify, we
transform element i (the interval z E [xi, xi+l]) to the unit element by

(4.1) i
z xi i O, 1,...,N- 1.

Xi+l xi

Let Hi((0, 1)) denote the Sobolev space on (0, 1) where the functions and their first-
order derivatives are square integrable (i.e., members of L2). Let (u, v) denote the inner
product in L2.

We now seek the discrete.solution Sn in the finite dimensional subspace Mx c H,
consisting of piecewise linears.

On each element i the saturation is interpolated linearly by

(4.2)
Sh, Si,lVi,l() + Si,2vi,2()

+

with basis

(4.3) vi,(() 1 (,

(4.4) vi,2() ,
where Si, Si and Si,2 Si+l are the unknowns at xi and xi+x, respectively.

For the test space we choose the asymmetric basis

(4.5) T/,1 () vi,1 () + 3ai(1 ),

(4.6) Ti,2() vi,2() 3ceil(1 (),

where ai is to be chosen to introduce artificial diffusion.
On each element, the interpolant Sh, is substituted for S and the saturation equation

is multiplied by the test functions (4.5)-(4.6) and integrated over the element

(4.7)

(os , )eid hi \ Ot Ti, A(Sh,) q
10# Sh, OT,: ’hi O( 0

+ fT , 10 =0, j 1,2,

i 0,1,...,N- 1.

The flux term is integrated by parts and the two-point trapezoidal rule is used. This
will diagonalize the mass matrix in front of the time derivatives and, as we commented
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in 3, is necessary to guarantee monotonicity. By the discretization Oq(Sh,)/O
q(Si,2) #(Si,), the quadratic terms of the test functions (4.5)-(4.6) will not affect
the diffusion term in (1.1). We neglect gravity effects and define n(S) 0. The Petrov-
Galerkin scheme is now constructed by forming the discrete system of equations. We
set E0 e0,1, Ei ei-l,9. + ei,, i 1, 2,..., N 1, and EN eN-,2. In the sum-
mations for constructing Ei, the flux f will cancel over the interior element boundaries
(conservation).

The following scheme results:

(4.8)

Eo ho s

1
+ x((1 3ao)A(S))+ (1 + 3czo)A(S’))

(sl’)- + 11 =o o,
ho

1
(hi- + h,)S’ .-1Ei -(4.9)
1

+ (-(1 3ozi_l)A(S_l)- (3cZ,_l + 3ozi)A(S)+ (1 + 3ozi)A(S+l))

v(sL ) + 0, i 1,2,...,N- 1,
h_x h

(4.10)

1 Sr Sv-1EN "hN 8

1
2 ((1 3CtN_)A(Sv_)+ (1 + 3CN-)A(Sv))

aN-1

The system given by (4.8)-(4.10) is written in the form S F(S-1) (explicit case,
v n 1) and S-1 G(S’) (implicit case, v n).

Let

(4.11)

ho

Xi hi-1 + hi

hN-1

if/= 0,

ifl < i < N-2,

ifi=N-1.

The column structures of the tridiagonal Jacobians F’ and G’ become

(4.12) OFo 1 (1 3ao)sA’(So____) + 2
s’(So)

OSo Xo hoxo
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(4.13)
OF_ sA’(S) 2 s#’(S)
OSi

--(I + 3ai-1)
Xi-1 hi-lXi-1

i 1,2,...,N,

(4.14)
OF,
OSi

I + (3ai_ + 3a)sA’(Si)

1
+ 2s

hi-lXi
+ i 1,...,N- 1,

(4.15) OFi+ (1 3ai)sA’(Si) 2
hiXi+l

i O, 1,...,N- 1,

(4.16) OFN 1 + (1 + 3aN-i)sA’(SN)
OSN XN-1

(4.17) OGo sA’(So)
OSo 1+(1-3ao)

hoxo

(4.18) OGi-1 (1 + 3cz_1)sA’(Si) +2
hi-lXi-1

i-- 1,2,...,N,

(4.19) OG
OSi

1 (3c,_1 + 3ci)sa’(si)

i 1,...,N- 1,

(4.20) OGi+l (1 3cei) sA’(Si) + 2
sq’(S)

i 0, 1,... N 1,
OSi Xi+l hiXi+l

(4.21) OGN
OSN

1 --(1 + 3ON-1)sA’(SN) 2
s’(SN)

X,N-1 hN-1XN-I
Equations (4.13) and (4.18) impose the following inequality for each parameter czi

in order to ensure that the Jacobian is nonnegative (explicit case) or is an M-matrix
(implicit case).

{ 2’(S+) I }(4.22) ci <_.rain
3hA’(Si+) 3’

0 i 0,..., N 1.

The inequalities for the parameters c may be interpreted as follows: Ideally, a set of
parameters with minimum absolute value should be selected. If all the parameters could
be chosen equal to zero, the discrete convection term in (4.9) would be (A(Si+I)
A(Si_))/2. Consequently, this choice corresponds to central differencing. For points
where the diffusion vanishes, a value of -1/2 must be selected. In this case, the discrete
term would be A(Si A(Si_ ), and one-point upstream weighting is in effect. By choos-
ing the ai’s as small as possible in absolute value according to (4.22), one would gener-
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ally do better than.simple one-point upstream weighting. Therefore, each parameter
should be chosen to satisfy

2’(qi+l)
(4.23) txi 3hiA’(Si+l)

0,

1
if 2’(Si+l)

3hiA’(Si+l)
otherwise,

The Jacobian G’ for the implicit scheme has positive diagonal elements and nega-
tive off-diagonal elements provided the ci’s are chosen as in (4.23). By scaling with the
diagonal matrix D diag(xi), the matrix DG’ becomes columnwise diagonally domi-
nant. The Jacobian is therefore an M-matrix for arbitrary time step s and mesh sizes
h and we have unconditional monotonicity. If the diffusion vanishes one must do up-
stream weighting in order to ensure that the Jacobian is an M-matrix. When the fraction
between diffusion and convection increases in absolute value, the scheme tends towards
central differences (Galerkin). Note that given ’(Si) and A’(Si) locally, (4.23) can be
used to determine the maximum mesh size hi for central differencing to be monotone.

We now discuss the explicit case. For this case, we get a restriction on the time step
s. The Jacobian F’ is nonnegative if OFi/OSi > O, i O, 1,..., N. From the expressions
(4.12), (4.14), and (4.16) it follows that

s < min
12’(S0)l + h01(1- 3x0)A’(S0)l’

(4.24) IX,’()I + Ihi-xhi(3czi-1 + 3czi)A’(Si)l

}12’(SN)I- hN-l(l+ 3N-x)A’(SN)I

provided I2’(SN)I hN_l](1 + 3aN_)A’(SN)] > 0. If this last expression is less than
or equal to zero, the third bound in (4.24) disappears.

For linear parabolic problems on a uniform mesh the stability limit is h2/2#’. The
monotonicity limit given by (4.24) indicates the same limit. For linear hyperbolic prob-
lems the stability limit, or CFL condition, is h/A’. If all parameters ci 0, the same
bound is forced by (4.24).

The restrictions on s and the czi’s given by (4.24) and (4.23) must hold for all solutions
between two consecutive time levels. This is easy to verify for linear problems since the
elements of the Jacobian are independent of the solution. For nonlinear problems, the
two conditions must hold for all Si _> i, i 0, 1,..., N, where ,i, i 0, 1,..., N, is
the solution at the previous time level (according to (2.4)).

The scheme developed so far is for Neumann-type boundary conditions where the
flux is given at the boundaries. Dirichlet boundary conditions of the type d(S) e(t)
are handled by writing either one or both of (4.8) and (4.10) in the form

(4.25) sgn(d’(Si))d(Si) sgn(d(Si))e(t), i 0 and/or i N,

where sgn(x) is the sign of x. This gives positive contributions to the main diagonal of
the Jacobian matrix. Diagonal dominance is ensured by the scaling of (4.25).

Wewill refer to the lumped Petrov-Galerkin scheme (4.8)-(4.10) as the LPG scheme.
If the "upstream weighting" parameters c are chosen in the "optimal sense" given by
(4.23), we will refer to that scheme as the OLPG scheme.
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To guarantee monotonicity when H(S) 0, one should use the Engquist-Osher
flux [11.

The discretization of the second derivative in the traditional form (1.1) may cause
nonmonotone schemes. This is because D(S) may have local minima. Consider, for in-
stance, the following discretization of the diffusion inner product in (4.7). The following
diffusion term would then have appeared in (4.9) for a uniform mesh.

I[folD(s_I)fOsih-IOT-I 01Oi--10i-l di-1 D(S),-d,
1

(S S_ D(S-) 02; d_ + (S+ S)-g

D(S h

(4.27)

(4.28)
1

Siq-1/2 (i "4- i4-1)"

Use of this discretization will make the elements of the Jacobian matrix dependent upon
the local sign of D’(S). This may destroy the monotonicity structure of the Jacobian
matrices. This may be seen by considering the analogs of (4.14) and (4.19).

Using the PSI potential, the diffusive term in (4.9) is

(4.29)
1
[(V(S,+) 2V(S,)+ V(S,_))].

This discretization leads to a monotone scheme. We remark that (4.26) turns into the
form of (4.29) for linear problems, for which D const. To conclude, the discretization
using the PSI potential constitutes a method for constructing monotone schemes for
nonlinear parabolic operators.

5. Examples.

Example 1. The need for lumping. Consider the linear hyperbolic problem

(5.1)
cOS Of+ o

(5.2) f S,

(5.3) S(t)l=0 1.0,

(5.4) S(z)lt=0 0.2,

on a uniform mesh with all ai -4/11.
Integrating the first innerproduct in (4.7) analytically gives the following analog

scheme of (4.8)-(4.10):

(5.5) S0-- 1.0,
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TABLE 1

Numerical solutions, example I

NODE

’0
1

1.0.10-z
2.0.10-3

LPG PG

.251

2 .202

3 .200

4 .200

5 .200

6 .200

s 1.0.10-2

2.0.10-2

LPG

1.00 1.00

.193 .547

.198 .323

.200 .240

.200 .212

.200 .204

.200 .201

PG

.570

.332

.242

.213

.201

(5.7) SN 0.20.

To ensure that the matrix (d*’ + T) is of monotone type, we must impose the condition

5 h 23
<0 s> 9h.(5.8) 6-g 22

With h 1/33, (5.8) yields s > 5/2277 . 2.2.10-. Table 1 shows simulation results
using the implicit lumped version (LPG) (4.8)-(4.10) and the implicit Petrov-Galerkin
(PG) scheme (5.5)-(5.7) using different time steps. The LPG scheme is monotone, while
the PG scheme tends to create some numerical oscillations when the lower bound for s
forced by (5.8) is violated. For this case, such oscillations are not present as the "front"
moves away from the boundary z 0. The oscillations seem to be a consequence of the
discontinuous initial condition forced by (5.3)-(5.4).

Example 2. Burgers equation. As an example of a nonlinear equation we consider
the well-known Burgers equation. Here A(S) ,.q2/2 and D(S) e const. Consider
the initial condition S 0 for t 0. For a vanishing e, the solution of the hyperbolic
equation is two constant states separated by a shock moving from x 0 to the right with
speed 1/2.

1 if x< -t
(5.9) S(x,t) 2

0 otherwise.
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The mesh spacing is constant, h 0.02, e 0.0015, and the OLPG scheme is chosen to
minimize the need for artificial diffusion in accordance with (4.23). In Fig. 2 this solution
is compared to the solutions from central differencing and from one-point upstream
weighting. The reference solution using central differences (Galerkin) with h=0.002 is
shown as a solid line. (For this mesh size the solution is monotone by (5.10).) The implicit
version of the schemes was used, and the time step was controlled automatically with an
overall maximum allowed solution change in each time step of 0.25. Since A(S) S
is strictly increasing for this case, the Jacobian is an M-matrix for all saturations Si E
[St-1 S] if the ai’s are chosen as

2e

(5.10)
0,

1 2E
if

3hii+z
otherwise,

i 0,1,...,N- 1,

where ,i+1 min[S+1 + 0.25,1.0]. We note that the central-difference (Galerkin)
scheme is not monotone, and one-point upstream weighting gives more smearing than
the OLPG scheme.

Fla. 2. Burgers equation. Solution at t 1.0 near x 0.5.

Example 3. The Buckley-Leverett equation with capillary diffusion. Here S repre-
sents the water saturation, and 0 < So < S < 1 Sot < 1. For this problem A(S) is
an S-shaped function with A(0) 0 and A(1) 1. D(S) is a bell-shaped function with
D(0) 0 and D(1) 1. As initial and boundary conditions, we take

(5.11) S(x)t=o Sw(x),

(5.12) f(S)=o 1,

(5.13) f(S)x=l 0 as long as a:=l < 1 Sot,
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or

(5.14) S= 1- So,..

Such flux functions, togetherwith the conditions (5.11)-(5.14), model immiscible incom-
pressible displacement of oil by water in a porous core. Water is injected at a constant
rate at the boundary z 0. One or both of the fluids are produced at the boundary
z 1. More details about this phenomenon may be found in [20]. When the lumped
Petrov-Galerkin method is used, a monotone solution is achieved both for Neumann
and Dirichlet conditions. Figure 3 shows simulation results. As the advancing water
front reaches the outlet z 1, a boundary layer is formed by the capillary pressure
effect; see [20].

0.9

0.8

0.7

0.6.

0.

0.4

0.3

0.2

Petrov-Galerkin 128 nodes

(7)

(6)

(1)

Timelevel
(1) 0.012 (prev}tn.422
(2) 0.074 (6) 0.429

example (3) 0.209 (7) 0.433
(4) 0.341, (8) 0.36

0.1 0.2 0.3 0.4 0.5 0.6 0.7

normalized plug length

(9) 1.000
(10) 27.4

O.8 O.9

FIG. 3. Simulation ofa laboratory displacement expoiment.

6. Closing remarks. For the linear diffusion-convection problem b 02S/Ox2+a OS/
0x 0 with Dirichlet boundary conditions, Hemker [13] used exponential fitting (to the
true solution) of the differential operator in order to resolve the boundary layer for small
b [13, p. 44]. Hemker used weighted finite differences and showed that the following
choice of the parameters a gave exact solution at the nodes

(6.1) ai
2b

2b ]"

This result was originally given by II’in [17].
We remark that as the ratio between convection and diffusion increases, coth(hia/2b)

approaches unity, and we are left with (4.23). Equation (4.23) may also be obtained by
the approximate symmetrization process ofBarrett and Morton [2]. Dahle, Espedal, and
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Ewing [7] obtained the choice of parameters given by (6.1). In their work, the constants
a A’ and b ’ were representative values on each element (averages).

To conclude, we point out that the choice ofparameters ai given by (4.23) adds more
artificial diffusion to the scheme than (6.1), but with (4.23) we ensure monotonicity for
nonlinear problems with variable mesh spacing and for both Dirichlet and Neumann
boundary conditions.

The test for monotonicity is not restricted to Petrov-Galerkin methods, but could be
applied to any two-level in-time difference scheme. It could also be extended to higher
dimensions. It is straightforward to show that the standard five-point scheme (two di-
mensions) and seven-point scheme (three dimensions) using upstream weighting result
in monotone preserving schemes. The parabolic equation (1.1) is used in modelling of
incompressible two-phase flow. In two and three dimensions, the equation is coupled to
an elliptic pressure-velocity equation. For a fully implicit scheme the analysis may not be
straightforward, since pressure appears as an additional variable. In higher dimensions,
cross-derivative terms may also complicate the analysis.

Suitable choices of test functions for Petrov-Galerkin methods represent a prob-
lem. Most work has been done in two dimensions and for bilinear rectangular elements.
Barrett and Morton discussed the exponential test .functions of Hemker [13], the dis-
continuous test functions of Hughes and Brooks [15], and the quadratic.test functions
of Heinrich et al. [14]: The exponential test functions appear difficult to extend. The
discontinuous test functions form the basis of a nonconforming method known as the
streamline diffusion method. This method avoids crosswind diffusion. The test func-
tions used by Heinrich et al. are products of the corresponding one-dimensional test
functions and represent a simple extension. For triangular elements, Huyakom [16] in-
dicated suitable test functions. Recently, there has been great interest in the Eulerian
Lagrangian localized adjoint method (EL) [5]. The test functions are constructed
(elementwise) from the local adjoint equation. Also, the weak form is considered in
space and time so that the test functions become time-dependent. The method gives
promising results, although some small numerical oscillations are reported. Its perfor-
mance for variable coefficient and nonlinear problems remains to be seen.

To use the ideas presented in this paper, the test functions must be chosen in such a
way that the Jacobian satisfies the required monotonicity properties. If this is feasible,
one could minimize the amount of artificial diffusion. But the generalization of the ideas
needs to be studied in more detail.
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Abstract. In this paper, the authors consider the solution of the discrete systems that arises when a mixed
finite element approach is used to approximate the solution of second-order elliptic boundaryvalue problems.
By the introduction ofa penalty parameter, these equations canbe approximatedby the solution ofa symmetric
and positive definite penalty system on the velocity subspace. Iterative procedures are developed and analyzed
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Finally, numerical experiments are presented that illustrate the convergence behavior suggested by the theory.
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1. Introduction. In this paper, we shall be concerned with solving the discrete sys-
tem ofequations that result from mixed approximation ofsecond-order elliptic boundary
value problems. Specifically, we consider mixed approximation based on the "so-called"
Raviart-Thornas [23] approximation spaces. Such approximations lead to the solution
of linear systems involving block matrices of the form

(1.1)
A B )M-"
B 0

Here A is symmetric and positive definite and B denotes the transpose of the matrix B.
The matrix M is clearly symmetric and indefinite.

There have been a number ofapproaches discussed in the literature for solving these
discrete systems (e.g., [6], [13], [15], [16], [21], and references in [24]). Instead of solving
this system directly, we consider solving the penalty approximation to it proposed in
[2]. This approximation involves the use of a small parameter e and results in a matrix
problem involving the block matrix

(1.2)

Obvious manipulations show that problems involving (1.2) can be reduced to the solution
of a matrix system involving the first block of unknowns and the matrix

(1.3) A - --1BtB.

This system, although symmetric and positive definite, can have a rather large condition
number depending on e. In this paper, we shall consider multilevel iterative techniques
for solving linear systems with matrix (1.3).
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Multilevel approaches have had a long and successful history applied to standard fi-
nite element and finite difference approximation of second-order boundary value prob-
lems (of., for example, [1], [3], [7], [9], [10], [12], [17], [18], [20], [25], and the references
in [22]). Two basic approaches have emerged. The standard multigrid approach involves
the combination of simple iterative methods on a sequence of successively coarser ap-
proximation subspaees of the given approximation space (cf. [7], [9], [18], [20], and the
references in [22]). In contrast, the hierarchical approach involves the decomposition of
the original approximation subspace into "hierarchical components" associated with the
successively coarser approximation subspaces. In the hierarchical approach, subspace it-
eration only involves the degrees offreedom associated with the hierarchical component
[3], [25]. We shall consider both the multigrid and hierarchical approaches for solving
(1.3) in this paper. In particular, we shall be interested in understanding how the param-
eter influences the rate of convergence for the respective methods.

In 3, we develop and analyze a hybrid hierarchical preconditioner for (1.3). This
development involves two distinct phases. In the first phase, the original matrix (1.3)
is preconditioned by the corresponding block diagonal matrix associated with the hier-
archical subspace decomposition. The second phase involves replacing the hierarchi-
cal blocks in the block diagonal matrix by easily solved preconditioners. In contrast to
the standard finite element and finite difference hierarchical matrices, the hierarchical
blocks associated with (1.3) are not well conditioned. To develop efficient precondition-
ers for the hierarchical block problems, we use avariation of static condensation (or local
domain decomposition). We then show that this "hybrid" hierarchical approach leads
to a preconditioned system for (1.3) with condition number that is independent of and
the mesh size of the fine grid approximation. It does, however, depend on the number
of coarser grid approximation levels.

In 4, we develop and analyze the multigrid method applied to (1.3). The multigrid
method is simple to apply since (1.3), in the case of Raviart-Thomas elements, fits into
the standard variational multigrid framework [4], [7], [20]. We provide what appears
to be a very crude analysis for the resulting procedure leading to estimates which de-
teriorate rather badly when or the fine grid mesh size become small. However, these
estimates are probably sharp since they are in agreement with the results of numerical
experiments reported in 5. We conclude that the natural multigrid approach is not very
effective when directly applied to (1.3). We emphasize, however, that alternative multi-
grid methods have been proposed for other formulations of problem (1.1) (see [5], [11],
[19], and references cited therein).

2. Penalty finite element method. In this section, we first define the continuous and
discrete mixed variational problems. Next, the penalty formulation of this mixed method
is given. Finally, we discuss the lowest-order Raviart-Thomas finite element space on
triangles and the resulting system of linear equations.

Let fl be a bounded open subset of R2 with boundary F. Consider the boundary
value problem

(2.1)
-. (kX7p) f in f,

p=O on F,

where f LZ(f) and k(z) k(z,z2) is bounded from above and below by some
positive constants.

We shall use the following space to define the mixed variational problem. Let

n(div; ft) {v s [L2(fI)]21V. v s
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H(div; fl) is a Hilbert space with norm given by

We set u kVp where p is the solution of (2.1). Note that the pair (u, p) satisfies

(2.3)
(k-tu, v) + (p, V. v) 0 V v e H(div; f),

(V u, q) (f, q) V qeL2(f),

where (., .) denotes the inner product in L2.(g) or [L2(2)].
To discretize the mixed formulation (2.3), we assume that we are given two finite

element subspaces

M c H(div; 2) and W c LZ(),
defined on a quasi-uniform mesh with elements of size O(h). The mixed approximation
of (u, p) is defined to be the pair, (uh, ph) M W, satisfying

(2.4)
(k-uh,v)+(ph,V.v)=O V veM,

(v. q) -(L q) v q e w.

We refer to [23] for the definition of a class of approximation subspaces M, W. In this
manuscript, we shall only consider the lowest-order Raviart-Thomas spaces defined on
a triangulation of f. These spaces will be described in detail later in this section.

Problem (2.4) can be restated in terms of operators. To this end, we define A M
M, B:M---,W and B*:W---.Mby

(2.5a) (Av, v’) _= (k-v, v’) V v’ e M,

(2.5b) (Bv, q) (V v, q) V q e W,

(2.5c) (B’q, v) (q, V. v) V v e M.

With this notation, (2.4) can be rewritten

(2.6)
B 0 ph _fh

where fh denotes the L2 (f) orthogonal projection off into W. System (2.6) is indefinite
and the number of degrees of freedom, N, is given by

N NM + gw dim(M) + dim(W).

The solution (uh, ph) can be approximated by solving a perturbed reduced system
using a penalty approximation. Let e > 0 be a small parameter and perturb (2.6) to
obtain

(2.7)
B
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Eliminatingp above gives rise to the following equation for u:
(2.8) h (A+- u=A u =- B*B) h _e-B,fh.
The operator Ae is obviously positive definite symmetric and involves NM degrees of
freedom. Once (2.8) has been solved for uh, p) can be computed by

(2.9) ph e-(Buh + fh).

The penalty method was analyzed in [2] for a class of mixed methods. In particular,
it follows from these results that for the finite element spaces in [23],

(2.10)
Itu- uhllH(div;) + lip- PhI1<) c (_in_fvIlu- VllH(di,,;f)

q- qEwinf liP- qllL2(f)-t-

where the constant C is independent ofboth h and .
In the remainder of this section, we describe the lowest-order Raviart-Thomas

spaces M and W and the resulting system of linear equations corresponding to (2.8),
(2.9). To define M, first consider a reference triangle in the (51, 2)-plane with
vertices (1, 0), (0, 1), and (0, 0). Let P1() denote the set of polynomials on of degree
1 or less. Define

v() { e P()l ( + x,c + )},
where a, b, c are real numbers. V() is a three-dimensional vector space whose elements
are vector-valued functions with constant normal components on each edge of.

Now suppose that T is a partitioning of f into triangles T such that

max diam(T) _< h.
TET

In the subsequent discussion, we shall always consider these triangles to be closed sets
including their boundary. We assume that the intersection of any two distinct triangles
either consists of a common side, a common vertex, or is empty. Any T T is the image
of under an aftine transformation

x Fr() Br + br,

with BT a two-by-two matrix. Define

V T =_ {v BT "Cr o F e V(2F)}.
We now define

M{veH(div;f) VlTeV(T) V TeT}.

Note that the normal components of v E M across the edges of triangles in T are con-
tinuous. The dimension NM is equal to the number of edges in the triangulation of [2.

Choose a unit normal direction E on each edge E. In the following, the normal com-
ponents across E of functions in M are taken with respect to E. A convenient basis
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for M consists of the set of functions E that are defined to have a normal component
equal to one on E and a normal component of zero on the remaining edges.

Finally, the space W consists ofpiecewise constants with respect to the triangulation
7". Clearly,

V.vW vM.

A simple basis for W consists of the set of functions {p} such that p 1 on the ith
triangle and vanishes on all other triangles in 7". Since the support ofp is contained in
only one triangle, it follows that the mass matrix with respect to this basis is diagonal.
Hence once (2.8) is solved for uh, we may compute ph from (2.9) by inverting a diagonal
matrix of degree Nw, where Nw is the number of triangles.

It is easy to see that the stiffness matrix corresponding to (2.8) is sparse, symmetric,
and positive definite. Moreover, it can be shown that the condition number ofthis system
is on the order of e-th-z. In the remaining sections, we discuss various methods for
solving this system.

3. ltierarehieal preconflitioner. In this section, we derive and analyze a hierarchical
preconditioner for the penalty equation (2.8). This preconditioner is defined in terms
of a hierarchical decomposition of the space Y. The first step is to analyze the block
hierarchical form as a preconditioner for (2.8). The stiffness matrix associated with A
restricted to the hierarchical subspace, which forms the hierarchical block, is still non-
trivial to invert. The final preconditioner involves replacing these hierarchical blocks by
preconditioners. The main results provide estimates for the condition number of the
resulting preconditioned operators for (1.3) (see Theorem 3.1 and Theorem 3.2).

We start with a coarse initial triangulation To ofthe domain f and construct a nested
family,

of triangulations of the domain fl by subdividing any triangle of T into four congruent
subtriangles to obtain Tj+. For each j 0, 1,..., J, corresponding to the triangulation
T, we consider the lowest-order Raviart-Thomas velocity space 3// defined in 2. Let

denote the set of edges of all triangles in T, and let j. It was noted in 2 that
any vector function v in A is uniquely determined by its normal component, aE, on
each E . For any vector function v

(3.1) v aEPE,

whcc qoE is the basis function in Aj associated with the
that fo any triangle T T, thcc exist constants c 0 and c2 0 independent of the
mesh size such that

Here and henceforth, we use c, with or without subscript, to denote generic positive
constants independent of e, J, and the mesh size. ITI (respectively, I 1) denotes the
area of T (respectively, the length of E). Because of the construction of the nested
family of triangulations, it is easy to check that the family of spaces {M} is nested, i.e.,

.Mo C Ydx C C .M .M.
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For any vector functions u, v e , define the bilinear form

(3.3)
1

A(u, v) (au, v) + (V. u, V. v),

where a k-x. We note that for the Raviart-Thomas elements,

(Au,v)=A(u,v) V u, veM.

Our final aim is to derive a preconditioner for the penalty form A onM x M. First,
we introduce the operators

Ij’MMj, j=0,1,...,J

as follows: For any vector function v M, we write

(3.4) v
e6E

where a and are the normal component of v and the basis function for M related
to the edge e E 8, respectively. Then Iyv E My is defined by

(3.5) Iyv E a’
whereE is the basis function for My associated with the edge E e y and as is defined
to be the mean value of the normal components of v on E, i.e.,

1
(3.6) c E c.

eCE

Here my 2J-y. Note that aE is just the mean value of the coefficients {a} corre-
sponding to edges e 6 g with e c E. For convenience, let I_ 0. Clearly, Ij I
where I is the identity operator on M. With the above definitions, the hierarchical sub-
space Q is defined to be the image of I I_x, i.e.,

jj {W W (Ij Ij-1)V, V e

Remark 3.1. ATy is the set of functions in My whose normal components have zero
mean value on the edges in

_
x.

For any vector function v in M, we have the hierarchical decomposition,

J

(3.7) v 2 Yj, Yj (Ij Ij-1)Y.
y=0

We will first consider preconditioning the original bilinear form A (u, v) by the block
hierarchical form

(3.8)
J

B(u, v) A(uy, vy).
y=0

The subsequent analysis shows that the condition number of the preconditioned system
is bounded by cJ2J, where c is a constant independent of e, J, and the mesh size.
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LEMMA 3.1. For any vectorfunction v E Jr4, we have

(3.9)
J

IL.(a)< (J+ 1) V.v

Proof. Fix j [0, 1,..., J] and let v E A. Let E E . It follows from the definition
of I that

Iv ads f v g ds.

Since the divergence ofIv on any triangle T T is constant, by using the Gauss diver-
gence theorem and the above equality, we have for x E T

1 fo Ijv. dsV.ICv(x)- IT[ 7-

ECT eCE

Hence, we have

fT l(fT )2V’/jV 12 dx< - IV’vl dx - fT IV" vl2 dx.

The lemma immediately follows by summing the above inequality.
LEMMA 3.2. For any vectorfunction v IrA, we have

(3.10)
J

 (aZ v, Z v) <
j=O

where c is a constant independent of J and the mesh size.

Proof. Fix j {0, 1,..., J}, v M, and write v as in (3.4). Ijv is thus defined by
(3.5). By (3.2), we have

TalIvl2dac
< c TI

ECT

By the definition ofa in (3.6) and the Cauchy-Schwarz inequality,

< c2J-J fT alvl2 dx.
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Hence,

(aljv, Ijv) _< c2J-:i (av, v).

The lemma follows by summing the above inequality from 0 to J.
From the definition of B (., .), it immediately follows that

Ae(v, v) <_ (J + 1)Be(v, v).

Moreover, Lemmas 3.1 and 3.2 imply that

Be (v, v) _< c2A (v, v).

We have proved the following theorem.
THEOREM 3.1. For any vectorfunction v E 3/1, we have

(3.11) c2-JBe (v, v) <_ A(v,v) _< (J + 1)B(v,v),

where c is a constant independent ofe, J, and the mesh size.
The above theorem shows that the form B can be used to effectively precondition

the form A on the subspace 3/1 as long as J is not too large. This, however, does not
lead to an effective algorithm in practice since the block hierarchical problems are not
easily solved. To define a computationally effective preconditioner, we replace these
block hierarchical problems by preconditioners.

Preconditioning the hierarchical proble_ms amounts to preconditioning the bilinear
form A* (., .) on the hierarchical subspaces ;/j (j 1, 2,..., J). We solve the problem
corresponding to A* (., .) or a preconditioner for it on A40 A//0.

For j > 0, the preconditioner for the bilinear form A (., .) on A//j is developed by
using a variation of domain decomposition (static condensation). We first define the
subspace AI ofA to be the functions that have zero normal components on the edges
in Ej_ 1. That is,

(3.12)

We next decompose vector functions in A74j as follows: For any v A74j, write

(3.13) v VH + Vp,

where Yp .A and satisfies

(3.14) A (vp, w) A (v, w) ’ w A.
Thus, VH satisfies the homogeneous equation

(3.15) A*(vH, w)= 0 V w E .ATa...
We clearly have that

(3.16) A*(v, w) A(VH, WH) + A*(vp, wp)

holds for any vector functions v, w AAj, where w WH + Wp is decomposed as in
(3.13).

For E _, define the basis function 0 374 as follows:
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0E has normal component plus and minus one on the respective two halves of E.
0 has zero normal component on the remaining edges in $.

The subspace ASI) is defined as the space spanned by these functions {0}. Clearly,

A74 ATta. gives a direct sum decomposition of A74. Let v, w in ASt be decomposed as
in (3.13) and write

(3.17) vn v + v, wn w +w,
~!where v,, w, 4. Let {cz} and {} denote the coefficients of v andw re-

spectively, with respect to the basis {0}. The preconditioner for the hierarchical block
is defined by replacing the A(VH, wn) term in (3.16) by

(3.18) K(vn, wn) (XE3E(aOF, OF.).

Thus, we define the preconditioning form B(., .) by

(3.19) B(v, w) K(VH, WH) + A(vp, wv).

We now prove the following lemma.
LEMMA 3.3. For any vectorfunction v E Adj, there exist constants C > 0 and c2 > 0

independent ofe, j, and the mesh size such that

(3.20) VclB(v,v) _< A(v v) < c2B:i (,v).

Proof. By mapping the triangles of the jth grid onto a reference triangle, it is easily
seen that

2(3.21) cK(vH, VH) <_ hj E cz < ctK(vH, VH).

Herec is the nodal coefficient in the decomposition ofv as discussed above and

h 2-. Consequently, the first inequality in (3.20) follows from (3.16), (3.18), (3.19),
and (3.2).

~0To prove the second inequality, we note that for any X E AA, we have

A*(VH, VH) < A(VH + X, vn + X).

Let T be any triangle in T_ and ti c T, i 1, 2, 3, 4, be the triangles in T (see Fig.
3.1). By choosing X0 in A74a. such that its normal component (pointing outward from ti)
on the edge ti N t4 E , i 1, 2, 3, is equal to

we have

(3.22) for, Xo t, ds /nt, X gt’ ds fot, VH gt, ds.

Here and below, the notation t is used to denote the outward pointing normal with re-
spect to the set t. Clearly, vn +X0 is divergence free on ti for i 1, 2, 3. The divergence
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of vn + Xo on t is equal to

3

[t4[-I/1 f0 VH.td8
.=

1t41-1 lOT VH T d8 O.

The last equality follows from Remark 3.1. Hence, we have

(3.23) Ae(VH, VH) _< (a(VH + Xo), vH + Xo)-

It is elementary to see, using (3.22), that the normal component of vn + X0 on any edge
in can be written as a linear combination of the normal components of vn on the
neighboring edges in Ej, which lie on the coarse grid edges in j_x. The corresponding
coefficients only depend on the angles in the coarsest grid triangulation. Thus, (3.2),
(3.21), and (3.23) imply that

A (vn, VH) _< cK(VH, Vn).

Now, the second inequality in (3.20) follows from (3.16) and (3.19). This completes the
proof of the lemma.

Fro. 3.1. A typical triangle 7j_ 1.

To avoid solving coarse grid problems, we introduce a uniformly spectrally equiva-
lent form/0(’, ") for A’(., .). This means we assume that there are positive constants
and C2 satisfying

CA"(v, v) <_ B(v, v) <_ 62A’(v, v) V v e Plo.

Let the quadratic form Be (., .) be defined by
J

(3.24)
j=0

for any vector functions v, w e A with v,w as in (3.7). Using Theorem 3.1 and
Lemma 3.3 we have the following theorem.
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TItEOREM 3.2. Forany vectorfunction v E A/f, there exist constants el > 0and e2 > 0
independent ofe, J, and the mesh size such that

(3.25) C12-JJe(, V) _< Ae(v, v) < c2J/e(v, v).

Remark 3.2. The coarse grid bilinear form/( may be defined, for example,
by replacing the mass matrix corresponding to the first term on the right side of (3.3) by a
suitable diagonal matrix D (el. [13]). Since the mesh is quasi-uniform, we can choose D
to be a weighted identity matrix. Other choices of D, such as the "lumped mass matrix"
will possibly yield a better preconditioner.

Fix j [1,..., d]. We now demonstrate how to solve the problem: Given a linear
functional F, find v A such that

(3.26) /(v, w)= F(w)

Ifw is in A74a., then WH 0 and hence vp can be obtained by solving

~o(3.27) A*(vp, w)= F(w) V w .M.
Note that the stiffness matrix corresponding to (3.27) consists of a Mock diagonal matrix
where the blocks are 3 x 3 matrices connecting the three unknowns corresponding to
normal components along the edges of the center triangle ofT inside a triangle of T_x.

With vp now known, we are left to compute vn. Note that

(3.28)
K(VH, WH) F(w) A(vp, wp)

F(w) A(vp, w)

~lfor anyw Adj. Since by (3.18), the left side of (3.28) gives a symmetric positive definite
quadratic form on AT x A74, (3.28) provides an equation for determining the normal
components of vn on the edges of the triangulation T_. The computation of these
edge values involves the inversion of a diagonal matrix. Letv denote any extension of
these edge values (e.g., the function that has vanishing normal components on the nodes
of the jth grid that are in the interior of triangles t_ T_I). Then, the difference

v vn v fta. can be computed from

(3.29)
A*(vz, w) A*(vn, w) A*(v, w)

~0--A(vB,.W) V w G

We summarize the process for solving the problem (3.26) in the following algorithm.

ALGORITHM 3.1.
(1) Find vp by solving (3.27).
(2) Compute the normal components of vn on the coarse grid edges in Ej-1 by

(3.28).
(3) Find the normal components of vn on the edges in j, which do not lie on the

edges in j_, by solving the problem (3.29).
(4) Compute v vp + vn.

Remark 3.3. The preceding results can be extended to grids that are not quasi-
uniform, such as locally refined grids. Stability for the Raviart-Thomas spaces in such
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applications was considered in [14]. As an example, suppose we have a family of nested
subdomains,

To define the triangulation on each fj, first assume we have a quasi-uniform coarse grid
triangulation To of f. Next, given that -x has been defined for je[1,..., J], we define

by subdividing each triangle of

_
contained in fl into four congruent subtriangles.

We assume that 0fl aligns with the mesh corresponding to _t. The ,space At is now
defined to be the Raviart-Thomas space defined as in 2 and 3 corresponding to the
triangles in ’T’j. Suppose the triangle T_t c fl-x intersects fl on an edge E_t of
T_t. Then there are two triangles, t in fl with edges e:e. on ft ft_x, 1, 2, such
that ej

x t.J e2 E_I. We define the nodal values for the "slave nodes" corresponding to
1Lj 2el and e2 to be the nodal value corresponding to E_. Hence v. n is constant on e e

for each veA/l. It is easily seen that this sequence of spaces is nested and Theorems 3.1
and 3.2 hold. The proofs are essentially the same as before.

4. A multigrid methed. In this section, we first define a natural class of multigrid
methods for solving the penalty equation (2.8) in the variational framework of2 and 3.
We then prove some crude estimates that, when combined with results in [7] and [8], give
rise to convergence bounds for the multigrid algorithms. These bounds only guarantee a
very slow rate ofconvergencewhich deteriorates drastically as e and hbecome small. The
rates are in agreement with those observed in the numerical experiments of 5. Thus,
the penalty system (2.8) provides an example where the natural multigrid formulation
leads to an extremely ineffective algorithm.

This discussion is included to illustrate an example of a problem on which the most
natural multigrid algorithm fails. Alternative multigrid algorithms not involving the
penalty reformulation have been analyzed and have been shown to be more effective
(see, e.g., [5], [11], and [19]).

Consider the nested family of spaces, {A4 }, of vector functions defined in 3. Let
A denote the positive definite symmetric operator on A’/ defined by

(4.1) (Av, w) A(v, w) v, w 3A,

where A is defined by (3.3); (., .) again denotes the inner product on LZ(f) x LZ(f) with
corresponding norm, I1" II. Let A denote the largest eigenvalue ofA. Define smoothing
operators {R} on A4 for j 1,..., J by

1
(4.2) Rju dl(u, qo)o V u e JPlj,

where d A(,) and is the basis clement fo Mj associated with the cdgc
E defined in 3. R is deafly symmetric and positive definite on M equipped with the
[L()] inne poduct. Furthermore, applying Theorem 3.1 [8] and Remark 3.2 of [8]
shows that R satisfies the inequalities

(4.3)

and

(RAju, Au) <_ (Au, u) V u e M,

(4.4) Ilull < oR(R  , u) v e
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Here Aj denotes the largest eigenvalue of Aj and the constant C’n does not depend on,, j or h. Estimates of the form (4.3) and (4.4) are standard hypotheses for smoothers
used in analyses of multigrid procedures.

We define a symmetric multigrid operator B
denote the L projection operator from AA onto

ALGORITHM 4.1.
Suppose n is a given positive integer for each j 1,..., 3. Set B0 AffX. For

j > 0, assume that B_x has been defined and define Bg for g E M as follows:
(i) Set u 0 and define u for 1,..., n by

(4.5) u u-x + R(g- au-).
n+ n(ii) Define u u + q, where q e A/I_ c A4 is defined by

(4.6) q nj_lPj_l(g- au’)
(iii) Set Big ua2.ha+I, where u is defined for n + 2,..., 2nj + 1 by (4.5).

Remark 4.1. Because of the operator p0_x appearing in (4.6), it appears that it is
necessary to solve a mass matrix problem associated with the subspace /1_ each time
q is calculated. In fact, it is possible to implement the above algorithm in a way which
avoids such mass matrix problems. A discussion of how this can be done is given in the
appendix of [9].

Algorithm 4.1 defines a symmetric operator acting on A/I. This is referred to as
n+la symmetric V-cycle. If step (iii) is omitted and we set Bg u we have a non-

symmetric V-cycle. For the standard V-cycle, n is the same for all j. If the coarse grid
correction in step (ii) is performed twice, we have a W-cycle algorithm.

Remark 4.2. Often, multigrid algorithms are developed as iterative processes in con-
trast to the operator approach taken above. The convergence rate of the multigrid pro-
cess is determined by the norm of the iterative reduction operator. In terms of the op-
erators defined above, the iterative reduction operator is equal to ! BjAj. It can be
shown in the case of (4.3) that I BjAj is a nonnegative operator in the A’( ., .) inner
product for symmetric cycling algorithms. Thus, convergence estimates for the multigrid
processes follow directly from estimates for the lowest eigenvalue of the operator BjAj.

There are a number of equivalent conditions used in the literature that form a basis
for the analysis of multigrid methods. For our purposes, we use a so-called "regularity
and approximation" estimate (el. [4] and [7]). To describe this condition, let P_x denote
the A’-projection from A4 into A/I_, i.e., P-xv w, where w is the unique function
in .j--1 satisfying

A’(w, 0)= A’(v, 0) V 0 ./j-1.

The regularity and approximation assumption involves inequalities of the form

(4.7) A’((I P_)u, u) < c(e,h)/-f 1 ]lau 2

Under (4.3), (4.4) and (4.7), it is possible to show (e.g., [7]) that the norm ofthe multigrid
reduction operator I BA is bounded by (1 + C/c(e,h))-1 where the constant
does not depend on and h. This is equivalent to saying that the condition number of
the system BjAj is bounded by 1 + c(e, h)/C.
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In the case of standard finite element and finite difference multigrid applications, it
is often possible to prove that the inequalities corresponding to (4.7) holdwith a constant
c(e, h) which can be bounded independently of h [1], [7]. Thus, in the standard applica-
tions, it is often possible to prove uniform rates ofconvergence for the multigrid process.
Equivalently, it is possible to show that the condition number of the system B:Aj re-
mains bounded independently of the mesh parameters. Moreover, in cases when (4.7)
does not hold uniformly due to deficient elliptic regularity, it is still possible to show that
the rate ofconvergence can deteriorate at worst like a power of the number of grid levels
[71, [12].

Returning to the application at hand, we note that I P_ is bounded with norm
one as an operator with respect to the norm (A’(., .))x/. Consequently,

A’((I- Pj-x)u, u) < A’(u, u) < cj-x IIAull V u e

Here cj denotes the smallest eigenvalue of Aj. Consequently, (4.7) holds with c(e, h)
)j/c. It is not difficult to see that cj is of unit size, while j grows proportional to
e-lh-2 with hj 2J-j h. The multigrid analysis then shows that the reduction rate for
the multigrid process (see Remark 4.2) is bounded by

1
1 + Ch2e

and that the condition number of BjAg iS bounded by

(4.8) 1 + (Ch2e)-1.

The numerical results presented in 5 suggest that this extremely pessimistic bound for
multigrid is qualitatively sharp. Thus, estimates with lesser asymptotic order of growth
are not likely to hold.

The above estimate is indeed pessimistic. Note that the condition number of the
original system is ,j/cj. Thus, application of the multigrid method does not appear to
change the asymptotic behavior of the number of iterations required for convergence.
However, there may be a possible improvement associated with application of the multi-
grid preconditioner since some initial convergence acceleration was observed in unre-
ported preconditioned conjugate gradient examples. It is quite likely that this improve-
ment may be attributed to the preconditioner tending to cluster the eigenvalues without
significantly improving the condition number.

5. Numerical results. We present the results of numerical experiments illustrating
the condition numbers of the preconditioned systems discussed earlier. The numerical
results for the hierarchical method show that this approach is relatively effective. In con-
trast, the numbers reported suggest that the multigrid iteration gives rise to a system with
an extremely large condition number. This is in agreement with the estimates provided
in 4.

We consider the model problem (2.1) with coefficient k(z) _= 1 where f is the unit
square (0, 1) x (0, 1). The problem is discretized by the mixed finite element method with
penalty. Specifically, the domain f is first partitioned into n x n square subdomains of
side length 1In. The n x n subsquares are then divided into pairs of triangles by con-
necting the bottom left and upper right corners. Subsequently, finer grids are developed
as in 3, i.e., by dividing each triangle into four triangles formed by the edges of the
original triangle and the lines connecting the centers of these edges. The approximation
spaces {A/} are defined to be the set of vector functions that are piecewise linear with
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respect to the triangulations with continuous normal components across the edges of the
triangles as described in 3.

We will illustrate the rate ofconvergence of the hierarchical and multigrid precondi-
tioned algorithms for solving the penalty equation (2.8), where A (., .) is defined in (3.3)
with a 1. In the case of the hierarchical preconditioner, we numerically compute the
largest and smallest generalized eigenvalues of the system

(5.1) AB(v, .) A(v, .).

Theorem 3.2 provides the bounds ,max
_

c2J and ,min )_ C12-J where ct and c2 are
the constants appearing in (3.25). The rate of convergence for preconditioned iterative
schemes for solving (2.8) with preconditioner B can be bounded in terms of the condi-
tion number K(A) ,max/,min. In the case of preconditioned conjugate gradient
iteration, the asymptotic reduction per step can be bounded by

rmin(5.2) P rma,x + /min"
We note that both the hierarchical and multigrid methods require solving or pre-

conditioning the coarse grid problem. In the reported runs, we always solved the coarse
grid problems exactly.

Table 5.1 gives the largest and smallest eigenvalues of (5.1) as a function of J, n
1/h and e. These results clearly demonstrate that the largest and smallest eigenvalues
can be bounded independently of the parameter e for a fixed number of levels. We also
note that the largest generalized eigenvalue increases somewhat less than linearly with
the number of levels. The smallest eigenvalues decrease with the number of levels but
not as fast as suggested by the theory. This may be because we are not yet into the
asymptotic range. Overall, the numerically computed eigenvalues are in agreement with
the theory of 3.

The corresponding condition numbers can be computed by taking the ratio of the
largest to smallest eigenvalue in Table 5.1. For all of the runs reported, the condition
numbers are in the interval [8, 56].

TABLE 5.1
Eigenvaluesfor the hierarchicalpreconditioner.

e-’-" 10 e-- 1 e=.l
J 1/h )Imax )min )tmax )imin ma.x )min
1 8 Z2 .28’ 2.3 .28 2.4 .28
1 16 2.3 .28 2.4 .28 2.4 .28
1 32 2.4 .28 2.4 .28 2.4 .28
1 64 2.4 .28 2.4 .28 2.4 .28
2 16 3.1 .16 3.2 .17 3.2 .i7
2 32 3.2 .17 3.2 .17 3.2 .17
2 64 3.2 .17 3.2 .17 3.2 .17
3 32 3.7 .11 3.8 .11 3.8 .ii
3 64 3.8 .11 3.8 .11 3.8 .11
4 64 4A .08 4.2 .08 4.2 .08

In the case ofmultigrid iteration, the rate ofconvergence is determined by the small-
est eigenvalue. If the multigrid process is directly applied, then the reduction is

p 1 )min.
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Alternatively, ifthe multigrid operator is used to accelerate the convergence ofconjugate
gradient, the average reduction per step is bounded by (5.2) where Amx 1.

We ran into some numerical difficulty computing the lowest eigenvalue for the multi-
grid process. This is because iterative eigenvalue estimation procedures can converge
rather slowly when applied to systems with large condition numbers and possible eigen-
value clustering. We ran the eigenvalue iteration for a thousand iterations on each prob-
lem. Although in some cases it was hard to be completely satisfied that the eigenvalue
iteration converged, the procedure always provided a valid upper bound for the lowest
eigenvalue. Thus, the actual eigenvalue is always smaller than that reported in Table 5.2
and the actual condition number is always worse than the reported estimate.

The numerical results given in Table 5.2 for the symmetric multigrid V-cycle show
that the method does not perform well on this application. We see that a decrease in
of a factor of ten leads to roughly a factor of ten increase in the condition number.

Similarly, a decrease in mesh size by a factor of two leads to roughly a factor of four
increase in the condition number. This is in qualitative agreement with the theoretical
estimate (4.8).

TABLE 5.2
The smallest eigenvalue and condition number]’or the multigridprocess.

1/h

8 1.3 10-3

16 4.0 10-4

32 1.1 10-4

e= 1 e=.l
,max K ,max K

7.7 x 102
2.5 103
9.1 x 103

1.7 x 10-4

4.5 x 10-5

1.2 x 10-5

6.0 x 103
2.2 x 104
8.8 x 104

e .01
,’max K

1.8 x 10-5 5.7 x i04
4.6 x 10-6 2.2 x 105
1.2 x 10-6 8.8 105

Remark 5.1. We also numerically tested the number of iterations required for a pre-
scribed error reduction using multigrid both as a solver by itself and as a preconditioner
for conjugate gradient. Multigrid used by itself failed to converge in a realistic number
of iterations. This is consistent with the condition number estimates in Table 5.2. How-
ever, when used as a preconditioner, the results were somewhat better. A reasonable
rate of reduction (although not as fast as that corresponding to the hierarchical method)
was observed in the earlier iterations. This is probably due to some clustering of the
eigenvalues.
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Abstract. Multivariate eigenvalue problems for symmetric and positive definite matrices arise from mul-
tivariate statistics theory where coefficients are to be determined so that the resulting linear combinations
of sets of random variables are maximally correlated. By using the method of Lagrange multipliers such an
optimization problem can be reduced to the multivariate eigenvalue problem. For over 30 years an iterative
method proposed by Horst [Psychometrika, 26 (1961), pp. 129-149] has been used for solving the multivariate
eigenvalue problem. Yet the theory of convergence has never been complete. The number of solutions to the
multivariate eigenvalue problem also remains unknown. This paper contains two new results. By using the
degree theory, a closed form on the cardinality of solutions for the multivariate eigenvalue problem is first
proved. A convergence property of Horst’s method by forming it as a generalization of the so-called power
method is then proved. The discussion leads to new formulations of numerical methods.
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set
1. Introduction. Given a symmetric and positive definite matrix A E R’x’ and a

(1) P := {n,..., nm}

of positive integers with Y]il ni n, let A be partitioned into blocks

(2) A

All A12 Aim
A21 A22 A2m

with Aii E RTM ’’. A multivariate eigenvalue problem (MEP) is to find real scalars
A,..., Am and a real column vector z e R’ such that equations

(3) Ax Ax,

(4) I,l[ 1, i 1,..., m

are satisfied, where A is the diagonal matrix

(5) A diag{,k11[’],..., Aml[’*’’] }

and where l[n,] is the identity matrix of size n and x E R’ is partitioned into blocks

(6) z [xT1, xTrn]T

with x Rn.
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We first note that a multivariate eigenvalue problem is fundamentally different from
the so-called multiparameter eigenvalue problem [19]. The latter problem is, given
Ai, Bi, e R"’ x,,, to solve the equations

(7) A B x 0, i 1,...,m,

for A [Ax,..., A,,,]T e R" and xi e RTM.
Equations (3) and (4) represent a nonlinear algebraic system in n + m unknowns.

Trivially, if m 1, then (3) is simply a classical symmetric eigenvalue problem. In this
case it is well understood that, counting multiplicity, there are exactly n eigenvalues and
that, counting negative signs, there are exactly 2n eigenvectors if all eigenvalues are dis-
tinct. When m > 1, however, the concept of characteristic polynomial is no longer
applicable. In fact, very little theory is known concerning the characteristic of a solution
to the MEP.

The first contribution of this paper is thatwe are able to determine the cardinality of
solutions to the MEPby using degree theory. We prove that a total of I-I= 2n solutions
exist for the MEP in the generic case. Our method is similar in spirit to that developed
in [3], with generalizations. The result apparently is new. As a by-product, homotopy
may also be used as a numerical method to find all solutions, if so desired, of the MEP.

The MEP has its origins in the determination of canonical correlation coefficients
for multivariate statistics [10], [12], [13]. Its history goes back to when Hotelling [10] first
studied the so-called maximal correlation problem, which later was developed into what
is known as canonical correlation analysis. The numerical method proposed then was
somewhat awkward and inefficient. Later, Horst [12] proposed an iterative approach
for solving the maximal correlation problem. In spite of a seemingly successful numer-
ical experiment, however, no rigorous proof has ever been developed to show that the
iterative procedure converges and that the limit point obtained gives maximal correla-
tion.

The second contribution of this paper is that we reformulate Horst’s iterative algo-
rithm as a generalization of the so-called power method [8]. We provide a proof that
shows the method does converge monotonically, but only to a local maximal correlation.
We give an example that shows that Horst’s iteration has a good chance ofnot converging
to the absolute maximal correlation.

The paper is organized as follows. The statistical background ofthe MEP is reviewed
in 2. Readers who are familiar with the background of the MEP or who are interested
only in linear algebra may pass over this section entirely. In 3 we use homotopy theory
to prove the cardinality of solutions to the MEP. To accomplish this we establish several
auxiliary lemmas that are of interest in their own right. In 4 we reformulate Horst’s
algorithm and prove the convergence properties. The key of our success lies in the fact
that there are only finitely many solutions to the MEP.

Many open questions remain to be studied. The power method can be thought of as
a Jacobi-like iterative scheme. Thus other iterative techniques used for linear algebraic
equations [9], such as the Gauss-Seidel method or the SOR method, can be modified
for solving the MEP. Multivariate shifting is another possible way to find other solutions
of the MEP. Some of these issues are briefly mentioned in 5. The details of these new
formulations will be discussed in a forthcoming paper [6].

2. Statistical background. In this sectionwe provide a somewhat detailed statistical
background ofthe MEP.The discussion should also make this papermore self-contained.
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However, readers may choose to skip this section entirely without worries of disconti-
nuity. For clarity, the following rule is used in establishing the notation. A calligraphic
letter, e.g., X, denotes a scalar random variable, an accented letter, e.g., X, denotes an
array of random variables, and an uppercase letter, e.g., X or f, denotes a matrix.

Given an n-dimensional random variable X := (At,..., A’,) with a certain distribu-
tion function, let [zO,..., zO], 1,..., k, denote a random sample of size k of this
variable. For convenience we use

(8) x .= [+++1

to denote the k x n sample matrix. Since the notion for a random variable can be carried
over in a parallel manner to a random sample and vice versa, in what follows we shall not
make a careful distinction between a random variable R’ and its corresponding random
sample [xi,..., Xki]T.

By shifting if necessary, we may assume without loss of generality that the sample
mean # :== for each of the random variable A’i is zero. It follows then that the
n n matrix

(9) A := xTx

represents the covariance matrix of the random sample X. Clearly, A is symmetric. We
further assume as a generic case that there is no degenerate component and no linear de-
pendence among the components X1,..., R’,. It is well known that A is positive definite
[22].

Corresponding to the same conformation as in (6), let the components of X be di-
vided into mutually disjoint groups

(10) ) (RI,...,).

Then each i is an hi-dimensional random variable. Let the matrix

(11)

be partitioned in the same way as (2). Then Aii represents the covariance matrix of the
k x ni sample block X, where the sample matrix X is partitioned as

(12) X [X,..., X,].

In pra_etice it is often desirable to simplify the analysis by combining all ni compo-
nents ofX linearly into a single new variable Z. For i 1,..., m let b E R’’ denote
the coefficients of linear combinations for variable X. Define the n x m matrix

(13) B :=

b 0 0

0 b2 0

Then the sample matrix X is transformed into the n x m matrix,

(14) Z := XB := [Z1,..., Zm].
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The covariance matrix corresponding to the new random sample Z is given by

(15) f := ZTZ BTAB.
Consider the case m 2 as an example. It is often desirable to use Z1 to predict

Z2. Thus it is imperative to find bl and b2 so that the correlation coefficient between the
two new random samples Z and Z2 is as large as possible. The covariance matrix of Z
is seen to be the 2 x 2 matrix

(16) fl=
bT A2b bT A22b2

The correlation coefficient p to be maximized is

blTAl2b2(17) P JbAtbv/buTA22b2"
If the variances of Z and Z2 arc normalized to unity, then to maximize p is equivalent
to

(18) maximize bTAb

(19) subject to bTiAibi 1 for i 1, 2,

where

(20) b := [bT, b]T.

Since each Aii is symmetric and positive definite, the Cholesky decomposition

(21) Aii TiTTi
exists. Introduce the block diagonal matrix

T := diag {T, T2},(22)

and define

(23)

(24)

x "= Tb "= [xTI,xT2]T

A := T-TAT-,
where T-T T-1T. Clearly, A is still symmetric and positive definite. The problem
(18) and (19) is now transformed into

(25) maximize zTAx

(26) subject to xTixi 1 for i 1, 2.

Using the method of Lagrange multipliers [17], we now form the Lagrangian function

2

(27) (x, 1, )2) := xTAx Z Xi(xTixi 1),
i=1
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with A1 and A2 as the Lagrange multipliers. Upon differentiating (27) it is dear that
the maximal correlation problem (18) and (19) for m 2 is reduced to the 2-variate
eigenvalue problem (3) and (4).

When m > 2 the requirement of maximizing the correlation coefficients among
the m random samples Z1,..., g, needs to be modified. Intuitively, the more similar
the vectors Zx,..., g, are to each other, the more closely the correlation coefficients
will approach unity. Thus it makes sense to require that the sum of the off-diagonal
elements of m x m matrix in (15) be maximized subject to the condition that the
diagonal elements of fl be unity. Apparently, the maximal correlation problem for the
m > 2 case can now be formulated in the same way as (18) and (19). We may repeat the
same procedure as for the case m 2 to argue that a solution to the maximal correlation
problem

(28) maximize xTAx

(29) subject to xxi 1 for i 1,...,m

is necessarily a solution to the multivariate eigenvalue problem.
Suppose that a set of solutions {bX),...,b } to the maximal correlation problem

has been determined. We may wish to find yet another set of solutions {bZ),...,b }
so that the resulting composites ZZ),...,Z are also maximally correlated. Since the
second measurement is conducted independently of the first, it is natural to require that
variables within the same class are uncorrelated, that is, each Zz) is correlated zero
with the corresponding Z). This procedure may be repeated until we have obtained
p := min{nx,..., rim} sets of solutions. The zero correlation is required between any
two variables in the class {Z),..., Z’) }. The reason that such a repeated measurement
is needed can be found from many practical applications [10], [12], [13]. We note that
variables from different classes are not subject to any correlation restrictions, although
ideally we would like these variables to be zero correlated as well.

The new problem mentioned above was originally studied by Hotelling [10], who
mainly focused on the case in which m 2, but the numerical method proposed was
very inefficient. Horst [12] then developed a direct approach (for m 2), which we
found to use techniques of what is now known as singular-value decomposition. It is
worthwhile to rewrite the direct method in terms of the current notion as follows.

We first generalize the notation B in (13) to be the n x 2p matrix

(30)

The random sample Z then becomes an n x 2p matrix

(31) Z := XB .= [Z),..., Z’), Z(X),..., Z’)].
Consider the 2p x 2p covariance matrix fl BtAB of Z. Recall that each A has a
Cholesky decomposition (21). Let

(32) T-TA2T QT DQ2
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be the singular-value decomposition [8] of the nl x n2 matrix T-TA2T-1. It follows
that

(33) fl
’1 1

0 lzTrI"Tt’T D i[n21 0 Q2T2B2-2 2 2

Ifwe choose the vectors in B1 and B2 to be

T;- Q I..

(35) B2 T2-1 TQ2 In2
where I means the first s t submatrix of the identity, then

a
N IM

where N is the diagonal matrix of singular values a >_ >_ ap >_ 0. In other words, if
(34) and (35) are satisfied, then ai is precisely the highest correlation coefficient between

Z) and Z2(0, and each of these two variables is uncorrelated to any other Z(t) for s
I or 2 and t # i.

For ra > 2 the coefficient matrix B is generalized to a block diagonal matrix

(37) B := diag {B1,...,B,},

where each B is an n x p matrix

and the random sample becomes

09) z := x. := 1)

Unfortunately, Horst’s direct method cannot be generalized to solve the general ra case.
The reason is simply that there is no way to transform all m x m blocks of size p x p in

(40) a [B3ZX,
into diagonal matrices simultaneously when ra > 2. To remedy this, it was at this point
that Horst introduced his iterative method [12], [13] without a proof.

3. Homotopy method and eardinality. In this section we use degree theory to prove
the cardinality of solutions to the MEP. The theory has been used as a major tool in
analysis to prove the existence of solutions for a wide variety of problems. For a com-
plete mathematical treatment of the theory, we refer the reader to [16]. Degree theory
can often be implemented as a numerical means, known as the homotopy method, of
computing a solution of a nonlinear system. Applications of homotopy methods can be
found, for example, in [11-[51, [71, [151, [181, [2o], [211.

Rewrite the multivariate eigenvalue problem as a nonlinear system:

(41) F(, A) =0,
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where F. Rn x R’* ---, Rn R’* is defined by

A-A

(42) F(x, A):=

In general, it is not an easy task to find a solution for (41). It seems perhaps even harder
to count the total number of solutions. On the other hand, consider a simple MEP:

(43)
Dx Ax,

I1 ,11 1, i= 1,... ,m,

where D is a diagonal matrix with distinct elements d1) , ,*,14(1),..., d") ,..., ,,a(’). It
is trivial to see the following lemma.

LEMMA 3.1. The problem (43) has exactly 1-Ii= 2hi solutions. These are, for i
1,... ,m,

(44).

where ji 1,..., ni and e[t] denotes the sth column ofthe identity matrix I[t].
Our basic idea is to construct a homotopy between (43) and (3) so that no homotopy

curve will escape to infinity or turn back. Toward this end we define a function H

Ax -[D + t(A- D)]x
xTl Xl --1

2
(45) H(x, A, t; D) :=

T

2

where D is a diagonal matrix whose elements will be specified later. The main concern
is to show that the Jacobian Dx,A,tH of H is of full rank if D is appropriately chosen.
In what follows we establish several auxiliary lemmas to help this investigation. The
lemmas, which themselves are of interest, concern the spectrum property when a simple
matrix M is perturbed by a diagonal matrix.

A matrix M is simple if and only if the algebraic multiplicities and geometric multi-
plicities of each of its eigenvalues coincide. Symmetric matrices are automatically sim-
ple. We begin with a fact that follows from a more general result in [11, Thm. 1.4.9].

LEMMA 3.2. Suppose that M is a simple matrix in Rnxn and that r > 1 is a positive
integer. Then A is an eigenvalue ofM ofmultiplicity r ifand only if A is an eigenvalue ofall
q x qprincipal submatrices ofM whenever q > n r + 1.

For convenience we denote the diagonally perturbed matrix by

(46) J4 J4(D)’= M + D,

R’ R" R R’ x R" as follows:
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with D diag {all,..., dn}. We claim the following.
LEMMA 3.3. Let g := {(d,..., dn) R"l .IV[ has multiple eigenvalues}. Then the

complement U ofE is open, is dense, and hasfull Lebesgue measure in Rn.
Proof. Let

(47) Er := {(all,..., d,) E R’I 3d has zero eigenvalue of multiplicity r}.

By Lemma 3.2 there exists an (n r) x (n r) principal submatrix of 3d such that
374 is nonsingular. Without loss of generality we may assume A74 is the leading principal
submatrix of .M, i.e., 32t is indexed by {1,..., n r}. All principal submatrices of 3d
with size > n r + 1 are singular. In particular, for i 1,..., r the principal submatrix
3di indexed by {1,..., n r, n r + i} is singular.

Define

(48) f(d,..., dn) det(fl/[i).

Then the value of (dl,..., d,,) that causes M to have rank n r must satisfy the system
of equations

(49) ’(dl,..., d,) 0,

where ’. R ---, Rr is defined by " := (fl,..., A).
Observe that

(50) 0f det(2Q) 0,
Odn-r+i

and hence

0"
det(A4)i[r](51) O(dn-,.+l, ,d,)

is nonsingular. By the implicit function theorem we thus know that {d,_+l,..., d,}
can be rewritten as functions of {d,..., d_}. Thus E is necessarily embedded in a
manifold of dimension n r.

Let e := [1,..., 1] R’. Obviously, (e) @E contains all values of (dx,..., d,) such
that M + D has an eigenvalue of multiplicity r. From the fact that

n

(52) E
r--2

we see that U is open, is dense, and has full Lebesgue measure in R’. rl

By using the resultant theorem a complex version of the above lemma has been
proved in [5, Thm. 2.3]. The new contribution here is that Lemma 3.3 is for real simple
matrices perturbed by real diagonal matrices.

We note that (49) is only a necessary condition for )M being rank deficient by r. Con-
ceivably, the set E could be much smaller than what the dimension n r suggests. This
is especially so when M is a symmetric matrix since we have the following observation.

Rewrite M as

(53)
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Let

(54) /= [ II-d 0 ].(A;[- 15)a’ IN
Then the rank condition of A4 is the same as that of

[ 0 ].(55)
o J

In particular, ifA4 is ofrank n-r, then the lower-right r r blockolafmust be identically
zero, which gives rise to r(r + 1)/2 equations in the dl,..:, d,.

The r diagonal elements of 75Tft-75 are readily solvable for d,_+x,...,
in terms of dx,..., d,_, as is predicted by the implicit function theorem in the proof of
Lemma 3.3. The off-diagonal elements impose r(r 1)/2 extra conditions that
d,..., d,_ must satisfy. For v 2 it is easy to see that this extra condition is not a
trivial equation for dx,..., d,_z. Therefore, Ez should be a manifold of dimension n- 3
(rather than n 2). It should be rather obvious (although tedious to prove) that E
is generally a manifold of codimension r(r + 1)/2 since there are a total of r(r + 1)/2
equations that dx,..., d, must satisfy. Obviously, E is empty if r is too large. Indeed,
by the Wilson-Ledermann bound [14], E is empty if

(56)
2n + 1 x/8n + 1]r>

2

We do not intend to provide here a proof for the exact dimension of each E. For the
purpose of this paper it suffices to see from the above argument that the following lemma
holds.

LEMMA 3.4. For anygeneric and symmetric matrix M, dim(Er) <_ n 3for r >_ 2 and
hence dim(E) _< n- 2.

We demonstrate the case n 4 and r 2 as an example. Suppose M is denoted as
M "= [m]. The extra equation to be satisfied by d and d2 is

mxam:.m14 -}-m14m3d2 12m14m2a-t-d1m24mza m:zmam24-+-m24m.amx
mx m.z+rex dz+dxm:z+dxd. -m21z

and E2 is made of points (d, d2, d3, d4), where

d2
dlm24m23 dl ’m,22m34 ’n’t22m34m11 -t-m13m22m14"+-m34m1:2 +m24m23m11 m12’ra14m23 m12m13m24

dl ’fl’34 --’f34’/711 D,14m13

d3
d1D’t23D,34 dl?’rt33r24-I"n11723tt34 rt13rt14fl’t23--r24Tt13 ?’rt12 fl’1334--m12m33fl’t14 11fl’t33?1%24

dl 2’24 -}-q?’24r’11 D’t14m12

d4
d1t24’t34 dlfl%23 D’t,44 --rrt11’fl’t24’rt34 -’frt14’rr,13 ’rrt24 -’rrt12,14rt34 D,11 r,23’rrt44--’r23 ?D,124--12 1344

dlm23 D’t13 ’D,12+m23ml

Obviously, E2 is a 1-dimensional manifold parameterized in dx.
We are now ready to establish one of the major results.
LEMMA 3.5. The set ofD such that the matrix A (D + t(A D)) is ofrank less than

n mfor some A and some t E (0,1)/s ofmeasure zero.
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Proof. For convenience we denote

(57) .4 A(A, t, D):= A- (D + t(A- D)).
Observe that each of the m diagonal blocks of ,4 takes the form

(58) A/, AI[’1 (1 t)diag(dO, d(0) tAil.
If the rank of .4 is less than n m, then one of the diagonal blocks of A must be rank
deficient by at least two. Equivalently, this implies that for some r (0, oo) the matrix

r diag (di) ,..., ,, + A has an eigenvalue with multiplicity at least two. By Lemma
3.4 the union over T

[.j , diag (d0, d(0),, + A,, has multiple eigenvalues}
e(0,oo)

is ofdimension at mostn- 1. Thus, overall, the set ofD such that A-(D+t(A-D)) is of
rank less than n m for some A and some t e (0, 1) is at most of geometric dimensional
n--1.

Henceforth we shall assume that D in (45) has been chosen so that A(A, , D) has
rank at least n m for all h and all t. We now prove the existence of the homotopy
curves.

LMMA3.6. Thepoint O R" R" is a regularalueforH. That&foreach (x, A, t)
R" x R" x R such that H(x, A, t) O, the Jacobian matrix D(,^,OH has rank n /

Proof. For convenience we divide the Jacobian matrix D(,,oH into blocks:

(59)
BT 0 0

where A is as given in (57),

(60) B :=

and

(61)
If H(x, A, t) 0, then

xx 0 0

0 x2 0

C := (D- A)x.

(62) Ax 0,

which indicates that z is an eigenvector of A with corresponding eigenvalue zero.
Suppose that for a certain I _< i _< m there exists R’ such that

0

(63) A=
0
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Then, by the symmetry of ,4, we know

(64) (A, z) (, Az) = 0.

On the other hand, we should have

(65)

This contradiction implies that none of the m columns of/3 can be in the range of A.
Since A is at least of rank n m by Lemma 3.5, it is now dear that the n x (n + m)

matrix [,4, B] is of rank n. It is also clear the rows of [BT, 0] are not in the row space of
[,4,/3]. Thus the assertion is proved.

By now the following theorem is a standard result from the differential topology.
THEOREM 3.7. The set F := {(x,A,t)IH(x,A,t 0} is a 1-dimensional smooth

submanifold in R’ x R’ x R.
Furthermore, since D(x,A,t)H is nonsingular, the implicit function theorem asserts

that each component of F can be characterized as a function of t. Also, if (x, A, t) e F,
then

(66)
m

’A IIAxll- I1((1 t)D + tA)zll <_ m(ll(1 t)DII + IItAII),
i=1

which implies that no homotopy curve can diverge to infinity for t e (0,1).
Putting all the above arguments together, we have proved that for i 1,..., m, the

solution to the initial-value problem

(67) d-
AB
BT 0

(68) x(0) +et.’]

(69) A,(O) di)
is a curve in Rn x Rm that extends from t 0 to t 1. From Lemma 3.1 we thus
conclude the following.

THEOREM 3.8. For a genedc and symmetric matrix A the MEP has exactly I-Ii 2hi
solutions.

We believe the result of Theorem 3.8 is new. Moreover, it should be pointed out
that the positive definiteness of the matrix A is not needed in the proof of Theorem 3.8.

4. Power method and convergence.
follows.

Horst’s algorithm may be reformulated as

ALGORITHM 4.1 (Horst’s algorithm).

Given x() (x)T,..., x)T)T with I1)11- 1, do
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fork= 1,2,...
yori l,...,m

m

(70) yk) := EA’xk)’
j=l

(72) z+x) :=
A).

end
end

Theoretically, it is possible that Ily}k)l[ 0 and hence that (72) is not well defined.
Such a breakdown, although rarely occurring in practice, can easily be remedied by re-

defining xi-(k+l) to be an arbitrary unit vector in Rn’, say, x) itself, and then continuing
the iteration.

To our knowledge, Horst’s iterative algorithm has never been rigorously proved to
converge, although some intuitive support as well as some numerical evidence are men-
tioned in [12], [13]. In this section we prove a convergence property of Algorithm 4.1 for
the MEE

We find that it is more convenient to write the above algorithm in the compact form

(73) Ax(k) A(k)x(k+l),

where

(74) x(k) .= [xk T,... x(mk TIT
and

(75) A() := diag {A{k)I[n],...,A)I[n=]}.
The iterative scheme may be viewed as a generalization of the classical power

method. The convergence property of this method, nonetheless, is not nearly obvious.
As an example, without the positive definiteness the method may fail to converge. This

b with m 2. There are exactly four lea-can be seen from the 2 x 2 matrix A
c

sible solutions (+1, +1). For any values of b and c satisfying Ibl < 1, c < 0, and Ibl <
-c, the matrix A is not positive definite. In this case the iterations alternate between
(1, 1) and (1, 1) or between (- 1, 1) and (- 1, 1). No convergence occurs. As another
example that will be illustrated later, a limit point of the method may depend on the
starting point. The maximal correlation problem may have multiple local solutions even
if the matrix A is positive definite.

To study the convergence property of Horst’s algorithm for the MEP, we denote the
objective function in (28) by

(76) r(x) := xTAx
for x E R’. We claim the following theorem.
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THEOREM 4.2. Suppose A is symmeaic andpositive definite. Then {r((k)) } with ()
generated by (73) is a monotonically increasing sequence and converges.

Proof. From (73) we know that

(77) r(x(k)) x(k+I)TA(k)x(k).
We also know that

(78) r(x(k+l)) x(k+I)TAx(k+I) d- x(k+I)TA(k)x(k+I) x(k+I)TAx(k).
Subtracting (77) from (78), we obtain

(79) r(x(+)) r(x(k)) x(k+I)TA(k)(X(k+I) X(k)) -{- X(k+)TA(x(k+I) X(k)).
On the other hand, observe that

X(k)TA(k)(X(k+1) X(k)) -{- X(k)TA(x(k+l) X(k))

(80) x(k)TAx(k) x(k)TA(k)x(k) d- x(k/l)Th(k)x(k+l) x(k)TAx(k)

=0

because x(k)TA(k)X(k) Y]i=X" Ak). Subtracting (80) from the right-hand side of (79),
we find that

(81) r(x(k+l)) r(x(k)) (x(k+l) x(k))T(A d- A(k))(x(k+l) x(k)).
Since A(k) is a diagonal matrix with positive elements, the matrix A +A(k) remains to bc
symmetric and positive. It follows that

(82) r(x(k+1)) > r(x(k)).
The convergence of the monotone sequence (r(x(k)) } is obvious since for all x wc

have

(83)

where

(84)

are the eigenvalues of A. [:l

It is instructive to motivate Theorem 4.2 from another viewpoint. Let S := {xlx
R Ix ll 1}. The feasible set (29) for the maximal correlation problem may be
regarded as the manifold 1-Ii=l si embedded in 1-Iim__l R’, with product topology. The
tangent space T( ,) 1-Iim=l S, therefore, is given by 1-Iil T, Si. It is easy to show
that the gradient Vr(x) projected onto T, S(i) is twice the vector

(85) g(x) := Ax x, Ajxj xi.
j=l j=l
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Observe then that

(86)
i-----1

while each term in (86) is nonnegative. That is, the vector x(k+) x(k) forms an acute
angle with the projected gradient g(x()) of r(x()) and thus probably (although not
necessarily) points to an ascent direction for r(x).

Define the residual

(87)
i(x()) := Ax(k) A(k)x(k)

A(k)(z(+) x()),

where the second equality follows from (73). If the equality in (82) holds for some k,
then from (81) it must be x(+) x(). We find from (87) that x() solves (3) exactly.
In general, we have the following theorem.

THEOREM 4.3. The residual {/i(x(k))} in Horst’s algorithm converges to zero as
k-----Oo

Proof. By the definition (71) all )) remain bounded as IIz( )ll2 _< m for all k. It
follows from (81) that there exists a constant > 0 such that

(88) r(x(k/)) r(x(k)) >_ llx(k/X) x(k)ll 2

for all k. The assertion follows from (87) and the fact that {r(x(k)) } converges.
At this point it is not obvious that the sequence {x(k) } itself converges, but it is

dear that the sequence {x() } does have have duster point(s) due to its boundedness.
From Theorem 4.3, it follows that every duster point x* satisfies (3) with eigenvalues

Defin6

(89) (") := rain )
l<_j<_m

and

90 ’= lim inf ).

Consider the case in which 0. Then there exists a subsequence {kj} of positive
integers such that

1
(91) () <-.

Any convergent subsequence of the subsequence {x(k } must be such that one of the
eigenvalues is zero. We do not think this will happen often for a generic A.
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The following lemma from real analysis is useful.
LEMMA 4.4. Let {ak } be a boundedsequence ofreal numbers with theproperty lak+

akl 0 as k . If there are only finitely many limit points for the sequence, then
{ak } converges to a unique limitpoint.

Proof. Suppose {a} and {aa } are two subsequences of {a} that converge, re-
spectively, to two distinct limit points, z and y. Let z denote any fixed real number be-
tween z and g. For a positive number r let B(r) denote the neighborhood [z r, z + r]
of z.

For any e > 0 that is less than 1/4 min{Iz zl, Ig zl}, there exists a large enough
integer K K(e) such that

for all k > K. Infinitely many elements of {a} must leave B,(e) to enter Bu(e) and vice
versa. Thus there exists an index 7 > K such that a. B(e). This shows that z is also
a limit point.

Since z is arbitrary, we have shown that any number between x and y is a limit point.
This contradicts the assumption that there are only finitely many limit points. ]

In the following we prove that Algorithm 4.1 generates a convergent sequence
{A(k), z()}. We believe this result is new.

First we prove the following theorems.
THEOREM 4.5. The sequence {A() } converges as k goes to infinity.
Proof. We have seen already that the sequence {A(k) } is bounded. Suppose {A() }

is a convergent subsequence. Then the corresponding {z()} also has a convergent
subsequence. Without causing any ambiguity, we may assume the subsequence {(A( ),
z())} converges. By Theorem 4.3 it follows that the limit point of {(A(), z())} is a
solution of the MEP. By Theorem 3.8 there are only finitely many such limit points.

For convenience we rewrite the matrix A as a column of m blocks, that is, A
[A,.. ,Am]T, where Ai := [Ax,... ,Am]. Then A) IIAz)II. Observe that

(k+l) )k) I-IIIA x(k/X)ll-IIA x(k)lll X<k))ll

From (88) and Theorem 4.2 it follows that IA+) )1 0 as k . The asser-
tion now follows by applying Lemma 4.4 to the sequence {))} for each i

THEOREM 4.6. The sequence {x() } converges as k goes to infinity.
Proof. The proof basically is the same as that of Theorem 4.5 since we observe from

(88) and Theorem 4.2 that componentwise the difference between x(+1) and x() con-
verges to zero as k goes to infinity.

We now illustrate the dependence of the method on the starting point. Consider the
positive definite matrix

4.3299 2.3230 -1.3711 -0.0084 -0.7414

2.3230 3.1181 1.0959 0.1285 0.0727

-1.3711 1.0959 6.4920 -1.9883 -0.1878

-0.0084 0.1285 -1.9883 2.4591 1.8463

-0.7414 0.0727 -0.1878 1.8463 5.8875
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with rn 2, t/,1 2, and n2 3. It turns out that the sequence {z(k),Ak), A(2k)}
converges to

Z* [0.9357, 0.3528,-0.9341, 0.3508, 0.0667]T,

A 6.5186,

A 8.2116

if z() [0.9777, 0.2098, 0.5066, 0.5069, 0.6975]T and to

z** [0.7166, 0.6975, 0.5654,-0.4327,-0.7022]T,
aT*

7.8 07

if z() [0.7914, 0.6114, 0.4753, 0.2517,-0.8431]T. On the other hand, if the method
is repeatedly applied to randomly generated starting points, it is interesting that approx-
imately 60% of the points give convergence to z*, whereas all the remaining converge
to z**. This ratio stays about the same regardless of whether a normal distribution or a
uniform distribution is used as the generator. This is a clear indication that out of the 24
solutions to this MEP, there are two local maxima to the maximal correlation problem.
The example also illustrates that Horst’s algorithm has a substantial possibility of not
converging to the absolute maximal correlation.

5. Conclusion and fture research. Although we have demonstrated the conver-
gence of Horst’s algorithm for the MEP, it is clear that there are still many other numer-
ical issues worthy of investigation. For example, let

(92) I’ := diag {71I[’1,...,

where each 7i is a real number. Then (A F)z Az if and only if Az (r + A)z.
In other words, like the power method, multivariate shifting is a possible strategy for
finding other solutions of the MER Determining which solution the algorithm converges
to on the basis of the starting value for x() and the shift parameters is thus an interesting
problem. A theoretical problem associated with the multivariate shifting is related to the
so-called educational testing problem; that is, for what I" will the matrix A I’ become
positive semidefinite?

On the other hand, the scheme involved in (71) is very analogous to the so-called
Jacobi method used in solving linear equations. It is thus rather natural to formulate the
following Gauss-Seidel method for the MER

ALGORITHM 5.1 (Gauss-Seidel algorithm).

Given x() (XO)T,..., x(Om)T)T with IIx)ll- 1, do
fork= 1,2,...

for i 1, m

i--1 m

(93) (k) .(k+l)
vi := Z A, +ZAijxk)

j
/=1

(94) A) := I1" ()
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end
end

Let the matrix A be decomposed as

(96) A D + VT -+- U,
where D is the main diagonal part of A and U is the strictly upper triangular part of A.
Then Algorithm 5.1 may be written as

(97) (D + U)x(k) (A(k) uT)x(k+).

Similarly, an SOR algorithm may be formulated as follows.

ALGORITHM 5.2 (SOR algorithm).
Given x() (x)T,... ,X(m))T with IIz )ll- 1, do

fork=l,2,...
fori 1,...,m

(98) yk) :=
j=l j=i

(99) := II  k)ll,

(100) i :’-- --"
(101) /(k) Wi/(k+l) + (1 wi)xk)::

(102) A}k) := I’ (k) II,

(103) x
end

end

We note that the relaxation parameters wi in each block may be chosen differently.
We also remark that the scaling in (100) may be done differently; this includes the pos-

of defining k) := 1 for all j and all k.sibility
If we define

(104) .=.(k) "= diag {)i[m],...,{-)i[-,,,]}
and

(105) fl := diag {WlI[nl,... ,w,I[’’d},
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then Algorithm 5.2 may be written in matrix form:

(106) [(I- 12)E(k) + f(D + U)]x(:) (E()A(:) fUT)x(:+x),

which includes (97) as a special case.
Apparently, a partial list of topics that deserves further research should include

proof of convergence, rate of convergence, and acceleration of convergence for each
of these methods. Work on some of these aspects to the MEP will be expounded on in a
forthcoming paper.
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HIGH-ORDERAND EFFICIENT METHODS FORTHE VORTICITY
FORMULATION OF THE EULER EQUATIONS*

J. s. LOWENGRUBt, M. J. SHELLEY’:, AND B. MERR/MAN

Abstract. In this work, the authors develop new methods for the accurate and efficient solution of the
two-dimensional, incompressible Euler equations in the vorticity form. Here, the velocity is recovered di-
rectly from the Biot-Savart relation with vorticity, and the vorticity is evolved through its transport equation.
Using a generalized Poisson summation formula, the full asymptotic error expansion is constructed for the
second-order point vortex approximation to the Biot-Savart integral over a rectangular grid. The expansion
is in powers of h2, and its coefficients depend linearly upon only local derivatives of the vorticity. In particu-
lar, the second-order term depends only upon the vorticity gradient. Except at second-order, the coefficients
also involve rapidly convergent, two-dimensional lattice sums. At second-order, the sum is conditionally con-
vergent, but can be calculated easily and rapidly. Therefore, we can remove the second-order term explicitly
from the point vortex approximation to obtain a fourth-order discretization. In the special case of a square
grid, the second-order error term is orthogonal to the vorticity gradient. The convective derivative ofvorticity
is thus calculated to fourth order using the unmodified point vortex approximation and automatically yields
a fourth-order evolution. These methods have been implemented. For the vorticity transport equation, the
point vortex sums are evaluated very rapidly using the fast Fourier transform (FFT) algorithm, and vorticity
gradients are approximated using high-order difference methods. With high resolution, the authors solve nu-
merically the roll-up of a thin layer of vorticity through the Kelvin-Helmholtz instability, and the interaction
oftwo oppositely signed vortices driven together under an external strain flow. In the latter case, a simple time
dependence of the grid is introduced to maintain resolution of the flow.

Key words, vorticity formulation, Biot-Savart integral, point vortex discretization
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1. Introduction. In this work, we develop and test new methods for the accurate and
efficient solution of the two-dimensional, incompressible Euler equations in the vorticity
form. Here, the velocity is recovered directly from the Biot-Savart relation with the
vorticity, and the vorticity itself is evolved through its transport equation. This is in itself
not a new idea (see [22], for example). However, we perform a new analysis of the point
vortex approximation to the Biot-Savart integral, and construct explicitly its asymptotic
error expansion for rectangular grids. This analysis is used to develop new methods that
are efficient and fourth-order accurate.

Traditional numerical methods for fluid mechanics have concentrated on either the
primitive variable formulation of velocity-pressure or the vorticity-stream formulation
(see [23], for example). A Poisson equation for either the pressure or the stream func-
tion is discretized and inverted at each time step with appropriate boundary conditions
suitably accounted for. Advantages of these methods include their rapid evaluation and
their overall accuracy. They are not so naturally adaptive as an adaptive grid would re-
quire inverting an elliptic equation with nonconstant coefficients.

Lagrangian vortex methods (see [10], as well as other references listed at the end
of this paper, for example) also exploit the relationship between velocity and vorticity to
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pose the Euler equations as a dosed system ofdifferential equations for the motion ofthe
curvilinear coordinate system moving with the fluid velocity (flow map). Advantages of
the Lagrangian methods include their natural adaptivity, ease of implementation, and
the existence of fast inversion algorithms [17]. However, their accuracy is difficult to
maintain due to grid distortion and the singular nature of the Biot-Savart kernel.

Ideally, one would like to retain the adaptivity of the Lagrangian methods while
controlling the grid motion so as to reduce distortion effects and to retain high-order
accuracy. An advantage of the vorticity formulation is that adaptive meshes can be in-
corporated very easily. An adaptive mesh is included by making a specific choice of
an underlying coordinate system. This choice of coordinate system merely introduces
metric functions in the evolution equation for the vorticity and a Jacobian term in the
Biot-Savart integral. In this way, we avoid numerically inverting an elliptic equation with
nonconstant coefficients, as we use a discretization of the exact inversion formula. An
important side benefit is that there is no ambiguity about the far-field boundary condi-
tions, for open or periodic problems, since they are built into the formula exactly. We
view this work as a partial step in the development of such adaptive methods. However,
the special case of rectangular grids is very useful and interesting in its own right.

Using an appropriately generalized Poisson summation formula, we construct the
full asymptotic error expansion for the point vortex approximation to the Biot-Savart
integral evaluated on a rectangular grid. The existence ofthe error expansionwas proved
by Goodman, Hou, and Lowengrub [16] more generally on smooth, curvilinear grids,
but the method of proof was not constructive. Thus in the case of a rectangular grid,
we have provided an explicit example of the expansion. Beginning at the second order,
the expansion is in powers of h, the spatial discretization size. The error is local in that
the expansion coefficients depend linearly upon derivatives of the vorticity evaluated
only at the mesh point at which the velocity is calculated. In particular, the second-
order error term depends only upon the gradient of the vorticity. The error also has a
global part in that the coefficients involve two-dimensional lattice sums. However, these
sums do not depend on the point of evaluation. These sums are also rapidly convergent
except, apparently, at the second order where the sum is only conditionally convergent.
We show how this lattice sum can be calculated both easily and rapidly. Thus we can
remove the second-order term explicitly from the point vortex approximation to obtain
a fourth-order discretization. In the special case of a square grid, even this is unnecessary
as the second-order error term is orthogonal to the vorticity gradient. The convective
derivative ofvorticity is thus calculated to fourth order using the unmodified point vortex
approximation, and yields automatically a fourth-order evolution. We also find that in
the square grid case, the error expansion contains only powers of ha after the second-
order term. A single Richardson extrapolation to remove the fourth-order term of the
point vortex quadrature leaves the second-order and the eighth-order terms remaining.
Thus, in the evolution equation, the second-order term falls out to yield eighth-order
evolution.

We note that in the case of more general curvilinear grids, extrapolation can be used
to generate high-order accurate methods. A difficulty with extrapolation is that although
its order of accuracy is higher than the original method, in general, its error coefficients
are also larger.

We have also implemented these methods to demonstrate their utility and present
numerical results on two difficult test problems. As the point vortex sums over rectangu-
lar meshes are discrete convolutions, they are evaluated using the FFT algorithm and the
discrete convolution theorem in O(N In N) operations where N9 is the number ofmesh
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points. Vorticity gradients are approximated by high-order difference methods. The first
test problem is the nonlinear roll-up of a thin shear layer through the Kelvin-Helmholtz
instability. This is a difficult.problem as the vorticity develops spatial complexity and
steep gradients. The second test problem is the interaction of two oppositely signed vor-
ticies being driven together by an external straining flow. This problem also features
strong vorticity gradient production and is relevant to the study of three-dimensional
vortex interaction and reconnection [27]. However, the steepest gradients tend to align
in a single direction. Consequently, we employ a simple time dependency of the grid to
retain resolution of the flow. We compare it to the case where the grid is held fixed. It
is a simple, but nontrivial, problem that nicely illustrates how the appropriate choice of
time dependency in the grid can greatly improve the calculation.

Our future work includes further consideration of the vorticity transport equation.
For example, our time integration method does not make use ofthe fact that the vorticity
equation is a conservation law. The use of methods constructed for such transport equa-
tions as essentially nonoscillatory (ENO) methods [19] or other high-order Godunov-
type schemes would likely improve the robustness of these methods [7]. It would also be
useful to fund the second-order coefficient for the point vortex approximate on a gen-
erally smooth, curvilinear coordinate system so that more general fourth-order meth-
ods could be constructed without resorting to extrapolation. For the three-dimensional
Euler equations, we note that there is a technical difficulty in applying the method de-
veloped here to the point vortex approximation. The difficulty involves the sufficiency
conditions for applying the special Poisson summation formula for the Biot-Savart ker-
nel (A.29). See Remark 3 at the end of Appendix A. However, we note that the general
Poisson summation formula for singular functions (A.9) is still valid. This is currently
under study. While the existence of asymptotic error expansions has been proved for
the three-dimensional Biot-Savart integral [13], the method is not constructive. An-
other very important extension is the inclusion of boundaries with and without viscosity.
Finally, we note that there is a proof of convergence for a lower-order accurate version
of our current method. It will be presented elsewhere.

The outline of the paper is as follows. In 2, we present the method, its implementa-
tion, and the special form of its error expansion (the appendices contain the mathemati-
cal details of its derivation). In 3, we present some numerical results, and in 4, we give
concluding remarks. In Appendix A, the singular Poisson summation formula is derived.
In Appendix B, the singular Poisson summation formula is applied to the point vortex
discretization of the Biot-Savart integral, and the expansion is proved. In Appendix C,
the explicit second-order coefficient is obtained.

2. The vorticity formulation and smooth grid methods. The Euler equations for
two-dimensional, incompressible fluid flow, in the vorticity formulation, are given by

(2.1a) a;t + u. Va; 0

and

(2.1b) u(x, t) / K(x x’)a)(x’, t)dzIdz’,

where u(x, t) (Ul(X, t), u2(x, t)) is the fluid velocity, a;(x, t) is the scalar vorticity,
x (Zl, z2), and

1
K(x)

2 lxl 
1)
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is the Biot-Savart kernel. Equation (2.1a) expresses that the vorticity in two dimensions
is conserved along particle paths, while (2.1b) and (2.1c), the Biot-Savart integral, give
the relation between the velocity and the vorticity due to the incompressibility constraint
and definition of the vorticity. It is assumed that w is smooth and rapidly decaying at
infinity.

Although we will soon restrict ourselves to considering the case of rectangular grids,
it is instructive to recast the Euler equations in terms of a more general curvilinear coor-
dinate system. Consider the transformation X(b, t) (xx (bt, bz, t), zg.(b, bz, t)), which,
for example, might arise as the solution to the evolution equation

d
(2.2a) ttX(b, t) F(X(b, t), t)

for some F. This yields the formulation

(2.2b) tw(X(b, t), t) [(F(X(b, t), t) u(X(b, t), t))]- [[VbX]-1" Vbt]

with

(2.3) u(X(b, t), t) =/rt K(X(b, t) X(b’, t))w(X(b’, t), t)J(b’)dbdb2,

where J is the Jacobian of the coordinate transformation given by

J detVbX.

A Lagrangian vortex method [10] uses the specific choice le u. In this frame,
X(b, t) is the trajectory of a fluid particle along which the vorticity is conserved. Fur-
thermore, the transformation is area preserving due to incompressibility. An Eulerian
vortex method, on the other hand, uses the choice F 0. Here, X(b, t) b and de-
scribes a fixed coordinate system. The vorticity is not conserved in this frame and must
be advected. The transformation is trivially area preserving.

There are many possible choices of a quadrature method for this integral. For ex-
ample, there is the point-vortex approximation [22], [26] or quadrature methods based
upon mollification of the singular kernel (see [1], [2], [4], [5], [10], [15], [18], [24], for
example). We have chosen a fourth-order quadrature method on a rectangular grid that
is related to the point vortex method. It has the advantages of ease of implementation,
can be summed by a fast method, and is easily generalized to higher orders.

Let the transformation X(b, t) be discretized uniformly in b. Define Xj X(bj, t),
with b (jlh, j:h). Similar definitions hold for J and w. Let I[w]j denote the value
of the Biot-Savart integral evaluated at Xj. The point vortex approximation I[w](h)
is simply the trapezoidal rule approximation to (2.3), where the singular self-induction
term is omitted:

(2.4) I[wl(h) h2 K(X Xk)JkWk.

The error is then

(2.5) E[w](h) I[w]"tj I[w](h).
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Even though the integrand of the Biot-Savart integral is singular, it was proved by Good-
man, Hou, and Lowengrub [16] that there exists a regular asymptotic expansion in pow-
ers of h2 for the error. That is, for sufficiently small h, there exists constants C[w]j,2p
independent of h, such that

(2.6) E[w](h) C[w]j,2h2 d-C[w]j,4h4 +....

In general, it appears difficult to find explicit formulae for the coefficients C[w]j,2p. For
example, in the analysis ofGoodman, Hou, and Lowengrub, the second-order coefficient
C[w]j,2 arises only as an undetermined constant ofintegration. This particular coefficient
is arguably the most useful to know explicitly, as it might then be removed explicitly to
yield a higher-order method.

In the special (but very useful) case of a rectangular grid, we give an alternative
derivation of the error expansion in which the coefficients C[w]j,2 are given explicitly.
We only outline the method here, and refer the interested reader to the appendices for
the full details. The main tool is the Poisson summation formula generalized to singu-
lar functions. The Poisson summation formula (see, for example, [14]) expresses the
trapezoidal sum (say, over the plane) as a sum of Fourier coefficients of the summand.
The asymptotic behavior of these Fourier coefficients then allows an analysis of the error
in the trapezoidal approximation. However, the integrand of (2.1b) lacks the smooth-
ness necessary for direct application of the Poisson summation formula, which, if used
naively, leads to sums of Fourier coefficients that are not absolutely, but only condi-
tionally, convergent. The value of such a sum depends upon how the sum is evaluated.
Instead, the integrand of (2.1b) is first smoothed by convolution with an approximate
6-function 6 of width e. The Poisson summation formula is then applied to the trape-
zoidal approximation of the smoothed integraland the limit e 0 is taken. This leads to
the Poisson summation formula generalized to singular functions. The particular choice
of 6 leads to a particular interpretation of the conditionally convergent sum, and pro-
duces a compensating residue from the singular self-induction term omitted in (2.4).
We have chosen 6 so as to actually yield rapidly and absolutely convergent sums, and an
explicitly calculable residue term.

There is at least an apparent difficulty in applying these methods to the general
curvilinear case to find explicit expressions for the error coefficients. We would require
the Fourier transform of the kernel K(X(b)) in the b variable. This is not generally
known.

Let X (jlhl,j2h2) (jltlh, j2c2h) be the rectangular grid. Let w=.i denote
the value ofw evaluated at Xj, and similarly for wx i. The point vortex approximation
is now simply

(2.7) I[w](h) hlh2yK((j kl)hl, (j2 k2)h2)o)k

We then have the following theorem.
ERROR EXPANSION THEOREM. Let w(x) be smooth and rapidly decaying and

CI/C2.
Part A. The second-order error coefficient is given by

(2.8a) h2 (-wzOC2(a) w’C2(1/a))hh2C[w]j,2
47r 47r
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where

(2.8b) G,(cO
4

arctan(1/c0
4a 1

f(m;cO

and

m( )1 y, (l/m)2 c2 1 2(//7rt,)2
(2.8C) f(m; ) g/=0 ((1/,,)2 + 2)2 + (1 .+ 2(1/7//,)2)2

By ’ is meant the trapezoidal sum; that is, the terms at 0 and m are weighted by a
1factor of .

Remark 1. In the special case of a square grid (a 1), C.(a) Cz(1/a) 1, and
it follows that

(2.9)

where V+/-w (-0,, 0,)w is the perpendicular gradient of w. Thus, the second-order
error term in (2.4) is orthogonal to Vw (i.e., hV+/-w Vw 0), and the method of lines
discretization of (2.1a), is

(2.10) wj=dh _I[wh](h) (7hwh)j,

where Vh is an approximation to V to at least fourth order. Equation (2.10) then has a
fourth-order consistency error in space, even though the velocity approximation is only
second order. That this error is realized in numerical simulations of fluid motions will
be demonstrated in the next section.

Remark 2. For the case of the rectangular grid, the calculation of the coefficient
C2(a) appears formidable. And indeed, a straightforward implementation of the sum
(2.8b), for c 2, produces summands of the size 10-4 only bym 12600. Fortunately,
the convergence ofthis sum can be considerably improved by using the Euler-MacLaurin
summation formula (see, for example, [29]) to successively remove the dominant be-
havior of the summand. From the summation formula applied to (2.8c), we have for
m>> 1,

1 c2-1 1 1(c2-1)(c4-10c2+I) 1 (1)f(m; ) - (1 + c2)2 m2 30 (1 + a2)4 m4
{- 0 ,,/

f2()- + f4(o0-- + 0 -g

Thus, we can rewrite the sum in (2.8b) as

1 f(m;
m(2.11) ,= lm f(m; )- f2()--ff f4()-a-

m--1

+f2(c)(3) + f4(c0’(5),

where
o

1
((s)- y -;,s > 1,

m--1
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is the Riemann zeta function. In particular, (3) 1.202056903159594 and (5)
1.036927755143370. The sum in (2.8b) now converges as O((1/m)r), and is trivial to
compute; for a 2, the above formula produces summands of magnitude 10-14 by
m 45. Figure 1 shows C2(a) calculated by the above formulae.

15

10

5

’ 0

-5

-15
0 2 4 6 8 10

FIG. 1. The second-order error coefficient C2 a).

Remark 3. We can use the calculation of C2 (a) to obtain a fourth-order quadrature
rule for the Biot-Savart integral by subtracting the second-order term

’C2(a), wJC2(1/a) hlh2.(2.12 ij(h) I[wl(h)- 4r 4r

We have assumed that wx2j and wx j are approximated to at least fourth order by wh

wh Use of this formula requires little effort, since for the calculation of wt, these
spatial derivatives must be appromated anay.

Remark 4. at the error coefficients only depend on derivatives of w at Xj is tree
also for the higher-order coefficients. ise of eression for C[w],2 is also ve
similar to that derived by Sidi and Israeli [29] for quadrature roles of one-dimensional
integrals with Cauchy singularities, and which was subsequently used by Shelley [28] in
a study of sinlari formation in vortex sheet motion.

Remark 5. e second-order error coefficient (2.8a) can also be found without re-
course to the Poisson summation formula. is is done by difiding the quadrature error
(2.5) into local and nonlocal contributions. e nonlocal contributions can be estimated
by using the Euler-MacLaurin summation foula, and the local contributions lead to
sums similar to those in (2.8). It may be that the more general culinear case could be
handled by such an approach. Furthermore, in the case of the square grid, the eres-
sion of C[w],2, (2.9), can be found by manipulating both integral and sum so as to have
a smoother integrand and summand, to which standard quadrature estimates can then
be applied.

Pa B (Eor ansion eorem). e higher-order eor coecients (p > 1)are
ven by

1
(2.13) C[w]j,2p (27r)2p

r-}-q--2p--

(-Dq’r ()[w], Dr’q (l/a)[w])Ixj,
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where Dr’q(a) is a linear differential operator oforder r in zl and order q in z2, and whose
coecients depend upon a, r, and q.

Remark 6. The operator Dq’r(a) involves lattice sums analogous to those in (2.8).
These sums are absolutely convergent, and their values are independent of the choice
of smoothing function ,. It is only the second-order coefficient for which there is a
question of interpretation of the sum.

Remark 7. In the special case of a square grid (c 1), it can be shown that
C[w]lj,2p 0 for p > 1 and odd. That is, after the hz term, the expansion has only
powers of h4. Thus, an eighth-order method could be easily obtained by performing one
Richardson extrapolation of the point vortex approximation to remove the fourth-order
term. The second-order and eighth-order terms remain, but the second-order term dis-
appears in the evolution equation as before.

The proof of the error expansion theorem is given in the appendices. In Appendix
A the derivation of the Poisson summation formula for singular functions is given. In
Appendix B, the extended Poisson summation formula is used to rigorously derive the
coefficients C[],, of the error expansion (2.6). In Appendix C, the second-order error
term is expressed in terms of rapidly convergent series as given in (2.8).

It has now been shown how, for rectangular grids,, fourth-order methods can be
found by a trivial and explicit removal of the second-order error (and even this was not
necessary in the square grid case). We also note that the point vortex approximation can
be evaluated very efficiently in this case. Equation (2.7) can be written as

(2.14) I[wlh Ij-kWk,
k

where

I] hih2K(jxhx, j2h2).

That is, (2.14) is a discrete convolution. In such cases, through the discrete Fourier trans-
form and its associated discrete convolution theorem, the FFT algorithm can be used to
evaluate such sums very rapidly. To employ these techniques, the kernel Ij and vor-
ticity w must be extended appropriately as periodic functions, and then represented as
discrete Fourier transforms. The details of this are straightforward and will not be given
here. For a rectangular mesh the computational complexity of forming the velocity on
the mesh is thus O(N2 In N), where N is the number of grid points in each direction.
There are now very well developed multidimensional FFT packages that are highly vec-
torized, and that realize the asymptotic complexity of the algorithm for relatively small
values of N.

In the more general case of a curvilinear coordinate system, the existence of the
error expansion also allows the derivation of higher-order methods through Richardson
extrapolation. Here we give explicitly a fourth-order formula. Using

hzE[w](2h) I[w]j I[w]h 412[w]j,2 + 1612[w]],4h4 +...

together with (2.5), we find that defining the new quadrature rule I[w]] (h) by
1

[4I 0 I[w] K(Xj Xk)JkWk(2.15) I[w]] (h) 5 [w]j (h) (2h)] h2

Jl +1 odd

j2+/ odd
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and gives the error

(2.16) E[wl](h) I[]j I[]](h) -12C[w]j,aha +....

A method of lines treatment of (2.2b) would then have the form

(2.17)
d
wj(t) [(F(Xj(t), t) I[w(t)]](h))]. [V,bX]-. (V,bW)j.

Obviously, further extrapolations to gain higher order could be done computation-
ally, or by calculation of the specific formula. However, we note that further extrapola-
tions would involve computing further doublings of the mesh size, which generally leads
to larger error coefficients in the error expansions.

The fourth-order quadrature method given by (2.15), I[w]J (h), can be efficiently im-
plemented in a number ofways. If the grid is nonrectangular, then fast summation tech-
niques such as those using hierarchical elements 1], or multipole expansions 17] can be
employed. Equation (2.15) can be interpreted as dividing the grid into four interlaced
subgrids, as shown in the schematic in Fig. 2. Each grid point is labeled as belonging to
subgrid M1, M2, Ma, or M4. Then the quadrature rule I[w](h) for bj E Mi becomes

(2.18) I[w]](h) h2 E K(xj Xk)Jkk.
bkM

Thus, this fourth-order quadrature rule for the Biot-Savart integral is seen as an ab-
stracted point vortex approximation, where instead of a singular self-interaction term
being omitted, a subgrid of quadrature points is omitted. Also, the set of field points M1
all use the same set of vortex points M, Ma, and M4 to find the velocity on M, and
the quadrature weights are independent of the field point position. These are the types
of quadrature rules to which fast summation methods are applicable. In principle, fast
summation methods based on multipole expansions or hierarchical elements have com-
putational complexities of O(N) or O(N ln N). However, we have not found these
methods to be competitive in evaluating the sum when summation using the FFT can be
employed.

3. Some numerical results. We have implemented these methods to numerically
solve two incompressible open-flow problems of enduring interest. The first is the non-
linear roll-up of a thin shear layer through the Kelvin-Helmholtz instability. The second
is the interaction of two oppositely signed vortices being driven together by an external
straining flow.

For a flow periodic in one direction (say, 2r-periodic in x), the Biot-Savart integral
can be summed exactly over each period to yield an integral, with modified kernel, over
a single periodic strip. In particular, K in (2.1c) is replaced by

1 (- sinh(x2), sin(xl))K,er(X,x2) 4- cosh(x2) cos(x)

and the domain of integration is [0, 2r] x (-x), +oc). We assume that the vorticity is
rapidly decaying as

We consider the initial data

w(x, x2) exp(-c(x)2x22),
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4

.2

4

3

Fo. 2. A schematic ofthefour-grid decomposition, M, Ma, Ma, and M4.

where a(x)2 [1+e(cosx 1)]. That is, to describes a fiat shear layer ofcharacteristic
width 1/v/-, whose width is sinusoidally perturbed with nondimensional amplitude e. If
the vorticity amplitude were likewise scaled as (fixing the circulation independently
of) and oo, this would yield vortex sheet initial data with an initially fiat sheet and
a sinusoidal perturbation to a constant vortex sheet strength.

We have chosen 10 and e =. 1. This is a fairly thin shear layerwith aspect ratio of
about 20:1. As this flow develops very steep gradients in the vorticity, it is a severe test of
any method. Figures 3(a)-3(d) show contours of the evolving vorticity at the times t 0,
20, 25, and 30, respectively. The computational domain is [0, 27r] x [-57r/8, 57r/8] and
vorticity is initially of the size 2.10-17 on the upper and lower boundaries. Figures 3(a)-
3(c) are with N 512 and N2 320, and Fig. 3(d) is with Nx 1024 and N2 640.
The tick marks on the box boundaries correspond to the grid. These choices for Nt and
N give a square mesh covering the computational domain. The contour lines are from
-0.95 up to -0.05 at intervals of 0.05.

Here, the velocity on the grid is computed by the point vortex approximation (2.7)
using the periodic kernel Kp, and the sums are evaluated rapidly using the FFT. By
scaling both N1 and N as N, the amount of work per time step is then O(N In N).
On a Cray Y-MP, with N 1024 and N 640, evaluation of the velocity took about
one second. The vorticity gradient is computed by cubic splines in each direction, as-
suming periodic boundary conditions in the z-direction, and zero data on the upper
and lower boundaries. Cubic splines with such boundary conditions yield fourth-order
derivative approximations on the mesh points. Then, since h h, and by Remark I of
2, the method of lines discretization (2.10) of the vorticity transport equation (2.1a) has
a fourth-order spatial consistency error. The method oftime integration used is a fourth-
order, Adams-Moulton predictor-corrector method. The time step was At .00625,
which, for the Nx 1024 calculation, was halved at t 20 to satisfy the CFL condition.
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The time steps used are small enough to effectively remove time discretization errors
from the calculation.

Figures 3(a)-3(d) trace the usual course ofvortex layer roll-up (see, for example, [3]
for such calculations with layers of constant vorticity). The Kelvin-Helmholtz instability
initially causes vorticity to advect towards the center, leading to a relative concentration
there (see Fig. 3(b)). The layer rolls up subsequently and forms a central rotating vortex
with trailing arms. As the vorticity is strained into the center, the outer arms thin and
large gradients in the vorticity are created there. As the contour lines are also mate-
rial curves for the flow, their considerable stretching and folding likewise lead to large
gradients.

The error in the calculations can be estimated through use of its asymptotic expan-
sion. For example, by assuming that for the vorticity

(3.1) Eh,,., =wj -w Ah + A6h6 +...,

we then have the estimate

2 + O(h6).(3.2) Eh
,.i 2 1

Then

max
(3.3) Lh,[w]=

j

is an approximation to maximum error in the vorticity.
The left-hand box in Fig. 4 shows Lh,[W] (solid) and Lh,[u] (dashed) for h

27r/N1 with N1 128, 256, 512, and 1024 for 0 < t < 30, while the right-hand box shows
the order of the calculations approximated by the expression log2(L2h,o,:,/Lh, ). Here
U is the velocity in the xl-direction and is calculated on the grid using (2.12). All the
evidence suggests a stable and convergent scheme. For a single calculation, the error
shows a monotonic increase as the layer rolls up. This is hardly surprising (referring
to Figs. 3(a)-3(d)); gradients of vorticity evolving under the Euler equations grow very
rapidly, and in fact obey an evolution equation similar to that for the vorticity vector
in three dimensions. As the resolution is improved, the accuracy is improved upon the
entire range of integration. The approximation of the order shows a clear fourth-order
error for a range of time that increases as the resolution is improved. The velocity error
shows generally a slower decrease than does the vorticity error. This is true as well for
the decrease away from fourth-order error. This is likely a consequence of the velocity
being one degree smoother than the vorticity.

A difficulty of the Lh, measure of the error in wh is that it assumes that wzh is still
well represented by (3.1). Other measures of the error, which do not depend as strongly
on expansion (3.1), are the approximated circulation and maximum vorticity. For this
flow the circulation C in a periodic strip is a conserved quantity. The graph at the left
in Fig. 5 shows log0 IC Chl, as a function of time, for the four successive doublings
of the mesh size beyond N1 64. Ch is calculated using the trapezoidal rule over the
computational box, which would be of infinite order in the absence of discretization er-
rors in w (this explains the very high accuracy at t 0). The calculated order of the
convergence is shown in the graph at right, and the fourth-order convergence is seen
clearly over nearly the entire range of integration. We note however that the circulation
is an integral measure of the error, and as such is a weak measure of accuracy.
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(a)

(b)

(c)

FIO. 3. Contours ofthe vorticityfor an evolving thin shear layer at times 0, 20, 25, and 30. The contour
levels runfrom -095 to -.05, at intervals of.05.
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(d)

FIG. 3. Continued.
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FIG. 4. The approximated error in vorticity (solid) and velocity (dashed) for h 27r/Nx with Nx
128,256, 512, and 1024for O < < 30. The accuracy improves as N is increased. The right-hand box shows the
order ofthe calculations.

Another invariant of the two-dimensional Euler equations is II0:11oo, the maximum
modulus of the vorticity. This quantity must be estimated point-wise. As such, it is a
stronger measure of error than the circulation. Figure 6 shows [Icvl[h,o, or the maximum
vorticity on the mesh, for the five different resolutions. For the initial condition used,
I1011 1, and 103(Zl, Z2, t 0)l 1 along the entire curve z 0. While convergence
is plainly seen, the spatial location of the maximum value jumps around the mesh as the
flow evolves, and it is difficult to estimate an order ofconvergence from this quantity. We
note specifically, that for the calculation with N1 1024 and Nz = 640, Ilcollh,o - 1.001
at t 30.

We have also performed these calculations using the more general fourth-order
pointvortex approximation (2.15), obtainedby extrapolation ofthe second-order quadra-
ture. The extrapolated method also shows fourth-order convergence, and appears stable
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FIG. 5. The error in circulation, with its approximation calculated by using the trapezoidal rule over the
computational boxfor N= 64,128,256,512, and 1024. The accuracy improves as N is increased. The tight-
hand box shows the orders ofthe computations.

1.02

1.01

0.99 "5 10 15 20 25 30
t

FIG. 6. The maximum vorticity on the grid IIll, forN 64,128,256,512, and 1024. The difference
from I decreases as N is increased.

and convergent. Its associated errors are typically larger by about a factor of twelve than
those associated with using (2.10), which is consistent with the change in the fourth-order
error coefficient introduced by the extrapolation.

We now consider a much different problem. We calculate the motion of two oppo-
sitely signedvortices that interact under the imposition ofan external straining flow. This
problem features a strong vorticity gradient production that quickly taxes any method.
However, the steepest gradients tend to be aligned in a single direction, and the intro-
duction of a simple time-dependency of the grid helps retain resolution of the flow. The
behavior ofsuch flows is relevant to the study ofthree-dimensionalvortex interaction and
reconnection (see, for example, [27]). It is a simple, but nontrivial, problem that nicely
illustrates how appropriate choice of time dependency in the grid motion can greatly
improve the accuracy of a calculation.
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Consider special solutions to the three-dimensional Euler equations that are of the
form

(3.4)

Here, while there are components of velocity and vorticity in all three directions, the
only true za-dependency is through the irrotational and incompressible straining field

For solutions of this form, the full Euler equations reduce to two-dimensional evolution
equations for and v, in which the only effect of the velocity component w is through
the rate-of-strain in that direction, namely, 7 . Here, w is simply advected as a scalar
field in the two-dimensional velocity field V (- 7Zl, + z2). In terms of the scalar
vorticity v= u=2 = =2, the evolution equations can be given in a form very
similar to equation set (2.1). Namely,

(3.5a)
and

+ v.

(3.5b) (2, )(x, t) =/rt K(x x’)w(x’, t)dx dx2,

where K is defined as before by (2.1c). As initial data we take

(3.6) w(x, 0)= a(exp((zl- 1/2)2 + x)/d2- exp((zl + 1/2)2 + z)/d2).
The initial vorticity is then two Gaussian cores ofopposite sign and with width d, centered
at 4-1/2. The rates-of-strain are set as 7 2 and 1. That is, there is a compressive ex-
ternal flow in the zx-direction that pushes the two vortices together and extensional flows
in the zz and za-directions. The extensional rate-of-strain in the z2-direction elongates
the vortices in that direction, while that in za leads to vortex stretching. Furthermore,
we choose a 10 and d 1/4.

Such a flow could be considered as a model for the interaction of two adjacent vor-
tices being driven together by strains induced by other vorticity distributions in the flow,
or as a model of the effect of three-dimensional vortex tube curvature, where the two
vortices are cross sections of two adjacent vortex tubes. Such a flow illustrates the effect
of external strains producing core deformation and thus altering the interaction of the
vortices with each other.

The primary difficulty in computing such a flow is that as the two vortices are driven
together by the external straining flow, large gradients are rapidly produced in the vor-
ticity. To maintain good resolution of the flow, we found it necessary to introduce a
simple time dependence of the grid. Namely, we allowed the grid to collapse with the
compressive strain in the z-direction, so as to maintain resolution of the sharp vertical
gradients that have formed. In addition, as two vortices translate vertically through their
mutually induced velocities, the zz-position of the grid must be chosen accordingly so
that the vorticities are kept within the computational domain. That is,

d
x(b,t) -Tx(b,t) with xl (b, t 0) bl,

d
-x2(b, t) 92(t) with x2(b, t 0) b2,
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where o2(t) is chosen to keep the z2-centroid of the vortices fixed at zz 0. This re-
quires the computation of the circulation, the zz-centroid and its time derivative all on a
half-plane of the domain (since the circulation over the whole domain is zero). We cal-
culated.these integrals on the right half-plane by Simpson’s rule. This choice maintains
a rectangular grid.

For this time-dependent coordinate system we can find VX in closed form, and
thus also the Jacobian d for (2.3). Thus, we can evolve the vorticity transport equation
(2.2b) (with the forcing term from the strain included). More importantly, the grid is no
longer square, and the point vortex approximation (2.7) does not yield a fourth-order
evolution without modification. Accordingly, we now use the quadrature rule (2.12),
where C(a(t)), a hl/h, must be calculated at each time step. As noted in Remark
2 of 2, this can be done easily and rapidly through the use of formula (2.11), and only
requires Vw, whose computation is already necessary. Again, it is assumed that w is
zero on the boundaries. For variety we use fourth-order differences rather than splines
to calculate Vw. This appears to have little effect on the computation.

Figures 7(a)-7(c) show the contours of the computed vorticity field at t 0, .5 and
1.0 with N1 N 256 and At .00078125. The perimeter in Figs. 7(a)-7(c) is
the boundary of the time-dependent computational domain. The computational box is
initially of length 4.2 on a side. The time step was chosen small enough to effectively
remove time discretization errors from this calculation (as well as the calculation where
the initial xx-positions of the grid were held fixed).

Figure 8 shows the errors in w (solid) and u (dashed), as well as their orders,
as approximated by (3.3). The errors in w are normalized by the maximum vorticity,
Ilwlloo(t) a exp(7 -/7)t. Here, N1 N2 128 and 256. This is to be contrasted
with Fig. 9, which shows the same quantities, but for the same calculations with the ini-
tial zt-grid locations held fixed. The errors for the calculation with the moving grid is
much smoother in time, and increase more slowly. Indeed, by t 0.4, the moving grid
calculation with N 128 is as accurate as that for the fixed grid with N 256, and
becomes more accurate (by virtue of its slower increase) by the end of the calculation.

The total conserved circulation of the two vortices is zero. However, it is also true
that circulation computed from vorticity of a single sign is conserved, and in particular
the circulation in the left or right half-plane is conserved (note that zl 0 is a free-slip
surface for this flow). Figure 10 shows the error in the circulation for the right-hand
vortex (calculated on the right half-plane using Simpson’s rule), and its computed order,
for the moving (solid) grid calculation at the three resolutions N N 64, 128, and
256 and the fixed (dashed) grid at the N N 256 resolution. This figure only
serves to further illustrate the advantage in accuracy the moving grid affords over the
fixed calculation. There is a slight degradation in accuracy near t 1 for the N1
N 256 calculation. This is due to the vertical boundary (upon which the vorticity and
its derivatives are assumed to be zero) coming too close to the support of the vorticity.
The lower resolution runs are less sensitive to such a boundary effect. Figure 11 shows
the normalized maximum vorticity on the mesh

II llh,oo/ll lloo ae-( -n)tll llh,oo
for the moving grid calculations (solid). The fixed grid quantity with Ni Nz 256
is included as the dashed curve. Again, convergence is observed as N is increased. The
normalized maximum vorticity for the Nx Ng. 256 calculation with moving grid is
0.9985 at t 1.
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(a) (b) (c)

FIG. 7. Contours ofthe vorticityfor the two-vortex strainingflow at O, .5, and 1. The contour levels in Fig.
7(a)from -9.4 to 9.6, in Fig. 7(b)from -16.3 to 16.4, and in Fig. 7(c)from -28.4 to 28.5, all with increments

of 1. Here, the initial box size is 4.2 on a side, N= Nv 256, and At*= .00078125.

10
-logto(L.) Order

0 0
0 0.25 0.5 0.75 0 0.25 0.5 0.75

FIG. 8. The approximated error in vorticity (solid) and velocity (dashed) with their orders in the fight-hand
box for N= Nv 128,256. The errors in vorticity are normalized by the maximum vorticity IIlloo(t)
a exp(9’-)t. The accuracy improves as N is increased. The right-hand boxshows the orders ofthe computations.
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FIG. 9. The same quantities as in Fig. 7, but with the initial grid heldfired.
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FIG. 10. The circulation error in the tight half-plane, with its approximation computed by using Simpson’s
rule in the tight half-plane. The solid curves are for the moving grid and the dashed curves are for the fixed gtid.
The errors areforN Nv 64, 128,256. The accuracy improves as N is increased. The order ofthese errors
ispresented in the tight-hand box.

Finally, we note that in recent work, Fishelov [15] also considered a fixed-grid
method for the vorticity formulation ofthe two-dimensional, incompressible Euler equa-
tions. She used a vortex blob discretization evaluated by direct summation. This ap-
proach may be more useful for long times and for cases where the grid is allowed to
move since the blob discretization provides improved stability for Lagrangian methods
(see [5], for example). However, the blob approach is not likely to be useful for fixed
grids and for short times, as we found that a vortex blob discretization with a Beale and
Majda fourth-order kernel (using 6 h"9s) gave velocity errors that were two orders of
magnitude larger than those for our fourth-order modified point vortex discretization
(2.12) at t 0 and for the initial data (3.6) and N N2 256.
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FIG. 11. The normalized maximum vorticiay on the 8rid, I111,oo/1111 e-(-a)llll,oo. The solid
curves are for the moving gr/d with N= Nv 64,128, 256, and the dashed curve is for the fixed grid with
N= Nv 256. The differencefrom I decreases as N is increased.

4. Conclusion. In this work we have developed new numerical methods, based on
the vorticity formulation, for solving the two-dimensional, incompressible Euler equa-
tions. In the vorticity formulation ofthe Euler equations, the velocity is obtained directly
from the vorticity through the Biot-Savart integral, and the vorticity is updated on the
computational grid. An advantage of this formulation for open and periodic problems
is that asymptotic boundary conditions on the velocity are explicitly incorporated into
the Biot-Savart kernel, and the focus is then simply on finding accurate and efficient
methods for evaluating the Biot-Savart integral over a regular mesh. Here we have con-
sidered the point vortex approximation on rectangular meshes.

Using the Poisson summation formula generalized to include singular integrands,
we constructed the explicit error expansion for the point vortex approximation to the
Biot-Savart integral. The existence of the error expansion was proved by Goodman et
al. more generally on smooth, curvilinear grids, but the method of proof was not con-
structive. Thus in the case of a rectangular grid, we have proved an explicit example
of the expansion. We found that the leading second-order error term depends on the
vorticity only through the local value of its gradient. The coefficient is expressible as a
two-dimensional lattice sum, and we demonstrate how its calculation can be done easily
and rapidly. This leads to a simple modification of the point vortex approximation that
yields fourth-order accuracy. In the special case of a square grid, the method of lines for-
mulation of the vorticity transport equation, using the unmodified, second-order point
vortex approximation and a fourth-order gradient approximation, automatically yields a
fourth-order evolution of the vorticity. We note also that in the square grid case, the er-
ror expansion contains terms with only fourth powers of h after the leading second-order
term.

Furthermore, we have demonstrated the utility of these methods through their em-
ployment to solve both the nonlinear roll-up of a thin, spatially periodic shear layer, and
the interaction of two oppositely signed vortices being pushed together under an exter-
nal, three-dimensional straining flow. As the summations were done on a rectangular
grid, the FFT algorithm was used (through use of the discrete convolution theorem) to
rapidly evaluate the velocity on the grid. Thus, the calculations are performed at high
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resolution. We were able to accurately follow the evolution of the shear layer well into
the nonlinear regime, where the bulk of the vorticity has concentrated itself into a cen-
tral vortex. This concentration is linked, in the thin layer limit, to the formulation of
singularities observed in vortex sheets [3]. By employing a grid that collapsed naturally
with the external compressive flow, we were able to compute the motion of two vortices
driven together under the strain. Physically, the interest lies in their severe deformation
and elongation, which yields enhanced dissipation in the presence of viscosity (see, for
example, [9] for viscous calculations).

These methods have already found application in the study ofbuoyancy-driven flows,
including both two-dimensional Boussinesq and fully stratified fluids [25]. In both these
cases, the incompressibility constraint gives the Biot-Savart relation between velocity
and vorticity, and the methods are directly applicable. There are several other direc-
tions that further work should take. Our time integration method does not make use of
the fact that the vorticity transport equation is a conservation law. The use of methods
constructed for such transport equations, such as ENO methods [19], or other high-order
Godunov type schemes, would improve the robustness of these methods (see also [7]).
It would also be useful to find the second-order error coefficient for the point vortex ap-
proximation on a generally smooth, curvilinear coordinate system. This would allow the
construction of fourth-order methods together with more general adaptivity, without re-
sorting to explicit extrapolation to gain additional accuracy. For the three-dimensional
Euler equations, we have seen that there is an apparent difficulty in directly applying
the methods developed here to the so-called grid-free point vortex approximation. We
are currently studying this. We note that the existence of asymptotic error expansions
has been proved not only for the three-dimensional Biot-Savart integral, but also for its
gradient whose computation is necessary to compute the stretching term in the vorticity
transport equation (see [13]). Another very important extension is to devise methods to
treat the presence of walls, both with and without the presence of viscosity.

Appendix A. Poisson summation formula for singular functions. In this appendix,
we present a version of the usual Poisson summation formula (see [14], for example)
extended to the case of a function with an isolated and integrable singularity at the origin
and in two space dimensions. It will be clear from this analysis how to obtain more
general results. We begin by introducing some notation.

Define the Fourier transform in two dimensions by

(A.1) ](k) e-ik’xf(X)dXldx2,

where k (kl, k2) and x (xl, x2). Its inverse transform is given by

e-ik’X](x)dkldk2.(A.2) f(x) (27r)2 o

Define the convolution of the functions f, g by

(A.3) / g(x) f(x- x’)g(x’)dxdx2

By the convolution theorem,

(A.4) f g(k) =/(k)(k)
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and

1
(A.5) fg(k)

(2r)2 0(k).

Denote a smoothing function by 6(x), and let it satisfy the usual properties of an ap-
proximate identity [31]. Then for any f, a smoothed version of it is given by

(A.6) f, (x) f 6, (x).

Define the physical space grid by
(A.7)
A(a,a2) {xj Ixj (jlhl,j2h2)with hi ah, h2 a2h and j (j,j2) Z2},
and the dual phase space grid by

(A.8) A*(al,a2)={kjlkj=(-jl,2J2) and j (jl,j2) Z2}.
Then we obtain the following formula.

POISSON SUMMATION FORMULA FOR SINGULAR FUNCTIONS. Let f(x) be rapidly
decaying in x, and smooth exceptfor an isolated and integrable singuladty at x O. Then,

f(xj)hh2 f(x)dxdx2
xeA(a,a.)\0

lim Z ]e lq fe(O)hlh2
---*0

kj CA* (al,a2)\0

where f is the smoothed version of f.
Remark 1. As the function f has a singularity at the origin, its Fourier coefficients

may decay too slowly to be absolutely summable. Consequently, the smoothing function
6(x) provides the mechanism to interpret their sum. In addition, the smoothing also
gives rise to a residue, or self-induction term. However, since the left-hand side of (A.9)
is independent of the choice of smoothing function, so is the right-hand side. Thus all
smoothing effects in it must cancel.

Remark 2. Under certain circumstances, depending on the function f and the
smoothing function 6, the limit of the right-hand side of (A.9) exists for each term sep-
arately. We discuss this in detail after the proof.

Remark 3. Equation (A.9) can be generalized to functions with nonintegrable sin-
gularities provided they can be interpreted in the principle value sense. In this case,
the choice of smoothing functions is restricted to the ones that give the correct principle
value in the continuous case, i.e., in the integral on the left-hand side of (A.9) is replaced
by

P.V. f(x)dxdx2,

while the rest of the formula (A.9) remains unchanged.
Remark 4. The formula (A.9) can also be generalized to functions with several iso-

lated singularities. For example, suppose that the singular points are z,..., z,. Let the
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smoothed version .of f be f, as before. If the singular points lie on the grid A(ax, O2)
then (A.9) becomes

E
(A.10)

/ /

[ ]lim E L kj E fe(zl)hlh2
-0

kjeA* (al,a)\O /=1

Proof ofsummation formula. The proof of (A.9) is almost trivial. We rely on the
Poisson summation formula for smooth functions [12] as stated in the following.

POISSON SUMMATION FOR SMOOTH FUNCTIONS. Let g(x) be smooth and rapid de-
caying. Then,

Now we apply this formula to J’, which is the smoothed version of J’. Thus, we have

E fe(xj)hlh2-/+_/_+cxfe(x)dxldx2-- E ]e( 27r

Now write

(A.13) E f(xj)hh2 E
xj eA(al ,a2 xj eh(al ,a2 \0

Therefore, we get

(A.14)
E

xjSA(a

f,(xj)hh2 + f,(O)hlh2.

f, (xj)h h2 f, (x)dx dx2

E L -k f,(O)hxh2.

The limit as e - 0 of the left-hand side of (A.14) clearly exists. Consequently, the limit
as e 0 of the right-hand side exists and yields the result (A.9).

It is natural here to address the question of whether the limit of the right-hand side
of (A.9) can be taken for each term separately. It is sufficient to determine whether the
limit as e - 0 of f,(0) exists. If it does, the existence of the limit of the left-hand side
of (A.9) implies that the limit of the sum of Fourier coefficients must then also exist and
hence the limit can be separated.

Suppose that f(x) can be written as

(A.15) f(x) H(x)g(x),

where H(x) contains the local singularity and g(x) is smooth and rapidly decaying. Then
we have

(A.16) f, (0) H(x)g(x)6, (x)dx dx2.
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Define a characteristic function Xn by

(A.17)
1 if Ixxl < R and Ixml < R,

x(x)
0 otherwise.

Furthermore, define (x) by

(A.18) (x) a(x) [a(0) + va(o), x]xn(x).

Then f, (0) becomes

(A.19)

1,,n + II,.,R + III,,R.

Since H(x),xH(x), and H(x)(x) have successively smoother behavior as Ixl - 0,
there is no hope for cancellation of divergent terms by summing the different integrals.
Therefore, the limit as e 0 of f,(0) exists if and only if the limit as e ---, 0 of I,,, II,1,
and III,1 exists separately.

Consider I, first.

(A.20) lim I,R lim H(x)8,(x)dxdx2.
e--}O e---*O R R

Since H(x) has a local singularity at the origin, the only way such a limit can exist is by
some cancellation. Therefore, suppose that

(A.21) H(x) -H(-x), 6,(x) 6,(-x).

Then, I,,R 0 for any e and R and hence the limit (A.20) exists and is equal to 0.
Consider III,, next. By construction, H(x)(x) O(Ixl) as Ixl - 0 and is inte-

grable. Therefore,

(A.22) lim IIIe,R lim H(x)[l(x)6,(x)dxldx2 0
e---,O e---,O

by standard arguments such as the Riemann-Lebesgue lemma if6 is the Dirichlet kernel
(see below).

Finally, it remains to consider II,. The existence of this limit is a classical question
in harmonic analysis. In general, this limit will exist if and only if x 0 is a Lebesgue
or a Dirichlet point (see [30]) of the function xH(x). We do not give the most generally
known conditions for the existence of such points here, but it is easy to show that if
H(x) Ki(x) then these limits exist. K with i 1, 2 denotes the components of the
Biot-Savart kernel.
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For simplicity, we consider two standard types of smoothing functions: scaled and
dilated L functions

(A.23) 6,(x) fir/ -,--
with even, positive, and of mean 1, and the Dirichlet kernel

sin(Mxl)al sin(Mx2 )
(A.24) 6,(x) 6 (x)

uz zu
where a, au sewe to weight the coordinate directions (see Append C).

Now correspondingly, write II,,n as II,n for the scaled smoothing nction

where (x) xH(x), and as II for the Dirichlet kernel

(A.26) II _1__ [+ [+ ( )sin()sin()dd.
2

e question reduces to whether the limit as e 0 ests for II, or II. Now take

H(x) Ki(x). en notice that with this choice, (x) is homogeneous of degree 0 so
that

and

(A.28)

It is clear that the limit as e --+ 0 of II,n exists since II(x) is bounded on the plane and
r/E LI(R2). The limit as M of IID is directly calculable by contour integra-
tion (see Appendix C). Consequently, the limit of the right-hand side of (A.9) can be
separated as follows.

SPECIAL POISSON SUMMATIONFORMULAFORTHE BIOT-SAVART KERNEL. Iff(x)
Ki (x)g(x), 9 is smooth and rapidly decaying, and 6 is either the scaled smoothingfunction
or the Dirichlet kernel, then

(A.29)

(A.30) P.V. Z’(kj) lim Z,--.0 Tkj
h(a,c,=)\O kh(a,c,=)\O

where the EV. denotes theprincipal value sum defined by
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Remark 1. We use this formula (A.29) with g(x) w(x) in Appendices B and C to
construct the explicit error expansion.

Remark 2. Although the result (A.29) is independent of the smoothing function,
the rate of convergence as 0 is highly dependent on the choice. In Appendix C,
we exploit this property by using the Dirichlet kernel as the smoothing function. This
yields rapidly and absolutely convergent sums and thus enables us to obtain very accurate
approximations of error expansion coefficients.

Remark 3. Of course, the formula (A.29) holds for more general functions f Hg.
Generally, if the limit as e 0 of I,n, II, R, and III,n exists, then (A.29) holds, al-
though even this is not the most general case. Notice, though, that the three-dimensional
version of II,,R does not have a limit since there the Biot-Savart kernel is O(1/Izl2) as

Izl --. 0 so that the corresponding xH(x) is unbounded at the origin. This is currently
under study.

Appendix B. Error Expansion. In this appendix we obtain an error expansion for
the point vortex approximation to the Biot-Savart integral on a rectangular mesh. The
expansion is obtained through an asymptotic analysis of the Fourier coefficients appear-
ing in the special Poisson formula for the Biot-Savart kernel (A.29).

In previous work, Goodman, Hou, and Lowengrub [16] proved the existence of such
an error expansion. However, it is difficult to determine the coefficients ofthe expansion
from their method of proof. For example, their second-order coefficient contains an
undetermined constant of integration. Our proof is similar to theirs in spirit, but our
method provides a prescription for the explicit determination of the coefficients.

In this appendix, we do not derive explicit expressions for the coefficients, although
we indicate how it is done. We save their explicit evaluation for Appendix C where we
obtain an expression for the second-order coefficient. This term is the most delicate to
obtain. The Biot-Savart kernel in two dimensions is

1 (-z2, zt)(B.1) K(x) xz + x,
where x (x,x2). We want to describe the discretization error between the Biot-
Savart integral and the point vortex approximation

(a.2) K(xI- x)w(x)dxldx2 K(xl- xj)w(xj)hlh2,
xj eA(al,a2)\x

where A(al, c2) is the rectangular grid defined in (A.7), hi ah and h2 a2h.
It would be routine to describe this error if the integrand were smooth. However,

K(x) has an isolated integrable singularity at x 0. Thus, to handle this, we use the
special Poisson summation formula (A.29).

Without loss of generality, and for the sake of clarity, we study the error I(0) Ih (0),
where

(B.3) I(0) K(x)w(x)dxldX2

and

(B.4) Ih(0) K(xj)w(xj)hh2.
xj eA(a,a2)\0
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This corresponds to taking X 0 in (B.2) and dropping the minus sign inside the kernel.
Now, following the prescription of Appendix A, w define the smoothed version of the
integrand in (B.3) by

(B.5) (Kw)(x) (Kw) 6(x) K(x’)w(x’)6(x x’)dxldX2,

where 6,(x) is given by (A.23) or (A.24).
The purpose of this section is now to prove the following result.
THEOREM 1 POINT VORTEX ERROR EXPANSION. For w(x) smooth and rapidly de-

caying, there exist coefficients (a)[w]o,z, such that

(B.6) I(0) Ih(0) il(Kw)e(O)hlh2 + y *(cz)[wlo,2N + O(h2N)
n--’l

for any N, cz is the grid aspect ratio a/a2. Furthermore, the coefficients C are given by

(B.7) C(a) [w]o,2n (-D"’q(a)[wl(O),Dq’" ()[w](0)),
r+q=2n--I

andDr’q (Or) is a lineardifferentialoperatoroforderr in x and q in x2 andwhose coefficients
depend on , r, q.

Remark 1. For n > 1, these coefficients are the coefficients shown in (2.6) and (2.13)
of 2. The second-order term C(cz) [w]o,9. in (2.8a) differs from (a) [w]o,z exactly by the
self-induction term in (B.6).

Remark 2. Our method of proof relies on the application of the special Poisson sum-
mation formula for the Biot-Savart kernel (A.29), asymptotics of the resulting Fourier
lattice sums, and controlling the error from the asymptotics. The method is very general
and can be applied in many other contexts where singular integrals arise.

Proof. We begin with the following lemma.
DISCRETIZATION LEMMA. Suppose that w(x) is smooth and rapidly decaying. Then

the discretization error I(0) Ih (0)/s given by

(B.8) I(0)- Ih(0) 1.iIn,(Kw),(O)hh2 P.V. Kw ----lj
lj eA* (c1,c2)\0

where

"’(27r )=lim .(8.9) e.v.
lj eA* (a1,02 \0 lj EA* (01,0 \0

TIJ)
The proof of this lemma is a straightforward application of (A.29) with f, (Kw),.

Thus, to determine the error expansion, we must now examine the lattice sum that
appears on the right-hand side of (B.8).

Define the function

(B.10) F(/1,12, ml, m2, T) (El, F2) (--/2 + m2T, ll mlT)
(/1 mlT)2 + (/2 m2T)2

hwith T as a small parameter. We now use F to evaluate ww(21) as follows.
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LEMMA. The Fourier transform ofKw is

(B.11) Kw
(2702

T F(/1,12, ml, m2, T)&(m)dm, din2,

where T
Proof. Direct calculation gives

(B.12) I(l) -i

with I (1, 1). Now, by the convolution theorem, we get

(B.13) K(I) (2)
(1- m)&(m)dmdm.

n, combining (B.12), (B.13), and (B.10) gives the result (B.11).
Now, using the result (B.11) in (A.9), we get

(B.14)

for any N, where

lj A* (a,a2)\O

(B.17) ((c) [W]O,2n (-nr’q(oO[w](O),Dq’r ()
rTq-"2n--

and Dr’q(o0 is a linear differential operator oforder r in x and q in x2 whose coefficients
depend on a, r, q.

Remark 1. As we will see, the differential operators Dr,q arise because an expan-
sion of F in (B.15) leads to the calculation of moments of &. These moments are then
identified with the derivatives of w.

where lj (lj,, lj,2). Thus, we need to consider the integral

(B.15) (2.)2 F(/1,12, ml, m2, T)&(m)dm, din2,

where A* (a, a2)\0. As T is a small parameter, we want to expand (B.15) in T (recall
that T h/27r). It is this expansion that, combined with the self-induction term, yields
the error expansion. Of course, the function F has a singularity, and so we must be
careful how wc do this.

FOURIER LATHCE SUM EXPANSION LEMMA. Suppose that w(x) is smooth and rapidly
decaying, and define a to be the aspect ratio of the gd a a/az. Then we obtain the
following expansion for the Fourier lattice sum (B.14):

(B.16) EV. Kw ---h-lJ (()[W]O,2n + O(h2n)
n--1
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Remark 2. Although the coefficients C(c)[W]o,2, depend on principle value lattice
sums, only the value of the second-order term (n 1) will change according to the
smoothing function. This term involves a lattice sum that is not absolutely summable
and thus its value will depend on how it is summed. For n > 1, there is no ambiguity in
how the sum is taken as the relevant lattice sums are absolutely convergent.

Remark 3. As a result of the special sensitivity of the second-order term, we will
discuss it in more detail in Appendix C. In particular, we will see how its value depends
on the type of smoothing. Of course, as the resulting expansion is independent of the
smoothing function, the self-induction term compensates for the dependence on the
smoothing function here. This is analogous to the undetermined constant of integration
in the analysis of Goodman, Hou, and Lowengrub_[16].

Remark 4. The symmetry of the coefficients C in a and r, q is a result of the rela-
tionship between F and Fz, i.e., Fz(l, lz, m, m, r) -F (12,11, 1,_ , ml, 7").

Remark 5. In the square grid case a 1, it can be shown that C(c)[w]o,, 0 for
n odd. Thus, but for the second-order term, expansion is in powers of ha. We do not
present this here.

Proof. We begin by examining F. Notice that F has a singular point at

Thus, since r is a small parameter, we can expand F away from the singular point (B.18)
in a series about r 0:

(B.19) r(t, l, m,m, r) 0F(/1, l, m, m, 0)7.
r--0

We define a box in m-space about the singular point (B.18) by

T T T T

Then, consider the integral (B.15):

(2r)2 o
le(/,/2, m, m2, 7")(m)dmldm2

-’ f F(ll,12, ml, m2, T)(m)dmldm2
(8.21) -(2r)2

-\B

=I+II.

Now, the expansion (B.19) of F can be used in I. We will show later that II is of arbi-
trarily high order in r (h/2r). Using the expansion, we write I as

(B.22) I
n[ (2r)2

Furthermore, we notice that O’F(l, 12, m, m2, 0) is separable. That is, in each compo-
nent of F, we can separate the and m dependence as follows:

i in 12)mm2(8.23) (27r)2 0’ F (l, 12, m, m2, 0) (2r)2 c’a(l, "
r.q-q=n



FAST HIGH-ORDER METHODS FOR THE VORTICITY EQUATIONS 1135

and

(B.24)

since F(li, 12, ml m2, z’) -Fx (li, 12, rex, m2, T).
Equations (B.23) and (B.24) give the form of the differential operator in (B.17). For

example, the first two terms are given by

(B.25) c1’ (1)

(B.26) c’1(1) (l -/2)2
and c’(1) (l +/22)2"

Now, we use the formulae (B.23), (B.24) in the expansion (B.22) for I to get

(B.27) mmff;(m)dm dm2

where j 1, 2 identifies the component. We want to identify the moments of & (in
(B.27)) with derivatives of. To do this however, we need to extend the region of inte-
gration to all R. We must also analyze the error in doing this. Write,

(B.28)

mira2
q^ (m)dmldm2

The error term (the second term of (B.28)) can be seen to be of arbitrary order since
1 E A*(al, c9.)\0. This is shown as follows: Since I&(m)l _< irlM for any M with Iml
sufficiently large (because w is smooth), we get

(B.29)
E " q" (m)dmldm2l < Iml iml.mlm2w c dm dm2

<_ ci is imi’-Mclmctm

<cTM_n/+i+ dffaldfft2
[(TTI "-/1)2 -- (T?2 "4-/2)2]
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by changing variables. Now, let us suppose that I (lx,12) A*(ax,a2)\0. Then, we
hcan choose 7-(= ) small enough

(B.30) T < 1/4 min(1/cx, 1/c),
so that there is no singularity in the integrand of (B.29), and obtain the bound

(B.3) < ,()’-
(t +t)-"

As this is true for any M, this term is of arbitrary order. Therefore, combining (B.27),
(B.28), (B.31), we get

(B.32) Ij y _acr.’q(l)il-r-q[0z0yW](0)q-0 -,=0

for any N and I A* (cex, cr2)\0. This takes care of the first term in (B.21).
It now remains to consider the second term.

i J/BF(lll2 mlm2 7")(m)dm.dm2.(s.33) = (e)
This term is also seen to be of arbitrary order.

Without loss of generality, we consider the case with F. We have

(B.34) Ill (2.)2 Fl (ll, 12, ml, m2, T)ff)(m)dmldm2.

By changing variables and using again that Ih(m)l _< inlM, for any M, we obtain

(8.35) ,IIl, < C_.T-2

r -7 [(T2--/2)2T -" (T1-’/1)2] -M2"T
Now, ill A* (c, c)\0 and T satisfies (B.30), then the only singularity of the integrand
is due to the term 1/(rh + the2), which is integrable. Consequently, we have

(2T)M-1(B.36) IIill <_ c
(Z -Z2)M/2’

and thus this term is also of arbitrary order.
Now, combining the results, (B.14), (B.21), (B.32), and (B.36), we get the result

(B.37)

/j A* (o1,c2)\0

for any N sufficiently large, and where m 1, 2 denotes the component.
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Finally, the n 0 term, all the terms even in n, and parts of the odd terms vanish
due to oddness of the summands in the lattice sum. (See (B.2_5), (B.26) for example.)
Therefore, identifying T h/27r and the surviving terms with C(a)[w] yields the result
(B.16), and thus completes the proof of the Fourier lattice sum expansion lemma. This
lemma, combined with the self-induction term, proves the result (A.6) and completes
the proof of the point vortex error expansion.

Appendix C. Calculating the Second-Order Coefficient. In this appendix, we derive
the expression in (2.8) for the second-order error coefficient C[w]j,2. Although the value
of the second-order term is independent of the choice of smoothing function used, the
ease with which it can be actually computed depends very much on this choice. The
higher-order coefficients present no such difficulty as their associated lattice sums con-
verge absolutely and can thus be calculated (if necessary) in a straightforward manner.

We begin with some notation. Define the lattice sum by
o

1
(C.1) S(c0 4 E [f(m; c)],

m--1

where

[(llm)2 + a212 + [1 + c2(l/m)2]2

and ’]’ denotes the trapezoidal sum(i.e., the endpoints are weighted by 1/2). The purpose
of this appendix is to prove the following result given in 2.

THEOREM. SECOND-ORDER ERROR COEFFICENT. For w(x) smooth and rapidly de-
caying, the second-order error coefficient can be given as

(C.3) C[wlj,9.h2 1
-4r(-wu(xj)C2(c),w(xj)C2(1/c))hxh2,

where h ch, h2 c2h, c is the grid aspect ratio c/c2, and

(C.4) C2(0 -7r4 arctan(1/a) S(a).
Remark 1. In the special case of a square grid c 1, we have S(1) 0 and the

second-order term then has the form

C[w]j,2h2 V+/-w(xj)hh2,
where V+/-w (-w,w).

Remark 2. In the analysis ofGoodman, Hou, and Lowengrub [16], it is essentiallythe
smoothing function that gives rise to the undetermined constant ofintegration appearing
in their second-order coefficient. We determine it explicitly.

Proof. Without loss of generality, we consider the ease x O. From (B.6), (B.9),
(B.14), (B.26), and (B.27) C[w]o,2 can be given as

(c.5)
hz

lim(Kw),(O)hlh2 V+/-w(O) ()
2

e----O
lim E l-l(2-1)e0 I114l(Sh* (c,cz)\O
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where I (/i, 12) and hi alh, h2 a2h.
The two terms to be considered are the self-induction term

(C.6) lira (Kto) (0)
---)0

and the lattice sum

(C.7) e-olim E (12 + 122)2
lEA* (ax,a2)\O

Setting e 0 in (C.7) gives a sum that is only conditionally convergent, and whose value
depends upon how it is summed. The specific summation rule is dictated by . Here,
we choose a sharp square cutoff. Let e and

(C.8a) ( 2_ff ) { l if [lx[ <
M

and ll2[
l

M
0 otherwise.

This in turn gives the Dirichlet kernel

1
sin (Mxlal

(C.8b) 6r (Zl, Z2) 71.--" Zl X2

Now, using (C.8a) in (C.7) gives the lattice sum

+M +M l a21aa(C.9) OtClCe2 lim E E (l + a2/)2’M--)oo
lx=--M

and using (C.8b) in (C.6) yields

(C.10)
lim

M--,oo

__lTr2 Miimo f/rt- K(x)to(x)sin(Mxl/cq)xl sin(Mz2/a2)x2
Thus, we need to determine (C.9) and (C.I0). We begin with the self-induction term
(C.10).

SELF-INDUCtION LEMMA. For to(x) smooth and rapidly decaying, the self-induction
term is given by

(C.11) M--,oolim(Kto)r (0) -tox. (0) arctan toXl(0) arctan(a)

Proof. Apply (A.19) with f Kito, where i 1, 2 denotes the component of K. In
light of (A.18), (A.20)-(A.22), and (A.28), it is clear that the proof reduces to evaluating

(C.12)

lim
M---)oo

lim
1

 -.oo  w(0)

RM
1 2

i:ii (CglXl, 02g2) sin(xl) sin(x2) dx2dxl,
Xl x2
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where Hi(x) xKi(x). Without loss of generality, take i 2. Then, (C.12) reducesto
(C.13)

lim (Kw)r (0) c# (0)
lim -[:- -[- z sin(z) sin(zl)

d:rdzi,

where a at/a2 is the grid aspect ratio. The term involving wx2 vanishes due to oddness
of the integrand in each coordinate direction. With some care, the inner integral can be
evaluated by contour integration. In particular, the regions of integration of both the
inner and outer integrals must be divided appropriately so that the contour integration
is justified. We do not present the details here. The K1 integral is evaluated similarly. It
now remains to consider the lattice sum (C.9). We obtain the following result.

LATTICE SUM LEMMA. The sum in (C.9), omitting the aaxa2 prefactor, is given by (i)

"t-M "kM l a2122 o
1

(C.14) S(c) lim M (12 + c2/22)2
4 y --f(m;

M-,oo
11=- 9.=--M m=l

rn
o

where

’ [ (k/m)2 a2 1- a2(k/m)2 ](C.15) f(m; + [1 +

where ,’ denotes the trapezoidal sum (i.e., the endpoints are weighted by 1/2). For m >> 1,
we have (ii)

(C.16)

1 a2-1 1 1 (a2-1)(aa-10a2+l) 1 ( 1 )/(m; a) g (1 + C2)2 TtZ2 30 (1 "[" 2)4 m4
]" 0

ProofofLemma. (i) Using the four-fold symmetry of the summand over quadrants,
we rewrite the sum (C.9) as

(C.17) S(a)= lim
M---),oo

M M

-b -bM 112 02122 lim 4" " 112 O21
(ll2 -- 02/22)2 M-,oo (ll2 + c2/22)2’

/1---- 12=--M /1"-0 12-’0
lo to

where -" denotes that terms with 11 0 or 12 0 are weighted by 1/2. Then, by summing
first out along the diagonal of the lattice, we get

(C.19) lim 4
1 , (k/m)2 01,2

M--’,oo -’ ((k/m)2 + 02)2
-["

m=l k=0

(1 ot2(k/m)2)2 ](1 + o2(k/m)2)2
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oo
1

(C.20) 4 ’’m,-"1
which gives the result (i).

The self-induction lemma and result (i) of the lattice sum lemma together give the
second-order error coefficient in (C.3) and (C.4), and completes the proof of the the-
orem. We now consider result (ii) of the lattice sum lemma, which gives the large m
asymptotics of f and leads to our rapid summation corollary.

The function f(m; a), (C.15), is the trapezoidal rule approximation of the integrals

1
X2 2 J01 1 C2x2

(C.21) (2
__

O2)2
dx + (1 + 2X2)2

dZ"

Thus, f(m; a) can be written as

2 2 f01 1 2X2

(C.22) f(m; 0) (2 _. cg2)2
dx + (1 -- cg22)2

dx + E1 (m; c) + E2(m;

where the errors E1 and E2 are given by

0’(k/m)2-a2 01(C.23) El(re;a)-- ((k/m)2 +o2)2

and

m

(C.24) E2(m; c) ly, 1 o2(k/m)2

jO
1

mk=0 (1 + o2(k/m)2)2

1 G2X2
(1 + Cg2X2)2

dx.

Now, by direct calculation,

X2 Cg2 01 1 a2x2
(C.25) (x2 + 2)2

dx + (1 + 2X2)2
dx O.

And, for m >> 1, the error terms can be found through the Euler-MacLaurin expansion.
This gives the result (ii).

We can now rapidly and accurately sum S(c) using the asymptotic form of f. In
particular, we obtain the following corollary.

RAPID SUMMATION COROLLARY. The sum S(a) can be rewritten so as to converge
like 0(1/m7) by using the expansion (ii) in thefollowing way:

(C.26) S(cO=

where

(s) E 1

r--1

s>l,

is the Riemann-Zeta function. In particular, ((3) 1.202056903159594 and ((5)
1.036927755143370.
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HYPERCUBE ALGORITHMS FOR DIRECT N-BODY SOLVERS FOR
DIFFERENT GRANUIARITIES*

JEAN-PHILIPPE BI:tUNETt, JILL P. MESII:tOVt, AND ALAN EDELMAN$

Abstract. Algorithms for the N-body problem are compared and contrasted, particularly those where N is
in the range forwhich direct methods outperform approximation methods. With fewer bodies than processors,
the so-called "replicated orrery" on a three-dimensional grid has been used successfully on the Connection
Machine CM-2 architecture. With more bodies, the "rotated and translated Gray codes" is an ideal direct
algorithm for machines such as the CM-2 in that it takes optimal advantage of the communications bandwidth
of the machine.

A classical Latin square can be used to abstractly denote any direct N-body calculation. Computational
windows superimposed on this square illustrate the granularity of the computation. This point of view natu-
rally illustrates a sequence of algorithms ranging along a granularity scale in the following order: "massively
parallel," "replicated orrery," "orrery," "rotated/translated Gray codes," and "serial."

Key words. N-body, hypercube, CM-2, parallel computing, Latin square, Gray code

AMS subject classifications. 70-80

1. Introduction. In a wide variety of applications areas, including astronomy [5],
[18], [29]; molecular dynamics [17], [27], [32], [33]; and fluid dynamics [16], [25], [30],
[31], a serious computational bottleneck occurs from the need to determine the mutual
interaction of N bodies. Directly computing the N2 pairwise interactions given by

Force(body i) E Force(body i due to body j)

on a conventional computer can take an unacceptably long amount of time for values of
N which are exactly in the range of interest for the application.

Approximation methods are one approach towards reducing computational com-
plexity. Examples of this are the particle/mesh [21], local correction [1], hierarchical [2],
[7], and multipole [15] methods. The structure of such algorithms has been investigated
by Katzenelson [24].

Another approach is to keep to the naive direct method, but to design algorithms
that take advantage of advanced computer architectures like the Connection Machine
CM-2. We have chosen to take this path and to explore only direct methods in this work.
Although this approach has asymptotically higher complexity, these algorithms remain
useful for two important reasons: 1) they are simpler to code and maintain thus min-
imizing the important commodity of programming effort, and 2) they give competitive
performance for a relevant range of N. Though the approximation algorithms must ul-
timately be advantageous for large values of N, for a number of problems of physical
interest, N is in the range where direct N-body algorithms are superior. See [30] for fur-
ther discussion of the advantages of a direct algorithm over an approximation algorithm.

The algorithms for direct N-body solvers that we will discuss in this paper are de-
signed for use on a parallel architecture with a hypercube network topology. In fact, we
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feel that hypercube architectures are ideally suited to the direct method. For nondirect
methods on the hypercube, see [4], [14], [19], and [34].

We focus on two different algorithms, butwe take a point ofview thatwe have not yet
seen in the literature: We show that the two algorithms fit along a continuous spectrum.
Perhaps we can make an analogy with the notion that X-rays and radio waves properly
fit along one axis. However, instead of using frequency, the important parameter here
is granularity measured by the ratio PIN.

For the case where the number of processors P satisfies N < P < Nz, we describe
an optimal mapping ofa family ofreplicated orredes onto a hypercube. For the case where
P < N, we present a multiwire all-to-all broadcast algorithm which utilizes "rotated
and translated Gray codes" to make optimal use of the communication bandwidth of the
hypercube. Thus, in this approach, the communication time ofthe algorithm is negligible
for large values of N.

Both ofthese algorithms have been implemented on the Connection Machine CM-2.
There are two programming models for the CM-2 and each algorithm lends itself more
naturally to one of them. The older model (which is becoming more and more obsolete)
is known as the "fieldwise model," while the more recent model is the "slicewise model."
From a conceptual point ofview, the value ofP is 32 times greater for the fieldwise model
than it is for the slicewise model. Both approaches, and thus both programming models,
were used for the N-body solver in the implementation of a random vortex method for
numerical simulation of fluid flow [30]; we will analyze the computational complexity of
each approach.

Section 2 discusses N-body problems in an abstract mathematical context. In 3
and 4 we present two concrete algorithms with complexity analyses: the replicated or-
rery and a multiwire algorithm. The CM-2 implementation of both algorithms is briefly
described in 5. A sample application is described in 6 and the performance of the
CM-2 implementation of both approaches is discussed.

2. Latin squares and N-body problems. Before we analyze in detail two particular
approaches to solving direct N-bodyproblems that have been successful, wewould like to
abstract out the important mathematical features ofan N-body computation on a parallel
machine. In particular, the two important questions are where (which processor?) and
when (which timestep?) does each interaction occur. By timestep we mean those taken
in calculating the forces for a given particle configuration rather than those taken to
move the particle positions.

Implicit in the knowledge of the "where and when" of the computation is the com-
munication that occurs. Since we know which data needs to be where at a particular
moment, the only degree of freedom might be how soon the data arrives at a particular
processor before a computation starts.

As a mathematical abstraction, we consider it enlightening to display the "where
and when" of an N-body computation on a Latin square. The basic idea is quite simple,
however, almost any N-body problem on any parallel machine can be defined as a Latin
square.

A Latin square is an N by N table of entries 1, 2,..., N with the property that each
number i appears exactly once in each column and once in each row. Perhaps the earliest
known reference is a puzzle requiring that the 16 lettered cards (A,K,Q,J) of an ordinary
52-card deck be arranged so that no letter appears twice in the same column or row nor
along a diagonal [13]. Classically, Latin squares have had many uses including the design
of experiments, displays of multiplication tables of finite groups, and other recreational
puzzles (see [9] and [13]). Their first systematic study was performed by Euler [13].
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As an example, Fig. 1 displays a Latin square of order 4. In the context of an N-body
computation, the entry a in row i and column j can symbolize a force law interaction of
body i with body j. Thus in Fig. 1, the first column depicts the interactions of body 1
with bodies 2, 3, 4, and 1, respectively. We remark that in practice, self-interactions
are usually omitted. Also in practice, symmetric interactions may be avoided, giving a
speedup of a factor at most equal to 2.

Body: 1234
2341
3 4 1 2
4 1 2 3
1 2 3 4

FIG. 1. A Latin square oforder 4. To indicate an N-body calculation, we let the entry in row and column
denote an interaction between that body and body j. A serial algorithm couldproceedfrom left to right andfrom
top to bottom along this square, one box at a time.

In the sections to follow, we study the five possibilities given in Fig. 2. Specifically,
the replicated orrery is described in detail in 3, while the rotated and translated Gray
codes are described in 4. Before we give the details of the algorithms, however, we can
already describe some necessary features based on the granularity alone.

Case I
Case II
Case III
Case IV
Case V

p=N2

N<P<N2

P=N
I<P<N
P=I

Massively parallel
Replicated orrery
Orrery
Rot/trans Gray codes
Serial

Example
P N O(Tcomm)

I1 1
8 4 N2/p + log(P/N)
4 4 N
2 4 N/logP
1 4 0

FIG. 2. Possible granularities (Examplefor N 4). The communications complexities are discussed in Sec-
Ntions 3 and 4.2. The actualcommunications complexity.forCaseIVis the orderof p log P P" The approximation

listed in the table breaks downfor P near N.

For each of the five. cases in Fig. 2, Fig. 3 exhibits the simultaneity of one parallel
computation when N 4. For clarity of exposition, we omit the entries of the square,
but instead superimpose a computational "window" upon the square. The size of this
window is exactly the number of processorS. In each window, there is one interaction for
each processor. The computation proceeds by sweeping the window across the square.
Of course, if the number of bodies is held constant, then the size of the window grows
with the number of processors, and the number of timesteps (equals the number ofwin-
dows needed to cover the square) decreases.

The two extremes are given by Case I, massively parallel, and Case V, serial, in Fig. 3.
In Case I, where P N9, there is only one window--all N-body computations occur in
parallel. On the other hand, in Case Vwhere P 1, the algorithm is serial and only one
interaction occurs in any given timestep. The processors are labeled p in the windows,
and the computation proceeds by shifting the windows and the corresponding processors
over the Latin square.

We now see that once the relationship between P and N is given, all that we need
to specify a direct N-body computation is (i) a choice of Latin square and (ii) a mapping
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:P 16 II :P 8 V:P=I

FIo. 3. Computational windows superimposed on the Latin square (N 4). The entries ofthe square are
omitted, while the processor numbers ]’or the first timestep of the computation are included. Later timesteps are
obtained by sweeping the window across the square, so as to completely cover the square.

from the processors to the window. We explore this in further detail in later sections, but
we can give an illustrative example as we do in Fig. 4. This figure illustrates an example
when N 8 and P 4. The square on the left is readily checked to be a Latin square.
The construction of the square is quite simple. We assume that there are two bodies
per node as illustrated on the two-dimensional hypercube in the figure. One copy of the
bodies remains static, while one circulates; the first body circulates counterclockwise,
while the second body circulates clockwise.

body
1 2 3 4 5 6 7 8 1,5 2,6

interacts with p
1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4
2 3 4 1 8 5 6 7
8 5 6 7 2 3 4 1
3 4 1 2 7 8 5 6
7 8 5 6 3 4 1 2
41 2 3 6 7 8 5
6 7 8 5 4 1 2 3

P2

P4 P3
4,8 3,7

Comp Window

qo-Dimensional Hypercube

FIG. 4. Latin square and computational windows.for an 8-bodyproblem with ]’ourprocessors. Each 1 x 4
rectangle denotes the four interactions of one timestep, one in each processor The enes of the Latin square
are obtained by circulating a dynamic copy of the first body counterclockwise, while circulating the second body
clockwise on the square. A static copy ofeach body remains in the processor. Communication is indicated by the
vertical space betweenpairs oflines. After thefirst circulation, body 1 can interact with bodies 2 and 8, while body
5 can also interact with bodies 2 and 8 withoutfurther communication. Thus a total offour windows canpass over
the square before another communication need occur

3. N _< P _< N2: Orreries and replicated orreries. One standard approach to N-
body solvers uses N processors connected as a ring. Processor i accumulates the forces
on body i. At each timestep, N of the pairwise interactions are computed, then the
appropriate data are passed around the ring so that in N steps all N2 interactions have
been computed and accumulated into the correct processor; see Fig. 5. This particular
parallel implementation of the N-body algorithm has been referred to as the "digital
orrery" [3], as the "systolic loop" [33], and as "systolic loop double" [27].

As a Latin square, this is the addition table of the Abelian .cyclic group of order N:
the square is circulant, and the (i, j)th entry is essentially i j modulo n. This case is
illustrated in Fig. 3 as Case III, which shows that one row of interactions is computed in
each timestep.
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occssors -Memory P1 P2

v v2

Vn-1 Vn Static

Fro. 5. Digital orrery: P N. Cycle through N shifts.

With more than N processors one can replicate the orrery, perform a different piece
of the computation on each Copy, and accumulate the summands for the forces at the
end [6]. For example, with 2N processors the computation takes place on two rings of
processors (see Fig. 6), each of which passes its data only N/2 times. More generally,
with MN processors we use M rings of N processors each. At each computation step
MN interactions are computed; N/M steps with cyclic message passing of the data are
required to compute the Nz interactions. Thus the arithmetic complexity of the algo-
rithm is O(N/M). By "arithmetic complexity," we mean the number of parallel numeri-
cal computations executed by the parallel algorithm. The time of execution of a parallel
algorithm is a linear combination of its arithmetic complexity and communication com-
plexity.

Processors

Memory

Vl v2
vn v2 +I Vn_ vn Static

v2 Vn v--"+1 Vn-1 Vn Dynamic

Processors

Memory Pn+l Pn+2 P2n-I P2n

Vn v..2 +1 Vn_ Vn Static

v
+2 n Vl

FIG. 6. Replicated oery: P 2N. Cycle through N/2 shifts.

An efficient processor topology comes from mapping the replicated orrery onto a
three-dimensional cube of processors as observed in [26]. We assume the cube is em-
bedded in a larger dimensional hypercube in such a way that we can distribute a value
to, or sum the contents of, M processors along an axis of the cube with O(log M) com-
munications [22].

To understand how that data mapping works, assume that the hypercube is config-
ured as an N/M by M by M cube (see Fig. 7). The data is initially resident on the front



1148 BRUNET, MESIROV, AND EDELMAN

face of the cube and is sent to the top of the cube. The data on the front face is spread
back, in logM time, along the /-dimension of the cube, and the data on top is spread
down along the z-dimension of the cube. The data is now distributed through the cube
so that each plane parallel to the zz-aKls contains a copy of the orrery. The computation
proceeds by computing a pairwise interaction and doing one-dimensional cyclic message
passing along the z-axis. This process is repeated N/M times until all N2 pairwise inter-
actions have been completed. Now the corresponding results for each individual body
are accumulated, in logM time, along the /-axis back to the front face of the cube.

circulate

M

v
2 VN/M

V V
(M-1).__..N +1 N
M

N number of bodies

M number of replications

P NM number of processors

FIG. 7. Cube data mapping.

In most cases we are restricted to M and N being powers of two. This ensures the
correct wraparound for cyclic message passing, and efficient logarithmic time spreading
and accumulating. Observe also that as the number of replications M increases from 1
to N, and thus the number of processors increases from N to N2, the cube grows out
from the z-axis and then projects onto the /z-plane. Thus, the dimensions of the cube
can be changed to accommodate a family of parallel N-body solvers where the number
of processors ranges from N to N. In particular, with MN processors, the solver runs
in O(N/M) + O(log M) time. Note that this gives the correct complexity bounds for the
extremes, i.e., O(N) for the case M 1, and O(1) + O(log N) when M N.

Since the number of processors P is usually fixed given some particular piece of
hardware, there is another useful way to view the complexity of the algorithm. Note
that P MN, thus, the complexity bound O(N/M) + log(M) becomes O(N/P) +
O(log(P/N)).
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We remark that the algorithms described above are essentially grid algorithms. Once
the data is set up, all communication is performed through cyclic message passing.
Though this is the easiest conceptually, there are other approaches that make far better
use of the hypercube bandwidth. In the next section, we describe a multiwire algorithm
that makes optimal use of the bandwidth when N > P or, to be more precise, when N
is a multiple of dP, where d is the dimension of the hypercube. There are other com-
munications primitives that make better use of the hypercube bandwidth in the orrery,
such as the "multinode broadcast under the MLA assumption" described in [8] and an
equivalent algorithm related to us by Ho [20]. We have chosen not to pursue this here.

Figure 8 depicts the Latin square for a replicated orrery case for N 8 and P 16.
Note how the cube unfolds onto the computational window.

boay
1 2 3 4 5 6 7 8

interacts with
1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4
2 3 4 1 6 7 8 5
6 7 8 5 2 3 4 1
3 4 1 2 7 8 5 6
7 8 5 6 3 4 1 2
4 1 2 3 8 5 6 7
8 5 6 7 4 1 2 3

G. 8. Latin squarefor replicated orrery, N 8, P 16.

4. P < N: Multiwire algorithm.

4.1. The approach. In the casewhere P < N the data mapping is much simpler. We
divide the N bodies evenly over the P 2a processors of a d-dimensional hypercube.
For simplicity, assume the number of bodies in each node NIP is an integer multiple
of d. To compute the N2 interactions, the data for each body must be transmitted to
all of the other processors. We want to do this using as much of the communications
bandwidth of the hypercube as possible. If the processors have enough memory, then
this transmission can be performed initially, and afterwards, all the arithmetic can be
performed locally. This type of communication in a hypercube has been called all-to-all
broadcasting [23] and multinode broadcast [8].

We do not follow this strategy exactly. We can interleave pieces of the computation
with the communications and have no need to store the data for all the bodies at each
node. Thus, we can use the idea of "rotated and translated Gray codes" described in [23].
Although this method has "limited potential for pipelining," it is just right for the N-body
problem. A Gray code is rotated to construct as many conflict-free paths as possible
leaving a node, visiting all others, and returning to its starting point. By translating the
starting point of each of these paths to every node of the hypercube, the data in each
node circulates to every other one in as short a time as possible.

More precisely, the rotated and translated Gray codes produce d2a timewise edge
disjoint Hamiltonian paths through the hypercube, d of them starting at each node. A
Hamiltonian path in a graph visits all the nodes in the graph only once. Timewise edge
disjoint means that, although the paths may share edges of the hypercube, no two paths
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traverse the same edge in the same direction on the same communication step. Conse-
quently, assuming bidirectionality, there is no contention for communication channels.
The data is circulated on these paths, but not retained, avoiding the memory waste. Fur-
thermore, from a programming point of view, this approach is very simple and one can
take advantage ofthe symmetry of the hypercube. The combination ofthe simplicity and
the optimal use of communication bandwidth makes this communication pattern one of
the fastest that a hypercube architecture can perform.

4.2. Complexity analysis. The complexity analysis of the algorithm is straightfor-
ward. The computation time, Tarith, scales like N2/2a, where N is the total number of
bodies and d is the dimension of the hypercube. The communication time, Tcomm, scales
like N[-] (2a 1); where [z] denotes the ceiling of z, i.e., the smallest integer greater
than or equal to z. Since there are N/24 bodies per node and d wires leaving each node,
the first factor in To,, represents the number of communication operations needed to
empty a node of data. The second factor is the length of the path through the hypercube
that the data must traverse.

Given a value of N such that N/24 >> d, Tco, is at first a linearly decreasing
function of d. Then, as the number of dimensions increases, the number of required
communication operations will eventually decrease to one and the second factor in the
expression of Tom starts to dominate. Because at least one such communication op-
eration must be performed, even if there are less than d data items at a node, we get, for
a fixed value of N,

lim Tcomm (d) -- 2d.
d----o

The function To, therefore exhibits a minimum that roughly occurs when the number
of bodies per node is equal to the size of the bandwidth d. As the number of bodies
per node decreases, one is making less and less effective use of the communications
bandwidth of the hypercube and Tomm becomes a more significant portion of the total
execution time. In fact, when N/2 < 1, i.e., the number of bodies is much smaller
thanthe number of processors, then the replicated orrery approach becomes more cost
effective. Note that in the boundary case N P, the total computational complexity
reduces to O(N) which agrees with the orrery algorithm.

4.3. Rotated and translated Gray codes. A d-dimensional hypercube is a graph with
24 nodes labeled by the d-bit binary representation of the integers 0 to 24 1. Each bit in
the d-bit representation is associated with a different dimension of the cube. There is an
edge between two nodes and j in the hypercube if and only if their binary representa-
tions differ in only one bit. We can think of the edges as traversing different dimensions
of the hypercube.

A Gray code is a circuit of all binary d-tuples, such that only one coordinate position
changes at each step. Thus, a Gray code represents a Hamiltonian path on the hyper-
cube. There are many ways to construct Gray codes, but the most famous is the binary
reflected Gray code [28]. To simplify the terminology, we will refer to this code as the
Gray code. We define the transition sequence [28] corresponding to a Gray code as the
list of positions that change at each step of the code or the list of dimensions traversed
on the hypercube at each step of the circuit. Given the Gray code beginning at 0, we
can "translate" it to node i by taking the exclusive or of i with the d-tuples in the original
code. The transition sequence of the translated Gray code is identical to the original. In
Fig. 9, we show the binary reflected Gray code for d 3, the corresponding transition



ALGORITHMS FOR DIRECT N-BODY SOLVERS 1151

sequence, the associated Hamiltonian path on the cube, and the translated code starting
at node 5 101.

010 011

001 > 1 000:"011
010 > 0

110 > 2 110
Iii

> 0 111

I01 > i

I00 > 0

100 101

010 011

o > o
i00 > 1 000 ’^^1
iii > 0

> 2 110011 > 0 111010
ooo > -001 > 0

100 101

FIO. 9. On the left is the binary reflected Gray code, the corresponding transition sequence, and the associated
Hamiltonianpath originating at node 0 on a three-dimensional cube. On the right, the same transition sequence is
used to generate a translated code to node 101 5 and the associated Hamiltonian path.

Given the Gray code beginning at 0, we can "rotate" it by performing circular shifts
of the bits in the original code. In the tables below, we list the three rotated Gray codes
and the corresponding transition sequences when d 3. Note that generally, the tran-
sition sequence of the rotated code i is obtained by adding i modulo d to the transition
sequence of the binary reflected Gray code.

Rotated Gray Codes
Code 0 000 001 011 010 110 111 101 100
Code 000 010 110 100 101 111 011 001
Code 2 000 100 101 001 011 111 110 010

Transition Sequences
Code 0 0 1 0 2 0 1 0

Code 1 1 2 1 0 1 2 1

Code 2 2 0 2 1 2 0 2

By taking all of the 2a possible translations of the d rotated Gray codes beginning
at 0, we can generate a set H of d2a Hamiltonian paths on the hypercube. This set H is
more elegantly described as the paths generated by applying a group of d2a symmetries
(rotations and translations) of the hypercube to the binary reflected Gray code starting
from node 0. These symmetries are the subgroup of all thehypercube symmetries that
rotate the dimension numbers modulo d. It is straightforward to verify that two distinct
symmetries of a hypercube transform a directed edge into two distinct directed edges.
It follows that the collection of paths H have the nice property of being timewise edge
disjoint: i.e., if j e 1, 2,..., 2a 1, then there is no overlap among the jth edges of
the paths in H. This implies that if we have d packets of information in each node of
the hypercube, we can circulate the data, one packet to a Hamiltonian path, in 2a

1 communication steps. Furthermore, we can perform the arithmetic on the data in
between each communication step eliminating the need for data storage.

The use of the binary reflected Gray code is merely for convenience of implementation; any other Hamil-
tonian path will suffice.
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5. CM-2 implementations.

5.1. The Connection Machine architecture. In this sectionwe describe the basic de-
sign of the Connection Machine CM-2 so as to draw the distinction between the slicewise
and fieldwise programming models. The Connection Machine CM-2 is composed of a
microsequencer and a maximum of 65,536 single-bit processing elements. The proces-
sors run in SIMD (single instruction multiple data) mode, with the instruction stream
broadcast by the sequencer. The sequencer is controlled by an external front-end ma-
chine, usually a SUN(R).2

Each processor can have up to 1 Megabit of local RAM, with a single high-speed
floating point unit for every 32 processors. There are 16 processors on a CM-2 chip and
the chips are connected in a boolean d-cube topology, e.g., a 12-cube for a 64Kprocessor
machine.

The CM-2 supports three basic communication mechanisms. There is general
pointer-based communication, known as the router, by which data can be exchanged be-
tween the memories of different processors. We refer to this type of communication as a
send. The other two mechanisms involve direct control of the hypercube network by the
user known as cube swaps and NEWS. These are used for more structured communica-
tion patterns. For example, the machine can be efficiently configured as a k-dimensional
grid, which is automatically superimposed by the system software onto the boolean cube
using a multidimensional Gray code mapping. Motion of the data from all processors to
their nearest grid neighbors is known as a NEWS communication. These communica-
tions patterns are periodic in each dimension of the grid. Particularly useful primitives
available on the Connection Machine computer are scans, parallel prefix operations [10]
that combine computations and communications. In logarithmic time, these operators
allow one to spread data through the CM-2, as well as accumulate summands (plus-scan)
from each processor.

There are two programming models for the CM-2. In the fieldwise model, the stor-
age of a 32-bit word would be allocated in 32 consecutive bits of a physical processor’s
memory. However, when performing floating-point computations, better performance
is usually obtained by viewing the processors in a slicewise configuration. That is, we con-
sider processing nodes on the machine to be the ensemble of a floating-point unit and the
memory of the 32 associated physical processors of the CM-2. In this approach, a word
is stored in 32-bit slices across the memories of the 32 processors in the node, i.e., 1-bit
per processor. From this viewpoint, a 64K processor CM-2 becomes 2048 floating-point
nodes, connected as an l1-dimensional hypercube with two bidirectional communica-
tion channels between connected nodes instead of one. In particular, this means that
the communication complexity bound for the multiwire algorithm becomes

since 2d wires leave each node. Moreover, this model of the machine meshes efficiently
with the way in which the floating-point units actually access data from their associated
processors, i.e., in one cycle a 32-bit slice across processors is read into the floating-point
unit. We should note that it is possible, by transposing data, to go back and forth between
the slicewise and fieldwise models of the machine.

2SUN is a trademark of Sun Microsystems, Inc.
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5.2. Implementation of the replicated orrery. Using the fieldwise programming
model for the CM-2, we typically have N <_ P <_ N2, thus the replicated orrery N-body
algorithm is most appropriate. We describe the details of the implementation here.

In configuring the CM-2 as k-dimensional grids, we are required to restrict the
lengths in each dimension to a power of 2. Thus, the data mapping of the replicated
orrery onto a three-dimensional grid proceeds as follows. Pick n such that 2n is the first
power of 2 greater than or equal to N. Thenwe will actually use an orrery of size 2’ with
only N valid entries. We are assuming that N _< P _< N2, so we can write P 2’+m,
where m <_ n. We will want to replicate the orrery M 2" times. We configure a 2n+m

processor CM-2 as an 2’-’ by 2" by 2" cube (N/M by M by M). This configuration
allows us to use versions of the parallel prefix scan operations to spread or accumulate
data along any of the three coordinate directions in logarithmic time, and ensures the
correct wraparound for grid communications. The cube mapping, complete with sends,
spreads, and accumulates, is drawn in Fig. 7.

There will be two copies of the data for each body; one dynamic and one static. The
static data is initially resident on the front face ofthe cube. It is sent to the top ofthe cube
by a low density send. The data on the front face is spread back along the v-dimension
of the cube, and the data on top is spread down along the z-dimension of the cube.
The data is now distributed through the cube so that each plane parallel to the zz-ards
contains a copy of the orrery. The computation now proceeds by computing a pairwise
interaction according to the relevant force law and doing a one-dimensional wraparound
NEWS communication along the z-axis. This process is repeated 2’-’ times until all
N pairwise interactions have been completed. Now the contributing forces for each
individual body are accumulated by doing a plus-scan along the v-axis back to the front
face of the cube.

Because of the power of 2 restrictions noted above, the time required to do the
computation for any value of N between 2’ and 2’+ 1 is the same. As N increases
above the next power of 2, we can reconfigure the grid to the appropriate size.

5.3. Implementation of the mtdtiwire algorithm. Using the slicewise model of the
CM-2, we are generally in the case where P < N, and so we use the multiwire algorithm
described above.

If we have d words at every node, and if we wish to circulate the data using the
Hamiltonian paths described in the 3, one might expect that we would either need to
attach some labeling information to be transmitted with the data or else use a look-up
table that specifies the dimension over which data needs to be sent. Neither of these
operations is without cost. In our implementation, as we shall now describe, we avoid
both of these types of methods. In fact, the information in the transition sequence for
the binary reflected Gray code is all that is needed.

Using the slicewise model, the CM-2 architecture allows for the loading of as many as
2d words to be sent over the d dimensions simultaneously, two words in each dimension.
Typically, one loads one set of d words for the d dimensions followed by another set
of d words. For simplicity, we will concentrate on one set with the understanding that
the other set follows exactly the same pattern. Another important feature of the CM-2
architecture is that it is particularly efficient to load consecutive words, or more generally,
words with a constant stride, to be sent over consecutive dimensions.

To illustrate how the CM-2 works, let us first assume that we only have one word
in each processor and each of these words will follow the Hamiltonian path specified by
the transition sequence of the Gray code: 9 {0, 1, 0, 2, 0, 1,...}. Furthermore, assume
we have only one memory location (location 0) in each node where the word is stored.
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Then Algorithm 1 is simply:

Fork 1,2,...,2a- 1

In each node, the data at location 0 is

1. Loaded to be sent over dimension g.
2. Transmitted.
3. Stored in location 0.

Now, if we have d words in each node at memory locations 0 through d 1, we can
quite readily ensure that the word at location j in each node follows the jth transition
sequence. The method is to Store. this word at location j as it passes through each node
like a traveler who prefers the same hotel in each city. Then, at step k, we send the
data in each node at location j over dimension g + j (rood d). To take advantage of
the Connection Machine’s ability to load consecutive words, we in fact use Algorithm 2
below.

Fork- 1,2,...,2a- 1

In each node
1. Data at locations 0 through el- gk I is loaded to

be sent over dimensions g through d 1, respectively.
2. Data at location d- g through d 1 is loaded to

be sent over dimensions 0 through gk 1, respectively.
3. Data is transmitted.

4. Data received over dimensions g through d- I is

stored at locations 0 through d g 1, respectively.
5. Data received over dimensions 0 through gk i is

stored at locations d g through d 1, respectively.

Note that steps 2 and 5 are vacuous if gk 0, which is half of the time. The actual
code to perform this operation is not much longer than the pseudocode above.

In the real algorithm, we assume there is a multiple of 2d bodies in each node, and
each body may contain more than one word of information. In the example described
in the next section, there are two words of coordinate information and also a coefficient,
giving three words for each body. Since we can transmit 2d words simultaneously, we
loop over all the data until it is all transmitted. After the data is transmitted, we perform
a computation such as the one described in the next section, and then we repeat for
k 1,2,...,2a- 1.

The ideas we presented in this section have now been coded up as a Connection
Machine Scientific Software Library Primitive. See [12] for details.

6. A sample application.

6.1. Description. As an application example, we computed the velocities of a col-
lection of interacting point vortices in two dimensions. This N-body problem is at the
heart of the vortex method to solve the Navier-Stokes equation for incompressible vis-
cous flows [30]. ALagrangian perspective ofthe vorticity-stream function formulation of
the Navier-Stokes equation leads to the introduction of discrete vortex elements that in-
teract according to a Biot-Savart-type force law. To avoid potential numerical instability
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caused by very close encounters of particles, finite-size vortex elements should be used.
However, in these timing runs, we have considered the interaction of point vortices.

In two dimensions, the (u, v) velocity components of a point vortex at position (z, )
are given by the following formulae:

c(j)Ay(i,j)
i= 1 N,

1
zx (i,j) ""’

j=l

v(i)
--1 c(j)Ax(i,j)

i= 1, N,-r Ar(i, j)2 ""’
j=l

with

j) au(i, j) u(j) u(i),

Ar(i, j)2 Ax(i, j)2 + Ay(i, j)2, and c(j) circulation of point vortex j.

6.2. Timings and analysis. We performed several calculations for both the repli-
cated orrery and the multiwire algorithm with a varying number of particles on various
machine sizes. Timing results, in seconds, are shown in the .Tables I and 2 below. Figure
10 is a graph of the performance given in those tables for the two algorithms on an 8K
processor CM-2. Both time and N, the number of bodies, are graphed using a logarith-
mic scale. We have made the piecewise constant performance behavior of the replicated
orrery algorithm clearly visible. Timings for the replicated orrery algorithm were run
on 4K and 8K processor configurations. The multiwire timings were obtained on CM-2
configurations with 2a+5 processors for d 4, 5, 7, 8, 9, i.e., with 2a floating point nodes.
Typically, 14,000 vortices interact in 2 seconds on a 512 floating-point node machine (16K
processors) using the multiwire algorithm, and 17 seconds on an 8K processor machine
using the replicated orrery. Counting the divide operation as one operation, the execu-
tion rate of the multiwire algorithm is about 5.2 Gflops on a fully configured CM-2 (2048
nodes and 64K processors).

It is difficult to compare timings of these two algorithms because they use different
models of the machine (slicewise vs. fieldwise). For a crude approximation, on a fixed
CM-2 configuration, one can compare the timing for N bodies using the multiwire al-
gorithm to the timing for the next largest power of 2 bodies using the replicated orrery.
Doing this, for an equivalent number of bodies, the multiwire algorithm outperforms
the replicated orrery by a factor of 3 to 5. Some loss in performance of the replicated
orrery algorithm is due to the necessity of transposing fieldwise data back and forth for
the floating-point units. There is an additional loss due to the fact that the CM-2 field-
wise model forces the sizes in the replicated orrery to be powers of 2. Thus, one does as
much arithmetic as if N were rounded up to the next power of 2.

Keeping the number of bodies constant, the time to compute the velocity compo-
nents appears inversely proportional to the number of floating-point nodes of the hy-
percube. This is the kind of behavior we expect given the complexity analysis of both
algorithms. Note that, for a fixed number of processors, the proportion of time spent
in the communications for the replicated orrery decreases very slowly as the number of

aon the 32-bit floating-point unit of the CM-2, a divide operation requires the explicit implementation
of two Newton-Raphson iterations of the initial value which is provided by an internal look-up table. This
amounts to a total of six atomic operations that we count as one.
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TABLE 1

Processors
4K

8K

Replicated orrery
Bodies TtotaZ Tcom.
1024 .15 40%
2048 .6 30%
4096 2.5 30%
8192 8.5 24%
16384 30 20%
1024 .08 44%
2048 .3 30%
4096 1.3 28%
8192 5.1 29%
16384 16.7 24%

TABLE 2

Multiwire Algorithm
Processors Bodies Ttota Tcom"
512 (d 4) 1792 1.0 4’%

3584 4.0 2%
1K (d 5) 1792 .52 7%

3584 2.0 4%
7168 7.8 2%
14336 30.8 1%

4K (d 7) 1792 .16 i5%
3584 .54 9%
7168 2.0 5%
14336 7.8 3%

8K (d 8) 1792 .11 28%
3584 .3 10%
7168 1.07 6%
14336 4.04 3%

16K (d 9) 3584 .2 50%
7168 .6 16%
14336 2.1 9%

bodies increases. In the multiwire algorithm the proportion of communication time is
much smaller and the decrease is more rapid. We get a more accurate picture ofwhat is
going on in the multiwire algorithm from Fig. 11 which plots the actual speedup of the
implementation against the optimal speedup of 2a (the number of processors). We cal-
culated the speedup by taking the ratio of Tarith times the number of processors and the
total execution time of the calculation. Note that again the curves behave as predicted
by the complexity analysis. For a fixed hypercube dimension, as the number of bodies
increases the speedup approaches optimality. In particular, over the range of test cases
we ran, To varies from a few percent to fifty percent of the total execution time as
the number of bodies approaches the number of processors.

Acknowledgments. We would like to thank Washington Taylor for his help in the
first implementation of the replicated orrery and Adam Greenberg for running a set of
timings of the replicated orrery for us.
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FIG. 10. Comparison ofreplicated orrery and multiwire orrery timings on an 8Kprocessor CM-2. Both time
and the number ofbodies N are graphed on a log scale.
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FIG. 11. Speedup on the CM-2 for the direct interaction of N bodies in two dimensions, with
N =1792, 3584, 7168, 14,336.
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ANALYSIS OF THE MULTIGRID FMV CYCLE
ON LARGE-SCALE PARALLEL MACHINES*
RAY S. TUMINAROt Am) DAVID E. WOMBLEt

Abstract. On serial computers it is well known that the multigrid FMV cycle is preferable to the V cycle
both asymptotically and in practical use over a wide range of applications. However, on massively parallel
machines, the parallel efficiency of the FMV (full multigrid V cycle) scheme is noticeably lower than that of
the V cycle due to a large percentage oftime spent on coarse grids. Thus the question arises: are the additional
coarse grid computations within the FMV cycle warranted on massively parallel machines? To answer this, a
number of issues are addressed regarding parallel FMV cycles: what efficiencies can be achieved; how do
these compare with V cycle efficiencies; are FMV cycles still preferable to V cycles in a massively parallel
environment?

A model is used to analyze the efficiency of both FMV and V cycles as a function of relaxation efficiency.
Using this model, the standard FMV grid-switching criterion is modified to incorporate the efficiency of the
coarse grid processing. Numerical results obtained from a multigrid implementation on a 1024-processor
nCUBE 2 are used in conjunction with the model to quantify the performance and efficiency of the FMV
cycle. Finally, comments are made regarding limitations of parallel processors based on FMV efficiencies.

Key words, parallel computing, multigrid, FMV cycle

AMS subject classifications. 65Y05, 65M55

1. Introduction. Multigrid algorithms are used within a variety of scientific disci-
plines and are among the fastest iterative methods for many problems of practical inter-
est. Unlike conventional schemes, multigrid methods use a hierarchy of coarse meshes
to accelerate convergence on the finest mesh, Depending on the order and frequency of
these coarse grid computations, different multigrid variations are possible (e.g., V cycle,
FMV cycle, W cycle, F cycle). While tradeoffs between these variations have been stud-
ied on serial computers, far less is known on parallel machines. For the most part, Only
the parallel V cycle has been studied extensively (see, [2], [4]-[6], and [8]-[13]). Given
that the FMV cycle (full multigrid V cycle) is usually faster than the V cycle on serial
computers, we feel it is appropriate to contrast the parallel performance of the FMV
and V cycle iterations.

The key tradeoffbetweenV andFMVcycles lies in the choice of initial guess. Specif-
ically, the standard V cycle begins the computation on the finest grid using an arbitrary
initial guess. The FMV cycle, on the other hand, starts with the coarsest grid, which is
used to compute a good initial approximation on the finest grid. Thus, a greater percent-
age of time is spent on coarse grid computations (and hence less time on the fine grid)
within the FMV iteration. Since coarse grid processing is inexpensive on serial com-
puters, the FMV approach is usually very beneficial. However, on massively parallel
computers the situation can be quite different. In particular, it is much more difficult to
efficiently parallelize coarse grid computations due to the fact that there is less paralleliz-
able work. Consequently, the cost differential between fine and coarse grid processing
may be so small that the overall execution time of a simple FMV cycle is not necessarily
better than that of the V cycle.
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In this paper, we analyze the FMV cycle on massively parallel computers. The pur-
pose of this analysis is to quantify the performance and efficiency of an FMV iteration
as a function of the relaxation efficiency. That is, how much efficiency (from a parallel
computing standpoint) is lost due to the heavy use of coarse grids in the FMV cycle?
To answer this, we review the grid switching criterion within FMV cycles. This crite-
rion determines when the coarse grid approximation is interpolated for use as an initial
guess on the next finest grid. The switching criterion is a function of computation times
for fine and coarse grid iterations. Since these times depend on parallel efficiency, we
modify the switching criterion to incorporate parallel efficiency. A model of the FMV
cycle as a function of relaxation operations is developed. We compare the V and FMV
cycles using this model and numerical results obtained from a multigrid implementation
on a 1024-processor nCUBE 2. Based on this analysis, conclusions are drawn about the
merits of the parallel FMV cycle as well as the limitations of parallel processors.

2. The FMV cycle. We begin with a brief description of the V and FMV cycles. It
is assumed that the reader is already familiar with the multigrid method (see [3] for
introductory material).

Consider the discrete problems

Aiui fi,

where A is an n x n matrix corresponding to the discretization of a partial differential
equation (PDE) problem on grid i with mesh spacing h 2-i, and fi and ui are n-
vectors. One iteration of a multigrid V cycle can be written as follows:

ALGORITHM 1. ui MV (ui, f).
1. Relax vx times on Au f with initial guess
2. If > O, f_ I- (f Au) /* I-X: projection from to

_
*/

u_

Ui--1 -- MV (ui-, fi--1)
ui ui / I_ ui_ /* I_: interpolation from Gi_ to Gi */

Endif
3. Relax 2 times on Aui fi with initial guess u.

The V cycle procedure starts with an initial guess and uses relaxation iterations on a
series of coarser and coarser grids to improve the guess. To enhance the V cycle, an
initial approximation can be obtained by first "solving" the PDE problem on a coarser
grid using the multigrid procedure. This leads to the FMV cycle written recursively as
follows:

ALGORITHM 2. ui FMV (fi).
1. Ifi > 0, fi-1 --I-lfi

ui- +- FMV (fi_
u +- Iii_lUi_l

Endif
2. ui -- MV (ui, fi) rli times,

where the parameter r/ determines how many V cycles are performed on level i.
On serial machines, the FMV cycle is faster than the V cycle both asymptotically and

in practical use. In particular, it is possible to show that the FMV cycle requires O(N)
operations on a serial computer compared to O(Nlog N) operations for the V cycle
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where N is the number of grid points on the fine grid. However, on parallel machines
the relative performance of the two schemes is not as clear. In particular, multigrid
methods are parallelized by performing computations within a grid in parallel but still
processing each grid in the hierarchy in sequence. Therefore, the parallel efficiency on
each individual grid needs to be considered. Unfortunately, when computing on coarse
grids, manyprocessors are inactive due to the lack ofcomputationalwork. Consequently,
the FMV iteration (which uses coarse grids heavily) makes significantly less efficient use
of parallel processors than the V cycle. Thus, even though the FMV cycle is superior
on serial machines, parallel V and FMV cycles require the same number of operations
asymptotically, O(logz N), on a parallel machine with N processors. The remainder
of this paper explores the relationship between the two cycling strategies on parallel
machines.

3. Switching criteria. We begin our discussion of the parallel FMV process by con-
sidering the proper choice of the Oi’s. Specifically, we wish to minimize the overall run
time in the FMV process. To do this, we balance the time saved on a fine grid (due to a
better initial guess) versus the time required to produce an approximation on the coarser
grid. Thus, depends on the run times required for V cycles at levels i and i 1. For a
serial computer, the ratio of these times is fixed. However, for a parallel computer, it is
necessary to consider the efficiency of the computer which, in turn, depends on machine
parameters and grid size. The basic idea is given in [1] for serial computations. Here,
we generalize the arguments to include parallel processors.

To obtain a grid switching criterion, it is useful to first develop an expression relating
the errors on different meshes. In particular,

(1) u(O ) + +
where

u(7) exact PDE solution evaluated on

ui exact discrete solution on grid i,

2 current numerical approximation on 7,

E u(7) u (truncation error),

e u i (algebraic error).

Ifwe assume that the approximation on i-1 is interpolated such that the interpolation
errors are negligible (i.e., sufficiently high order), a simple expression relating algebraic
and truncation errors can be derived. Specifically, we use (1) on two adjacent grids to
obtain

(2) 0 -Ei,ei I_lei_l -1

where 0 denotes an initial approximation obtained by interpolating the current solution
from the previous grid, denotes the final approximation which is to be interpolated to
the next grid, and I_ denotes a suitably high-order interpolation operator from i-1
to . In the remainder of this section we omit the interpolation operator. However, it is

1This operation count corresponds to obtaining a solution whose accuracy is approximately the same mag-
nitude as the discretization error. It is assumed that the V cycle convergence rate is independent of the mesh
spacing. This is true when multigrid methods are applied to many elliptic problems.
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understood that interpolation takes place whenever two quantities defined on different
grids are combined.

Since the goal is to minimize work, we switch from

_
to 7 when the greater error

reduction associated with a V cycle on 7 outweighs the increased cost of operating on
i (see the Appendix for details). This occurs when

0(3) lie, II ,,p II ,-x II,

where

,,(v)
i,p-- Ti-l,p(V)

and Ti,r,(V is the V cycle execution time starting on Gi using p processors. Combining
(2) and (3) and assuming that the local truncation errors satisfy

(4) Ei ’ 2-qEi_l

for a qth-order discretization of a PDE, we obtain

(5) ,,e,*_x,[<_ (1-2-q)i,p- 1 IIE-xll.

This expression can be used for determining convergence. For now, we use (5) to obtain
the required algebraic error reduction on 7- so that (3) is satisfied. In particular, (3),
(4), and (5) on Ti-z yield

If, in (5) and (6) we assume equality, the necessary error reduction condition follows

le,*-l’10 " (i-l’p--1) 2-q

lei-111 i,p 1 i--l,p

r-l,(S)
_

(7) ,(S)

S-l,(S)

where

,,(s) ,,(v) ,_x,(v)

is the time for operations associated with 7 and

,,(s) ,(s)

is the efficiency of the operations corresponding to T,,(S). Since the ratio of the
smoother times is representative of the ratio beeen operations on and _, we

2We must assume equali to aunt for the worst-case situation and arantee that the final eor is
sufficiently small.
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take -,(S) to be the time required for smoothing on 7. Thus, the formula states that
the switching ofgrids is determined by the ratio ofthe relaxation time on {7 and i-. No
other operations need be considered. Note that in the serial computing case (i.e., p 1),
the ratio between the smoother times at two levels is usually 2a (where d is the dimen-
sion of the problem) giving an error reduction criterion of 2--a which is consistent with
[1]. Furthermore, in the case ofone point per processor and negligible communication
costs, we have 7"i-l,p(S) - 7"i,p(S) yielding a reduced switching criterion of 2-q. Thus,
the net effect of the new switching criterion is to shift more of the computation away
from the coarser grids where the parallel efficiency is low to the finer grids where the
parallel efficiency is higher.

4. Experimental results. Aparallel multigrid algorithmwas implemented on a 1024
processor nCUBE 2 system. On each level the algorithm uses one red-black Gauss-
Seidel iteration as a smoother. Bilinear interpolation and full weighted restriction are
used for grid transfer operators within the V cycle. Bicubic interpolation is used between
grids in the FMVprocess (i.e., interpolation errors can be ignored in the analysis). Paral-
lelization is obtained by decomposing the problem spatially in that each processor main-
tains a region of the domain. On coarse grids, it is possible that some processors may
contain no points within their subdomain. In this case, processors without grid points
perform redundant work in parallel to the useful work proceeding on other processors.

The algorithm is applied to a two-dimensional central difference approximation of
a model anisotropic problem

defined on the unit square with Dirichlet boundary conditions, 7 .18, and suitable
right-hand side. Three cases are considered here.

V cycle. [-log2 N/log2/3] V cycle iterations are performed where/3 is the V
cycle convergence rate. This corresponds to the number of iterations required to reduce
errors to level of truncation error assuming that the initial guess on the fine grid satisfies:

Ilell 1 and IIEII h, where h is the mesh.spacing./3 is .77 for our experiments.3

FMVS cycle. An FMV cycle is performed using the standard grid switching crite-
rion. That is, the error is reduced by a factor of 16 on the coarse grids. This corresponds
to [-4/logz/3] V cycles on each of the coarse grids before interpolation to the next
grid. On the finest grid, (6) is used (with p 1) to determine the number of iterations
required to reduce the algebraic error below the level of truncation error. This corre-
sponds to [-2/logz/3] iterations on the finest grid. Note that the number of iterations
is always increased to an integer value.

FMVP cycle. An FMV is performed using the parallel grid switching criterion.
The ratio of the smoother times in (7) is estimated using a timing model (see (12)). On
the finest level (6) is used to determine the final number of iterations. For a 64 x 64
grid on 1024 processors, the following number ofV cycles were performed on each level
starting from the second coarsest grid and ending with the finest grid: 5, 6, 6, 4, and 10.
This corresponds to less work on the coarse grid and more work on the fine grid when
compared to the FMVS cycle which performs the following V cycles: 11, 11, 11, 11,
and 6.

3Experiments were performed with a somewhat poorV cycle convergence rate so that the effects ofround-
ing the grid switching criterion (e.g., when the switching criterion determines that 1.8 V cycles is optimal, we
perform 2 V cycles) would be minimal. However, 7 was not chosen so small as to make the V cycle with point
smoothing a bad choice of algorithm.
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In Tables 1 and 2, we compare the total run times and efficiencies4 for the V, FMVS,
and FMVP schemes on both a 64 x 64 grid and a 1024 x 1024 grid. For the larger
problem, the relative performance is similar to the serial computing case. That is, both
FMV schemes outperform the V cycle method by a substantial margin despite the fact
that the overall FMV etticiencies are not good (even for the large problem). That is, the
heavy use of coarse grids results in fairly low FMV efticiencies. On the smaller grid the
situation is much worse. In particular, the time differential between the the V cycle and
FMV cycles is not large and the overall efficiencies are extremely low. In other words,
when efficiencies are low, it is not clear if the FMVS iteration is superior to the V cycle.
In the remainder of this paper, the relationship between V and FMV cycles is explored
in more detail.

TABLE 1
Execution times (in secs. and efficiencies (shown in parentheses) on the 64 x 64problem.

Cycie\procs 1 4 16 64 256 i024
V ’22.8 (1.0) 7.2 (179)’" 2.7 (153) 1’.4 (.25)" L1 (.08)’ i.0 ’(.02)
FMVS 8.5 (1.0) 3.1 (.69) 1.5 (.35) 1.1 (.12) 0.98 (.03) 0.98 (.008)
FMVP ,8.5 (1.0) 3.1,,(.69) 1.4 (.38) 1.0 (.13) ,,.90 (.04) 70 (.01)

TABLE 2
Execution times (in secs.) and efficiency (shown inparentheses) on the 1024 x 1024problem.

,Cycle,pr0cs 64 256 1024
v 15i.8 (1.0) 42.2(.90) i3.6 (.70)
FMVS

...FM.VF
35.3 (1.0) 11.5 (.77) 5.2 (.42)
35.3 (1.0) 11.1 (.80) ,,4.7(.47),

5. Execution model. We can express the execution time of V and FMV cycles as a
function of the time on each level. For the V cycle we have

(9) -r,r,(V -r.,p(S).
,i=O

Similarly, the FMV cycle can be expressed as

(10) ’i,v(F) Z r/j-rj,p(V).
j=O

Note that when Oj 1, we have the same relation between FMV and V cycles as we
have between the V cycle and the smoother. This will be discussed in more detail in the
next section. Using the following definition of efficiency

serial time
p time using p processors’

we can obtain expressions relating the efficiency of the smoother, V cycle, and FMV
cycle (similar to those in [13]). In particular, we have

4Etticiencies are calculated based on the execution time on the smallest number ofprocessors used for the
problem.
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2d(l+l) 1

(24 1) 2a’=o ,,,(S)

i=o m
i=o ,,(v)

and for r/ r5 and large l, we get

2d(/+l) 1

(2d 1)2 q--i+)2d(,-)=0 ,,(S)

Note that the overall efficiencies are just weighted harmonic averages of the efficiencies
of the smoother. Since the larger weights are applied to the fine grid efliciencies, we can
conclude that the efficiencies of the fine grid smoother dominate the overall efficiency.
However, the fine grid weights for the FMV cycle are lower relative to the fine grid
weights for the V cycle (due to the i + 1 term). Thus, we would expect that the
FMV efficiencies are governed much more by coarser grids than the V cycle. In the
next section, we use this model to explore the performance ofV and FMV schemes in a
variety of situationS.

6. Performance of the V, FMVS, and FMVP cycles. A program was written using
the model and grid switching criterion given in the previous sections to estimate run
time and efficiencies under different circumstances. We use this model to explore the
performance of the different multigrid cycles beginning with the special situation of one
grid point per processor. In our model we assume that the time required on each grid
level is constant (i.e., Ti,p(V) 1). In this case, (9) and (10) can be used in conjunc-
tion with convergence, and grid switching criteria to determine the required number of
operations. For example, one V cycle takes a operations where c is the number of grid
levels and a total of -2a/log2() iterations to reduce the algebraic error below trunca-
tion error. A summary of the operations counts for the different cycles is given below.

V (2d & 3d):
FMVS (2d):

(3d):
FMVP (2d & 3d):

0
2

7[a(a 1) + a log2(v/4/7)],
’Y[1/2c(c 1) + ce log2(x)]

where

(11)
a log2(N1/d),

7 -2/log2(/3),

is the convergence rate of the V cycle, N is the total number of grid points, and d is
the dimension of the problem. Note that asymptotically the FMVP cycle has the fastest
execution time, which is less than a factor of two better than the FMVS execution time.
Furthermore, the FMVS cycle is competitive with the V cycle even in the extreme case

5The number of iterations are based on the same assumptions given in 4. The only difference is that
we use the V cycle run times to determine the r/i’s in conjunction with (6). Additionally, we note that in this
analysis the number ofV cycles need not be an integer.
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of one point per processor. In particular, the FMVS cycle requires the same number of
operations as the V cycle on two-dimensional problems while only slightly more in the
three-dimensional case. Thus, the FMV cycle (even without the new switching criterion)
performs almost as well as the V cycle despite a large percentage oftime spent on coarse
grids.

Of course, in most situations we have more grid points than processors. To model
this, we consider run times that are proportional to the number of grid points per pro-
cessor. That is,

where N is the number of grid points on 7, P is the number of processors, and (7 is
a constant independent of N and P. Note that the factor of two occurs because half
the processors are idle during a red/black Gauss--Seidel iteration when each processor
contains only one point. This model might correspond to the case where communication
costs are negligible. Figures 1 and 2 show the run time of the three schemes on 4096 pro-
cessors. As the figures illustrate, the performance ofthe different schemes is comparable
to the one point per processor case. That is, the FMV iteration usually outperforms the
V, and the FMVP scheme slightly outperforms the FMVS iteration. For the most part,
the execution times do not vary significantly for the different cycling schemes when there
is only one point per processor. However, when each processor contains many points,
the FMV cycles significantly outperform the V cycle.

o 12

o

D

0

0

0

6 7 8 9 tO
2n

n, Grid points -- 2

FIG. 1. Logarithm ofexecution time for a two-dimensionalproblem using. V, FMVS and FMVP cycles on
4096processors assumingzero communication costs on a 4096processor machine.
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O

O

O

O

10

.. FMVP

V

5
n, Grid pons 2

3

Fro. 2. Logarithm ofexecution time for a three-dimensionalproblem using V, FMVS, and FMVP cycles
assumingzero communication costs on a 4096processor machine.

Finally, we account for communication costs by considering the following model for
the run time on each level:

(12)
d--1

+ + ca

where the C’s are determined by doing a least-squares fit to nCUBE 2 timing data for
the Gauss-Seidel routine. Specifically, we obtain the following for the nCUBE 2:

C1 2.14 x 10-3, C2 2.02 x 10-5, C3 4.43 x 10-5.

In Table 3 we can see the close correspondence between the predicted run times us-
ing this smoother model and the actual run times obtained on the nCUBE 2 for the
smoother.6

Using (9), (10), and (12) with the above constants, we obtain the run times and ef-
ficiencie for the two- and three-dimensional problems shown in Figs. 3-6. From these
plots we can obtain a great deal of information about the performance of the FMV cycle.
The first and most important observation is that the FMV cycles significantly outperform
the V cycle when each processor contains many grid points, and that the time differential
between V and FMV execution times grows quite rapidly as the number ofgrid points in-
creases. For example, the V cycle calculation on a 1024 x 1024 grid requires almost twice

6Note. Modelling only the smoother is sufficient because the actual time on each grid level (including
projection, interpolation, residual calculation, etc.) is proportional to the smoother time. For our experiments
in 4, the actual time per level is about four times larger than the smoother times.
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TABLE 3
Predicted and actual nCUBE run ames (in seconds) of 1 red Gauss-Seidel (GS) iteration.

64 x 64 grid 1024 x 1024 grid
GS\Procs 16 256 1024 256 1024
model 8.13 x 10-3 2.57 x 10-3 2.27 x 10-3 9.41 x 10-2 2.56 x 10-2

nCUBE 8.16 x 10-3 2.58 x 10-3 2.28 x 10-3 9.40 10-2 2.55 10-2

as much time as the corresponding FMVP calculation. Conversely, it is possible that the
FMVS scheme may require more time than the V cycle when each processor contains
a modest number of points. In these cases, however, the time differential between the
V and FMVS schemes is not large and, thus, need not be considered too seriously. Ad-
ditionally, the FMVP method is the best performer regardless of the number of points
per processor. While its performance is better than the FMVS iteration, the time sav-
ings between the two FMV methods is not enormous. In our figures, for example, the
most significant differences between FMV schemes correspond to the FMVP iteration
requiring two-thirds of the time of the FMVS method. Thus, we recommend using the
FMVP iteration because it requires the least run time in all cases. However, if it is dif-
ficult or inconvenient to compute the optimal grid switching criterion, it is still better to
use the standard FMV cycle over the V cycle because it requires substantially less time
when there are many points per processor.

0.6

0.2

V

FMVS

’VP

6 7 8 9 10
2

n, Srd poins 2

FIG. 3. Predicted execution time for a two-dimensionalproblem using V, FMVS, and FMVP cycles on a
4096processor nCUBE 2.

Unfortunately, the FMV efficiencies can be extremely low even for large problems.
For example, by inspecting Fig. 6 it can be verified that using 4K processors on a 256 x
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FMV

8 9
Ord poln,s 2

FG. 4. Predicted efficiencies for a red Gauss-Seidel smoother, a V cycle, and an FMVP cycle on a
two-dimensionalproblem using a 4096processor nCUBE 2.

o
)

)

O

D

O

0.1

FMVS

FMVP

5 6 7
n, Grid poin,s 2

FIG. 5. Predicted execution timefor a three-dimensionalproblem using the V, FMVS, and FMVP cycles on
a 4096processor nCUBE 2.
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5 6 7 8
n, ISled pons 2

RBOS

FIt3. 6. Predicted efficiencies for a red Gauss-Seidel smoother, a V cycle, and an FMVP cycle on a
three-dimensionalproblem using a 4096processor nCUBE 2.

256 x 256 grid yields a smoother that is 92% efficient, a V cycle algorithm that is 82%
efficient, and an FMV cycle algorithm that is only 50% efficient. While 50% efficiency
is not terrible, a higher efficiency would normally be expected for an explicit algorithm
on a grid containing over 16 million points. Note that the drop in efficiency between
the smoother and the V cycle is related to the efficiency drop associated with using an
FMV cycle as opposed to a V cycle. In fact, the efficiency curves in Figs. 4 and 6 are
approximately the same distance apart. For example, in Fig. 6 the smoother runs at 40%
efficiency when there are approximately 86"1 grid points. Due to the coarse grid com-
putations, the V cycle requires 5.3 times as many points as the smoother to achieve the
same parallel efficiency, and the FMV cycle requires 5.3 times as many points as for the
V cycle to achieve that same efficiency. The fact that approximately the same increase
in points appears is not entirely a coincidence, but is related to the fact that (9) and
(10) are identical when the Oi’s are the same (which is nearly the case). Though it is
somewhat cumbersome to exactly characterize the mathematical relationship between
the efficiency curves, we simply state that over a verywide range of communication char-
acteristics (i.e., different C’i’s) the same basic relationship holds. That is, the efficiency
curves of the smoother, V cycle, and FMV cycle are approximately equidistant. Over-
all, the FMV efficiencies gradually approach one as the grid becomes larger (similar to
other explicit methods). However, it takes many more grid points to achieve these high
efficiencies than simple explicit schemes. In our examples, a grid with 42N (28N) un-
knowns is necessary to achieve the same efficiency over a wide range of efficiencies as
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the smoother applied to N unknowns on a two-dimensional (three-dimensional) grid.
That is,

e,(N/42) e,(N/7) e/,,,p(N) in two dimensions

and

e,(N/28) e,,(N/5.3) ef,vp(N) in three dimensions

for the nCUBE hypercube. It is important to remember, however, that despite the poor
efficiencies the overall FMV run times are among the fastest for these problems.

We conclude this section by remarking that the characteristics displayed by the var-
ious cycles above are seen for a wide range of values of C1, C2, and C3. We also remark
that the V cycle and FMVS cycle can be considered special cases of the FMVP cycle,
which is optimized for overall solution time. Hence, in the case where communication
time dominates computation time (C1 and C2 large), the FMVP cycle is the fastest of
the three, even though the V cycle may be heavily favored over the FMVS cycle.

7. Implications for parallel processors. While we have focused on two particular
multigrid variants, we feel that this study has much more general implications regarding
the global mixing of data and the corresponding low efficiencies. In this section, we make
a few remarks along these lines.

Within the iterative method community, it has become accepted that the fastest al-
gorithms for elliptic problems require some global mixing of information. That is, the
update at a given point should use some information from every other grid point within
the domain. Since this global mixing of information requires additional communication
and possible load imbalance, the question remains: how much global mixing is desirable
on a parallel machine? While it is sometimes stated that a fast iterative method (one
which converges independent of mesh size) with a minimal global operations is prefer-
able (e.g., domain decomposition algorithms [7] typically require only one coarse grid
problem to be solved), we wish to argue that this reasoning is far too simplistic. That is,
there are many situations where the heavy use of global information may be beneficial
despite low efticiencies. Clearly, in the multigrid context, the additional use of coarse
grids within the FMV cycle is warranted even on massively parallel machines.

Finally, it is really not clear what kind of efticiencies should be expectedwhen solving
elliptic PDE systems with "optimal" algorithms. In fact, it can be shown (see [14]) that
a lower bound for solving elliptic PDE systems is given by O(N) on serial machines and
O(log N) on parallel machines where N is the number of grid points. Thus, it must be
expected that any numerical algorithm that achieves this optimal performance will have
an efficiency that drops off sharply when a large number of processors are used. It can be
argued that when the FMV cycle is applied to well-behaved systems, the performance is
sufficiently close to the theoretical lower bound that the predicted drop in efficiency can
be observed. Thus, from this point of view, the low FMV efficiencies should not be that
surprising. That is, as one gets closer to an optimal algorithm for solving elliptic prob-
lems, lower parallel efficiencies should occur. It is important, however, to realize that
in most practical problems the computations are so difficult (or perhaps the algorithms
are not sophisticated enough) that the lower bound is not attained and, hence, the sharp
drop in efficiency is not observed.

8. Conclusions. We have analyzed the parallel FMV cycle. In particular, a new grid
switching criterion was developed to account for parallel processor efticiencies. Using
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this new criterion, FMV algorithms were implemented and analyzed in a massively par-
allel setting. Based on this analysis, it was determined that the modified FMV cycle
always requires less run time than the corresponding V cycle. This occurs even though
the FMV cycle makes far poorer use of parallel processors than the V cycle. Further-
more, the performance of the FMV cycle with the new grid switching criterion is better
than that with the standard criterion. However, the overall performance differential is
not so great that the user needs to be greatly concerned with implementing the "opti-
mal" switching criterion. In fact, even with the standard switching criterion, the FMV
cycle almost always outperforms the V cycle and is within a factor oftwo ofthe "optimal"
FMV performance. Unfortunately, the overall efficiencies obtained on the nCUBE are
somewhat low even on very large grids. While the efficiencies improve as the grid be-
comes larger, it requires many more grid points to achieve high efficiencies for FMV
cycles. Nonetheless, the overall solution times are quite fast and are among the fastest
possible with current methods and machines.

Appendix. "Optimal" error ratios between grids. We seek an expression for the
ratio of algebraic errors between two consecutive grid levels in an optimal FMV cycle.
Consider an FMV cycle on two levels, 1 and I. The algebraic error corresponding
to the approximate solution on

_
is given by et-x. On t, an approximate solution

is obtained from the solution on t_ by high-order interpolation. Thus, the algebraic
error on level is given by

et et_l + ,
where

(the difference of the truncation errors). Assume that after k V cycle iterations on

_
1,

the norms of the algebraic errors are bounded by II/e,_xll and II/ez_ll / I111. After
k iterations starting from the coarse level, we proceed with j iterations on the fine level
resulting in an algebraic error on the fine grid of

(3)

Since we wish to bound the final error, we assume equality in (13) and proceed to de-
termine the k that minimizes the total work necessary to attain a fixed algebraic error
bound. Let the cost of a coarse grid V cycle be rt_la,(V) and the cost of a fine grid V
cycle be ta,r,_la,(V). Then the total cost is

w ( + :i,,,)n-x,(v),

where

log(/3)

The best choice of k can be found by differentiating W with respect to k and setting the
result equal to zero. Namely,

0 1-
+ I1 11)"



ANALYSIS OFTHE MULTIGRID FMV CYCLE 1173

Thus, we find that the optimal k occurs when

That is, the optimum occurs when the ratio of the algebraic error bounds on the two
grids is
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FAST INVERSER FACTORIZATION FORTOEPLITZ MATRICES*
JAMES G. NAG

Abstract. Fast orthogonalization schemes form n Toeplitz matrices T, introduced by Bojanczyk, Brent,
and de Hoog (BBH) and Chun, Kailath, and Lev-Ari (CKL), are extended to compute directly an inverse
QR factorization of T using only O(mn) operations. An inverse factorization allows for an efficient parallel
implementation, and the algorithm is computationally less expensive for computing a solution to the Toeplitz
least squares problem than previously studied inverse QRmethods. In addition, it is shown that regularization
can be incorporated into the algorithm with virtually no extra work. Thus it is possible to compute regularized
solutions to ill-conditioned Toeplitz least squares problems using only O(mn) operations. An application
to ill-conditioned problems occurring in signal restoration is provided, illustrating the effectiveness of this
method.

Key words, least squares problem, QR factorization, Toeplitz matrix, regularization
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1. Introduction. An m x n matrix T is a Toeplitz matrix if its entries are constant
down each diagonal. This can be expressed by denoting the (i, j) entry of T as t_j. In
this paper we will consider solving least squares (LS) problems of the form

(1.1) minimize b Tz II 2,
where T is an m x n Toeplitz matrix of full column rank, b is an m x 1 vector and
II" denotes the usual Euclidean norm. Toeplitz least squares problems occur in many
engineering applications such as signal restoration [12], data compression [12], seismic
exploration [14], and speech echo cancellation [2].

Least squares problems of the form (1.1) can be solved effectively using the QR
factorization of T, which can be computed using O(mn2) operations. By exploiting the
Toeplitz structure of T, we can obtain afast QR factorization which requires only O(mn)
operations. This is the case for the algorithms of Sweet [18], Bojanczyk, Brent, and de
Hoog [5], Chun, Kailath, and Lev-Ari [8], and Cybenko [9]. It also has been proposed
recently to use the preconditioned conjugate gradient (PCG) algorithm to solve Toeplitz
least squares problems [7], [15], [16]. For certain Toeplitz matrices it is shown that the
PCG method is effective in solving these LS problems.

The first O(mn) method for computing the QR factorization of a Toeplitz matrixwas
developed by Sweet [18], which he has more recently extended to block Toeplitz matrices
[19]. Bojanczyk, Brent, and de Hoog [5] modified the ideas of Sweet to develop a slightly
faster QR factorization. (We will denote the fast QR factorization of Bojanczyk, Brent,
and de Hoog by BBH.) Chun, Kailath, and Lev-Ari introduced a fast, and more general,
QR factorization algorithm based on the displacement structure of T and TTT. (We
denote this method by CKL.) Although they use a different approach, their method is
essentially equivalent to that of BBH. Moreover, in the CKL algorithm, certain param-
eters generated in obtaining R can also be used to compute R-1 in O(n2) operations.
Finally, a different orthogonalization scheme for Toeplitz matrices was proposed by Cy-
benko [9]. This algorithm uses inner products to construct Q and R-1, but requires the
computation of Q to obtain R-.

Received by the editors December 9, 1991; accepted for publication (in revised form) November 2, 1992.
tDepartment of Mathematics, Southern Methodist University, Dallas, Texas 75275. This work was com-

pleted while the author was visiting the Institute for Mathematics and its Applications, University of Min-
nesota, Minneapolis, Minnesota.

1174



FAST INVERSE ORTHOGONALIZATION 1175

In 2 of this paper we describe the method of BBH for computing R and show in
3 how it can be modified, using an inverse factorization scheme by Pan and Plemmons
[17], to compute R-x directly. Our algorithm does not require the computation of R to
obtain R-x, and hence is less expensive than the CKL method. In 4 we then combine
this with the CKL approach for computing Q, to obtain a fast inverse QR factorization
algorithm. Moreover, we show that QTb can easily be computed without explicitly form-
ing Q. This provides considerable savings in the computational work in obtaining the
LS solution, which cannot be attained in Cybenko’s algorithm. Finally, in 5 we con-
sider ill-conditioned problems that occur often in signal processing applications. We use
the method of regularization to alleviate the problems caused by the ill conditioning,
and show that the fast orthogonalization schemes discussed here extend nicely for these
problems. Some numerical examples are provided in 6.

2. Computation ofR: Algorithm BBH-R. Let T be an m x n Toeplitz matrix of full
column rank, and let R be the Cholesky factor of TTT. In this section we give a brief
description of how the BBH algorithm constructs R one row at a time.

Since T has the Toeplitz structure, we can partition T as

(2.1) T
v To )T tm-n

where To is a submatrix of T, u and are n 1 dimensional vectors, v and fi are m 1
dimensional vectors, and to and t,_, are scalars. In addition, consider partitioning R
as

(2.2) R
0 Rb 0T rnn

where z and 5 are n 1 dimensional vectors and rll and rnn are scalars.
Setting RTR TTT and using the partitionings (2.1) and (2.2), we have

(2.3)
r11z ZZT + RRb tou + ToTv uuT + ToTTo

and

(2.4)
2 TTo + tm_nT T+ tm_nTRt ;T5 + rnn

From (2.3) and (2.4) we see that

zzT + RRb uuT + ToTTo and RT, Rt TTo + 9gT.

Combining the above two relations, we obtain

(2.5) RTb Rb RT, R, + uuT T zzT.

Observe also from (2.3) that rx t + vwv and zT (touT + vTTo)/rxx, and so the
first row of R can easily be computed.
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as

(2.6)

(2.7)

and

(2.8)

Equation (2.5) is used to compute R one row at a time as follows. First rewrite (2.5)

Rth RR + uuv,

RT2 R2 RT R 6T,

R’Rb RT2 R2 zzT,

whereR andR are upper triangular matrices. Notice that (2.6) is an updating problem
and (2.7) and (2.8) are downdating problems.

It is well known (see, for example, [11]) that, for the updating problem, we can find
a product of Givens rotations Q G(n 1, n, 0,_)... G(1, n, 0) so that

(2.9) Q
uT 0T

where G(i, j, 0) is an elementary Givens rotation; that is, a matrix which is the identity
everywhere except gii 9 c and gji -9 s, where c c(0) cos(0) and
s s(O) sin(0) for some 0. We will use the notation

[c, s] It(0), s(0)] givens(a,/)

to be the 2 x 2 Givens rotation for which

s c / 0

For the downdating problems, we attempt to find products of Hyperbolic rotations
Y() H(n- 1,n,n_)...H(1,n,l) and Y() H(n- 1,n,p,,_)...H(1,n, px)
such that

(2.10)

and

(2.11)
ZT 0T

It can be shown that if the downdated matrices are nonsingular then such products exist
[2]. The matrix H(i, j, ), called an elementary Hyperbolic rotation, is a matrix which is
the identity everywhere except hii hj c and hi hi -s, where c c()
cosh() and s s() sinh() for some . As with Givens rotations, we will use the
notation

[c, s] [c(), s()] hyp(c,)
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to be the 2 x 2 Hyperbolic rotation for which

-s c 0

Equations (2.9), (2.10), and (2.11) provide a method for computing R one row at a
time. This can be done by observing that for each i, G(i, n, 0), H(i, n, dp) and H(i, n, p)
affect only rows i and n. Since the first row of Rt is (modulo a shift) the same as the first
row of R, we know the first row of Rt. Thus G(1, n, 01) can be applied to the first row of
Rt and uT to obtain the first row of R. Since, now, the first row ofR is known, we can
apply H(1, n, t) to the first row of Rt and T to obtain the first row of R2. Thus since
the first row of R2 is now known, we can apply H(1, n, pl) to the first row of R2 and zT

to obtain the first row of
Observe from (2.2) that the first row of Rb is the second row of R, which is (mod-

ulo a shift) the second row of Rt. Thus we repeat the above process with G(2, n, 02),
H(2, n, 2), and H(2, n, p2), etc.

The following algorithm summarizes the above results, where rt, r, r2, and rb are
vectors used in intermediate steps of the algorithm.

Algorithm BBII-R. Let T be an m x n Toeplitz matrix, and let u, v, and be defined
as in (2.1). Then this algodthm computes the Choleskyfactor, R, ofTTT.
R(1, 1) rlt v/t + t2 + + 2

z +
R(1,2:n) zT

fork= 1,2,...,n- 1

rt(k n- 1)= R(k,k n- 1)
[c, s] givens(rt(k), u(k))

[c, s] hyp(rl (k), 9(k))

--8

[c, s] hyp(r2(k), z(k))

ZT
:--

--8 C ZT

R(k / 1, k 4- 1: n) rb(k n-- 1).

Algorithm BBH-R requires mn / 6n2 4- O(n) multiplications to compute R. We
remark here that the CKL method for computing R also requires mn / 6n2 / O(n)
multiplications but can also compute R-1 using only an additional O(n2) multiplications
[8]. In the next section we will use the approach ofBBH to develop a scheme to compute
R- which does not require computing R, and hence is computationally less expensive
than the CKL method.

3. Computation ofR-’: Algorithm BBH-L. In this section we show how Algorithm
BBH-R can be modified to compute R-T, rather than R. The modification is based on
an inverse factorization scheme by Pan and Plemmons [17]. The results we need from
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[17] can be stated as follows. Let Ro be an (n 1) x (n 1) upper triangular matrix and
let g be an n 1 dimensional vector. Suppose Q is a product of Givens rotations such
that

Ro 0 Ro q
(3.1) Q

gT 1 07" n,

where. Ro is an upper triangular matrix. Assuming R0 is nonsingular, then it follows that
n # 0. Inverting and transposing both sides of (3.1), we obtain

(3.2) RT -a RT 0
Q

0T 1 hT

where a RTg, h -lffiq/n,, and 6 1/. By equating the last columns in (3.2),
it follows that Q can be determined from a by finding the product of Givens rotations,
Q G(n 1, n, 0,_)... (1, n, 0), such that

2Moreover, since Q is an orthogonal matrix, it is easy to see that 6 v/i + Ilall2.
Similarly, if Y is a product of Hyperbolic rotations such that

then

Y
gT 1 0T

0T 1 -hT "y

where a RT9 and 7 V/1 Ilall. In this case, Y can be determined by finding the
product of Hyperbolic rotations Y H(n- 1, n, ,_)... H(1, n,) such that

Y
1 7

Recall that in the last section we obtained the relations

[Rt][R1] g(1)[l] [/2] y(2)[R2][Rb]Q
uT 0T )T 0T ZT 0T

It follows from the above remarks that

0T h
for some vectors hi, h2, and h3.
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Thus to compute R-T one row at a time, we will need to (i) relate the rows of R-T
to the rows of p-T and R-T and (ii) compute the first row of R-T. To accomplish this,
we rewrite (2.2) as

[(3.3) R-T__[ 1/rll 0T ] R"T 0

--RTz/r RT --STR’T/r, 1/r,,
From (3.3) it is easy to see that the first row of R-T 1/r 0 0 and that the
rows of R’"T arc (essentially) the same as those of R-T. Furthermore, if the kth row of

RT, say ItT, is lolown, then G(k, n 1, Ok) can be found using the following steps.
Set (the scalar) c lTtu,
[c, s] =givens(_, --a),

--sa + cS_,
where 8 1. H(k, n 1, ek) and H(k, n 1, Pk) arc found in a similar manner.

Now, applying G(k, n 1, Ok), H(k, n 1, ek), and H(k, n 1, Pk) to the kth
rows of -TR R’T, and RT, respectively, wc obtain the kth rows of RT, RT, and

RT, respectively. Moreover, ifwe denote the kth row ofRT by l[, then, from the first
partitioning in (3.3), wc see that the (k + 1)st row of L R-T is

+1,1"k+1)= -lz/r l ].L(k

Putting the above results together, we obtain the following algorithm for computing

Algorithm BBtI-L. Let T be an m x n Toeplitz matrix, and let u, v, and be defined
as in (2.1). Then this algorithm computes L R-T, where R is the Choleskyfactor
ofTTT.
r,, Xfi + + + tjm_2

(o + To%)/r,,, L(, ) /
1 2 1, h h h 0T

fork= 1,2,...,n- 1

/(1: k)= L(k, 1: k)
lu(l’k)

[c, s =givens(6, -a)
6 sa+c6

z r(1 )
It, s] =h(,)
7 -s +

Z ,(1 k)
[,,1 =h(7, Z)
72 -s3 +

hI -s c hI
( + , 1. + 1 -r/l



1180 JAMES G. NAGY

Algorithm BBH-L requires mn+ 8n2 + O(n) multiplications to compute R-x,
whereas the CKL method requires mn + 12n2 + O(n) multiplications.

4. Computation ofQ and Qrb. In this sectionwe describe the CKLmethod for com-
puting the QR factorization of T and show that this method for computing R is equiva-
lent to Algorithm BBH-R. It will then follow that the elementary Givens and Hyperbolic
rotations, used in the previous section to compute R-w, canbe used to obtain Q and Qb.

Let T and R have the partitionings given in (2.1) and (2.2), respectively, and define
U(w) N,x to be the upper triangular Toeplitz matrix with first row wT .

LEMMA 4.1. Let T be a Toeplitz matrix and let R be the Choleskyfactor ofTTT. Let
wi
T rll zT ], wT2 0 uT ], wTa 0 T ], andw 0 zT ], where z, u, and

are definedfrom thepartitionings (2.1) and (2.2). Then

2 4

(4.1) TTT VT(wi)V(wi) Z VT(wi)V(wi)"
i=1 i=3

Proof. For the proof, see [8, Lemma 2]. [3
The right-hand side of (4.1) is known as the displacement representation of

TTT [8].
It can be shown that the triangular factors U(wi) can be used to obtain R as follows.

Define the matrix F e ’" as

(4.2) r

U(wl)

and let S e 4,4, be defined as S =diag(In, In, L, ,), where L [-z._10r 1 ]. Then
a matrix B e’’ is said to be S-orthogonal if BTSB S.

THEOREM 4.2. Suppose 0 is an S-orthogonal matr such that

=OF

where R is upper tangular Then I:ITR TTT.

R

0

Proof. For the proof, see [8, Thm. 2]. U
We will now show how a particular O can be constructed from the elementary Givens

and Hyperbolic rotations used in 3 to compute R-T. Recall that Q, yO), and y(2) are
defined as

Q G(n- 1, n, On-1)" .G(2,n, O2)G(1,n, O1),. y(1) H(n- 1,n,n_l)...H(2,n,2)H(1,n,l),. y(2) g(n- 1,n, pn_l)...H(2,n, p2)H(1,n, pl),
where G(i, j, 0), H(i, j, i), and H(i, j, pi) are elementary Givens, Hyperbolic, and Hy-
perbolic rotations, respectively.
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Now notice that the matrices U(wi) are determined by the vectors u, , and z. Fur-
thermore, the first row of Rt is the same (modulo a shift) as the second row of U(wl).
This observation is the motivation for the following theorem.

THEOREM 4.3. Let I’ be defined as in (4.2), and let

(4.3)

where

Then

OF

R
0

where R is upper triangular.
Proof. Let Rt, R1, R2, and Rb be defined as in 2, and recall that the Givens rotations

G(k, n, Ok) were constructed so that

(4.4)

where the emphasis on 0 is used to indicate which rotation is used. The vector uT on
the right-hand side of (4.4) has the form

and on the left-hand side u7" has the form

where indicates an element which may not be 0. Similar relations hold for the Hyper-
bolic rotations H(k, n, ckk) and H(k, n,

Observe that

1st row of U(w2)

0 1st row of Rt [
0 uT

From the above remarks, we know that G(1, n, 01) is constructed so that

 (ox)  (ox) o o

where uT has been overwritten and now has the form 0 ,..., ].
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The Toeplitz structure of U(wl) and U(w2) implies that c(01) and 8(01) can be used
to zero out the first super diagonal of U(w2). This is equivalent to applying the product
of Givens rotations

0 (,2 , 0)... (, + 2, 0x)v(2, + , 0x)

to F.
Assume F is overwritten with 01F. Then observe that

1st row of U(w3)

1
0 1st row of R1 |

J0 T

We know that H(1, n, bl) is constructed so that

c(bl) -s(bl) 0 1st row of R1 0 1st row of R2
---:

--8((/)1) C($1) 0 ,T 0 ,T

where 7" has been overwritten and now has the form 0 ,..., ].
The Toeplitz structure of U(wl) and U(w3) implies that c(bl) and s(bl) can be used

to zero out the first super diagonal of U(w). This is equivalent to applying the product
of Hyperbolic rotations

ffI1) H(n, 3n- 1, bl) n(3, 2n + 2, bl)H(2, 2n + 1, bl)

to r 0r.
Assume r is overwritten with/I)01r. Then observe that

[2ndrowofU(wl)][=1st row of U(w)

"1
0 1st row of R2 /
0 zT

We know that H(1, n, Pl) is constructed so that

-(p) (p) o z* o z

where z7 has been overwritten and now has the form 0 ,... ].
The Toeplitz structure of U(wl) and U(w4) implies that c(pl) and s(pl) can be used

to zero out the first super diagonal of U(w4). This is equivalent to applying the product
of Hyperbolic rotations

/2) H(n, 4n 1, Pl )"" H(3, 3n + 2, Pl H(2, 3n + 1, Pl

Now, assuming r has been overwritten with/.2)/1)01r, we have

2nd row of U(wl) 0 1st row ofR 2nd row of R.

Thus the first two rows of U(1/) are the same as those in R. Furthermore, we have zeros
in all the super diagonals of U(w2), U(w3), and U(wa).
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Because of the Toeplitz structure of U(wl), we have

[ 3rdrowofU(wl) ] [0 2ndrowofRt ]2nd row of U(w2) 0 UT

It is now easy to scc that, by repeating the above arguments for G(2, n, 0z), H(, n, Cz),
and H(2, n, pz) we will zero out the second super diagonals of U(w2), U(wz), and U(wa)
and obtain the first three rows of R in U(w).

Thus by repeating the above arguments for G(k, n, Ok), H(k, n, Ck), and H(k, n, pk)
the result follows.

THEOREM 4.4. Let 0 be defined as in (4.3). Then 0 is S-orthogonal.
Proof. We show first that for each k, (,/k(), and/k(z) are all S-orthogonal. Now

G is an orthogonal matrix which only affects rows 2 through 2n 1. Thus we can write

where (TQ 12,. Using this observation it is easy to see that 0’S0 S, and hence
G is S-orthogonal.

To show that each k() is S-orthogonal requires a little more work. First, we de-
fine Sj to be the identity matrix except that the (j, j) entry is -1. Then notice that
H(i, l, )Sj Sill(i, l, ), provided j # i, I. Also observe that

HT(k / j, n + j, k)Sn+jH(k + j, n + j, Ck) Sn+j.

From the commutative property stated above, it follows that each () is -orthogonal
where =diag(I,, I,, ,, I,). But since k() does not affect rows 3n + I through 4n,.. it

follows that k() is S-orthogonal.
A similar argument holds for k(2), and since the product of S-orthogonal matrices

is S-orthogonal, we have that O is S-orthogonal. E]

Since we already have an algorithm that computes R-T, the preceding results may
seem redundant. But, as we will shortly see, a transformation O which satisfies Theorem
4.2 can be used to obtain Q and QTb.

LEMMA 4.5. Let T be an m x n Toeplitz matrix, and let a E .m be the first column of
T. Ify a/llall2 -y4, y2 el, Y3 O, and wi are defined as in Lemma 4.1, then

4

T E UT(y’)U(w’)"
i--1

Proof. For the proof, see [8, Lemma 6].
THEOREM 4.6. If0 is an S-orthogonal matrix that satisfies Theorem 4.2, then

U(y) O
U(y2) *OA=O
-U(y)

-U(ya) *
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Proof. For the proof, see [8, Thm. 2]. 1
Theorem 4.6 provides us with a scheme for computing Q. Taking advantage of the

Toeplitz structure of the matrices U(g), we can write an algorithm for computing Qr
one row at a time that requires 12ran multiplications [8]. Thus combining this result with
those in the previous section, Q and R-T can be computed using a total of 13ran + 8n
multiplications.

.Recall that we only need Qrb, and not Q explicitly, to compute the LS solution to
Tz b. Using this observation, we now show how we can obtain considerable savings
in computational work in computing the least squares solution. From Theorem 4.6, it
follows that

OAb

QT QTb

b--

,

Define the vectors ci . by ci U(yi)b, and let c 4, be defined by CT

[cT c2
T

c3
T caT]. Then QTb can be computed using the following steps.

For k 1,2,...,n- 1,

C

where Ok rk(Z)k(x)k and b is overwritten with QTb.
The amount ofwork required to compute c U(yl)b is mn- 1/2n multiplications.

Once c is computed, ca can be obtained for free. Furthermore, cz and ca can be found
without any computations. Each of the products Okc require 12(n k 1) multiplica-
tions. Thus QTb can be computed with a total ofmn+n multiplications. Combining
the above method for computing QTbwith Algorithm BBH-L, the total work to compute
the least squares solution to Tx b is 2ran + 14nz + O(n) multiplications.

In Table 4.1 we summarize the numerical complexities of the BBH, CKL, and Cy-
benko methods and the scheme presented in this paper. The table shows the number
of multiplications required to compute the factorizations, as well as the LS solution, for
each method. Cybenko’s scheme is abbreviated CYB and our inverse factorization algo-
rithm is denoted by IF. An (or **) in the table indicates that independent computation
ofthat quantity is not possible by the given algorithm (or is not discussed by the particular
authors).

TABLE 4.1
Numerical complexities forfast orthogonalization methods.

BBH CKL
mn + 6n2

CYB

mn+ 6n2

12ran

R

QTb

mn+ 12n2

12ran

Our IF

mn d- -n2** ** *
13ran + 7n2 13ran + 2n2 9ran + 14n2 2ran + 14n2

In practice, in addition to numerical complexities, it is important to consider space
requirements. As with the above algorithms, our algorithm can be implemented using
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only linear storage. Specifically, the inverse QR factorization algorithm discussed in this
paper can be implemented using only O(m) storage as follows:

Initialize: z 0,

Fork= 1,2,...,n- 1,

compute kth row of R-T =: rT,
compute kth entry of QTb =: a,

update solution: z := z + a r.

5. lil-conditioned lroblems. In this section we consider solving ill-conditioned
Toeplitz LS problems that arise in many signal and image processing applications. Specif-
ically, we will be concerned with solving systems of the form

(5.1) b Tx + rl,

where T is an ill-conditioned Toeplitz matrix and r/is a random vector representing ad-
ditive noise.

Such systems often arise from discretization of ill-posed problems in partial differ-
ential and integral equations. For example, in certain signal restoration problems, the
integral equation

b(T) h(T T)X(T1)dT + rl(r)

is discretized to obtain a linear system of the form (5.1). In this case the vectors b, x, and
r/represent the observed signal, the original (or desired) signal, and the additive noise,
respectively. The matrix T represents the degradation (or blur) in the signal.

Because of the ill-conditioned nature of T, naively solving Tx b will lead to ex-
treme instability with respect to perturbations in b (e.g., additive noise). Stability can be
attained through regularization [4], which amounts to solving the LS problem

(5.2) rain II z(c )ll2,
0 aD

D is a p x n matrix, called a regularization operator, and is usually chosen to be the
identity matrix or some discretization of a differentiation operator [10]. Thus D is usually
Toeplitz. The scalar a, called the regularization parameter, is used to control the degree
ofsmoothness ofthe solution. In some applications a priori information about the.signal
and the degree of perturbation in b is known, and can be used to choose a [1]. But if no
a priori information is known, then it may be necessary to solve (5.2) for several values
of cz [10].

One approach to solving regularized Toeplitz least squares problems is the PCG al-
gorithm, which has been investigated recently by Nagy [15] and Chan, Nagy, and Plem-
mons [7]. It can be shown that, using an appropriate circulant preconditioner, the PCG
algorithm can be an effective method for solving certain ill-conditioned Toeplitz LS prob-
lems. In this section we use a direct method, which is based on a modification of the fast
orthogonalization scheme discussed in the previous sections of this paper.

Because ofthe remarks above on the matrix D, we will assume D is a Toeplitz matrix.
Let A be the augmented matrix



1186 JAMES G. NAGY

]
Using the Toeplitz structures of T and D, partition A as

tO UT

aDo
cD0

where u, , f, and are n- 1 vectors, v and are m- 1 vectors, g and [ are p- 1 vectors,
and to, t,_, do, and d,_, are scalars.

Let A QR be the QR factorization of A, where R is an n x n upper triangular
matrix. Suppose R is partitioned as

0 _lib 0T rnn

where z and are n 1 vectors and rll and rnn are scalars. Then, using an approach
similar to that in 2, setting ArA RrR, we obtain the relations

(5.3) RRb RTt Rt -}- uuT ))T zzT -I- a2ffT ol2T,
+ + +

and

Z
T (touT + vTTo + a2dofT + a2gTDO)/rll.

Rewriting (5.3) as

RTx R RTt Rt + uuT,
RT2 R2 RT1 R1 )T,

RR3 RT2 R2 zzT,
RR4 RT3 R3 -I- a2ffr,

RRb RTa Ra a2T,

where Rt, R2, R3, and R4 are upper triangular matrices, we can compute R one row at
a time using Givens and Hyperbolic rotations. The method is analogous to that given in
2, except we are required to do an extra update and an extra downdate. Moreover, it is
easy to see that R-1, Q, and QTb can easily be computed using methods similar to those
given in 3 and 4.

We remark that D is usually a banded Toeplitz matrix with small bandwidth. Thus
the vector will have the form
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where q is small compared to n. In fact, if D I, then the vectors g, f, , and f are all
zero, and do d,_, 1. Thus in this case,

R’Rb RTt Rt + uuT 33T zzT,

rll t + vTv -Jr- t2,

and

zT (touT + vTTo)/rx.

We see that for this choice ofD the only change to the algorithms given in 2, 3, and 4 is
in the computation of rxx. Thus a regularized solution to (5.1) can be obtained in O(mn)
operations, and requires virtually no extra work than our nonregularized algorithm.

Also note that when D is the second difference equation,

-2 1

1 -2 1

1 -2 1

1 -2 1

1 -2

1

then we also have f 0. In this case the only changes to the algorithms are in
the computation of rll and z. Again the regularized solution can be computed in only
O(mn) operations.

6. Numerical examples. The algorithms in this paper exploit the Toeplitz structure
of the data matrix to obtain fast methods for solving Toeplitz LS problems. It is well
known that the O(n) and O(n log n) methods which solve n x n Toeplitz systems may
be unstable ifT is not symmetric positive definite [6], [13]. Luk and Qiao [13] analyze the
fast orthogonalization scheme due to Sweet [18]. They show that if certain submatrices
of T are ill conditioned then Sweet’s algorithm can produce poor results.

In this section we provide some computational results to test the performance of the
inverse QR factorization presented in this paper. It will be seen that our algorithm seems
to perform well except when T is ill conditioned. In addition we show through numerical
examples that our fast regularization scheme produces results that are comparable to
those obtained by regularizing a stable O(mn2) method. Because of the ill conditioning
of T, we cannot expect even a stable method to perform well when the data is noisy,
which is also illustrated.

Five test matrices are used in this section, four of which are taken from Luk and
Qiao [13]. These four examples are constructed so that each has a different submatrix
which is ill conditioned. TWo of these submatrices are To and T itself, with the other
two being defined as follows. T1 is the matrix obtained by deleting the first row and last
column of T, and T2 is the leading 2 x 2 principal submatrix of T.
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The fifth test matrix is ill conditioned and arises in signal processing applications.
All examples were performed using Pro-Matlab software on an Apollo workstation. The
machine epsilon for Pro-Matlab on this system is approximately 2.2204 x 10-.

In the first four exampleswe construct the matrices from [13], eachwith one ofT, To,
T1, or T2 being ill conditioned. Several experiments were performed, varying the degree
of ill conditioning for each. The right-hand side b is chosen so that the exact solution is
the vector e of all ones. The quantities reported will be

I1 ell and rz IIz ell

where z is the solution computed by Matlab (i.e., z T\b) and x is the solution
computed using the inverse factorization scheme presented in 3 and 4.

Example 1. Let T be defined as

8 4 2 1-e

T=I 4 8 4 2

2 4 8 4

1-e 2 4 8

In this case T1 is ill conditioned, with e controlling the degree of ill conditioning, while
To, T2, and T are well conditioned. Table 6.1 shows rM, r, and n(T) for several values
ofe.

TABLE 6.1
Relative errorsforExample 1.

(Tx)
1 x 10-2 1.7 103 2.0 10-16 2.0 10-15

1 10-3 1.7 10a 3.4 10-16 1.1 10-15’

1 10-a 1.7 105 1.1 10-16 9.6 10-16

1 10-5 1.7 106 3.4 10-16 1.3 10-15

1 10-6 1.7 107 1.7 10-16 1.3 10"15

1 10-7 1.7 108 1.1 10-16 1.3 10-15

Example 2. In this example T is defined as

1 1-e 2 0 0 0

1-e 1 1-e 2 0 0

2 1-e 1 1-e 2 0

0 2 1-e 1 1 -e 2

0 0 2 1-e 1 1-e

0 0 0 2 1-e 1

where in this case T2 is ill conditioned and To, T, and T are well conditioned. Table 6.2
shows the results for this example.
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TABLE 6.2
Relative errorsforExample 2.

1 10-2 2.0 102 3.9 10-16 4.6 10-la

1 10-3 2.0 103 4.6 10-16 3.9 10-la

1 10-4 2.0 104 1.2 10-15 1.0 10-13

1 10-5 2.0 105 4.3 10-16 4.3 10-la

1 10-6 2.0 106 1.2 10-15 1.7 ’10-13’’
1 10-7 2.0 107 6.0 10-16 1.6 10-14

Example 3. In this example we let

1 3 l-e -I
1 3 1 3 l-e

T=7 l-e 3 i 3
-i I- 3 1

where, in this case, T1, T2, and T are well conditioned and To is ill conditioned. The
results for this example are shown in Table 6.3.

TABLE 6.3
Relative errors.for Example 3.

1 10-2

1 x 10-3

1 X 10-4

1 x 10-5

1 x 10-6

1 x 10-7

(T0)
5.8 X 102

5.8 103

5.8 x 104

5.8 x 105

5.8 x 106

5.8 x 107

rM

1.9 x 10-16
3.2 x 10-16

2.3 x 10-16

2.0 10-16

2.3 x 10’216

2.2 x 10-16

ri

4.5 x 10-16

1.1 10-15

1.1 x 10-15

7.6 x 10-16

Example 4. In this example we consider the ill-conditioned matrix

27 9 3 -23 +e

T= _1_ 9 27 9 3
27 3 9 27 9

-23 +e 3 9 27

Table 6.4 shows the results for this example, where we see that the inverse QR algorithm
performs poorly due to the ill conditioning of T. We note, though, that in most practical
examples we can expect that the right-hand side, b, is not known exactly. Instead, what is
known is b+ r/, where r/represents additive noise. In this case, as discussed in 5, regular-
ization is often used to compute a meaningful solution. In the next example, we illustrate
that the inverse factorization algorithm can perform well for these ill-conditioned prob-
lems.

Example 5. In this example we consider solving an ill-conditioned problem of the
form (5.1). Let T be the 100 x 100 Toeplitz matrix whose (i, j) entry is given by

I 0 ifli-jl > 8,

g(0.15,xi xj) otherwise,
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TABLE 6.4
Relative errorsforExample 4.

,(T)
I X 10-2

1 x 10-a
5.7 x 103

5.7 x 104
I x 10-4 5.7 x 105
lx 10-5 5.7x106

I X 10-6 5.7x I07
1 x 10-7 5.7 x I08

rM

1.0 x 10-13

4.4 x 10-12
3.9 x 10-’12 9.6 x 10-6

3.9 x 10-11 3.0 x 1024.
4.4 x 10-1 2.3 x 10-1

9.3 x 10-9 2.3 x 10-1

where

4i
i 1,2,..., 100Z 5’

and

g(a,7)
2Vo.

eXp -a2

Matrices of this form occur in signal restoration applications, and are used to model
certain degradations in the recorded signal [3], [10], [12]. The spectral condition number
of T is approximately 2.43 x 10.

To simulate a signal restoration application, we first constructed the (original) signal
x with 100 data points as shown in Fig. 6.1. We then constructed the degraded, noisy (i.e.,
observed) signal as shown in Fig. 6.2, by computing

b= Tx + rl,

where r/is a vector whose elements were chosen randomly from a uniform distribution
in (0, 10-). For this example 11112 5.9 x 10-a.

Our goal, given T and b, is to recover an approximation to the original signal z. In
Fig. 6.3, we show the computed solution using our inverse factorization algorithm. The
solution computed using Matlab (i.e., x T\b) also produces poor results, the graph
of which looks very similar to Fig. 6.3. In fact, if we denote the solutions computed
by Matlab and the inverse factorization algorithm by ZM and zi, respectively, then our
computed solutions satisfied IIzM zzllm/llzmllm 1.2 x 10-5. We see that, due to the
ill-conditioned nature ofT and the presence of additive noise, neither method performs
well.

To obtain a reasonable solution, we use the method of regularization as discussed
in 5. Here we take D I and a 2.1 x 10-4 Ilml12/llzl12. In Fig. 6.4, we show the
computed solution, &i, to (5.2) using the fast regularized inverse QR method discussed
in 5. The result computed by Matlab, &M \where

aI 0

produced similar results. In this case IIXM xill2/llxMll2 7.3 X i0-I. Thus, both
methods produced solutions with similar accuracy.
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FIG. 6.1. Originalsignal.
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FIG. 6.2. Blurred, noisy signal.

7. Concluding remarks. In this paper we described the fast orthogonalization
schemes of Bojanczyk, Brent, and de Hoog [5] and Chun, Kailath, and Lev-Ari [8]. We
have extended these results to obtain an O(mn) method for computing the inverse QR
factorization of a Toeplitz matrix. Although our numerical results have shown that our
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FIG. 6.3. Computed solution using our inverse scheme with no regularization.
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FIG. 6.4. Computed solution using regularized inverse scheme.
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algorithm may not perform well when T is ill conditioned, we showed how our algo-
rithm can be easily modified to incorporate regularization. A numerical example was
presented showing that our regularized algorithm may be useful in solving certain ill-
conditioned signal restoration problems.

Finally, we remark that further computational savings can be attained. Specifically,
we can use fast Fourier transforms (FFI) to compute the Toeplitz matrix-vector prod-
uct Tory, required in the initialization stage of Algorithm BBH-L. Using FFTs, this can
be done in O(m log n) operations, rather than O(mn). Furthermore, our numerical re-
sults indicate that, for at least some ill-conditioned problems, the error in the computed
solution from the inverse QR scheme behaves like n2 (T). Thus, we may consider using
the seminormal equations R’P TTb, since this would reduce the cost in comput-
ing z to 2ran + 9n multiplications (or less, if FFTs are used). In particular, the solu-
tion z R-1R-TTrb can be computed using the BBH-L approach (or the regularized
BBH-L approach from 5), which can also be implemented using only linear storage.
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USING IMPLICIT ODE METHODS WITH ITERATIVE
LINEAR EQUATION SOLVERS IN SPECTRAL METHODS*

IVAR LIEt

Abstract. The use of Chebyshev spectral methods in space on an evolution partial differential equation
results, in many cases, in a stiff system of ordinary differential equations (ODEs). ODE solvers based on
explicit methods will therefore be inefficient for such equations. The use of conventional implicit ODE solvers
is difficult since the Jacobian matrix of the ODE system is full and large.

It is shown how to apply ODE solvers with iterative linear equation solvers to ODEs coming from spectral
discretizations. These ODEsolvers do not use the Jacobian explicitly, but good preconditioners for the Newton
matrix are needed for their efficient operation. Preconditioners of the tensor product type are developed
for certain classes of hyperbolic partial differential equations (PDEs), and numerical experiments show that
these preconditioners give a good performance of the ODE solver and are a substantial improvement over the
performance of explicit solvers.

Key words, partial differential equations, spectral approximations, preconditioning, ordinary differential
equations

AMS subject classifications. 65N35, 65F10

1. Introduction. Consider the numerical solution of the evolution equation

(1.1) ut=Lu+f onfx[O,T], fcR

with appropriate initial and boundary conditions. L denotes a differential operator in
space, and f and u are assumed to be sufficiently regular.

When we discretize (1.1) in space by spectral methods using N points in each di-
mension, we get a set of ordinary differential equations (ODEs):

(1.2) V=F(x,t,V), VIRN, F:RaxRxRNRv

dwhere N ]-Ii=l Ni.
Using Chebyshev spectral methods in one space dimension, it is well known that

the spectral radius of the differentiation matrix is O(N2) and that there are eigenvalues
O(1), see, e.g., [25]. (We say that f(N) O(g(N)) if there exist positive constants c and
C such that c g(N) < f(N) < C g(N).) Hence the resulting ODE system will be stiff for
moderate and large values of N, even for linear partial differential equations (PDEs).

An implicit ODE solver should therefore be more efficient in solving (1.2) than an
explicit solver, and that is illustrated in the following for a model problem. Stability
considerations based on stability regions and eigenvalues for the Jacobian matrix of the
ODE system are not straightforward for spectral methods. However, by using so-called
pseudo eigenvalues instead of the real eigenvalues, the standard theory still applies; for
a discussion of this, see, e.g., [21].

The differentiation matrices for spectral methods are full, and that implies that the
Jacobian for (1.2) is full even for the simplest linear PDE. It is evident that for two-
dimensional and three-dimensional problems and moderate values of N the Jacobians
will be intractable both in terms of storage and computation. Hence we will have to
use solvers that do not use the Jacobian explicitly. So-called reduced storage iterative
methods will be described briefly in 2. These methods require good preconditioners
to the Newton matrix, and the main part of this paper contains development of such
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preconditioners. For multidimensional problems it turns out that the tensor product-
type of preconditioners works well. The use of tensor product-type of formulas in the
numerical solution of PDEs is well known, see, e.g., [18]. In the development of the
preconditionerswe use a preconditioning matrix derived by Funaro [8] for the Chebyshev
spectral differentiation matrix. The reason for not using the differentiation matrix itself
is that it is difficult to invert and that the preconditioning matrix is a product of two
matrices that are easily computed.

A variable-stepsize implicit ODE solver will, in many cases, be more efficient than
a flxed-stepsize implicit method (Crank-Nicholson or backward Euler, for example),
since the optimal stepsize for a prescribed error tolerance will vary considerably during
the integration interval.

Fixed-step implicit integration and semi-implicit integration are extensively used in
spectral methods, see, e.g., [19] for the use of the Adams-Moulton family of methods,
[17] for a discussion of the so-called Lerat schemes, and [7] for a discussion of the Mor-
chiosne scheme, which can be constructed to have arbitrary high accuracy.

In the following, we will consider the use of implicit ODE solvers. Looking at the
eigenvalues of the Chebyshev differentiation matrix D, see, e.g., [25], we see that there
are eigenvalues close to the imaginary axis O(N) from the origin. Hence it is likely that
an A-stable method is a good choice for integration.

The purpose of the two tables below is to show that an implicit solver really takes
far fewer steps than an explicit solver for the one-dimensional model problem:

(1.3). ut + Au 0 on [-1, 1]

where

U2 -1 b

with a > 0, b > 0 and the boundary condition: u(-1, t) 0. No boundary condition
is specified at x 1. The initial function is exp(--10x2). In the experiment we have set
a 1, the time integration interval is [0.0, 2.0] and the error tolerance is 10-4.

We use the implicit ODE solver SIMPLE [24], which is based on a singly diagonally
implicit Runge-Kutta pair. By choosing b >> a, for example, we can model two interact-
ing waves, one fast and one slow. The analytical solution of (1.3) is used to compute the
actual error in the computation.

The implicit solver is also more efficient even if each step costs more as shown in Ta-
bles 1.1 and 1.2 below. The CPU times are given in seconds. The explicit solver DOPRI5
is described in [13].

TABLE 1.1
Number ofstepsfor modelproblem using SIMPLE

N 17 17 17 33 33
b 10 20 100 10 20
no. of steps 37 32 33 36 36
CPU time 5.2 4.4 4.6 5.0 5.0

We see that SIMPLE (and hopefully other implicit solvers) has the nice property
that the number of steps is almost independent of the values of N and b, whereas for
DOPRI5 (and other explicit solvers) the number of steps is O(N2b). The two methods
produced solutions with almost the same global error.
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TABLE 1.2
Number ofstepsfor modelproblem using DOPRI5.

N 17 17 17 33 -33
b 10 20 100 10 20
no. of steps 186 351 889 669 1291
CPU time 9.8 19.2 48.0 36.2 64.8

2. Implicit ODE methods with iterative linear solvers. In this section we will de-
scribe briefly ODE solvers where we don’t have to compute the Jacobian explicitly.

All implicit ODE solvers for the generic ODE ’() f(t, ) will have to solve one
or several systems of nonlinear algebraic equations of the form

(2.1) Y 7 + h3f(t, y), e R, 7 e R

for each step.
Most ODE solvers use a variant of modified Newton iteration to solve these equa-

tions, and the essence of such an iteration is the solution of a linear system

(2.2) B. (y[i+l] y[i]) _(y[i] 7 hf(t, y[i]))

where B I hJ, y[i] denotes iterate of y, and J is some approximation to
cOf/Oylv=vli]. The usual method is to use an LU factorization of B adapted to the spar-
sity structure and corresponding forward and backward substitutions. B can, in many
cases, be used over several steps which reduces the cost of the iteration.

The main problem in spectral methods is, as remarked above, that J is full and it will
be prohibitively costly to store and operate with it for large ODE systems. An alternative
way to proceed is to solve (2.2) iteratively. In many iterative methods B is not needed ex-
plicitly; what is needed is B.v, where v is a vector of appropriate dimension. Hence, we
avoid storing and factoring of B. Two of the most efficient classes of iterative methods in
use today are the Krylov subspace based methods, e.g., the conjugate gradient method
for symmetric positive definite systems and IOM and GMRES for nonsymmetric sys-
tems. See [3] and [2] for a description of these methods in the ODE context. Krylov
subspace methods can also be combined with globally convergent methods for the solu-
tion of nonlinear equations; see [4]. Other iterative techniques for ODEs are discussed
in [11], [6], and the recent survey [22].

In [2] a so-called matrix-free iterative method is described. It is based on approxi-
mating B. v by the difference quotient

v h/
f(y + av) f(y)

a e .
This method is not very efficient unless the spectrum of J is tightly clustered around a
few eigenvalues (see [2]), and that is definitely not the case for most semidiscretizations
of PDEs. In addition, we have to consider the-error contribution from the difference
approximation to B. v and the coupling between the local error and the error tolerance
for the iterative solution of (2.2).

Some form of preconditioning of B is therefore needed to speed up the iterative
methods. In [3] the so-called reduced-storage methods are discussed and analyzed. For
these methods the linear system

Bx=b
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is replaced by

(2.3) -l PX Bx= -l P-l b

where is a diagonal scaling matrix and P1 is the preconditioning matrix. It is also possi-
ble to use right preconditioning and scaling, but we will not use these in this paper. The
requirements for a good preconditioner are as usual: P1 should be a good approximation
to B, and linear systems Px b should be easy to solve compared to solving Bx b.
When using iterative methods for solving (2.3) we need to compute ;- P{- B v, and
that can often be done without storing B and P.

The work reported in [3] resulted in the code LSODPK, based on the LSODE family
ofODE solvers. The reduced-storage methodswere tested on several relatively large test
problems in [3], and the results are encouraging for IOM, GMRES, and appropriate
preconditioners. The choice of preconditioners for certain classes of problems is also
discussed in [3].

3. A hyperbolic system in one space dimension. Now consider the Chebyshev spec-
tral discretization of the one-dimensional model equation (1.3) on N points. We get the
following set of ODEs:

(3.1) V + A (R) D. V 0

where V E R2N, and we see that the Jacobian is J -A(R) D, and hence we have p(J)
O(N2b) by the properties of D (see, e.g., [25]), and the properties of the Kronecker
product of matrices, see, e.g., [16].

Funaro [8] has constructed an efficient preconditioner, Q, for the differentiation
matrix and has shown that 1 < ,k(Q- D) < . His result is as follows.

LEMMA 3.1. The pre_conditioning matrix Q for the Chebyshev differentiation matrix
is given by: Q Z D. D is the upwind difference operator for the grid points {xj }JV=I,
x cos rr, and Z is the matrix of the interpolation operator Z IN --+ IRN from the
points fj cos -krArr2N to thepoints xj cos rr. For a polynomial ofdegree N 1:

{tt(l),..., et(N)} {t(Xl),... et(XN)}.

The elements ofZ and D are thefollowing:

-1/(xi-1 -xi)

dij 1/(xi-, -xi)

0

j=i

j=i+l

otherwise

Zik
(--1)i+k-1V/1

(xi--k)N

Proof. The proof is/3: straightforward, since/3 is the upwind difference operator
for {xy }JY=. Consider the Lagrange interpolation polynomials {g } on the points {i}.
We then have:
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or

Now apply the interpolation formula:

N N TN(Z)
k=l k=l

We have Tg(x,) (--1) and T(k) Nsin ’- and

and the result follows. []

Note that the D matrix in [8] is different from ours. The operator in [8] is given
for the grid {x}Y= and zero boundary conditions to the right, even if it is not explicitly
stated in the paper. An explicit expression for the elements in the preconditioned differ-
entiation matrix Q-. D can also be found in [8], and this expression will also be slightly
different in our case.

Since

A((A- (R) Q-)(A (R) D)) A(I2 (R) Q-D) A(Q-XD)

we see from the results of [8] that -A (R) Q will be a good preconditioner for the Jacobian
J, and for the Newton matrix ! +hA (R) D we may use the preconditioner I +hA (R) Q.
The advantages of using Q instead of D in the preconditioner for the Newton matrix
are not so evident, since it is not known how to factor and solve linear systems using
I + hA (R) Q significantly faster than using I + hA (R) D. One advantage of using Q is
that the D matrix is difficult to compute with high precision and D-t may not be very
accurate. The matrix Q is easier to compute.

The preconditioners to be presented in the following three sections will be derived
using the D matrix. The matrix Q can be substituted for D in all these preconditioners.

In ODE solvers with iterative linear solvers, such as LSODPK [3] and KRYSI [14],
linear systems with the preconditioner are solved for each inner iteration and for every
stage, and the preconditioner is used (with an old value of h) as long as the iteration
converges at a reasonable rate. When convergence problems occur, the preconditioner
is updated with the current value of h and, if needed, a reevaluation of the Jacobian
approximation is performed. If the linear system with the preconditioner is solved by
direct methods, the new Newton matrix is factored to save time in the solution process.

Large variations in stepsize during an integration will imply more reevaluation and
refactorizations than for slowly varying stepsize. In order to study the effect of these
variations, let

((I /A (R) D)-(I + hA (R) D))

where is the stepsize used in the last factorization. From standard theorems in matrix
theory (see [16]), we have:

Aij
1 + h)A,i)D,j
1 + )A,iAD,j
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where A,i and )D,j are the eigenvalues of A and D, respectively. Let h /t and
A,iD,j --Yij. Then

1 + h-yj 1 + h,j

Let z h’ij and hence we have

Ii+zl
and if t < 1, then ij is contained in a small region independent of the size of Izl.
If n is large, is contained in a larger region and the convergence of the modified
Newton method will be bad. As an example of how the above mapping works, consider

< z < 0, Izl < 10, which is supposed to contain the spectrum of athe region -7
scaled differentiation matrix. For n 1/2 this region is mapped into the circle I- 11 ,
but with the circle I 1 1/4 cut out of it. For even smaller n the circles become
smaller, but the center of the largest one is always (1, 0). For n 4 the region is mapped
into the circle IA 11 3, but with the circle IA 2.51 1.5 cut out of it. This means
that for n < 1, i.e., the stepsize has decreased since the last factorization, the linear
iteration should converge quickly. For increasing stepsize (n > 1) the eigenvalues are
more widely spread and the linear iteration may converge more slowly.

Using Q instead ofD in the preconditioner should not alter these results significantly
since the spectra of Q and D are close.

In order to show that an ODE solver with iterative linear solver works reasonably
well for our test example, we have run the same experiment whose results are shown
in Tables 1.1 and 1.2, on the ODE solver KRYSI [14] where the linear system for the
preconditioner is solved by LU factorization. The matrix Q is used in the construction
of the preconditioner. We see from Table 3.1 that the number of steps is practically
independent of the stiffness of the problem. SIMPLE uses fewer steps than KRYSI, but
that is fairly common, at least for small problems; see the numerical tests in [14] and [3].

TABLE 3.1
Number ofstepsfor modelproblem using KRYSI.

N
b
no. of steps

17 17 17 33 33
10 20 100 10 100
51 49 41 51 40

For our one-dimensional model problem and other one-dimensional problems we
cannot save much space for J by using iterative methods because the matrix D is needed,
anyway, and the number of PDEs is assumed to be small compared to N. The savings
will come on two-dimensional and three-dimensional problems where the Jacobian is
so large that using implicit ODE solvers in the conventional way will be inefficient. In
addition we will see that a tensor product type of preconditioner works well for two-
dimensional problems.

4. A hyperbolic PDE in two space dimensions. Now consider the following model
problem in two space dimensions:

(4.1) vt + clvx + c2vu 0, cl, c2 E IR
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by Chebyshev spectral methods with M points in the x-direction and N points in the
y-direction.

The resulting ODE system can be written as follows:

(4.2) Vt + c(IN (R) D)V + c2(D2 (R) IM)V 0

where V E NM and D1 and D2 are the differentiation matrices in the x- andy-directions,
respectively. Note that N M = D1 D2.

The Jacobian is:

J --Cl(IN (R) D1) c2(D2 (R) IM) ]tNMNM

and from [16] we have the following:

,ki (J) -Cl,ki(D1) c2,ki (D2)

p(J) clp(D1) + c2p(D2).

We see that -J is the Kronecker sum of the matrices clD and c2D2.
If M N, then p(d) (Cl + c2)p(D1), so the spectral radius for d in the two-

dimensional case is not significantly larger than for an equivalent one-dimensional prob-
lem if c and c2 are of the same order of magnitude.

The Newton matrix is B IMN+h(Cl (IN(R)D1)+c2(D2(R)IM)). We may construct
a preconditioner P2 for B with the same structure as B. The only difference between B
and P2 is that in the latter the stepsize used at the time of preconditioner evaluation is
applied instead ofthe current stepsize. In the following the current stepsize is denoted by
h and the stepsize in the preconditioner is denoted by h. The solution of linear systems
with P2 is obviously as costly as using the matrix B itself.

Ifwe use a linear solver of Krylov subspace type, we need to compute By, v ]NM
(if this is not done by differences as discussed in 2). The terms of By can be computed
as follows: Ifwe partition the vector v into N blocks vi of size M, the product (IN (R) D1)v
is:

Ol
31

Vl

Oo

31

This computation can be performed by doing N matrix-vector multiplications of size M.
The cost is O(M2N) and only D1 and v need to be stored.

Alternatively, if we let {vi } form the columns of a matrix , i.e., v vec(V) in the
notation of [16, 12.1], we can use the relation

(4.3) (IN (R) D1) vec(V) vec(D1]))

and compute the required matrix-vector product by doing the matrix multiplication D]2

and transform back to a vector if needed. The cost of this operation is of course the same
as for the former method.

For the term (D (R) 1M)V we use the same partitioning of the vector v and we can
write:
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dIM d2IM dlNIM Vl

d2IM d22IM d2NIM v2

"..

dNllM dN2IM dNNIM VN

where Dz {dij }. We see that one block of the resulting vector is obtained by N scalar-
vector multiplications, i.e., O(N2) operations. The complete vector is then computed in
O(MN) operations, and only storage for D2 and v is needed. Note that we don’t have
to form the two large block matrices explicitly. An alternative computation here is based
on the relation

(4.4) (Dz (R) IM)VeC0; vee(VD),
and we see that we can form the matrix-vector product above by computing ;D.

The total cost is O(M2N+ N2M). We could have performed the Chebyshev differ-
encing by fast Fourier transforms (FFTs) using O(NM(logz N + logz M)) operations.
The fastest alternative in practice will depend on N and M as well as computer architec-
ture and implementation aspects, see, e.g., [23]. As a rule ofthumb, matrix multiplication
is fastest for M, N < 100.

We can write the equation Bz b in the following way using the relations (4.3),
(4.4), and the result in [16, 12.1, Cor. 2].

LEMMA 4.1. If A1 ]mxm, A2 E Rnxn, and X ]mxn, we have:

vec(AtX + XAz) (In (R) At + A (R) I,) vec(X).

Applying the lemma to Bx b gives immediately:

(4.5) (I + hcD)X + hczXD B, b vec(B).

This equation has a unique solution if the matrices I + hctDt and -hc.D have no
eigenvalues in common; see [16, Thm. 2, p. 414]. This holds, e.g., when Cl > 0, c2 > 0.
We can find the solution of (4.5) by using a result in [1, Chap. 10, Misc. Ex. 21].

LEMMA 4.2. Consider the matrix equation X C + e(AX + XB), e ]R and assume
that II(IIAII / IIBII) < 1, The solution is given by

(4.6) X C + E en"(A’B)
n=l

where is given by the recurrence"

,, A,-t + @,,_tB, o C

or by the explicitformula

n EAn-iCBi
i=0

In our case we can write the equation as follows:

X- h(cDxX + czXDT B
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and application of the above lemma gives directly:

(4.7) X B + E (h)nE (DI)"-’B(DT2)
rt=l i=O

From this expression we can construct polynomial preconditioners recursively. Note
that the convergence requirement for the series in the lemma implies a restriction on
the stepsize: h O(1/(M2 + N2)) so, formally, the preconditioner is hardly applicable
to implicit time integrators. The preconditioners of first and second order are:

X B + h(cDB + BceDT) + O(h2. max(Ma, Na))

X B +](cDB + c2BDT2) + (A)2(c21DB + 2cc2DBDT2 + Bc2DT22

+O(3. max(M6, N6)).

Numerical experiments have shown that this type of preconditioner can be used for im-
plicit integrators, but the performance is notvery good because ofthe stepsize restriction.

We are now going to investigate another class of preconditioners, namely, the tensor
product type or dimensional splitting type. The advantage ofusing these preconditioners
is fairly obvious; only "one-dimensional problems" have to be solved.

Consider the solution of Px b and we will now use a part of I hflJ hJ2
where J1 -c1N (R) D and J -cD (R) IM. We can write

I- AftJ1 h/J 1- h/J(I + JiJx) I- h/J2 (I + Cl
(R) O1)

If l-t IID-Ic2l (R) D II is small, i.e., Iczl >> Ic l, we can approximate the last factor with the

identity matrix and instead solve the "one-dimensional" system

(I- hJ2)x b,

which we will consider in more detail below.
If Cl is of the same magnitude as c, we may also use a splitting approach. Let

(I- hJ hJ)- (I- (I- hJ)-hJ1)-(I- hJz)-by Woodbury’s formula. The splitting is done as follows.
Find a l such that:

(4.8)

Assume that M N. The eigenvalues of the matrix on the right-hand side are:

Aij 1 +

where #i and #j are the eigenvalues of 1g (R) Di and D2 (R) 1M, respectively. One way of
choosing a is then:

(4.9) a
1 + hc2p(D.)
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The eigenvalues of (I ozhJ1) (I hJe) are:

1 + hc2pj + h#icl
1 +

This approximation will be good for large eigenvalues (close to p(D2)) and not so good
for small eigenvalues. However, the large eigenvalues will normally be the most trouble-
some, so the preconditioner should work reasonably well. If c >> c2, we can solve the
linear system by using the matrix I J only.

Another preconditioner that approximates B is the tensor product type:

[=’2 (I + hCl(IN (R) D1))" (I + hflc2(D2 (R) IM)) 1521./322.

This type of operator splitting preconditioner is also suggested in [3] for reaction-
transport equations.

Solving linear systems/5z b is a two-stage process; first solve/5z1 b, then
solve P22z y. Iterative methods could be used for these linear systems, but we show
in the following that direct methods can be applied, and the cost is not larger than for
the matrix-vector product By shown previously.

First consider/sely b, and assume that we have factored the one-dimensional
Newton matrix:

IM ’b ]flclD1 L. f

which takes O(M) operations. Note that this also applies to (4.8). Then

P21 IN (R) (IM -" h/(31D1) IN (R) L. f (IN (R) L) (IN (R) f).

Since (IN (R) L) and (IN (R) U) are block diago_nal matrices with lower, respectively, upper
triangular blocks of size M, we can solve Pely b by doing forward and backward
substitution simultaneously on all blocks of y (the blocks are of size M). This amounts
to (3(Me) operations per block and O(M2N) operations for the complete process. Note
that this process is ideal for parallel computation. We see this clearly if we consider
(IN (R) L)y b with y vec(Y) and b vec(B) giving the equation Ly B. This is a
matrix equation for y and we can solve it by operating on all columns in parallel.

To solve/3ex y we assume that

(IN + hc2D2) L. U;

hence,

/522 (IN + hc2D2) (R) IM L. U (R) IM (L (R) IM) (U (R) IM).

The matrix (L (R) IM) is N x N block lower triangular and block (i,j) is lijIM. If we
partition a vector v E RMN into blocks of size N, we can solve (L (R) IM)V b by per-
forming the forward substitution process treating each block of v as a single unknown.
The matrix version of this is I)LT B, where v vec(l)) and b vec(B). The back-
ward substitution is done in the same way. Both processes take O(MN) operations.

Note that ifM N, we only need to store one differentiation matrix, but we would
still have to store and factor two Newton matrices since c c in general. We can save
space by using (I/h/ci) J as the Newton matrices instead of I hcJ.
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We use the same updating strategy for the Newton matrix as was applied in the one-
dimensional case, reevaluate and refactor only when the convergence of the iterative
linear solver demands it. The only difference here is that we have to reevaluate and
refactor two Newton matrices.

We see that

2 P2 cc2(h3)2(Ig (R) D) (D2 (R) IM)

so 11 ’2 P211 Ic l Ic210(h2MZN2) which is not small except for h very small. Hence
in stiff regions where O(1) the splitting is not an efficient preconditioner.

If c9. >> c and h O(1) we see that 11#2211 >> 11#2xll and we might as well solve
only P22z b. This works better than doing both solution processes for an example
with c 1 and c2 100.. Note that the procedure forsolving only for/522z b is
in agreement with the condition for solving only for (I hBd2)z b in the method of
direct inversion described above. A possible computational scheme is to use the method
of direct inversion when the stepsize h is expected to be relatively large, and to use the
splitting method when h is expected to remain small throughout the integration interval.

5. A hyperbolic system in two space dimensions. We now go on to study precondi-
tioning for the linear system of PDEs:

ut + A1 ux + A2 uv O, u ]ik, A1, A2 ]tkxk,

which, after spectral discretization, becomes:

Vt + A (R) (IN (R) D)V + A2 (R) (D2 (R) IM)V O, V ]kMN

where A and A2 are constant coefficient matrices.
The Newton matrix is:

B IkNM + h3(A1 (R) (IN (R) D1) + A2 (R) (D2 (R) IM)),

and we will again consider tensor product type of preconditioners. A preconditioner
based on operator splitting is:

3 [IkMr + h3Ax (R) (Iv (R) D1)] [IMN + 3A2 (R) (D2 (R) IM)].

Linear systems with/33 can be solved iteratively; however, solution of/53x b can also
be done b_y direct methods.

Let P3 P3 P32. We factor P32 as follows:

/332 IkMN + 3A2 (R) D2 (R) IM
(IN + hA2 (R) 02) (R) IM
L U (R) IM (L (R) IM) (U (R) IM).

Solution of linear systemswith Pa2 can be performed in the sameway as described for P22
above. A more efficient approac_h in the case where A2 is^diagonalizable, Az TAT-_1,
A diag()i) is to transform Pazx b into (IMN + hA (R) D2 (R) IM)c b. This
linear system can be solved by factoring the k matrices IN +i32 and using these LU
factors in the solution process. The cost of factoring A2 is usually negligible because the
number of PDEs is small compared to M and N. Each transform by T-1 (R) IN (R) IM
costs O(k2MN), and this is also negligible compared to the total cost which is O(kN +



IMPLICIT ODE SOLVERS FOR SPECTRAL METHODS 1205

kMN2). The major contributions are the factoring of the k matrices I + hAD, of size
N and the solves for the total linear system, each costing O(kMN) operations.

IfA is diagonalizable by TI" A TIA1T]-1, A diag(Ali) we can write P31Z b
as

(IkMN -1- hA (R) IN (R) Dx)Yc

where : (T- (R) IMN)X, (T- (R) IMN)b. The transformed linear system decouples
into k blocks, each having the same form as P21x b considered in the previous section,
and can be solved by factoring the k matrices IM + ]zD,hiD and using a blockwise sub-
stitution process as described for the solution of P21x b. The total cost of factoring
and solving is O(kM3 + kM2N) operations. If k, the number of PDEs, is large, we can
use a more efficient procedure. If

IM "-I- h/3AID1 ,-q H .--1,

then

IM + hA,D S \-- 1 I + H

If S is chosen such that H is diagonal, then no additional factoring is necessary for IM +
hflAiD1, 2,..., k. IfH is upper Hessenberg, then factoring of (A/Ai 1)I+H is
required, but this is cheaper (O(kM2) operations compared to O(kMa)) than factoring
the matrices IM + hAliD for 2,..., k.

We may also use the direct inversion scheme for linear two-dimensional systems.
Let

P3 I- hfJ hfJ2
where J -A (R) IN (R) Dx and J2 -A2 (R) D2 (R) 1M.

As for the single two-dimensional equation, we solve only for (I hJ2)x b if

IlJ211 IIJll, i.e., p(A:) >> p(A) (if we assume M N). Even if p(A2) p(A1),
numerical experiments show that the one-dimensional preconditioner will work reason-
ably well at least in the cases where M N. When p(A2) p(Ax) we may use the
approximation

with

P3 I ]z3aJ I ]z3J2)

1 1

1 + hp(A: (R) D: (R) IM) 1 + hp(A:)p(De)
The performance of the preconditioner will depend on the spectra of A1 and Ae, and
may therefore be less predictable than for the single two-dimensional equation.

6. Remarks on quasi-linear PDEs. For nonlinear systems ofPDEs the Jacobian will
no longer be constant, and an approximation to the Jacobian has to be computed several
times during the integration to make the ODE solver work properly. The corresponding
Newton matrix can be operated on without forming it explicitly, similar to the approach
for linear systems shown previously.

Quasi-linear systems comprise an important special case, and for these equations
we can do a local linearization and recompute the preconditioner when the dependent
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variables and/or the stepsize have changed significantly. The control mechanism for
recomputing the Jacobian is still the convergence of the linear solver. With the local
linearization we can solve the ODE system in the same way as described previously for
linear systems of PDEs.

As an illustration, consider the spectral discretization of the PDE

ut + U Ux 0

which can be written:

Vt+V(R)D.V=O, V ]N,

or

(6.1) Vt + diag(V). D. V 0

where (R) denotes the componentwise product oftwo vectors, and diag(V) is the diagonal
matrix formed by the components of the vector V. The Jacobian is formed by taking the
Fr6chet derivative of diag(V). D. V. The result is:

d diag(V)- D diag(D. V).

We see that d depends directly on the approximate solution vector V. The spectral
discretization of a local linearization of the PDE gives:

Vt + diag(fr) D. V 0

where # is the point of linearization. The Jacobian in this case is obviously -diag(fr) D,
which may not be a good approximation to the exact Jacobian. A better choice would be
to insert V into the formula for the exact Jacobian.

Now consider the quasi-linear system

(6.2) u + A(u)u O, u e Rk, A(u) {aii(u)}.

If A(u) A is a constant matrix, this problem reduces to the one-dimensional model
problem considered in 3. Spectral discretization with N points gives the following ODE
system:

(6.3) Vt + {diag(a( kV))}i,j=l (Ik O) V O, V e kN

where ao(V is interpreted as follows: In the continuous case aij is a function of all
k components of u, and the value of aij is a real number. In the discrete case aij
takes the k N-vectors of V as arguments and produces an N-vector. The expression
{diag(ai/(V))},j=l is therefore a matrix consisting of diagonal matrices ofthe N-vectors
ai. We see that this spectral discretization formula applied to the single PDE above
gives (6.1). In order to compute the Jacobian for the ODE system we take the Fr6chet
derivative of

{diag(a (V))}i:l. (Ik (R) D) V.

This gives after some algebraic manipulations:

(6.4) J {diag(aij(V))}i,j=k (Ik (R) D) diag DVm (R) OVj
m=l

k

i,j=l
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where V [V1,..., Vk]T, Vm E ]N, and Oaij/OV have values in ]N. The Jacobian is
a Nk x Nk matrix. Preconditioners for J can be constructed as shown in the previous
sections.

Example. Nonlinear wave propagation in the atmosphere can be modelled by the
following quasi-linear PDE system:

ut + A(u)u b

where

U2 Ul 0

A(u) 0 u2 1/u
0 ")/U3 U2

Spectral discretization gives:

(6.5) Vt /
diag(V2) diag(V1) 0 |

0 diag(V2) diag(1/V1) ] (I3 (R) D). V B.

0 7 diag(V3) diag(V2)

Using the previous formula for the Jacobian, we get the following result:

(6.6)

diag(V2) diag(V1)
J 0 diag(V2)

0 "y diag(Va)
diag(DV2)

diag(OV3 (R) lIVe)
0

0 1diag(1/V1) (13 (R) D)
diag(V2)

diag(DV) 0

diag(DV2) 0

diag(DV3) 7 diag(DV2)

For the two-dimensional quasi-linear system

ut + A(u) ux + A2(u) uv b,

we get, after spectral discretization:

+ {diag(a’(V))}. (I (R) IN (R) D)V

{diag(a’(V))}. (I (R) D2 (R) IM)V B, V RMN+

because the differentiation matrices are IN (R) D and D2 (R) Iu in the x- and y-direction,
respectively. Using the same procedure as in the one-dimensional case, we get the fol-
lowing Jacobian:

J-- dia(a )(U))
k

diag 2m=l(I N D1)V o
i,=l

{ }k "(IkD2IM)diag(a)(V)),=
(D2 @ IM)V o ,=

diag m=



1208 IVAR LIE

where V IV1,..., V]’, V E lim2v and have values in limzv. Precondi-
tioners for d can be constructed in the same way as before. The Jacobian is relatively
complex, and it may be possible to use a preconditioner that uses only the most signifi-
cant terms from the Jacobian. However, this simplification will depend entirely on the
actual system to be solved.

Refactoring of the Newton matrix I-drequires more monitoring for a nonlinear
system since we have to decide if the Jacobian should be reevaluated or ifwe should just
use the current stepsize with the old Jacobian. Practice among existing codes varies
considerably. The LSODE family always reevaluates the Jacobian when convergence
failure occurs, whereas SIMPLE reevaluates only when the iteration using the current
stepsize in the Newton matrix diverges.

Stiffness is normally not a problem in nonlinear equations like the simple model
equation above, but quasi-linear systems coming from, e.g., gas dynamics andwave prop-
agation, show considerable stiffness. Explicit ODE solvers work very inefficiently for
such systems, and implicit solvers could be more efficient as we have seen for the linear
test problems.

7. Numerical examples. In this section we will give a few examples to show that the
preconditioners developed in the previous sections work reasonably well. More exten-
sive testing is, however, required in order to assess the true quality ofthe preconditioners.
All the tests reported have been run on VAX stations using double precision arithmetic.

Consider the two-dimensional equation treated in 4:
zt + clz + c2uv 0, Cl > 0, c2 > 0

in [-1, 1] x [-1, 1] with the following boundary conditions: u(-1, V, t) 0, u(z, -1, t)
0, and open boundaries along z 1 and V 1. The initial function is the "Gaussian
hill" exp(-10(z2 + V2)) and the integration interval is [0, 2]. Both the absolute and the
relative error tolerance were set to 10-.

In Table 7.1 we give some results for this equation using the ODE solver KRYSI,
varying the number of spectral points and the "wave speeds" cl and c2. The precondi-
tioner used is the "one-dimensional" version: I h3d2 based on the preconditioning
matrix Q.

TABLE 7.1
ODE statistics for KRYSI applied to a two-dimensional model equation.

M=N 9 9 9 17 17 17
Cl 1 1 1
c2 10 100 1000 10 100 1000

steps 132 130 137 102 100 105
fixp. steps 116 109 109 73 73 73
func. eval. 1285 1285 1383 975 961 1043

We see that the number of steps and the number of function evaluations is not in-
creasing with N (it is even decreasing), and that the number of fixpoint steps is large
compared to the total number of steps. This indicates that the ODE system is not very
stiff, but what is happening is the following: As long as the wave is inside the region
(corresponds to t < 1) the stepsize is relatively small due to the tracking of the relatively
steep wave. Mainly fixpoint steps are used in this time interval. When the wave has left
the region, the solver switches to Newton steps, and the stepsize increases sharply.

This is illustrated in Table 7.2 where we have used the case M N 9, ct 1, c2
100 and variable integration interval. The performance ofKRYSI on this model problem
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is good, the internal statistics of the solver show that there are few, if any, convergence
failures in the linear solver, and 2-3 nonlinear iterations are used for each step. The cost
ofpreconditioning for the cases shown in Table 7.1 is low. There are 4-6 evaluations and
factorizations of the preconditioner for each case.

TABLE 7.2
Numberofsteps as afunction ofintegration interval.

tend 2.0 10.0
steps 130 137

fixp. steps 109 109

100.0
143
109

As a comparison to KRYSI we have used the explicit solver DOPRI5 on some of the
cases displayed in Table 7.1. We see clearly from Table 7.3 that the explicit solver uses
many more steps and function evaluations than KRYSI. The fight-most case in the table
was aborted after 25000 steps.

TABLE 7.3
Statisticsfor DOPRI5 on the two-dimensional modelproblem.

M= N 9 9 17
el 1 1 1
c2 10 100 1

steps 344 2094’ oo

rune. eval. 2408 14658 o

When using the modified preconditioner

(I ahJ)(I hJ)

with cl c2, we got results that were almost identical to those obtained with the "one-
dimensional" preconditioner. This can be partly explained by looking at the eigenvalues
)ij of the matrix (I- hJ1)-(I- h[3J h[3J2) in the M N case:

ij (1 + hc#i)-(1 + hCl#i +
If we take c c, we get Aij 1 + aj/(1 + ai) where ai hc#i, and we see that
the location of the spectrum depends on ai. If ai O(1), i.e., hc O(N-), then the
spectrum will be fairly close to (1, 0). A preliminary recommendation will therefore be
to use the "one-dimensional" preconditioner I- hJz for cz > c and to use (I- hJ)
for c > c.

We have also run the same model equation on the ODE solver LSODPK with the
"one-dimensional" preconditioner and using the same settings for the ODE parameters.
Some results are given in Table 7.4:

TABLE 7.4
Statistics.for LSODPKapplied to the modelproblem.

M N 9 9 9 17 17
el 1 1 1 1 1
c2 10 100 1 10

steps 67 187 1363 73 377
func. eval. 202 608 4329 201 1400
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We see that the performance is not satisfactory, especiallywhen c2 is large. It is well
known that the BDF family of methods, on which LSODPK is based, is not A-stable for
order > 2; see [10] for plots of the stability regions. The spectrum of the differentiation
matrix is discussed in [25], and there are eigenvalues close to the imaginary axis, which
can cause stability problems, and hence the solver will use an unnecessary small stepsize.
A further complication is the high sensitivity of the eigenvalues of the differentiation
matrix to machine precision (see [25]), and it is reasonable to expect that the stability
restrictions will be a function of the machine precision.

When inspecting the order usedby the ODE solver in the integration ofthe examples
in Table 7.4, it was discovered that order four was used in most of the steps, and even
order five was used sometimes. So by looking at the stability regions for these methods
it is fairly clear that stability did play a role in the performance of LSODPK shown in
Table 7.4.

Fortunately, LSODPK contains an option to put an upper bound on the order to
be used by the solver. We set this maximum value to three, so the resulting family of
methods would be almost A-stable. This gave much better results as shown in Table 7.5.

TABLE 7.5
Statistics for LSODPK with maximum order 3.

M=N 9 9 9 17
el 1
c2 10 100 1000 10

steps 133 122 120 98
func. eval. 2 382 363 306
ave. N. t.1,. 1.15 1.13 1.16
ave. lin. /.8! 1.72 1.66 1.70
pre. ex;al. 16 17 17 14
CPU time 3.5 3.2 3.2 4.1

17

100
94
299
1.12
1.83
14
5.0

17

1000
71
219
1.14
1.69
14
5.1

We see that, compared to KRYSI, the number of steps is approximately equal for
the test cases, but the number of function evaluations is much smaller. In Table 7.5 we
have included more statistics in order to show the performance of the preconditioner.
The parameter "ave. N." is the average number of Newton iterations per step, and this
is indeed small for these tests. The parameter "ave. lin." is the average number of linear
iterations per Newton step and this is probably the best measure on the performance
of the preconditioner. The numbers are very small indicating that the preconditioner
works well. Another indication is that there were no convergence failures of the linear
iteration in any of the tests. The parameter "pre. eval." is the number of preconditioner
evaluations which, in this case, is also the number of Jacobian evaluations. Analytical
Jacobians were used for both ODE solvers, so Jacobian evaluations do not show up in
the function evaluation figure.

Restricting the order to 2 in LSODPK did not produce better results than shown for
maximum order 3, nor did runs with maximum order 4.

The next test example is the one-dimensional atmosphere model whose spectral dis-
cretization is given in (6.5). The Jacobian matrix for the ODE system is given in (6.6).
Since we know the exact Jacobian, we can, in principle, compute the exact Newton ma-
trix for preconditioning. But computing the Newton matrix for each change in stepsize
is normally too costly, and the LSODPK solver which is used in this example tries to
minimize the number of Newton matrix computations. Convergence of the Newton it-
eration.may be bad for "old" Jacobians and for increasing stepsizes as the analysis in 3
indicates.



IMPLICIT ODE SOLVERS FOR SPECTRALMETHODS 1211

The Newton matrix in this case is I ht3J where J is the Jacobian in (6.6), and we
use the matrix Q in the construction of the preconditioner. We see that the Jacobian
contains two terms, the first term is what is obtained if local linearization is done before
differentiation, while the second term is a true property of quasi-linear systems of first
order PDEs.

Two versions of the preconditioner have been investigated in the tests. The first
version is using the full Jacobian, while the second version is using only the first term. It
turns out that the latter version gives the best results, and is therefore used in this test
example. The difference between the two versions of the preconditioner may be due to
the fact that Jacobians are computed only when needed to assure convergence of the
iterations. Meanwhile the variables may have changed so much that the second term,
which depends strongly on the values of the variables, is making the convergence worse
than if the term was not there.

Note that the structure of the Jacobian as well as the Newton matrix is as follows (cf.
(6.6))"

All A2 0 ]
A21 AI 0 J0 A32 A33

In order to solve (I hJ)z b, we have used the capacitance matrix technique
in [15].

Boundary treatment in spectral methods for hyperbolic systems has been discussed
in [5] for fixed stepsize and Dirichlet boundary conditions. In our case we have open
boundary conditions and variable stepsize.

To address the issue of boundary conditions properly, we perform a diagonaliza-
tion of the PDE system. We get the following eigenvalues (=characteristic speeds):
U2 --a, u2, u2 -[-a where a is the local speed of sound: a V/"yU3/Ul The corresponding
characteristic variables are uz-uauz, u -uz/a, uz -uxau2. Assuming subsonic condi-
tions, we get one left-going characteristic, one right-going, and one characteristic whose
direction depends on sign(uz). Following the principles for boundary treatment in [5],
we compute the first characteristic variable at the left boundary, the third characteristic
variable at the right boundary, and the second characteristic variable at the boundary
points determined by sign(u). For inflow boundary points we supply appropriate inflow
values. From both outflow and inflow characteristic variables we compute the boundary
values for the physical variables.

The initial conditions are given by hydrostatic equilibrium and a state equation:

,-1
U3 U constant,

plus a small perturbation in ua of the form 0.1. exp(-50.0 x).
The test results for an explicit ODE solver (DOPRI5) and the implicit solver

LSODPK, both with error tolerances set to 10-4, are shown in the Tables 7.6 and 7.7.
We see that the number of steps is O(N) for DOPRI5, while for LSODPK the number
of steps is only slowly varying with N. The performance of the preconditioner is still
satisfactory, but not so good as for the single two-dimensional hyperbolic PDE shown
in Table 7.5. The difference in CPU time between DOPRI5 and LSODPK is large for
large N and, in particular, for longer integration intervals even if the stiffness is relatively
moderate here. However, we might have used a cheaper explicit method since DOPRI5
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has seven stages and the stepsize is determined by the stability requirement. For exam-
ple, a low order Runge-Kutta method or an Adams method would probably do better
in this test example. The number of function evaluations for LSODPK is reasonably
low, and using this solver with a good preconditioner on the atmosphere model seems
to be an efficient method. Hopefully, the method can be used to solve other important
quasi-linear hyperbolic systems with the same efficiency.

TABLE 7.6
Statisticsfor LSODPKon the atmosphere model

tend 1.0 1.0 1.0 4.0 4.0 4.0
N 17 33 65 17 33 65

steps 57 74 74 114 154 118
rune. eval. 231 385 427 531 874 739
ave. N. 1.64 1.60 1.62 1.53 1.51 1.57
ave. lin. 2.05 1.97 2.09 1.85 1.81 1’.79
npe 10 11 10 12 12 i’2

CPU time 6.2 10.3 11.5 14.3 23.5 19.8

TABLE 7.7
Statistics for DOPRI5 on the atmosphere model

tend 1.0 1.0 1.0 4.0 4.0 4.0
N 17 33 65 17 33 65

steps 59 217 873 184 711 2837
func. eval. 413 1519 6111 1288 4977 19860
CPUtime 5.5 20.2 81.4 17.1" 663 ’2d4.

8. Conclusion. We have shown how to apply implicit ODE solvers with iterative lin-
ear equation solvers on ODEs coming from spectral discretization of some hyperbolic
model problems. The tensor product-type developed preconditioners perform satisfac-
torily, and the use of implicit ODE solvers gives a significant reduction in the number of
timesteps and computing time compared to explicit ODE solvers. In cases where the in-
tegration interval is long, the advantage of using implicit solvers seems to be substantial.

The application to quasi-linear PDEs is straightforward (by local linearization), but
because of the nonlinearity the preconditioners may be less efficient if the solution is
rapidly changing. A test example from atmospheric physics shows that application of
implicit ODE solvers to quasi-linear PDE systems gives promising results. We will de-
scribe preconditioning techniques for quasi-linear systems of PDEs in more detail in a
forthcoming paper.

For PDEs containing second order derivatives, different types of preconditioners
have been suggested. Orszag [20] has derived a preconditioner based on centered finite
differences of the Chebyshev points {zj }, and that preconditioner has proven to be very
effective, see, e.g., [12]. The numerical experiments indicates that the spectral radius of
the preconditioned second derivative matrix is O(1) compared to O(N4) for the unpre-
conditioned case. However, the use of these preconditioners in the ODE context will
meet the same problems as for the preconditioners described in this paper.

Note that preconditioning of the second ,derivative matrix is in many ways simpler
than for the first derivative matrix due to the fact that the latter matrix is nearly defective.
The paper [26] discusses in detail the eigenvalues of the second derivative matrix.
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METHODS FOR REDUCING APPROXIMATE-FACTORIZATION ERRORS IN
TWO- AND THREE-FACTORED SCHEMES*

ERLENDUP STEINTHORSSONt AND TOM I-P. SHIHt

Abstract. Three methods are presented for reducing approximate-factorization (AF) errors that exist in
two- and three-factored schemes, such as the popular ADI, LU, and LU-SSOR methods. For problems in
which AF errors are larger than both time-discretization and time-linearization errors, these methods can be
used to lower the AF errors so that larger time-step sizes can be used when transient solutions are of interest.
When only steady-state solutions are of interest, these methods can be used to accelerate the convergence rate.
The methods presented also can be used to stabilize schemes that are unstable because ofAF errors (e.g., the
three-factored ADI scheme applied to the linear advection equation with central-difference approximation of
the spatial derivatives). The three methods presented can be added easily to existing codes using any two- or
three-factored schemes.

Key words, approximate factorization, approximate-factorization errors, ADI, LU, LU-SSOR, computa-
tional fluid dynamics

AMS subject classifications. 65C20, 65MO5, 76N15

1. Introduction. All implicit finite-difference (FD) and finite-volume (FV) meth-
ods for partial differential equations (PDEs), such as the Euler and Navier-Stokes equa-
tions, require simultaneous algebraic equations to be solved. For computational effi-
ciency it is desirable that such methods solve only those simultaneous equations that can
be analyzed efficiently, namely, those that are linear, are of as low an order as possible,
and have coefficient matrices that possess certain structures, such as tridiagonal or tri-
angular (e.g., bidiagonal) matrices. Systems of nonlinear algebraic equations can always
be converted to systems of linear equations by the Newton-Raphson iteration or by vari-
ations of it. To reduce the order of simultaneous equations and to change the structure
of their coefficient matrices, a technique known as approximate factorization (AF) can
be used.

AF has been used in three ways. The first approach, factorization according to spa-
tial dimensions, is used in ADI methods [1], [2] and their variations [3], [4]; schemes
based on ADI factoring are two-factored for two-dimensional (2-D) problems and are
three-factored for three-dimensional (3-D) problems. The second approach, factoriza-
tion according to the signs of certain eigenvalues, is used in the LU [5]-[7] and LU-SSOR
[8] schemes; schemes based on eigenvalue splitting are always two-factored whether the
problem being analyzed is 2-D or 3-D. The third approach, which involves a combination
of the first two approaches, is used in the partially split method of Steger and of Ying
[9]. Note that AF should always be used with delta formulation in order to produce
consistently split FD and FV methods [10].

Although AF is a useful technique for developing efficient schemes, FD and FV
methods constructed by using it can have problems. For example, with ADI schemes
the three-factored versions are less stable numerically than are the two-factored ver-
sions. In fact, Fourier analysis has shown that for the linear advection equation with
central-difference approximation of spatial derivatives, the three-factored scheme is un-
conditionally unstable. With LU schemes the problem is not stability but rather the
physical meaning of the intermediate variables. This makes implicit implementation of
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*Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-
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boundary conditions at the intermediate step difficult. Implicit boundary conditions can
significantly affect the accuracy of transient solutions and the convergence rate to steady
state. Also, even though all schemes constructed by using AFwit delta formulation yield
steady-state solutions that are independent of errors arising from AF, transient solutions
are affected by those errors. Thus if transient solutions are of interest, then time-step
sizes may need to be kept excessively small in order to minimize those errors.

If errors introduced byAF can be eliminated in an economic manner, then schemes
constructed by using AF will improve in performance and accuracy. Thus the objective
of this study is to devise methods that can be used to reduce or eliminate errors that arise
from AF. In this paper three such methods are devised. These methods can be applied
to reduce or eliminate AF errors in any scheme constructed by AF for any PDE, includ-
ing the Euler and the Navier-Stokes equations. Here these three AF-error-reduction
methods are presented in the framework of a three-factored ADI scheme applied to the
linear advection equation.

The rest of this paper is organized as follows. First, the model equation and the
algorithm used to present the AF-error-reduction methods are given. Second, three AF-
error-reduction methods are described, and then one of the three AF-error-reduction
methods is analyzed for its convergence and stability properties. Finally, results that
show the capabilities of the three AF-error-reduction methods are given.

2. Model equation and algorithm. In this study the linear advection equation is
used as the model PDE and the three-factored ADI scheme is used as the model al-
gorithm whose AF errors are to be reduced or eliminated.

The 3-D linear advection equation is given by

Ou Ou Ou Ou
0-7 + + + o,

where u u(t, x, y, z) and cx, cu, and cz are real constants. Suppose that (1) is supplied
with appropriate initial and boundary conditions and that the domain is discretized so
that the time-step size (At) and grid spacings (Ax, Ay, and Az) are all constants. If
the time derivative is replaced by a generalized time-differencing formula [1] and if all
spatial derivatives are replaced by difference operators, (1) becomes

"vAt(2) 1 + 1 + 0 (cxD + cyDy q- czD,) n+lAijk RHSijk,

where

(3) RHSijk
At 0

+ cyOy + r n + Au.
In the above equations Au’+1 u’+1 u’ and uik u(nAt, iAx, jAy, kAz), where
n, i, j, and k are nonnegative integers; D, Du, and D are the difference operators
(central or upwind) that approximate the first-order x, y, and z derivatives, respectively;
and 0 and -), are constants that determine the time-differencing formula (e.g., , 1

give the three-pointand 0 0 give the Euler implicit formula, and -), 1 and 0 5
backward formula).

Equation (2) can be approximately factored in several different ways. Approximate
factorization according to spatial dimensions gives the following three-factored ADI
scheme:

(4) 1 + 1 + 0cDz 1 + 1 + 0
cyDy 1 + 1 + oczDz Auijk RHSijk,
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which can be split as

(Sa) (l+i+TAt0cxDx) Auk RHSijk,

7At ) ,(5b) 1 + 1 + 0cvDv Auj Au,

7At c.D.) Aui’-1 Aui*j*.(5c) 1 + 1 + 0

When (2) was approximately factored to produce (4), an error was introduced into
(4). If (2) had been factored without introducing this error, then the following equation
would have been obtained:

(6a)

7AvcxD 1 + cvDy 1 +1+1+ 1+0 1+
where

czDz Au,
ijk RHSijk + (I)AF,

TAt)2\ 1 + 0 + (cxO)(c,Oz) + (cvOv)(c,D,)]Au+k
(6b)

+ 1 + 0 (c,D,)(cvDv)(c,D,) .,+1

e term CAF on the right-hand side of (6a) is the error in the three-factoredI
scheme given by (4). If we want to reduce the error in (4), then we must add the
term CAF, or pa thereoL back to the right-hand side of (4).
e Fourier method of stabili analysis shows that when second-order-aurate

central-differencing formulas are used for the spatial derivatives, the three-factoredI
scheme given by (4) is unconditionally unstable [11]. In contrast, the scheme given by
(2) is unconditionally stable when used with the same second-order-accurate central-
differencing formulas. is implies that the error destabilized the scheme. is also
implies that if the errors in (4) can be reduced or eliminated (e.g., by adding CAF),
then the three-factoredI scheme can be stabiled.

Here it is emphasized that it is unnecessa to add all of the terms in CAF given
by (6b) to (4) in order m stabilize the three-factoredI scheme. To illustrme this
point, we consider another way of factoring (2) that yields the following unconditionally
stable scheme when second-order-accurme central-differencing formulas are used for
the spatial derivatives:

(7) 1+ 1+07t (cD + cD) 1 + 1 + OcD ui RHSi,

which can be split as

[ 7At (cD+cvD)] Au RHS,(8a) + 1’+ o
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"rAt (czD)] +(8b) 1 + 1 + 0 AiJk Aui:ik"

Equation (8a) can be rewritten as

(9a) l + l + o (cD) Auk= RHSk+ 1+0]
c D **)(%D)Auijk,

 zxt )] **(gb) 1 + 1 + 0 (cvD Auijk Auijk,

SO that (9a), (gb), and (Sb) appear as a three-factored scheme and can be compared with
the three-factored ADI scheme given by (5). If these equations are compared, it can be
seen that to stabilize (4) it is necessary to add only the last term in (9a) to the right-hand
side of (4). Adding this term would effectively convert the three-factored scheme given
by (4) to the two-factored scheme given by (7).

3. AF-errar-reductiaa techniques. This section presents three AF-error-reduction
methods for reducing or eliminating AF errors in the three-factored ADI scheme given
by (4). The first technique is designed to stabilize the three-factored ADI scheme by
eliminating some, but not all, AF errors. The remaining two techniques are designed to
eliminate all AF errors.

3.1. Technique 1: Stabilize the three-factored ADI scheme. As mentioned in 2,
one way to stabilize the three-factored ADI scheme given by (4) is to convert it to the
two-factored scheme given by (7). This can be achieved by adding

(cD,)(cD)Au,*

to the right-hand side of (4) or, equivalently, to the right-hand side of (5a). The resulting
scheme, given by (9a), (9b), and (8b), is repeated below for convenience:

(10a) 1 + --(cD) Auijk RHSijk + \ 1 + 0 (cD)(cuDv)Au,*k,

.yAt
(cuDu)1 Aui,k Auik,(10b) 1 + 1 + 0

"yAt ] zauijk Aujk.(10c) 1 + 1 + 0 (cD)
+1 **

Note that the term that was added to (5a) to obtain (10a) is a cross derivative that couples
together all grid points in a constant-z plane, and since it involves Au** it also couples
(10b) to (10a). Thus in order to obtain an economical AF-error-reduction method, the
cross-derivative term must be eliminated and (10a) and (10b) must be decoupled.

The cross-derivative term in (10a) is eliminated by rewriting (10b) as

(11)
1+0
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and by substituting it into (10a) to give

( "rAt ) 7At (cD)(Au,k- Au**).(12) 1 + 1 +0cD AuiJk RHSijk + 1+0
Equation (12) shows the cross derivative eliminated, but it also shows that (12) (which
now replaces (10a)) is still coupled to (10b) since Au* and Au** appear in both.

To decouple (12) from (10b) we suggest the following iterative scheme:

edictor Step

(13a) 1 + 1 + 0cD Auijk RHSijk,

"/At ) **" A*"(14b) 1 + 1 + 0cuD aiJ ’-i-’

7At D Aui+k zauijk(14c) 1 + -1 + 0 cz

Depending on the problem and the time-step size, the corrector step given by (14a)
and (14b) may need to be iterated a few times before (14c) is solved. Iterating (14a)
and (14b) permits Au* and Au**’ to be made as close as desired to Au*" and Au**’,
respectively. In the limit, when Au*’ Au*" and Au** Au**", (14a) becomes

If (14b) is substituted for Au*", the above equation becomes

(1 7At )(1 7AI u) (TAt+ l+ocn +1+ }cyn Aui- RUSijk+\l+
which is identical to

7At (cD + %D,)] **"1 + 1 + 0 uijk RHSijk.

Thus in the limit the AF-error-reduction scheme given by (13) and (14) can be used
to convert the unconditionally unstable three-factored ADI scheme given by (4) to the
unconditionally stable two-factored scheme given by (7).

In 4 it will be shown that when central-differencing formulas are used for all spatial
derivatives, the iteration process given by (14a) and (14b) is convergent for all values of
At. This iteration process can, therefore, be said to be unconditionally convergent. It is
also shown in 4 that the overall algorithm given by (13) and (14) can be made condi-
tionally stable and that its stability characteristics improve as the number of iterations of
(14a) and (14b) is increased.
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3.2. Technique 2: Reduce all AF errors in the three-factored ADI scheme. The AF-
error-reduction method presented in the previous subsection eliminated only AF errors
associated with one out of the two factorizations in the three-factored ADI scheme. This
subsection presents a method of reducing or eliminating AF errors associated with all
factorizations in the three-factored ADI scheme.

Consider the exactly factored scheme given by (6), which can be split as follows:
(15a)

l + l + oCxDx Auijk

( A.ttijkRHS,jk + \ 1 + 0
[(cxD)(cyDu) + (cD)(czDz) + (%Dv)(czDz)]

+\1+0 [(cxD.)(%D)(czDz )] A.ik. ,+1,

7At (%D)] Aui** Aui*,(15b) 1 + 1 + O

"rAt (cD)] .+1(15c) 1 + 1’+ 0 A. Auk.

To eliminate the cross-derivative terms in (15a), (15b), and (15c) are rewritten as

9/At (czD) .+1 n+l(16a)
1 q-0 Au’ijk Auijk Aaijk

(16b)
")’At ** .
1 + 0 (%D)Auijk Auijk AUijk"

Inserting (16a) and (16b) into (15a) gives

(17)
1+1+

This suggests the following method for eliminating all AF errors.

Predictor Step

7At c.D) Auik RHSijk(18a) 1 + 1 + 0

7At ) ** ,(18b) 1 + 1 + 0%D zaUijk Auijk,

7At D,) (n-+-l)’ **t(18c) 1 + 1 + 0
c, z.xuik zaui.
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Corrector Step

7A
1+1+

(19a)

7At %Dv zauJk(195) 1 + 1 + 0

) A (n+l)"/At
OczDz ’mjk zaUk(19c) 1 + i +

where the corrector step may have to be repeated more than once.
When second-order-accurate central-differencing formulas are used for the spatial

derivatives, it can be shown that the iteration process given by (19) is conditionally con-
vergent, i.e., it converges only if the time-step At is smaller than some critical value. For
ensuring convergence the At used must satisfy the following condition:

(20)

where

(21)

2+22azaaz(az + a + az) (a2z + a az) <= 1,

a
l /’v’ au ,, vu, a1 + 1 +
IclAt IculZXt lariatvx= Ax vu= Ay Vz= Az

Ifa ay az a, then the convergence condition becomes

(22) a __< 0.85,

or

(23)

The convergence criterion given above is quite restrictive. Thus the AF-error-reduction
method given by (18) and (19) is uneconomical. Below, a more economical method for
reducing all AF errors in the three-factored ADI scheme is presented.

3.3. Technique 3: Reduce all AF errors in the AIM three-factored scheme. The AF-
error-reduction method presented in 3.2was based on the exact factoring of (2) given by
(6). This subsection presents an AF-error-reduction scheme that is based on a different
exact factoring of (2).

A different exact factoring of (2) proceeds as follows. First, factor and split (2) as

7AtOczD Auik RHSk + 1 + O]
(24a) 1 + 1 + (cD)(%D + czD)Au,’+k1,

(24b) 7At (%Du + czDz)] hA-11 + 1 + 0 AiJk Auijk"
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Then, factor and split (24b) as

(25a) 1+ l+%D Auk Auk + \ l + O (%Du)(cD) +Atijk

(25b) 1 + i + 0czDz A-ijk Auijk.

By eliminating the cross-derivative terms in the same manner as before, we obtain

( ) ,YAt(cD)(Auijk .n+l"yA:czDz Auijk RHSijk + 1 + 0 A% ),(26a) 1 + 1 +

’yAt ) **(26b) 1 + 1+ ocuDu Auijk Aui:k +

(26c) 1 + 1 + 0

Equations (26a), (26b), and (26c) suggest the following AF-error-reduction method:

Predictor Step

(27a) 1 + 1 + cxD,) Auik RHSijk,

I **! ,!,yAt
%Du l=Uijk AUijk,(27b) 1 + 1+0

"yAt ) (n+l)’ **!(27c) 1 + ] + 0czD A.,k zau:ik.

Corrector Step

",/At(28a) 1 + i+ 0
(nq--1)’cD auijk= RHSijk+

1+0

(28b) ) **" A*" "yAt (n+l)’,yAt
cuD zauijk ",k + 1 + 0 (%D)(Aui3 zauik )’1+i+ 0

Note that in the AF-error-reduction method given by (18) and (19), the terms corre-
sponding to the AF error were all put in the first factor (19a). In the current AF-error-
reduction method the AF error terms are split between the first and the second factors
((28a) and (28b)).



1222 ERLENDUR STEINTHORSSON AND TOM I-P. SHIH

As in the previous AF-error-reduction methods, the corrector step given by (28) may
have to be repeated several times. Equations (28) can be iterated in two ways. The first
way is to iterate (28a) to (28c) within a single iteration loop until a converged solution
for Au’+ is obtained. The convergence criteria for this algorithm is complicated and
difficult to analyze.

The second way to iterate (28) is to use two nested loops. Within the inner loop,
(28b) and (28c) are iterated (for a fixed Au*) until a converged (interim) solution for
Au’+1 is achieved. Then, in the outer loop, (28a) is used to compute a new Au*, based
on the interim solution for Au’+1, before the inner loop is executed again. This algo-
rithm can be shown to be unconditionally convergent, provided that the inner loop of
the iteration scheme is carried out until a fully converged (interim) solution is obtained.
This result follows from the observation that the inner loop is simply an unconditionally
convergent two-factored scheme similar to that given in 3.1. If, for each of the steps in
the outer iteration loop, the inner loop is carried out to full convergence, then the outer
iteration loop also corresponds to a two-factored scheme that can be shown to be un-
conditionally convergent. With the above arguments it can be deduced that the iteration
scheme given by (28) is unconditionally convergent.

In this section, three AF-error-reduction methods were presented. Although all
three methodswere presented in the framework ofthe three-factoredADI scheme, these
methods can easily be extended and applied to other schemes constructed by using AF.

4. Analysis. In this section, the AF-error-reduction method given by (13) and (14) is
analyzed for its convergence and stability properties. The other two AF-error-reduction
methods can be analyzed in a similar way.

For the AF-error-reduction method given by (13) and (14) to be useful, the iteration
process given by (14) must be convergent and the overall algorithm given by (13) and (14)
must be stable. Below, the convergence property is analyzed first, and then the stability
property is analyzed.

To analyze the convergence property of the iteration process given by (14), we note
that if the iteration process converges, then (14a) must approach (12) and (14b) must
approach (10b) as the number of iterations increases. Subtracting (14a) from (12) and
subtracting (14b) from (10b) gives

7At c,Dx eijk (cxD)[eijk m--1" "-- _5(29a) 1+ 1+0 1+0

7At ) m(29b) 1 + 1 + 0cvDv 6ijk ek’

where ei’k is the error in Au* after the ruth iteration and 5ik is the error in Au** after
the ruth iteration, i.e.,

(30a) m ,,,
Q:, Au. zauj,

(30b) 6,.k Au,**k-

Substituting (29b) into (29a) gives

(31) 1 + i + 0 cxDz 1 + 1 + cyD 6ik 1 + 0
(cxDx (cuDu)5i:im-1.
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Now, suppose that the error 6mk has the following form:

(32) 5ijmk Dm exp[I(kxxi / kuyj + kzzk)],

where I x/L[; kx, ku, and kz are the wave numbers in the z, y, and z, directions,
respectively; and zi, yj, and zk are the coordinates of the grid point at (i, j, k). Since the
spatial derivatives are approximated by central-difference operators, (32) implies

(33a) , sin(kxAx)
Dx6ijmk I6iJk Ax

m m sin(kuAy)(33b) Du6iJk I6ijk Ay

Substituting (32) and (33) into (31) and dividing through by

exp[I(kxxi + kuyj + kzZk)]

gives

(34)
Din(1 + Iax sin(kxAx))(1 + Iausin(kyAy))

-Dm-axau sin(kxAx)sin(kuAu),

where

7 9/ cxAt cyAt(35) a 1 + 0vx’ au 1 + 0 vu’ vx Ax vu Ay

Equation (34) can be rearranged to give the following amplification factor:

(36) G
m

Dm-1
-axau sin(kx Ax) sin(kyAy)

(1 + lax sin(kxAx)) (1 + lay sin(kyAy))
or

(37) ICl = axay2 2 sin2(kxAx) sin2(kyAy)
1 + a2 sin2(kxAx) + a2u sin2(kuAy) + axau22 sin2(kxAx)sin2(kyAy)"

From (37) it is clear that IGI is less than unity for all wave numbers. This indicates that
the iteration process given by (14a) and (14b) is unconditionally convergent.

With the unconditional convergence of the iteration process shown, the stability of
the overall algorithm given by (13) and (14) is now analyzed. For simplicity, the Euler
implicit time-differencing formula is used, so that 7 1 and 0 0. For this case, (13)
and (14), along with (3) can be written as

(38)

At,- /3 A,n+l(1 + AtcxDx)(1 + AtcuDu)(1 + z,’-’mjk

-At(cxDx + cuDu + cD)ui’k
+

Now we introduce a parameter a defined by

(39) (cxDx)(cuDu)Au**’ a(cxDx)(cuDu)Au**.
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Note that as the number of iterations of (14a) and (14b) is increased, the value of
approaches unity and Au**’ approaches Au**. If we use (10c) and the parameter
defined by (39), equation (38) becomes

(40)

Application of the Fourier method of stability analysis to (40) readily yields an am-
plification factor with the following modulus:

(41) Ial (1 _)2 r/( r/)
(1 )2 + ( r/)2,

where

(42a)
(1 c)vvu sin(kAx) sin(kuAy)

+vv sin(kAx)sin(kAz)

+vvvz sin(kvAy) sin(kzAz),

(42b) r/= (1 )vvuv sin(kAx)sin(kuAy)sin(kAz),

(42c) v sin(kAx) + vu sin(kuAy) + vz sin(kAz),

cAt cvAt c.At(43) v= Ax’ v= Ay’ v,= Az"

For numerical stability, the modulus given by (41) must be less than or equal to unity,
i.e., IGI =< 1. From (42), it is clear that if c 1, then IGI _-< 1 for all wave numbers. This
indicates that if the iteration of (14a) and (14b) is carried out until a converged solution
is obtained, then the method given by (13) and (14) is unconditionally stable. If only a
finite number of iterations of (14a) and (14b) are carried out, then cz will be less than
unity, and this results in a conditionally stable algorithm. Another way to state this is
that, for a given At, there is a certain number of iterations that need to be carried out
before the algorithm becomes stable. The number of iterations needed to stabilize the
algorithm is problem dependent.

Note that for the original three-factored ADI scheme given by (4), c 0. For that
case Ying [9] has shown that the maximum IGI is greater than unity, indicating uncondi-
tional instability.

5. Numerical experiments. In this section the usefulness of the AF-error-reduction
methods developed in this study are demonstrated by applying them to a test problem.
The test problem selected is to obtain a steady-state solution of (1) by using the three-
factored ADI scheme. Since the three-factored ADI scheme applied to (1) is uncondi-
tionally unstable when central-differencing formulas are used to approximate the spatial
derivatives, this problem is a stringent test of the AF-error-reduction methods presented.
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5.1. Test problem and solution algorithm. In this subsection the test problem is for-
mulated and the solution algorithms with the AF-error-reduction methods applied to the
test problem are summarized.

All exact steady-state solutions to (1) must satisfy

c. Vu 0,

where c (c, %, c)T. This implies that steady-state solutions must be constant on
lines parallel to the velocity vector c. Thus steady-state solutions of (1) are functions of
the vector X (, , )T given by

(44) X r- (r. s)s,

where

r= y

x

c

The components ofX can be written as

(45a) czx + cuy + czz=x-c -- "-"5k, c +% +c

(45b) + cuy + czz)rl y cu c2 + c2 + c2z

(45c) ca:x + cuy + CzZ )z c -- "-7cx -+- cy + cz

Note that X is constant on lines parallel to the vector c and that this constant is zero for
the line passing through the origin.

With (44) and (45) a test problem that has a known steady-state solution to (1) can
be constructed. The test problem selected is as follows: the spatial domain is taken to
be a unit cube, i.e.,

(46) O<_x_<l, O<y<l, O<z<l

The velocity vector e is taken as

(47) c

1

1

1

so that it has nonzero component in all three coordinate directions. With this choice of
e, boundaries at z 0, y 0, and z 0 are inflow boundaries and the boundaries at
z 1, y 1, and z 1 are outflow boundaries. The boundary conditions imposed at
the inflow boundaries are those that yield the following steady-state solution to (1):

(48) u(, r/, ) cos(27r) + cos(27rr/) + cos(27r).
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Note that the steady-state solution given by (48) has nonzero first-order derivatives in
all three coordinate directions. The initial condition used for (1) is given by

(49)

which differs from the steady-state solution given by (48) by the sinusoidal disturbance.
To obtain solutions to (1) constrained by (46)-(49) by using an FD or FV method,

such as those described in the previous sections, the domain must be discretized and
additional boundary conditions (known as numerical boundary conditions) must be pro-
vided at the outflow boundaries at z 1, y 1, and z 1.

Here the temporaral domainwas replaced by equally incremented time steps. Time-
step sizes of 0.001, 0.002, 0.008, 0.01, 0.015, 0.02, 0.03, 0.04, and 0.06 s were investigated.
The spatial domain given by (46) was replaced by (IL 59) x (JL 53) x (KL 47)
equally spaced grid points, where IL, JL, and KL are the number of grid points in the
z, y, and z directions, respectively. Note that with this choice of IL, JL, and KL, the grid
spacings in the z, , and z directions are different.

The numerical boundary conditions used at the outflow boundaries are

(50a) UIL,j,k 2UIL-I,j,k UIL-2,j,k

(50b) Ui,JL,k 2Ui,JL-l,k i,JL-2,k

(50c) Ui,j,KL 2Ui,j,KL- Ui,j,KL-2.

Since the three-factored ADI scheme and the AF-error-reduction methods are implicit,
all boundary conditions, including those given above, were implemented implicitly as
follows:

(51a) n+l n+l n+lAul,j,k Au,i,1,k Aui,j, --0,

(5lb) n+l 2AUL+1 A’ n+lAU’IL,j,k -1,j,k ’IL-2,j,k

(51c) ’+ 2Au’+ A- ’+Au’i,JL,k i,JL- ,k "-’u’i,JL-2,k

(51d) n+l n+l nq-1A’u’i,j,KL 2Ati,j,KL- Ati,j,KL-2"
Numerical solutions to (1), along with (46)-(50), were obtained by using the follow-

ing three methods:
(i) The original three-factored ADI scheme given by (5).
(ii) The three-factored ADI scheme with AF-error-reduction Technique 1 given by

(13) and (14) (henceforth referred to as AFRT-1), which stabilizes the three-factored
scheme by converting it to a two-factored scheme.

(iii) The three-factored ADI scheme with AF-error-reduction Technique 3 given by
(27) and (28) (henceforth referred to as AFRT-3), which stabilizes the three-factored
scheme by reducing all AF errors.

Note that AF-error-reduction Technique 2, presented in 3.2, was not tested because
of the stringent criteria that must be satisfied in order for the iteration process involved
to converge.
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To illustrate that the AF-error-reduction methods developed in this study can easily
be incorporated into existing codes based on two- or three-factored schemes, the algo-
rithms for implementing the three methods listed above are given below.

Three-Factored ADI Scheme
specify initial conditions
for n 1 to NMAX do:

compute Au* (equation (5a))
compute Au** (equation (5b))
cornpute Au’+ (equation (5c))
compute Au’+ on boundaries (equations (51))
?n+l _. Un 2t_ m,o,n+l

end do
STOP

AF-Error-Reduction Technique 1 (AFRT-1)
specify initial conditions
for n I to NM.AX do:

Predictor Step"
compute Au*’ (equation (13a))
compute Au**’ (equation (13b))
Iterative Corrector Step:
for rn 1 to MMAX do:

compute Au**’ on boundaries (equations (51))
compute Au*" (equation (14a))
compute Au**" (equation (14b))
Au** ,__ Au**
A,u* ,._ A*

end do
compute Au’+1 (equation (14c))
compute Au+ on boundaries (equations (51))
Un+l Un -. A Un+l

end do
STOP

AF-Error-Reduction Technique 3 (AFRT-3)
specify initial conditions
for n 1 to NMAX do:

Predictor Step:
compute Au*’ (equation (27a))
compute Au**’ (equation (27b))
compute Au(’+1)’ (equation (27c))
compute Au(’+1)’ on boundaries (equations (51))
Iterative Corrector Step:
for rn I to MMAX do:

compute Au*" (equation (28a))
for I to LMAX do:

compute Au** on boundaries (equations (51))
compute Au**" (equation (28b))
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compute A’a(n+l)" (equation (28c))
compute A’a(n+l)’’ on boundaries (equations (51))
A’a**t -- A’a**t
A’a(+l) ,t--- A’a(n-t-1)

end do
end do
un+l _. ,an + A’an+l

end do
STOP

For the algorithms given above, NMAX is the total number of time steps taken;
MMAX is the total number of corrector steps (i.e., the number of times the corrector
Step is iterated), and/-,MAX is the total number of iterations performed within each cor-
rector step (used only with AFRT-3). In this study/-,MAX was always taken to be three
times MMAX. Note that the boundary conditions given by (51) were used not only for
computing A’a’+1 but also for computing the intermediate variables A’a* and A’a**.
This was found to be necessary in order to ensure convergence of the iteration processes
involved.

5.2. Results. The AF-error-reduction techniques developed in this studywere tested
by applying them to the test problem described in 5.1 and by using the algorithms de-
scribed there. In this subsection the results of these tests are presented.

The results of all numerical tests conducted are shown in Figs. 1-10. These figures
show the L2 norm of A’an+l plotted against time (Fig. 1) and against the number of time
steps (Figs. 2-10).

Figure 1 shows the results obtained by using the ADI three-factored scheme without
any AF-error-reduction technique. The results plotted are the convergence histories of
the solutions obtained by using time-step sizes ranging from 0.001 to 0.01 s. As can
be seen in the figure, converged solutions were obtained for all time-step sizes tested
with this range. These converged solutions were obtained despite the prediction by the
Fourier method of stability analysis, which states that the three-factored ADI scheme is
unconditionally unstable. This apparent contradiction can be explained by the fact that
the Fourier method does not consider the effects of finite-size domains and boundary
conditions on numerical stability. In this study the boundary conditions used (A’a 0
at inflow boundaries and upwind extrapolation at outflow boundaries) helped stabilize
the three-factored ADI scheme. Note that for time-step sizes larger than 0.01 s the ADI
three-factored scheme was found to be unstable.

Figures 2-10 show results obtained by using the AF-error-reduction techniques
AFRT-1 and AFRT-3. Each figure shows the results obtained by using time-step size.

Figure 2 shows the results obtained by using time-step At 0 001 s. As can be
seen, the AF-error-reduction techniques have no effect on the convergence rate except
near the beginning of the computations. This indicates that for small time-step sizes AF
errors are not significant and do not affect the solution.

Figures 3 and 4 show the results obtained by using At 0.008 s for AFRT-1 and
AFRT-3, respectively. From these figures it can be seen that the AF-error-reduction
techniques do improve the convergence rate slightly. Figure 3 shows that for AFRT-1
one corrector step has the same effect on the convergence rate as two, four, or eight cor-
rector steps. This indicates that for At 0.008 s the iteration process used in AFRT-1
converges fully in only one corrector step. Comparison of Figs. 3 and 4 shows that
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FIG. 1. Lg norm versus timefor ADI three-factored scheme with At rangingfrom 0.001 to 0.01 s.
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FIG. 2. L2 norm versus time stepsfor AFRT-1 and AFRT-3 with At 0.001 s.
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solutions obtained by using AFRT-3 converged slightly faster than solutions obtained by
using AFRT-1, provided that more than one corrector step is taken in AFRT-3.

Figures 5 and 6 show the results obtained by using At 0.01 s for AFRT-1 and
AFRT-3, respectively. The results shown in these figures are qualitatively similar to
those shown in Figs. 3 and 4. As can be seen in Fig. 5, when AFRT-1 is used, one or
two corrector steps improve the convergence rate, but more than two corrector steps
bring no further improvements. This indicates that the iteration process used in AFRT-
1 converges in two iterations when At 0.01 s, compared to only one iteration when
At 0.008 s. Figure 6 shows that for AFRT-3 the use of only one corrector step has
little effect on the convergence rate, but two and three corrector steps bring consider-
able improvements. If three corrector steps are used, the number oftime steps needed to
reach steady state is half of that needed by the original ADI three-factored scheme. This
indicates that AF errors are quite significant for this larger time-step size. Note that the
time-step size used here was the largest one for which the ADI three-factored scheme
was able to yield converged solutions without the use of AF-error-reduction techniques.
This time-step size can therefore be considered as the practical stability limit for the
three-factored ADI scheme used in this study.

Figure 7 shows the results obtained by using At 0.015 s. This figure shows the
results for both AFRT-1 and AFRT-3. For this time-step size the three-factored ADI
scheme was found to diverge. In Fig. 7 it can be seen that when AFRT-1 was used, a
converged solution was obtained if one corrector step or four corrector steps were used.
However, if two or three corrector steps were used, the solution diverged. For AFRT-3 it
was found that two corrector steps were needed in order to obtain a converged solution
and that the convergence rate improved as the number of corrector steps increased.

Figure 8 shows the results obtained by using At 0.02 s. For this time-step size,
when AFRT-1 was used, six corrector steps were needed to stabilize the ADI three-
factored scheme. If AFRT-3 was used, then only two corrector steps were needed to
stabilize the scheme. Again, when AFRT-3 was used, the convergence rate improved as
the number of corrector steps was increased.

Figure 9 shows the results obtained by using At 0.03 s. This time-step size is three
times the practical stability limit for the ADI three-factored scheme. For this time-step
size, when AFRT-1 was used, 10 corrector steps were needed to stabilize the scheme. In-
creasing the number ofcorrector steps to 30 improved the convergence rate significantly.
When AFRT-3 was used, three corrector steps were needed to stabilize the scheme,
and this resulted in a considerably better convergence rate than that obtained by using
AFRT-1.

Figure 10 shows the results obtained by using At 0.06 s, which is six times the prac-
tical stability limit for the ADI three-factored scheme. It was found that when AFRT-1
was used, at least 80 corrector steps were needed in order to stabilize the scheme. In-
creasing the number of corrector steps to 100 brought only a moderate improvement in
convergence rate. When AFRT-3 was used, eight corrector steps were found to be ad-
equate in stabilizing the scheme. Thus AFRT-3 has a considerably better convergence
rate than does AFRT-1. However, it should be noted that the operation count needed
to execute the corrector step in AFRT-3 increases quadratically with the number of cor-
rector steps, whereas in AFRT-1 that increase is linear. This rapid increase in operation
found in AFRT-3 is due to the iterations that must be performed within each corrector
step.

The results of the numerical experiments described above indicate that the AF-
error-reduction methods presented in this study are capable of reducing AF errors and
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increasing convergence rate. All results were obtained by applying the AF-error-reduc-
tion methods to a very stringent test problem, one in which the algorithm is uncondi-
tionally unstable. If the AF-error-reduction methods presented here were applied to
algorithms that are inherently stable, better performance could be expected.

6. Concluding remarks. In this paper three methods were presented that can be
used to reduce or eliminate AF errors that exist in two- and three-factored schemes such
as the ADI, LU, and LU-SSOR schemes. These AF-error-reduction methods were illus-
trated and tested in the framework of the unconditionally unstable three-factored ADI
scheme applied to the linear advection equation. Also, the convergence and stability
properties of one AF-error-reduction method were analyzed.

The results of the tests and analyses indicate that the AF-error-reduction meth-
ods presented are capable of reducing AF errors and of increasing convergence rate.
Thus the methods developed should be useful in stabilizing the commonly used uncon-
ditionally unstable three-factored ADI scheme, which is currently being stabilized by
adding artificial dissipation. For factored schemes that are inherently stable, the AF-
error-reduction methods should be useful for problems in which transient solutions are
of interest and AF errors are larger than the time-discretization and time-linearization
errors. When only steady-state solutions are of interest, the methods presented here can
be used to accelerate convergence to steady state.

Finally, it is noted that the AF-error-reduction techniques presented can easily be
incorporated into existing codes using two- and three-factored schemes. Also, there are
several ways to improve the computational efficiency of these methods. For example, the
number of iterations performed within each corrector step ofAFRT-3 can be optimized.
Also, convergence acceleration techniques, such as relaxation, can be incorporated into
the iterative parts of AFRT-1 and AFRT-3.
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Abstract. A numerical method for ordinary differential equations is called symplecti if, when applied
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qualitative property of solutions of Hamiltonian systems. The authors construct and test symplectic, explicit
Runge-Kutta-Nystr6m (RKN) methods of order 8. The outcome of the investigation is that existing high-
order, symplectic RKN formulae require so many evaluations per step that they are much less efficient than
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plectic integration is of use in the study of qualitative features of the systems being integrated.
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1. Introduction. In this paper we are concerned with Runge-Kutta-Nystr6m
(RKN) methods for the numerical integration of second-order systems of differential
equations of the special form

(1.1) dy/dt f(y),

or, equivalently, of first-order systems

dy
dt

jr,

For the RKN formula specified by the tableau

y_ [yl y2 yN]T,’’’

/1 011 Ols

(1.2) % 01 "’’Olss’

bl b

the equations that describe the step t. t.+l t. + h take the form

Yi Y + hg/jr + h2 aijf(Yj),
j=l

jr,+ jr, + h bif(Yi),
i--1

Yn+l Y. + h:9. + h2 /3if(Yi).
i=1
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where Y denote the internal stages. Throughout the paper we suppose that in (1.2)

(1.3) fli bi(1- 7i), 1 < < s;

this is a standard assumption that significantly decreases the number of order conditions
that must be imposed on the method coefficients to ensure a given order of consistency;
see [10, Chap. 2, Lemma 13.13].

If the function f in (1.1) is the gradient of a scalar potential -V -V(y) and we
set p 5r, q y, then (1.1) may obviously be rewritten as

(1.4)
dp1__ OV dqI __p I < I < N.
dt OqI’ dt

This is the Hamiltonian system of ordinary differential equations

dpI OH dqI OH
I<I<N

dt Oq dt Op

with Hamiltonian function

H H(p, q) T(p)+ V(q),
1 TT(p) p p.

In mechanics the q variables represent Lagrangian coordinates, the p variables repre-
sent the corresponding momenta, T represents the potential energy, V represents the
potential energy and H represents the total energy.

The recent literature has devoted much attention to the integration of Hamiltonian
systems by means of canonical or symplectic methods; see [17] for a survey. A one-
step numerical method is said to be canonical or symplectic if it preserves the so-called
symplectic structure of the space of variables (p, q), thus reproducing the main qualita-
tive property of solutions of Hamiltonian systems [2]. Suris [19] showed that the RKN
method (1.2) is symplectic when applied to systems (1.4) if the coefficients satisfy the
relations

see also [13]. On the other hand, if (1.2) does not possess redundant stages, (1.5) is also
necessary for symplecticness; a rigorous proof of this necessity can be seen in [3] (cf. [1,
5]). In the remainder of the paper we use the expression "symplectic RKN method" to
refer to RKN methods (1.2) that satisfy (1.5).

Okunbor and Skeel [14] studied the families of explicit, symplectic RKN methods
with one, two, or three stages. The present authors [4], [5], [7] have constructed and
tested an explicit, five-stage, fourth-order symplectic RKN method with optimized error
constants. This method uses four function evaluations per step: the evaluation for the
fifth stage of the current step coincides with the first evaluation in the next step (FSAL
(first same as last) technique). In [15] Okunbor and Skeel construct explicit symplectic
RKN formulae with five stages and seven stages and orders 5 and 6, respectively. For
separable Hamiltonian systems [1], Yoshida [20] derives explicit, symplectic methods
with order 8. When applied to problems of the form (1.1), Yoshida’s methods reduce to
RKN schemes of order 8 with 16 stages and 15 evaluations per step.

The experiments in [7] show that in the accurate long-time integration of problems
of the form (1.4) the constant-step-size implementation of the fourth-order symplectic
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formula constructed there is more efficient than a variable-step-size, fourth-order code
based on an embedded RKN pair due to Dormand, E1-Mikkawy, and Prince [8], [9]. The
purpose of the present paper is to construct explicit, symplectic RKN methods of order
8 and to compare them with standard nonsymplectic RKN codes of the same order. The
outcome of our investigation is that existing high-order, symplectic RKN formulae re-
quire so many evaluations per step that they are much less efficient than conventional
eighth-order nonsymplectic, variable-step-size integrators, even for low accuracy. How-
ever, symplectic integration is of use in the study of qualitative features of the systems
being integrated.

The structure of the paper is as follows. Section 2 reviews the theory of order con-
ditions for symplectic RKN. Section 3 deals with the simplifying assumptions used later
in the derivation of methods. In 4 we present a family of explicit, symplectic RKN
methods. Specific order-7 methods within this family are constructed in 5. Section 6 is
devoted to order-8 formulae, and 7 contains some numerical illustrations.

2. Order conditions for symplectic RKN methods. The conditions that must be im-
posed for an RKN method (1.2) for (1.1) to have order _> r are well known; the reader
is referred to [10], whose terminology we follow. There is an order equation for each
(rooted) SN-tree with r or fewer vertices (recall that (1.3) is assumed throughout). As an
illustration, we have depicted in Fig. 1 the 10 SN-trees with six vertices. Furthermore, Ta-
ble 1 displays the number m of SN-trees with r vertices, 1 _< r _< 10. Clearly, for (1.2) to
have order >_ r, the required number of order conditions is m, a quantity that has
also been tabulated in Table 1. Apparently, the generating function M(z) =1mz
for the sequence {m,}= was first studied in [6].

In [6] we proved that the symplecticness conditions (1.5) act as simplifying assump-
tions, i.e., when (1.5) holds, not all order conditions are independent and some of them
are implied by the remaining ones. For instance, for a symplectic method with order
_> 5, the order condition associated with the tree t6, is equivalent to the order condition
associated with t6,8. This comes about because t6,9. and t6,8 consist of the same vertices
and edges and differ only in the location of the root. In other words, t6, and t6,8 are the
same as unrooted SN-trees. For the same reason there is equivalence between t6,3 and
t6,9, between t6,4 and t6,5, and among t6,6, t6,7 and t6,10. Thus for a symplectic method
with order _> 5 to have order 6 it is enough to impose five order conditions, one for each
equivalence class {t6,1 }, {t6,2, t6,8}, {t6,3, t6,9}, {t6,4, t6,5}, {t6,6, t6,7, t6,10}. The num-
ber m of corresponding equivalence classes for SN-trees with r vertices, 1 _< r _< 10,
is given in Table 1. The accumulated quantity ]1m gives the total number of con-
ditions for (1.2) subject to (1.5) to have order _> r. A comparison of the third and fifth
columns of Table 1 bears out the substantial reduction in order conditions implied by
symplecticness.

3. Standard simplifying assumptions. Let us now leave aside the symplecticness
conditions (1.5) and consider the well-known simplifying assumptions [10, Chap. 2,
Lemma 13.14]

(3.1) cj -, l<_i<_s,
j=l

that are often used in the construction of high-order RKN methods. When (1.2) satisfies
(3.1), it is possible to disregard the order conditions associated with SN-trees with two
or more vertices where at least one end vertex is fat. The order conditions for such trees
are equivalent to order conditions for trees where all end vertices are meager. The basis
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t6,6 t6,7 t6,8 t6,9 t6,10

FIG. 1. SN-trees with six vertices.

TABLE

mr mi m m m m m m

i=1 i=1 i=1 i=1

1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2
3 2 4 2 4 3 1 3
4 3 7 2 6 2 5 1 4
5 6 13 4 10 3 8 2 6
6 10 23 5 15 5 13 2 8
7 20 43 10 25 9 22 4 12
8 36 79 14 39 15 37 5 17
9 72 151 27 66 27 64 9 26
10 137 288 43 109 48 112 13 39

for this equivalence is illustrated in Fig. 2, where the order conditions for both trees
are equivalent provided that the circle with the three branches at the bottom denotes
in both cases the same arbitrary SN-tree. By iteration of the reduction in Fig. 2, the
order condition for any tree with two or more vertices can be seen to be equivalent to
order conditions for trees with only meager end vertices. For instance, in Fig. 1 the order
condition for t,2 is the same as the order condition for t, and may be disregarded. For
analogous reasons the order conditions for t,a, t,, t6,7, t6,9 may be ignored, and this
leaves five trees with six vertices to be considered. For general r we have the following
result (caution: a prime does not mean differentiationl).

THEOREM 3.1. Let m, r > 2 denote the number ofSN-trees with r vertices withoutfat
end vertices, and set ml 1. Then

(3.2)
jl+3J3+..’+kjk=r--1

and the correspondinggeneratingfunction M’(z) ,=1 m,z’ satisfies the equation
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Fro. 2. Equivalent SN-trees if (3.1) holds.

(3.3) M’(z)
(1 z)(1 za)’% (1 z)"g,-* ."

Proof. For r > 2 consider a special Nystr6m tree t with r vertices and remove its
root. This gives rise to, say, jl graphs with one vertex, jz graphs with two vertices, etc.
If t had no fat end vertex, then jz 0 and for k > 2 each among the jk graphs with k
vertices consist of a meager vertex (that was a child of the root in the original t) followed
by a special Nystr6m tree of order k 1 where all end vertices are meager. Hence for
k > 2 the jk graphs with k vertices can be chosen in

different ways. This leads to (3.2). Equation (3.3) is a direct consequence of (3.2), along
with the formula

(1_ z),,
y z*.
j=o 3

These have beenThe theorem makes it possible to recursively compute the mr.
tabulated in Table 1 for 1 < r < 10. A comparison of the values of the quantities m
and y.m reveals that (1.5) and (3.1) leave roughly the same number of independent
conditions to be considered. Therefore, in a sense (1.5) and (3.1) are as effective as
simplifying assumptions. However, in (3.1) there are only s conditions to be imposed,
whereas (1.5) comprises s(s 1)/2 relations (note that i and j play a symmetric role).
Thus if one is not interested in Hamiltonian problems, (3.1) should clearly be preferred
to (1.5). On the other hand, if to achieve symplecticness we impose (1.5), then we have
reduced the number of order conditions by roughly the same amount we would have
reduced that number by imposing the familiar simplifying assumptions (3.1).

The question arises ofwhat happenswhenboth (1.5) and (3.1) hold. For instance, for
r 6, t6,1, t,, t,a are equivalent after (3.1) and {t6,, t,8} and {t6,a, t6,} are equiva-
lence classes for (1.5), so that t,a, t,, t,a, t,8, t,a all become equivalent. For the same
reason, the order conditions for the remaining order-6 trees t,, t,, t6,, t,7, t,lO form
a second equivalence class. Hence under (1.5) and (3.1) there are only two order condi-
tions arising from order-6 trees. For general r let us say that two SN-trees t, t* r vertices
are S-equivalent if there exist a sequence of SN-trees t, tz,..., t with t t, t t*,
where t and h+l, 1 _< i _< k 1, either are related as in Fig. 2 or differ only in the
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location of the root. Thus if (1.5) and (3.1) hold and (1.2) has order >_ r 1, then order
conditions for t and t* are equivalent whenever t and t* are S-equivalent.

THEOREM 3.2. Let mr denote the number ofequivalence classes of SN-trees oforder
’* z is given byr under the relation S. Then the generatingfunction M’* (z) -=1m

(3.4) M’* (z) M’(z) 5z(M (z) M’(z2)).

Proof. For a given r >_ 2 let us consider the m* free or unrooted SN-trees. There is
one such tree for each equivalence class based on (1.5). Those free trees that have one
or more fat end vertex can be deleted in view of (3.1). Our task is to count the free trees
that remain after such a deletion. As in [6], we resort to the notion of centroid of a free
tree; see, e.g., [12], [18].

The following cases are possible for the free trees that remain.
(i) There is one centroid that is a meager vertex. By chopping off the centroid we

obtain two (rooted) SN-trees. These must have the same order j, in view ofthe definition
of centroid. Hence in this case r must be odd and j (r 1)/2. For r odd r > 3 in view
of the definition of m, j _> 2, there are

(3.5) (’ )mr_l/2 + 1 1

2
+

free trees in this case. For r 3 obviously there is no free tree in this case.
(ii) There are two centroids. In this situation r must be even and the centroids are

adjacent; one of them is fat and the other is meager. Chop off the meager centroid to
get a rooted SN-tree of order r/2 without fat end vertices and to get a rooted SN-tree of
order r/2 1 without fat end vertices. Therefore, for r even, r > 4, there are

(3.6) mrl2mr/2-1

free trees in this category. For r 4 this category is empty.
(iii) There is one centroid, and this is fat. The number of equivalence classes in this

case is

(3.7)

if r is even and

mr r-2 +"" + mr-max(3,r/2)mmax(3,r/2))

(3.8) mr (mlmr_2 +... + mr--max(3,(r+l)/2)mmax(3,(r+l)/2)--l)

if r is odd. These formulae are proved by an argument similar to that used to obtain [12,
2.3.4.4, formula (8)].

Formula (3.4) is a consequence of (3.5)-(3.8). [3

The last column in Table I bears out the important reduction in the number of order
conditions brought about by the combination of (1.5) and (3.1). In Fig. 3 we have de-
picted representatives of the 12 S-classes of equivalence to be considered for order _> 7,
together with the corresponding order conditions.
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* T1,1 (I)1,1 E b- 1 0

(1)2,1 : bi’i 1/2 0

5,2 2 bi’Tiaij’/j 1/30 0

(I6,1 b(’/ 1/6 0

6,2 E bi/cqj%. 1/36 0

" 7"7,1

7"7,2

T7,3

T7,4

7,2 E bv’/oqj"/i- 1/42 0

2(I)7,3 bi"fi czij"l 1/84 0

(I)7,4 biioijojkk- 1/840- 0

FIG. 3. Order conditionsfor order > 7 under (1.5) and (3.1).

4. Family of explicit, symplectic RKN methods. Explicit symplectic RKN methods
are of the form [14]

’71

’72

(4.1) 78-1

8

0 0 0 0

bl (’72 ’71) 0 0 0

bl(’7s-i ’71) b2(’78-1 ’72) 0 0

bl (’Ts ’71) b2(’Ts ’72) bs-l(’Ts "Ts--1) 0

bl b2 bs-1 b8
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subject to (1.3). Thus with s stages there are 2s free parameters. For s >_ 2 we consider
the subclass of methods given by

(4.2) ’71 O, 7 1

and

(4.3) b1=72/2; bi=(Ti+l-Ti_l)/2, 2<i<s-1; bs=(1-%_1)/2.

Note that (4.2) and (4.3) leave only s 2 free parameters 72,..., %-1 in (4.1). For
arbitrarily fixed values of 72,..., 78-x, the following properties are easily verified.

(i) Method (4.1)-(4.3) has the FSAL property: the sth stage of the current step
coincides with the first stage of the next step. Thus (4.1)-(4.3) effectively require s 1
evaluations per step.

(ii) Method (4.1)-(4.3) satisfies the standard simplifying assumptions (3.1).
(iii) Method (4.1)-(4.3) has order >_ 2, i.e., the conditions bi 1, , biTi 1/2 are

implied by the structure of tableau (4.1) and relations (4.2) and (4.3).
It is also useful to observe that a step of length h with (4.1)-(4.3) is a concatenation

of s 1 steps of successive lengths (72 71)h, (Ta 72)h,..., (78 %_1)h with the
simple method

(4.4)

0 0

1/2 0

that results after setting s 2 in (4.1)-(4.3). Let us be more precise. Let Ch represent
the transformation in (jr, y)-space that effects a step of length h with (4.1)-(4.3), i.e.,
(jr,+l, y,+) bh(l’n,Yn) if (jr,+, y,+) is the result of a step of length h from the

preceding approximation (:9",, y,). Let [h21 represent the corresponding transformation
for (4.4). Then

(4.5) /,[2] /,[2]
)"Ch (__) (_x

This formula makes it easy to find the adjoint method of Ch. Recall that by definition
[10] is the method such that *h inverts Ch, i.e., a step of length h with (4.1)-(4.3) fol-
lowed by a step of length -h with the adjoint method of (4.1)-(4.3) leaves the numerical
solution unchanged. From (4.5)

but (4.4) is easily seen to be selfadjoint and hence

w(-.--)h "’w(---_)h"

Comparison with (4.5) reveals that is the method of the family (4.1)-(4.3) based on
the abscissae 7,.--,7- defined by 7 1 78+1-.
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5. Constructing seventh-order methods. In this section we describe our experience
in constructing order-7 methods of the form (4.1)-(4.3). Since both (1.5) and (3.1) hold,
the last column in Table 1 shows that there are 12 order conditions to be imposed (see
Fig. 3). However, the order conditions l,x 0, 2,1 O that guarantee order > 2
are automatically satisfied, so that the choice of the s 2 free parameters 72,..., 3’8-
should be directed toward enforcing the 10 remaining conditions

(5.1) 3, 0, 4,1 0,..., 7,4 0.

This suggests s _> 12. The choice s 12 leaves no freedom to tune the formula, and we
set s 13. We therefore undertook the task of numerically solving the nonlinear system
(5.1) comprising 10 equations in the 11 unknowns "r2, , "r2. The solutions form curves
in R.xl that can be followed by continuation once a particular solution has been found.

Finding initial solutions of (5.1) to start the continuation procedure was not an easy
task. After many unsuccessful attempts the following strategy was adopted. We began
by considering the function

A I)2 I)2 I)2 I)2 I)23,+ 4,+ 5,+ 5,2+ 6,

(see Fig. 3) of the variables 3’2, , 3’x2. We minimized A subject to bounds -5 _< 3’i _< 5,
2 _< i _< 12, and to the equality constraints 0, 7, 7,2 7,3 7,4 0.
To this end the NAG routine E04UCF was used with the starting values for 3’2,..., 3’2
generated randomly with the NAG routine G05DAF. Clearly, a solution of (5.1) is found
whenever the objective function 3’ is successfully brought to its global minimum A 0
by the minimization routine.

For the continuation procedure we used one of the unknowns 3’2,..., 3’ as a con-
tinuation parameter. The particular unknown to be used at each step ofthe continuation
procedure was determined as follows. Gaussian elimination with column pivoting was
performed in the 10 x 11 Jacobian matrix of the system (5.1) evaluated at the current
value of the solution. The parameter was chosen to be the unknown that was not used
as a pivot, i.e., the unknown whose column would be in the 1 lth place if the columns
were actually interchanged to carry out the pivoting. In a sense this identifies the un-
known that is (locally in the solution curve) least constrained by (5.1) and that therefore
is (locally) best suited for parametrizing the solutions of the system. Once the index
i0, 2 _< i0 < 12, of the unknown to be used as a parameter has been determined, we
solved by Newton’s method the 11 x 11 system given by (5.1), along with the equation
3’io 3’/00 + 6, where 3’ is the value of 3’io at the current solution and 6 0.01 denotes
the increment in the parameter.

The coefficients of a specific method constructed by following this methodology are
presented later in the paper.

6. Eighth-order methods. Once a method bh of the class (4.1)-(4.3) with order
r 7 and s 13 has been obtained, it is possible to use it so as to have eighth-order
symplectic integration. In fact, it is enough to consider the method [16]

(6.1) h /t/2Dh/2
A step of length h with the new method bh consists of a step of length hi2 with the given
order-7 formula followed by a step of length hi2 with the adjoint formula. The method
bh is symplectic as obtained by concatenating symplectic formulae and obviously has
order > 7. Furthermore, h is clearly selfadjoint, so that it has even order. Hence g3h
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is an eighth-order method. Note that Ch uses 24 evaluations per step as Ch and Ch are
FSAL methods with 13 stages. The ratio number of stages per order is 26/8 versus the
minimum 17/8 suggested by Table 1, but the situation is not bad at all. The approximation
obtained after taking the first half-step Ch/z is also globally accurate of the eighth order;
the first half-step starts from an approximation with (global) error O(h8) and introduces
a local error O(hS), so that the global error after the first half-step is O(h8). Hence
output with global accuracy O(h8) is available after every 12 function evaluations. On
the other hand, having 24 evaluations per step is certainly a drawback ifvariable step sizes
are used: if a step is rejected, too many evaluations are wasted. Fortunately, symplectic
integration should be used with constant step sizes [4], [5], [7] and so we feel that to find
eighth-order formulae it is better to resort to the technique in (6.1) than to look directly
at methods of the family (4.1)-(4.3).

The parameter in the continuation procedure used to find the seventh-order method
Ch is chosen for the method h in (6.1) to have small error constants (see [8]). The
truncation error and y-truncation error of an eighth-order RKNmethod such ash have,
respectively, the forms

(6.2) h9 E O,F9,j + O(h)

and

(6.3) h9 E O9,kFS,k d- O(hl),
k

where F8,k and F9,j are elementary differentials that depend only on the system (1.1)
being integrated and O,j, O9,k are polynomials in the method coefficients aij, 7,/3i,
hi. In (6.2) the sum is extended to the 72 SN-trees of order 9, and in (6.3) the sum is
extended to the 36 SN-trees of order 8 (see Table 1). (Note that in (6.2) and (6.3) the
coefficients that are featured are those of the order-8 method, whereas in (5.1) we deal
with the coefficients of the order-7 method. Also, in (6.2) and (6.3) all SN-trees are
considered, whereas in (5.1) we took only one SN-tree per S-class of equivalence.) We
try to minimize the Euclidean norm N of the vector with 72 + 36 components ’ O9,k.9,j,
TO this end, at each step of the continuation procedure described in 5 we evaluate N
for the eighth-order method obtained eh, by means of (5.1), from the current seventh-
order method eh. The following coefficients identify the formula eh that, among those
we found, leads to the h with the lowest N(N 1.6 x 10-5)

")’2 0.60715821186110352503,

"/3 0.96907291059136392378,

")’4 -0.10958316365513620399,

0.05604981994113413605,
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(6.4)

1.30886529918631234010,

")’7 -0.11642101198009154794,

% -0.29931245499473964831,

")’9 -0.16586962790248628655,

1.22007054181677755238,

0.20549254689579093228,

"/12 0.86890893813102759275.

7. Numerical results. Although the numerical experiments presented in this sec-
tion provide information on the advantages and disadvantages of symplectic integrators,
they are limited in scope. More extensive testing is required before definite conclusions
can be put forward.

We consider three explicit, symplectic methods, used with constant step sizes:
(i) $8: order 8, 26 stages, 24 evaluations per step, symplectic RKN formula associ-

ated with (6.4) by means as of (6.1). This has error constant N 1.6 10-5.
(ii) Y8: order 8, 15 evaluations per step, symplectic method given in [20, Table 2, col-

umn D]. This is the order-8 method with the lowest value ofN among those constructed
in [20] and has N 4.4 10-3.

(iii) $4: order 4, five stages, four evaluations per step, symplectic RKN formula
constructed in [7].

As a reference standard (i.e., nonsymplectic) method we consider the following:
(iv) D8: order 8, nine stages, eight evaluations per step, RKN formula by Dormand,

E1-Mikkawy, and Prince [9, Table 1]. This has N 8.3 10-r. An embedded order-6
method presented in [9] was used to estimate the error in a variable-step implementation.
There are some printing errors in the method coefficients in the original [9], and the
reader should see the corresponding corrigendum.

The values ofN given above cannot be directly compared because the work per step
is different for different methods. More informative error coefficient values can be ob-
tained by assuming that a method with q function evaluations per step uses a step size
of qh. If the method is of order p, this multiplies the values of N by qP. For $8, Y8, and
D8 the normalized values of the error coefficient turn out to be 1.8 106, 1.1 107, and
14, respectively. On raising these values to the power -lip -1/8, we obtain a crude
measure of the efficiency of the various methods. The result is 0.16 for $8, 0.13 for Y8,
and 0.71 for D8. The formulae $8 and Y8 are very demanding in function evaluations
and are hence inefficient when compared with the nonsymplectic formula D8. This inef-
ficiency is due to the O(s2) number of degrees of freedom in the RKN tableau that are
used to enforce the symplecticness conditions (1.5).
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Our first test problem was used in [7]. It corresponds to the Newton potential
V(q, q2) -1/llqll (Kepler’s problem) with initial condition

pl 0, p2 _//1 + e ql 1- e, q2 O.
1 -e’

Here e is the eccentricity of the orbit, 0 < e < 1, that in the experiments to be reported
is chosen to be e 0.5. (The value of e does not significantly influence the outcome
of the experiments.) The solution is 27r-periodic. Errors are measured in the Euclidean
norm of 4.

Figure 4 corresponds to a final integration time T 810 x 27r and depicts error at
t T against number of function evaluations. The following runs are presented:

(i) S8, with step sizes h 27r/32, 27r/64, 27r/128 (asterisks joined by a solid line).
(ii) Y8, with step sizes h 27r/64, 2zr/128, 27r/256 (plus signs joined by a dotted

line).
(iii) $4, with step sizes h 27r/128, 27r/256, 27r/512, 27r/1024, 27r/2048 (x joined by

a dashed line).
(iv) D8, with absolute error tolerances 10-7, 10-8, 10-, 10-, 10-11, 10-12

(circles joined by dash-dot line).
Clearly, $8 is more efficient than Y8. Yoshida’s method Y8 is more efficient than the

lower-order method $4 when small errors are required. Otherwise, $4 is more efficient
than Y8. However, the nonsymplectic method $8 is clearly more efficient than any of
the symplectic formulae tested.

Figure 5 is similar to Fig. 4, but now the final time T 21870 x 27r is longer. The
runs depicted are as follows:

(i) $8, with step sizes h 27r/32, 27r/64, 27r/128.
(ii) YS, with step sizes h 27r/12S, 27r/256.
(iii) $4, with step sizes h 27r/256, 27r/512, 27r/1024, 27r/2048.
(iv) D8, with absolute error tolerances 10- 10-l 10-ix 10-x2

The conclusions as to the relative efficiency of the methods are the same as above.
However, the advantage of D8 is not so marked as before. This is due to the better error
propagation properties of symplectic integrators [7]. In Fig. 6 we have depicted error
against t (measured in periods) for $8 (h 27r/32), Y8 (h 27r/128), $4 (h 27r/256),
and D8 (TOL 10-). Note that in this figure different methods are working differently;
only the slopes in the different lines should be compared. In the symplectic methods the
error grows linearly with t, whereas in the nonsymplectic method D8 the growth is as
t2, as is proved rigorously in [7]. Therefore, as the final integration time T increases, $8
and Y8 improve their efficiency relative to D8. However, the crossover point T for which
$8 becomes more efficient than D8 is too large: perhaps T corresponds to millions of
periods of the planet whose motion is being integrated.

From this experiment we conclude that if accurate solutions are needed, even for
long integration times, a high-order standard code may easily be a better choice than
a symplectic algorithm. For high-order RKN integrators too many (O(s2)) degrees of
freedom in the tableau are sacrificed to achieve symplecticness, and this sacrifice makes
the formula very expensive relative to standard RKN methods. This should be compared
with the conclusions in [7], where it is shown that for Kepler’s problem fourth-order
symplectic integrators are more efficient than fourth-order variable-step standard codes.

a ofthework per stepIn [7] the work per step of the fourth-order symplectic algorithm is
of the reference standard fourth-order algorithm and the advantages of symplecticness
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* $8, + Y8, x $4, o D8
10-1
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FIG. 4. Eflficiencyplot at T 810 x 27r.
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FIG. 5. Eflficiencyplot at T 21870 x 27r.
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10q

10-2

10-3

10-6

10-7

* $8, + Y8, x $4, o D8

101 10 10 0

Ntunber of periods

FIG. 6. Error against t.

make up for the increased cost per step. Here the work per step in $8 is three times the
work per step in D8.

The second test problem is taken from Herbst and Ablowitz [11]. It originates from
the sine-Gordon equation

(7.1) Utt --u + sin u O, 0 < x < L 2x/r, t > O.

subject to periodic boundary conditions and to the initial conditions

(7.2) u(x, O) r + 0.1 cos(2rx/L), ut(x, O) O.

Equation (7.1) may be thought of as describing the motion of a family of pendula. At
each value of x, 0 < z < L, we have one pendulum. The term ux provides coupling
between the motions of neighboring pendula. It represents a force that tries to keep a
common value of the angle u for all the pendula. From the initial condition (7.2) we see
that all pendula are initially left near the unstable equilibrium u 7r. The pendula in
0 < z < L/4 or 3L/4 < z < L start above the value u 7r and hence will increase u in
order to approach the stable equilibrium at u 27r. The pendula in L/4 < x < 3L/4
start below the value u 7r and will decrease u to approach the stable equilibrium at
u 0. This causes the term ux to become important. The effect of the restoring force
is that the pendula are prevented from reaching the lowest u 27r or u 0 positions
and, rather, start going upward back to the initial positions, leading to a periodic motion.
The solid curve in Fig. 7 represents u as a function of t, 0 < t < 16L, for the pendulum
at z L/2.

As in [11], (7.1) is discretized in space by the standard pseudospectral technique,
with a mesh length Az L/32. This leads to a Hamiltonian system of the form (1.1),
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-1

$8, D8

8"020 40 60 100 120 140

FIG. 7. u(L/2, t) against t.

where the dependent variables y are the 32 discrete Fourier coefficients of the solution.
This system of ordinary differential equations was integrated with the methods $8, Y8,
$4, and D8 on 0 < t < 16L 142.17.

The standard method D8was run with absolute error tolerances in the range 10-8 to
10-. Smaller tolerances were not tried because we felt that they would be too close to
the size of the round-off error associated with the evaluation of the force f (this requires
a couple of discrete Fourier transforms). None of the values of TOL we tried led to a
successful integration, and D8was not able to come up with the right qualitative behavior
of the solution. The dash-dot line in Fig. 7 corresponds to TOL 10-, z L/2; the
computed solution is completely wrong for t > 80. For this value of the tolerance the
D8 code uses 32,810 function evaluations.

On the other hand, the symplectic algorithms $8, Y8, $4 were all able to identify
the right qualitative behavior when run with suitable values of the step length h. With
h 1/4 method $8 cannot faithfully describe the behavior of the solution up to the final

(27,312 evaluations) leads to a successfultime t 16L. Halving the value of h to h
integration (see the curve in Fig. 7). For Y8, h has to be reduced down to h +/-

(34,125 evaluations) and $4 requires h (18,200 evaluations). Hence $4 was the
most efficient, followed by $8 and Y8. Additional experiments show that if the final
integration time is increased, further reduction of h is necessary to attain the correct
qualitative behavior.

Following a referee’s suggestion, we also integrated (7.1) and (7.2) in time by non-
symplectic methods implemented with constant step sizes. The classical fourth-order
Runge-Kutta method required h . This implies 36,400 function evaluations, which
is more than any of the symplectic methods we tried. On the other hand, the order-8 for-
mula of Dormand, E1-Mikkawy, and Prince, when implemented with constant step sizes,
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was found to be able to identify the correct qualitative behavior. However, this needed
h and 72,800 function evaluations, i.e., more than twice as much computational
effort, as the least efficient symplectic formula Y8.
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A MAPPING ALGORITHM FOR PARALLEL SPARSE CHOLESKY
FACTORIZATION*
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Abstract. A task-to-processor mapping algorithm is described for computing the parallel multifrontal
Cholesky factorization of irregular sparse problems on distributed-memory multiprocessors. The performance
ofthe mapping algorithm is compared with the only general mapping algorithm previously reported. Using this
mapping, the distributed multifrontal algorithm is nearly as efficient on a collection of problems with irregular
sparsity structure as it is for the regular grid problems.

Key words, sparse Cholesky factorization, clique tree, distributed-memory multiprocessor, mapping algo-
rithms, multifrontal method, parallel computing

AMS subject classifications. 65F50, 65F05

1. Introduction. Several implementations of parallel algorithms for sparse
Cholesky factorization on distributed-memory multiprocessors have been described in
the literature [1]-[3], [6], [8], [12]. Extensive discussions and bibliographies of previ-
ous work may be found in Liu’s recent survey [11] of the multifrontal method, and in
the Heath, Ng, and Peyton survey [9] of parallel sparse matrix factorization algorithms.
Geist and Ng [4] have discussed a bin-pack mapping strategy for the fan-out algorithm
suitable for mapping irregular problems. However, performance results for distributed
sparse Cholesky factorization algorithms have been limited to regular model problems--
e.g., the n x n nine-point grid ordered by optimal nested dissection [5] and a slightly less
regular L-shaped problem. Most practical problems are far more irregular in structure
than these model problems, and several algorithmic issues need to be addressed to ob-
tain good performance on such problems. One important issue here is the mapping of
tasks to processors to achieve load balance and low communication costs.

In this paper we describe a new task-to-processor mapping algorithm suitable for
irregular sparse problems and apply it to the computation of a distributed multifrontal
factorization. We compare the performance of the mapping algorithm with an adapta-
tion of the sole previously reported general mapping algorithm--the bin-pack mapping
algorithm [4]. We have experimented with a collection of problems with irregular spar-
sity structure and have obtained efficiencies comparable to those for the regular grid
problems.
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A multifrontal factorization is computed as a sequence of partial factorizations of a
set of dense submatrices. We have chosen these dense submatrices to correspond to the
maximal cliques from a clique tree representation of the Cholesky factor. Discussions
of clique trees in the context of sparse matrix algorithms may be found in [10] and else-
where. We have found the clique tree to be a convenient data structure for organizing
the distributed multifrontal factorization. It also affords clear and concise descriptions
and implementations of the distributed assembly and factorization algorithms. A de-
tailed description of these algorithms is provided in [14], [16]. We denote the number
of maximal cliques in the clique tree by m, the size of the clique tree (the sum of the
number of vertices in the maximal cliques) by q, and the number of processors by/9.

2. Mapping schemes. The subtree-to-subcube mapping scheme was proposed by
George, Liu, and Ng [7] for the model grid problem. This scheme is only effective for
problems with balanced tree structure and almost balanced workload distribution such
as the model problem ordered by optimal nested dissection. Gilbert and Schreiber [8]
use a two-dimensional bin-pack mapping strategy to allocate processors for factoring
the frontal matrices at a stage in their CM-2 multifrontal factorization, and Ashcraft
(personal communication) has considered a generalization of the subtree-to-subcube
mapping scheme within his domain-separator model of Cholesky factorization.

Geist and Ng [4] have employed a bin-pack mapping scheme to map tasks associated
with the elimination tree within the fan-out algorithm. We have adapted their scheme to
map tasks associated with the clique tree for multifrontal factorization. In this scheme,
the clique tree is explored beginning at the root until at least p vertex-disjoint subtrees
are obtained. The subtrees are then packed into p bins using thefirst-fit-decreasing bin-
packing heuristic. (In the heuristic, subtrees are processed in decreasing order of work-
loads, and a subtree is packed into the currently lightest bin.) The weight imbalance
among the bins, c, is the ratio of the lightest bin to the heaviest bin. If c is larger than
or equal to a user-specified tolerance -, then the bin-pack mapping process terminates.
Otherwise, the heaviest subtree in a bin is explored from its root and split further into
subtrees, the p bins are repacked, and the ratio c recalculated and compared with 7-.

This process is repeated until c >_ -, or the largest subtree cannot be split any further;
in the latter case, we accept the imbalance among the bins.

The subtrees in a bin are assigned to a single processor; the cliques that lie on
the path from the roots of these subtrees to the root of the clique tree remain to be
mapped. We call such cliques dominating cliques. If a dominating clique K dominates a
set of subtrees T, Tp, then K is mapped to the subset of processors which compute
these subtrees. This differs from the Geist-Ng scheme which wrap-maps the dominat-
ing cliques among all the processors. The latter scheme causes high communication
costs and idle-waits in the factorization. The mapping algorithm can be implemented in
O(m9 logm + q) time.

Theproportionalmappingalgorithm maybe viewed as a generalization ofthe subtree-
to-subcube mapping in which both the structure and the workload distribution of the
tree are taken into consideration. A variant of this mapping has been considered in
the context of distributed sparse orthogonal factorization and the fan-in and fan-out
algorithms [15]. The algorithm is described in Fig. 1. The variable tree(K) denotes the
set of subtrees rooted at the child cliques of a clique K, proc(T) the set of processors
allocated to a subtree T, and w(T) the workload associated with a subtree T.

Many details are important in obtaining a correct and effective proportional map-
ping algorithm since rounding to integral numbers ofprocessors causes several problems.
The algorithm processes the subtrees of a clique in decreasing order of their workloads
to avoid unnecessary communication. Rounding may cause unallocated processors to
remain after an initial mapping of processors to the subtrees of a clique; it also may
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prop_map(T: clique tree, P: set of processors)
:= P, := IPI;

if (p 1) then
map the subtree T to the only processor in P;

else
let K be the root of T; wrap-map the columns ofK to processors in P;
ifK is a leaf then return;
{process the subtrees of K one by one}
W ETtree(K)
while not all subtrees in tree(K) are processed do

choose a heaviest subtree T in tree(K) not yet processed;
k [(w(T)/w) p + 0.5J;
ifk 0 or S then

find a processor p P with the least workload; proc(T) := {p};
else

ifk > ISI then k := IS[;
proc(T) := a set of k processors in S; S := S \ proc(T);

end if
end while
{allocate processors which may be left unallocated}
while S 0 do

let p be a processor in S; S := S \ {p};
find a subtree T in tree(K) such that
processors computing T have the highest workload;
proc(T) := proc(T) t2 {p};

end while
{map the subtrees of K recursively}
for each subtree T in tree(K) do prop_map(T, proc(T));

end if

FIG. 1. Theproportional mapping algorithm.

cause unmapped subtrees to remain after all processors have been allocated in an initial
mapping. Our algorithm deals with all these issues; its time complexity is O(m log re+q).

3. Computational results. The performance of the distributed multifrontal
algorithm was tested on the model problem and on a set of problems chosen from the
Harwell-Boeing and the NASA Ames collections. Preprocessing steps were done se-
quentially. All programs were written in C, and run on an Intel iPSC/2 multiprocessor
using double precision arithmetic. Version 3.2 of the the iPSC/2 UNIX operating system
was employed, and the default compiler optimization was used.

The characteristics of the test problems are shown in Table 1. In this table, n is the
order of a matrix, [A[ ([L[) is the number of nonzeros in the lower triangle of the matrix
A (L), m is the number of maximal cliques in the clique tree, and "op_count" is the total
number of flops.

For each problem, tolerances of 40%, 60%, and 80% have been used to test the
bin-pack mapping algorithm. The model nine-point grid problem is ordered by optimal
nested dissection (ND), and all other problems are ordered by the multiple minimum
degree (MMD) ordering. Running times are shown in Table 2; times for the subtree-to-
subcube mapping for irregular problems are not shown because it performs much worse
than the other mappings.
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TABLE 1
Characteristics ofthe testproblems.

Problem n IAI ILl m
GRID127 16,129 79,885 518,578 8,191
BCSPWR10 5,300 13,571 28,064 4,846
BCSSTK13 2,003 42,924 271,671 597
BCSSTK21 3,600 15,100 90,454 2,400
LSHP3466 3,466 13,681 86,582 1,845
NASA2146 2,146 37,198 135,798 306
NASA4704 4,704 54,730 281,472 1,241

TABLE 2

op_count
38,387,343

332,784
59,991,546
4,449,886
4,299,631
1,187,5021
36,008,716

Running times (seconds) obtained on the testproblems.

Problem p prop b40 b60 b80
4 74.22 74.14 74.14 74.14

GRID127 8 43.22 43.14 43.14 43.09
(ND) 16 24.82 24.64 33.52 63.50

32 14.45 14.38 19.94 41.63
4.078

2 2.976 2.981 2.321 2.321
BCSPWR10 4 2.187 1.588 1.390 1.529
(MMD) 8 1.362 1.080 1.061 1.342

16 0.902 1.053 1.233 1.390
32 0.854 1.316 1.380 1.536
2 241.6 241.6 241.6 241.9
4 142.6 199.8 187.7 187.7

BCSSTK13 8 75.64 108.3 109.8 108.8
(MMD) 16 42.92 58.64 59.24 70.72

32 27.15 43.23 44.42 44.42
1 35.59
2 17.82 17.84 17.84 17.84

BCSSTK21 4 9.376 17.97 17.97 17.97
(MMD) 8 6.541 14.43 13.92 9.119

16 4.015 8’.514 9.397 10.71
32 2.811 7.117 7.583 7.690
1 33.67
2 17.63 17.64 17.64 17.64

LSHP3466 4 11.16 13.09 10.81 11.76
(MMD) 8 6.642 7.595 7.244 7.251

16 4.138 7.467 8.734 7.437
32 3.780 5.298 6.725 7.168

87.89
2 59.92 59.89 47.61 47.61

NASA2146 4 27.91 30.19 32.87 33.31
(MMD) 8 16.60 15.98 15.98 34.47

16 9.290 15.63 19.25 18.78
32 7.375 10.73 12.60 14.82
2 159.4 140.0 140.0 140.0
4 88.49 89.02 101.7 101.7

NASA4704 8 42.05 41.59 49.71 62.72
(MMD) 16 27.56 38.21 45.37 39.68

32 16.62 25.65 35.03 36.23

sub
74.22
43.23
24.80
14.64

The results clearly show that proportional mapping performs better than the bin-
pack mapping as the number of processors increases. Furthermore, the performance of
the bin-pack mapping is sensitive to the tolerance used, and one value of the tolerance
is not uniformly better than another over varying the number of processors for a given
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problem. This is a serious drawback since it is difficult to determine an appropriate
tolerance a priori.

For the NASA4704 problem when 32 processors are used the efficiency is 0.60; on
the other hand, for BCSPWR10 the efficiency is only 0.15 when 32 processors are used.
These results are a consequence of two facts. First, on the iPSC/2 the cost of commu-
nicating data is high relative to the cost of floating point work. Second, the number of
elements communicated is asymptotically a lower-order term than the number of float-
ing point operations performed. Hence etficiencies are high only when there is a suffi-
cient amount of arithmetic work per processor for the arithmetic costs to dominate the
communication and data structure overhead costs.

Another factor that influences efficiency is the balance of the clique tree. Well-
balanced clique trees are mapped more efficiently since, for such trees, rounding to inte-
gral numbers ofprocessors creates less load imbalance. Optimal nested dissection of the
model problem creates well-balanced trees, while the MMD ordering of the less regular
problems leads to less balanced trees. The effect of recent orderings with low fill and
good balance such as spectral nested dissection [13] remains to be evaluated.
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BLOCK-C-CLIC DENSE LINEAR ALGEBRA*
WOODY LICHTENSTEINt Am) S. LENNART JOHNSSONt

Abstract. Block-cyclic order elimination algorithms for LU and OR factorization and solve routines are
described for distributed memory architectures with processing nodes configured as two-dimensional arrays
of arbitrary shape. The cyclic-order elimination, together with a consecutive data allocation, yields good load
balance for both the factorization and solution phases for the solution ofdense systems ofequations byLU and
OR decomposition. Blocking may offer a substantial performance enhancement on architectures forwhich the
level-2 or level-3 BLAS (basic linear algebra subroutines) are ideal for operations local to a node. High-rank
updates local to a node may have a performance that is a factor of four or more higher than a rank-1 update.

This paper shows that in many parallel implementations, the O(N2) work in the factorization may be of
the same significance as the O(N3) work, even for large matrices. The O(N2) work is poorly load balanced in
two-dimensional nodal arrays, which are shown to be optimal with respect to communication for consecutive
data allocation, block-cyclic order elimination, and a simple, but fairly general, communications model.

In this Connection Machine system CM-200 implementation, the peak performance for LU factorization
is about 9.4 Gflops/s in 64-bit precision and 16 Gflops/s in 32-bit precision. Blocking offers an overall per-
formance enhancement of an approximate factor of two. The broadcast-and-reduce operations fully utilize
the bandwidth available in the Boolean cube network interconnecting the nodes along each axis of the two-
dimensional nodal array embedded in the cube network.

Key words, linear algebra, distributed memory, LU, QR, cyclic order

AMS subject classifications. 15A23, 65F05, 68-04, 68N99, 68Q25

1. Introduction. The main contributions of this paper are: (i) empirical evidence
that a block-cyclic order elimination can be used effectively on distributed memory ar-
chitectures to achieve load balance as an alternative to block-cyclic data allocation; (ii)
a discussion of the issues that arise when the block-cyclic orderings of rows and columns
are different, which is the typical case when the number of processing nodes is not a
square; and (iii) a proof that within a wide class of regular data layouts, two-dimensional
nodal arrays with consecutive (block) data allocation and cyclic elimination order are
optimal for elimination-based dense linear algebra routines. This last result applies to
communication systems in which the communication time is a function only of the num-
ber of elements entering or leaving a node. The effectiveness of the block-cyclic order
elimination demonstrates the utility of equivalencing block-distributed and block-cyclic
distributed arrays in Fortran D [7] and Vienna Fortran [31].

The programs described in this article were written for an implementation of the
Connection Machine Scientific Software Library (CMSSL) [27] on the Connection Ma-
chine system CM-200 [28]. This system is a distributed memory computerwith up to 2048
nodes. Each node has hardware support for floating-point addition and multiplication
in 32-bit and 64-bit precision. Each node has up to 4 Mbytes of local memory, a single
32-bit wide data path between the floating-point processor and the local memory, and
separate communication circuitry. Data paths internal to the floating-point unit are 64
bits wide. The processing units are interconnected as an 11-dimensional Boolean cube,
with a pair of channels between adjacent nodes. Data may be exchanged on all 22 (11
x 2) channels of every node concurrently. This property is exploited for data copying
(spread) and data summation (reduction) in the algorithms described below.
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We consider LU factorization, QR factorization (with and without partial pivoting),
and solution routines for both LU factorization (triangular system solvers) and QR fac-
torization. Our triangular solver encompasses both the routine _TRSV in the level-2
BLAS (basic linear algebra subroutines) [6] and the routine _TRSM in the level-3 BLAS
[4], [5]. It is easy to show that a cyclic data allocation with consecutive order elimination,
or a consecutive allocation and a cyclic order elimination, yields a factor of three higher
processor utilization on two-dimensional nodal arrays than consecutive allocation and
consecutive elimination order [17]. Coleman [22], [23] reports some results from an im-
plementation of triangular system solvers using consecutive order elimination and cyclic
data allocation on multiprocessors with up to 128 nodes. Van de Geijn [30] uses consec-
utive order elimination and cyclic data allocation for an implementation of LU factor-
ization and triangular system solvers. Since the Connection Machine system compilers
by default use consecutive data allocation, we use a cyclic-order elimination. We use a
similar implementation strategy for routines for reduction of a symmetric or Hermitian
matrix to real tridiagonal form (EISPACK_TRED and _HTRID [26], LAPACK_SYTRD
and _HETRD [1]). Details concerning these routines will appear elsewhere.

We use blocking of row and column operations to increase the efficiency of opera-
tions in each node. The level-2 BLAS is used in each node to achieve maximum perfor-
mance. The difference in peak performance between a rank-1 update and a higher-rank
update is about a factor of four on a Connection Machine system CM-200 node. The dif-
ference in peak performance is mostly determined by the difference in need for memory
bandwidth between a rank-1 and a high rank update. In our CMSSL implementation of
the BLAS local to each Connection Machine system CM-200 node [20], LBLAS, each
node achieves a peak performance of about 9.3 Mflops/s in 64-bit precision on matrix
multiplication (high rank updates). Our implementation of LU factorization of matri-
ces distributed over all nodes achieves a peak performance, including communication,
of 4.6 Mflops/s per node in 64-bit precision. As a comparison, our CMSSL implementa-
tion of dense matrix multiplication with operands distributed across all nodes achieves
a peak performance of 4.8 Gflops/s in 64-bit precision [24].

This article provides sufficient insight into the details ofthe algorithms to account for
the difference in performance between local matrix multiplication and global factoriza-
tion and solves routines for dense matrices. We also describe how the performance scales
with problem and machine size. In 2 we review the merits of higher-level local BLAS
for a class of common processor architectures. Section 3 discusses the performance of
the level-1 and level-2 LBLAS used in CMSSL. Section 4 describes the layouts of data
arrays created by the Connection Machine Run-Time System. Section 5 explains howwe
use block-cyclic ordering of the elimination steps to keep the work load balanced across
all nodes. Section 6 discusses the performance characteristics of the different parts of
the algorithms. Finally, we show in 7 that a two-dimensional consecutive data layout is
optimal for elimination algorithms using a cyclic order elimination and communication
systems where the times for data copying and reduction are determined by the number
of data items leaving or entering a node.

2. Blocking for improved performance of local BLAS. Memory bandwidth is the
most critical resource in high-performance architectures. Therefore, proper attention
must be given to the primitives used in constructing linear algebra libraries. Nearly all
floating-point computation in linear algebra occurs as multiply-add pairs. This fact is ev-
ident in the BLAS used to perform many operations in the solution of linear systems of
equations, eigenanalysis, optimization, and the solution of partial differential equations.
The first BLAS were vector routines (like DSCAL and DDOT) [21]. But, these routines
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require large memory bandwidth for peak floating-point performance, and algorithm
designers turned to higher-level BLAS, such as level-2 BLAS for matrix-vector opera-
tions, and level-3 BLAS for matrix-matrix operations. Next, we give a few examples to
illustrate this fact.

Today, most high-performance floating-point processors have the ability to perform
concurrently one multiplication and one addition. The data for these operations is nearly
always read from registers, and the results are written to registers. The peakperformance
can only be achieved when multiplication and addition can be performed concurrently,
and the data they require can flow in and out of registers fast enough. The memory
bandwidth required to match the computational bandwidth depends on the computation
being performed.

For example, the DSCAL operation, which multiplies a vector by a scalar with all
operands in 64-bit precision, reads one scalar into a register, and then, for each compo-
nent of the result, reads one element of the argument vector, multiplies it by the con-
stant, and writes one result to memory. Thus, each multiplication requires 8 bytes to
be loaded into a register and 8 bytes to be stored from a register, or 16 bytes of mem-
ory bandwidth per floating-point operation. As a contrast, the DDOT routine, which
computes the inner product of two vectors in 64-bit precision, reads two 8-byte quan-
tities for each multiply-add it performs, then stores one 8-byte result at the end. Thus
16 bytes of memory bandwidth is required per two floating-point operations, or 8 bytes
per floating-point operation. Similarly, it is easy to show that the rank-1 update routine
DGER requires a memory bandwidth of 8 bytes per floating-point operation.

Matrix-vector multiplication, performed by the routine DGEMV, can be organized
such that the vector is read into registers, and the matrix-vector multiplication computed
through the accumulation of scaled vectors as/ az+. With c and /allocated to reg-
isters, and z representing a column of the matrix read from memory, 8 bytes of memory
bandwidth is required for every pair of floating-point operations in 64-bit precision.

A level-3 BLAS routine such as DGEMM allows for a further reduction in memory
bandwidth requirement. It performs the operation (7 A B, which maybe performed
as a sequence of operations on b b subblocks. If the blocks fit into the registers, then 2b
floating-point operations may be computed using 3bz input elements (b elements per
operand), producing b results. If all contributions to a block of (7 are accumulated in
registers, then it suffices to load 2b inputs for each set of 2b floating-point operations.
All stores are delayed until all computations for a b b block of (7 are completed. There-
fore, 16bz/2b bytes of memory bandwidth are required per floating-point operation in
64-bit precision, or 8/b bytes/flop. A high-rank update of a matrix is equivalent to matrix
multiplication.

Table 1 summarizes the memory bandwidth requirements for a subset of the BLAS.
The significance of the difference in memory bandwidth requirement of the different
routines depends upon the available memory bandwidth. For example, a computer
with three 8-bytes wide data paths between each processor and the memory, i.e., a 12-
bytes/flop computer such as the Cray-YMP, can perform DAXPY operations at peak
rates. A 2-bytes/flop computer, such as an Intel i860 [10] and a Connection Machine sys-
tem CM-200 node, may not have enough registers to achieve peak rates even for level-3
BLAS local to each node, such as for the DGEMM routine. As a rule of thumb, the less
memory bandwidth is available, the more blocking is desirable, but more blocking is only
useful if there is a sufficient number of registers.

This simplified performance picture is in reality often complicated by pipeline de-
lays and looping overheads. For short vectors and small register sets, minimizing these
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TABLE 1
Memory bandwidth requirementforfull utilization ofa floating-point unit with one adder and one multiplier

Operation

DSCAL
DAXPY
DDOT
DGER
DGEMV
DGEMM

Memory
bandwidth
bytes/flop

16
12
8
8
4
S/b

quantities may be as important for performance as minimizing the demand for memory
bandwidth.

3. Local BLAS on the Connection Machine system CM-200. In the following, we
refer to the BLAS local to each node as LBLAS to distinguish it from BLAS for data
arrays distributed over several nodes, DBLAS. Each node of the Connection Machine
system CM-200 is a 2-bytes/flop computer, based on the memory bandwidth. There is a
single 32-bit wide data path between each floating-point processor and its local memory.
The data paths internal to a processor are 8 bytes wide (i.e., internally each floating-point
processor is a 4-bytes/flop computer). Each floating-point processor has 32 floating-
point registers and operates at 10 MHz. There is a one-cycle delay for loading data from
memory and a three-cycle arithmetic pipeline delay. Each vector operation incurs an
overhead of at least six cycles. Moreover, the memory is organized into pages, and a
page fault incurs a delay of one cycle. Stores are relatively more expensive and require
close to two cycles. The floating-point processor can achieve close to peak performance
in 32-bit precision for level-2 LBLAS with the operands local to a node and at least half
of the peak performance in 64-bit precision. The floating-point processor does not have
enough registers to achieve its full peak rate on level-3 LBLAS. Table 2 gives the actual
performance for the SAXPY, DAXPY, SDOT, and DDOT routines as a function of the
vector length for each Connection Machine system CM-200 node. Tables 3 and 4 give
the performance for SGEMV and DGEMV as a function of matrix size.

Figure 1 shows the performance for the DAXPY and DDOT routines on each Con-
nection Machine system CM-200 node as a function of the vector length. The figure also
shows the performance of the routine DGEMV as a function of the number of columns
for 64 matrix rows. The peak measured performance for the _AXPY routine is about
60% of the peak performance of the _DOT routine. In 32-bit precision the performance
is comparable up to a vector length of about 30, while for 64-bit precision the differ-
ence is measurable even for short vectors. Note that the _AXPY routine requires twice
the memory bandwidth of the _DOT routine. The performance of the _GEMV routine
is about twice that of the _DOT routine. This behavior is expected, since the memory
bandwidth requirement of the _GEMV routine is about half of that of the _DOT routine.

Our implementation of the rank-1 update makes use of _AXPY operations, while
the higher-rank updates are based on matrix-vector or vector-matrix multiplication, de-
pending upon the shape of the operands [20].

Given the performance characteristics of the LBLAS on the Connection Machine
system CM-200, it is desirable to base linear algebra algorithms on the level-2 LBLAS.
The potential performance gain from blocking the operations on b rows and columns is
illustrated in Table 5. This table shows the speedup of rank-b updates relative to a rank-1
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TABLE 2
Level-1 LBLAS execution rates in Mflops/s on each Connection Machine system CM-200 floating-point

processor.

V-length SAXPY DAXPY SDOT DDOT

1 0.21 0.16 0.21 0.16
2 0.41 0.29 0.35 0.35
3 0.58 0.42 0.52 0.51
4 0.80 0.54 0.68 0.66
5 0.97 0.65 0.83 0.79
8 1.40 0.95 1.27 1.15
10 1.65 1.13 1.53 1.36
15 2.15 1.41 2.13 1.79
20 2.55 1.61 2.65 2.13
30 3.11 1.87 3.03 2.21
40 3.07 1.89 3.71 2.70
50 3.37 2.02 4.23 2.96
60 3.53 2.09 4.41 3.02
70 3.56 2.11 4.75 3.19
80 3.71 2.18 5.06 3.33
100 3.77 2.22 5.32 3.45
120 3.93 2.28 5.51 3.53
140 4.00 2.31 5.86 3.68
256 4.20 2.39 6.52 3.92
512 4.32 2.43 6.97 4.07
1024 4.42 2.46 7.24 4.15
2048 4.46 2.48 7.38 4.20
4096 4.49 2.49 7.45 4.22
8192 4.50 2.49 7.49 4.24

TABLE 3
Execution rate in Mflops/s for matrix-vector multiplication on each Connection Machine system CM-200

floating-pointprocessor.

SGEMV

Number
of rows

2
3
4
5
8
16
32
64
128
512
2048

Number of columns

2 3 4 5 8 16 32 64 128 512 2048

0.62 0.98 1.23 1.46 2.46 4.03 5.93 7.38 8.62 9.90 10.30
0.99 1.39 1.74 2.05 3.38 6.03 8.21 9.80 10.8 11.9 12.20
1.35 1.88 2.33 2.73 4.40 6.72 8.87 10.70 12.00 13.10 13.50
1.62 2.24 2.77 3.24 5.11 8.43 10.6 12.20 13.20 14.10 14.40
2.33 3.19 3.91 4.52 6.80 9.47 11.90 13.70 14.70 15.70 15.90
3.68 4.91 5.90 6.71 9.27 12.10 14.40 15.80 16.70 17.40 17.50
4.29 5.96 6.39 7.56 10.20 12.90 14.90 16.10 16.80 17.40 17.50
5.13 6.85 7.61 8.71 11.50 14.00 15.80 16.80 17.40 17.90
5.51 7.09 8.01 8.94 11.90 14.40 16.00 17.00 17.50 17.90
5.80 7.30 8.32 9.15 12.10 14.40 15.90 16.80 17.30
5.92 7.40 8.45 9.25 12.10 14.30 15.70

update of a 32 32 matrix and a 512 x 512 matrix local to a Connection Machine system
CM-200 node.

Blocking yields a larger relative performance gain for small matrices than for big
matrices. For large submatrices per node a performance gain by a factor in excess of 3.5
is possible through the use of high rank updates. About 90% of this gain is achieved for
a blocking factor of 16. For relatively small submatrices per node a performance gain in
excess of a factor of 4.5 is possible through the use of high rank updates. About 85% of
this gain is achieved by the use of a blocking factor of 16.
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TABLE 4
Execution rate in Mflops/s for matrix-vector multiplication on each Connection Machine system CM-200

floating-pointprocessor

DGEMV

Number
of rows

2
3
4
5
8
16
32
64
128
512
2048

Number of columns

2 3 4 5 8 16 32 64 128 512 2048

0.64 0.89 1.10 1.29 2.03 3.04 3.93 4.67 5.17 5.62 5.74
0.91 1.25 1.53 1.78 2.71 4.20 5.15 5.80 6.21 6.56 6.66
1.13 1.54 1.88 2.17 3.22 4.44 5.51 6.26 6.72 7.12 7.23
1.33 1.80 2.18 2.51 3.64 5.23 6.21 6.84 7.22 7.54 7.63
1.80 2.39 2.87 3.26 4.47 5.82 6.85 7.51 7.90 8.11 8.22
2.54 3.29 3.79 4.25 5.58 6.89 7.80 8.35 8.65 8.90 8.97
2.79 3.60 4.11 4.69 5.92 7.14 7.95 8.44 8.70 8.92
3.19 4.10 4.60 5.12 6.37 7.52 8.26 8.69 8.93 9.11
3.33 4.20 4.74 5.22 6.49 7.60 8.30 8.70 8.92
3.45 4.33 4.86 5.30 6.53 7.57 8.22 8.60
3.49 4.89 4.91 5.34 6.57 7.60

Mflops ts

10_

8
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4m

DGEMV

(64 N)

0
0

0

DDOT
o o

DAXPY
N
Vector

0 100 200 300 400 500 600 700 800 900 1000 length

FIG. 1. The execution rates in Mflops/s ofthe DAXPY, DDOT, and DGEMV LBLAS on each Connection
Machine system CM-200 node.

TABLE 5
Speedup ofrank-b updates over rank- updatesfor each Connection Machine system CM-200 node.

Rank
Matrix shape

32 x 32 512 x 512

.00 1.00
.49 1.42

4 2.20 2.00
8 3.17 2.69
16 3.82 3.12
32 4.25 3.38
64 4.51 3.54
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4. Standard data layouts. The routines described in this article are designed to op-
erate in place on arrays passed to the routines from high-level language programs. The
data motion requirements and the performance depend strongly upon the data alloca-
tion of the operands. The default allocation of data arrays to nodes determined by the
Connection Machine Run-Time System is based entirely on the shape of the data arrays.
Each array is by default distributed evenly over all nodes, i.e., the Connection Machine
systems support a global address space. In the default array allocation mode, the nodes
are configured for each array such that the number of axes in the data array and in the
nodal array is the same. The ordering of the axes is also the same. When there are more
matrix elements than nodes, consecutive elements along each data array axis (a block)
are assigned to a node. The ratios of the lengths of the axes of the nodal array are ap-
proximately equal to the ratios between the lengths of the axes of the data array [29]. In
such a configuration the lengths of the local segments of all axes are approximately the
same, and the communication needs are minimized when references along the different
axes are equally frequent. The default array layout is known as a cannonical layout. In 7
we show that the canonical layout is optimum for LU and QR factorization for a simple,
but realistic, communications model. In [24] we show that the canonical layout is also
optimal for matrix multiplication.

The canonical layout can be altered through compiler directives. An axis can be
forced to be local to a node by the directive SERIAl_, if there is sufficient local memory.
The length of the local segment of an axis can also be changed by assigning weights to the
axes. High weights are used for axes with frequent communication, and low weights for
axes with infrequent communication. A relatively high weight for an axis increases the
length of the local segment of that axis, at the expense of the lengths of the segments of
the other axes. The total size ofthe subarray is independent ofthe assignment ofweights.
Only the shape of the subarray changes. The shape of the nodal array is important, since
it affects the performance of global operations such as data copying, data summation,
and pivot selection. The nodal array shape is also important for the performance of the
LBLAS, since it affects the shape of the subarrays assigned to each node and, hence,
vector lengths and the relative importance of loop overhead.

In many computations more than one array is involved, and the relative layouts of
the arrays may be important. For instance, in solving a linear system of equations there
are two arrays involvedwhen the computed solutions overwrite the right-hand sides. The
required communication in the triangular systems solver depends in a significant way on
how the triangular factors and the right-hand sides are allocated to the nodes. With the
original matrix factored in place, the triangular factors are stored in a two-dimensional
data array, for which the default nodal array shape is a two-dimensional array. For a
single right-hand side, the default nodal array shape is a one-dimensional array. Even
if there are many right-hand sides, there is no guarantee that the shapes of the nodal
arrays are the same for the data array to be factored and the data array of right-hand
sides. The ALIGN compiler directive may be used to assure that different data arrays are
assigned to nodes using the same nodal array shape for the allocation.

The consecutive allocation scheme [17] selects elements to be assigned to the same
node. Compiler directives, such as axis weights, SERIAL and ALIGN, address the issue of
choosing the nodal array shape. Another data layout issue is the assignment of data sets
to nodes, where a set is made up of consecutive elements along each data array axis. The
network topology and the data reference pattern are two important characteristics in this
assignment. The nodes of the Connection Machine system CM-200 are interconnected
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as a Boolean cube with up to 11 dimensions. A Boolean cube network of n dimensions
has 2’ nodes.

The nodes of a Boolean cube can be given addresses such that adjacent nodes differ
in precisely one bit in their binary encoding. Assigning subarrays to nodes using the
standard binary encoding ofthe subarray index along an axis does not preserve adjacency
along an axis. For instance, three and four differ in all three bits in the encoding of the
addresses of eight nodes and are at a distance of three apart. In general, 2’-x 1 and
2’- differ in n bits in their binary encoding and are at a distance of n. The number
of bits in which two indices differ translates directly into distance in a Boolean cube
architecture.

Binary-reflected Gray codes [25] generate embeddings of arrays into Boolean cube
networks that preserve adjacency [17]. Gray codes have the property that the encoding
of successive integers differ in precisely one bit. In a Boolean cube network successive
indices are assigned to adjacent nodes. The binary-reflected Gray code is efficient, both
in preserving adjacency and in node utilization, when the length of the axes of the data
array is a power of two [11]. For arbitrary data array axes’ lengths, the Gray code may
be combined with other techniques to generate efficient embeddings [3], [12].

The binary-reflected Gray code embedding is the default embedding on the Connec-
tion Machine system CM-200, and is enforced by the compiler directive NEWS for each
axis. The standard binary encoding of each axis is obtained through the compiler direc-
tive SEND. The performance of global operations, such as pivot selection and broadcast
required in the factorization and solve routines, is insensitive to the data distribution
along each axis. Our factorization and solver routines also require permutations for
rectangular nodal arrays. These permutations may exhibit some sensitivity to whether
arrays are allocated in NEWS or SEND order.

5. Cyclic-order faetorization and triangular system solution. We consider the solu-
tion of a system of equations AX Y through factorization and forward and backward
substitution. We consider both single and multiple right-hand sides. We present algo-
rithms for load-balanced factorization and triangular systems solution on data arrays
allocated to nodes by a consecutive data allocation scheme. The matrix is factored in
place, and the solutions overwrite the right-hand sides.

5.1. Factorization.

5.1.1. Balanced work load. For an N x N matrix assigned to a p q nodal array,
each node is assigned a submatrix of shape Nip x N/q. With the consecutive allocation
scheme, the submatrix on node (i, j), 1 < < p, 1 < j < q consists of elements (a, b)
with (i 1) Nip < a < i Nip and (j 1) N/q < b < j N/q.

An LU factorization algorithm steps through the rows of a matrix, subtracting a
multiple of a row, the pivot row, from all rows not yet selected as pivot rows. If the
matrix is allocated to the nodes with a consecutive allocation scheme, and the pivot rows
are selected in order, then after Nip rows have been chosen, the first row of nodes will
no longer have anywork to do. One method for avoiding this imbalance is to redistribute
the rows and columns of the matrix periodically, as the work load becomes unbalanced.
This approach leads to substantial communications overhead. The characteristics ofQR
decomposition are similar, though instead of subtracting the pivot row from rows not yet
selected as pivots, a normalized linear combination of those rows is subtracted from each
of them.
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A more elegant technique is to use a cyclic data allocation scheme [8], [17], [22],
[23], [30]. In a cyclic data allocation scheme the first row of the matrix is placed on the
first row of nodes, the second row of the matrix on the second row of nodes, and so on
until one matrix row has been assigned to each of the p rows of nodes. Then, the (p+ 1)st
matrix row is assigned to the first row of nodes, etc. With this method, matrix rows are
consumed evenly from the different rows of nodes during elimination, so that no row
of nodes ever has more than one more active matrix row than any other row of nodes.
Columns are treated similarly.

The space (rows and columns) and time (pivot selection) dimensions are interchange-
able [13]-[16]. Hence instead of distributing rows and columns cyclically over the two-
dimensional nodal array, pivot rows and columns can be selected cyclically to achieve the
desired load balance. We have chosen this approach for our implementation. To allow
for the use of level-2 LBLAS, blocking of rows and columns on each node is used. In
LU factorization a blocking of the operations on b rows and columns means that b rows
are eliminated at a time from all the other rows.

In summary, we factor a matrix in place using a block-cyclic elimination order for
both rows and columns. For block size b we first eliminate rows 1,..., b, then rows (p +
1),..., (p + b), etc. We are eliminating b matrix rows at a time from each row of nodes.
A block-cyclic elimination order was recommended in [15] for load-balanced solution of
banded systems.

Below we give an example of a block-cyclic ordered elimination for a square array
of nodes and a block size of two. Pivot rows and columns are indicated by numbers,
eliminated elements by periods, and all other elements are shown as an asterisk.

Example I: N 16, p q 4, b 2.

Step 1.

1111 1111 1111 1111
1111 1111 1111 1111
11., **** **** ****
11., **** **** ****

Step 2.

22 2222 2222 2222
22 2222 2222 2222

** 22** **** ****
** 22** **** ****

22
22** **** ****
22** **** ****
22** **** ****

*
*
*
*

22
22** **** ****
22** **** ****
22** **** ****
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Step 3.

* * * * * * * * * * * * * *
* * * * * * * * * * * * *
** ** 33** ****
** ** 33** ****

33 33 3333 3333
33 33 3333 3333
** ** 33** ****

.** .** 33** ****

Step 4.

44 44 44 4444
44 44 44 4444
** ** ** 44**

** ** ** 44**

Step 5. Step 6.
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Step 7.

77 .77
77 .77

77 **
77 **

Step 8.

88
88

As can be seen from Example I, the result of the factorization is not two block triangular
matrices, but block-cyclic triangles. A block-cyclic triangle can be permuted to a block
triangular matrix, as discussed in 5.2. However, it is not necessary to carry out this per-
mutation for the solution of the block-cyclic triangular system of equations. Indeed, it
is desirable to use the block-cyclic triangle for the forward and back substitutions, since
the substitution process is load balanced for the block-cyclic triangles. Using block tri-
angular matrices stored in a square data array (A) allocated to nodes with a consecutive
data allocation scheme would result in poor load balance. Before discussing block-cyclic
triangular solvers, and the relationship between pivoting strategies and the block-cyclic
elimination order, we consider rectangular nodal arrays.

5.1.2. Rectangular arrays of processing nodes. Rectangular nodal arrays result in
different row and column orderings, since the length of the cycle for the cyclic elimi-
nation order is different for rows and columns. Let/31 give the relationship between
consecutive order and block-cyclic order elimination for rows, and let P2 give the re-

lationship between consecutive order and block-cyclic order elimination for columns.
Then, Pl(i) j means that the ith row to be eliminated is row j. Specifically, for a
matrix allocated to the p x q nodal array with the consecutive (block) allocation scheme,
as described in 5.1, the block-cyclic ordered elimination with a block size b 1 yields

N N [;:,2__1N N1 1, + 1,2 + 1,..., , + 1,2 + 1,
P P q q

Thus,/51 /52 if p q. Clearly, if the number of nodes in the entire machine is not
a square (as is the case for a 2048-node Connection Machine system CM-200, and the
Intel Delta [30]), and all nodes are used, then p - q and/1 /2. HOW to choose p and
q for optimum performance under the constraint pq const is discussed in 7.

Note that even though/51 /32 naturally occurs when p y q, choosing a different
blocking factor for rows and columns yields the same result.

5.2. Solving Ifloek-eyelie triangular systems. In an algorithm eliminating rows and
columns consecutively, transformations are applied to an original matrix A, until it has
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been reduced to an upper triangular matrix T. In block-cyclic-ordered elimination, A is
reduced to a block-cyclic triangular matrix V P1TP1, where T is upper triangular.
Block-cyclic triangles are just as easy to invert as standard block triangles, but they are
load balanced across the nodes of a distributed memory machine. The block-cyclic tri-
angle V for the example above (Step 8, Example I), and the corresponding permutation
matrix P1, are shown below. Example II shows a block-cyclic triangle for a rectangular
nodal array (P1 P2).

Example I: N 16, p q 4, b 2.

V PITP-1

where

1000000000000000
0100000000000000
0000000010000000
0000000001000000
O010000000000000
0001000000000000
0000000000100000
0000000000010000
0000100000000000
0000010000000000
0000000000001000
0000000000000100
0000001000000000
0000000100000000
0000000000000010
0000000000000001

The permutation matrix P2 is constructed analogously.
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Example II: N 16, p 2, q 4, b 2.

V PTP

* *

* *
* *
* *

* *
* *
* *

*
*

In our block-cyclic triangular solver, the solution matrix X overwrites the right-hand
sides Y. The solver requires that the set of right-hand sides Y and the matrix A are
aligned. The alignment of Y and A ensures that the shape of the nodal array is the same
for A and Y. For a single right-hand side, the alignment implies that the components
of Y are allocated to the first column of the nodal array using the consecutive alloca-
tion scheme. With several right-hand sides, the alignment implies that the consecutive
allocation scheme is used to allocate right-hand sides and columns of the matrix A to the
same number ofnode columns with each right-hand side being allocated to a single-node
column. The alignment of A and Y can be accomplished without data motion by using
the compiler directive AI_IGN. Alignment at run-time generally will require data motion.
It can be performed by the Connection Machine router. Our library routine validates
that the arrays are aligned and, if the arrays are not prealigned, performs the alignment
through a call to the router.

Our column-oriented algorithm for solving block-cyclic upper triangular systems
of the form PTPX Y starts with the last block column of PTp-I and pro-
gresses toward its first block column, in a way similar to a standard column-oriented
upper triangular system solver. A multiple of each block column of PtTP-1 is sub-
tracted from Y in each backward elimination step. The multiple of block column k,
which is subtracted from Y at the kth stage of this process, is the kth block compo-
nent (row) of the solution vector X. If the kth block column consists of columns P2 (j),
P2 (j + 1),..., P(j b 1), then the last b elements of each column in this block column
are in rows P (j), PI (j + 1),..., PI( + b 1). If X overwrites Y, then it is natural
to record the multiplier of the kth block column in components (rows) Pl (j), PI (j +
1),...,/51 (j + b 1) of Y. But these components (rows) of the result belong in com-
ponents (rows)/52(j),/52(j + 1),...,/52(j + b 1) of Y. Hence, after completing the
iterative process of block column subtractions, the permutation P2P-I (a generalized
shuffle [19]) must be applied to Y to obtain X.

The ordering of Y after the in-place substitution process, and the correct ordering
of the solution are illustrated in Fig. 2 for an 8 x 8 matrix mapped to a 2 x 4 nodal array.
The numbers indicate the pivoting order for the factorization and the placement of the
solution components after the in-place back substitution and after the postpermutation.
In the example, the destination address in the postpermutation is obtained by a right
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cyclic shift of the row index in the solution matrix. For instance, with indices labeled
from 0, the content in location 1 of Y is sent to location 4, the content of location 4 to
location 2, and the content of location 2 to location 1.

2

1

A Y X
FIG. 2. Block-cyclic triangular backsubstitution. In-place ordering (Y) and correct ordering (X) ofsolutions.

Briefly put, the natural process for solving block-cyclic triangular systems evalu-
ates W (PITP-)-Y. But X (PTP-)-Y (PP)(PTP-)-xY
(PP-)W. Thus the solutions X, aligned with A and overwriting the aligned matrix
Y, are obtained through a postpermutation P2P-1 applied to the result of the in-place
block-cyclic triangular solver.

Note that in applying a block-cyclic elimination order to data allocated by a consec-
utive allocation scheme, the computations are load balanced both for factorization and
triangular system solution without permuting the matrix A or the block-cyclic triangles.
For instance, whenever P1 g: P2 for rectangular nodal arrays, a shuffle permutation of
the solution matrix is required. But, for few right-hand sides, the amount of data per-
muted is considerably less than if the input matrix and the right-hand side matrix had
been permuted from consecutive to cyclic allocation and the solution matrix permuted
from cyclic to consecutive allocation.

5.3. LU factorization and block-cyclic triangular system solution with partial pivot-
ing. We now have presented all the elements of our algorithm for solving dense systems
of equations with partial pivoting for a consecutive data allocation. The complete algo-
rithm is as follows.

Factor the matrix A in place using a block-cyclic elimination order. Exchange
each selected pivot row with the appropriate row defined by the block-cyclic elimination
order. Record the pivot selection.

Align the right-hand side matrix Y with the matrix A (the array storing the block-
cyclic triangles). Y and A can be aligned at compile time through the use of the compiler
directive ALIGN.

Perform a forward block-cyclic triangular system solve in place using the recorded
pivoting information.

Perform a backward block-cyclic triangular system solve in place.
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Whenever the row and column permutation matrices P and Pz are different, as in
the case of rectangular nodal arrays, perform a postpermutation (generalized shuffle) of
the solution matrix (or prepermutation (generalized shuffle) ofthe matrix A as explained
in the next subsection).

Align the solutions with Y, assuming that the solutions overwrite the right-hand
sides.

No permutation of the matrix A or the block-cyclic triangular factors, is made for
load balance. A permutation of the solution matrix is only required when Px Pz, as
in the case of rectangular nodal arrays. For a few right-hand sides, the size of the solu-
tion matrix is insignificant compared to the matrix A, and the time for permutation of
the result is of little influence on the performance. For a large number of right-hand
sides, a prepermutation of the matrix A, as explained in the next section, may yield bet-
ter performance. In our implementation, the permutation of the result, when required,
is performed by the Connection Machine system router. Optimal algorithms [19] are
known for the generalized shuffle permutations required in pre or postpermutationwhen
N/max(p, q) is a multiple of the block size. However, no implementation of such algo-
rithms is currently available on the Connection Machine systems.

Note that if the data arrays A and Y are not aligned at compile time, then the last
two steps could be combined into a single routing operation. Note further that if there
are more right-hand sides than columns of A, then it may be preferable to align A with Y,
if the optimal nodal array shapes for factorization and solution phases are different, or
if alignment is made at run time, since fewer data elements must be moved if the layout
of Y is the reference. Optimal array shapes are discussed further in 7.

In our implementation, the location of the pivot block row is defined by the block-
cyclic elimination order. Selected pivot rows are exchanged with rows of the pivot block
row in order to assure load balance.

The forward and backward solution in our implementation corresponds to the rou-
tine _TRSM in the level-3 BLAS, but it is not identical since a block-cyclic ordered elim-
ination is used.

5.4. LU factorization and triangular system solution without pivoting: prepermu-
tation vs. postpermutation. In 5.2 we showed that in case P P, backward elimina-
tion of a block-cyclic triangular system consists of two parts: a fairly standard backward
elimination with reverse block-cyclic ordered block column subtractions from the right-
hand side and a postpermutation of the result when P P. For such block-cyclic
elimination orders, successive blocks are not selected from the diagonal of the matrix.

LU factorization without pivoting selects pivots from the diagonal of a matrix and
works well for diagonally dominant systems precisely because the large diagonal ele-
ments are guaranteed to be the pivots in the factorization process. However, in block-
cyclic ordered elimination with P /, the matrix entries used as pivots will be on
the block-cyclic diagonal, i.e., in locations of the form (/ (i),/ (i)). Thus for diagonally
dominant matrices factored on, for instance, a rectangular nodal arraywith a no-pivoting
strategy, it is necessary to prepermute the original matrix in some way that maps the orig-
inal diagonal to the block-cyclic diagonal.

One obvious prepermutation is to replace A with B PAP. Then, given a
factorizationLB PT,P and routines to applyL and (PT,P)-, AX Y
can be solved as X P (PT,P)-LPY. But a more efficient approach is
to replace A with C APP-. A block-cyclic elimination order applied to C yields
LC PTcP-. Furthermore, LA PTcP-, and the solution of AX Y is
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obtained as X (PTcP-)-ILIY. In summary, a prepermutation of A required for
numerical stability can be used to cancel the postpermutation of the result.

Thus in a block-cyclic elimination order on rectangular nodal arrays, LU factoriza-
tion with pivoting on the diagonal is performed as follows:

Apply P1Pffrom the right.

Factor C in place.

Forward solve in place.

Backward solve in place.

A AP1P-1

Lc PxTcPf
Y -- LIyX= (P1TcP-I)-IY

Note that if Px P, then the first step has no effect on the data ordering and should
be omitted. In this case, the factorization with no pivoting should be faster than with
pivoting, since no time is required for finding pivots and for exchanging selected pivot
rows with the rows of the block pivot row. However, when P P, then the no-pivot
option requires a prepermutation of the matrix A, while the pivot option requires post-
permutation of the solution matrix X in addition to the data rearrangement required for
pivoting. In our implementation, we find that no pivoting is always faster than pivoting
even when P1 - P2 and there is only one right-hand side (see Fig. 3).

Mflops/see x 103

1.80

0.80

0.60

0.40

0.20

//

0.00 5.00 10.00

partial pivoting
no pivoting

Nxl03

FIG. 3. Execution ratesfor LUfactorization with and withoutpivoting on a 512-node Connection Machine
system CM-200 with blockingfactor 8, 64-bitprecision. Nodes in Gray code order.
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Note further that the prepermutation A AP1P can be used also for the LU
factorization with pivoting, thus removing the need for the postpermutation ofthe result.
This technique gives improved performance when there are more columns in the right-
hand side array Y than in the original matrix A. Thus prepermuting the matrix A when
there are many right-hand sides should result in better performance for the no-pivoting
option than for the pivoting option.

5.5. QRfactorization and system solution. QR factorization and the solution ofthe
factored matrix equations can be performed in a manner analogous to the LU factoriza-
tion and the solution of triangular systems. In the factorization, pivoting is replaced
by an inner product of the current column with all other columns, i.e., a vector-matrix
multiplication. This vector-matrix multiplication doubles the number of floating-point
operations and replaces two copy-spread operations with one physical spread-with-add
operation. The result is an operator QT- in factored form, satisfying QT"A R, where
R PITP is a block-cyclic upper triangular. If A has m rows and n columns with
m > n, then the QR factorization may be used to find the vector X that minimizes the
residual 2-norm IIAX YII. The procedure is

Apply Qw. y Qry,
Backward solve. X II P2P PITP Y,

where II is projection onto the first n components. The backsolve (PTP{ )- operates
on the first n rows in block-cyclic order of Y. The final permutation PP-1 moves the
first n block-cyclic rows to the first n rows.

6. Performance. In this section we report first the performance achieved on a few
matrix sizes. Then we analyze the performance and discuss factors that contribute to the
discrepancybetween the performance ofthe local matrix kernels and the performance of
the global factor and solve routines. Communication and arithmetic are considered sep-
arately. All arrays are allocated with default compiler layouts. This implies that nodes
are in Gray code order along each axis, and that Y is aligned with A only in the case that
the number of right-hand sides is equal to the number of equations. A 2048-node and a
512-node Connection Machine system CM-200 were used for the performance measure-
ments. Both systems result in rectangular nodal arrays. Alignment of Y with A (when
necessary) and postpermutation ofthe solution(s) were performed using the Connection
Machine router. Times for these data motion steps are included in the solve timings. In
all cases we used random data for the matrix A. In this section, LU factorization always
means LU factorization with partial pivoting. In this section, QR factorization always
means QR factorization with no pivoting.

6.1. Measurements. In 64-bit precision the peak performance for LU factorization
is 9.4 Gflops/s, or close to 4.6 Mflops/s per node, which is about 50% ofthe peak perform-
ance of the level-2 LBLAS. Table 6 shows the performance of LU and QR factorization
for a few matrix sizes on a 2048-node Connection Machine system CM-200. The execu-
tion rate for LU factorization is computed based on (2/3)Na floating-point operations,
and the QR factorization rate based on a

4-Na operations, regardless of the blocking fac-
tor. For the solvers, the execution rates are based on 2RN operations for the LU solver
and 3RN for the QR solver.

Tables 7 and 8 give some performance data for the factorization and the forward
and backward solution of dense systems. R denotes the number of right-hand sides in
the systems of equations being solved. The improved efficiency with an increasing matrix
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TABLE 6
Execution rates in Mflops/sfor LU and QRfactorization on a 2048-node Connection Machine system CM-

200. A blockingfactor b of 16 was usedforLUfactorization. A blockingfactor of8 was usedfor QRfactorization.
Nodes in Gray code order.

No. of rows/
columns, N

1024
2048
4096
8192
16384
26624

LU

32-bit 64-bit

172 139
620 494

2040 1537
5586 3846
11573 7173
16030 9398

QR

32-bit 64-bit

374 321
1301 1053
3902 2842
8878 5704

size, increased number of right-hand sides, and increasing blocking factor is apparent.
For LU factorization in 32-bit precision, the performance increases by a factor of over
700 for an increase in matrix dimension N by a factor of 132 and a blocking factor of
1. With a blocking factor of 16, the same increase in matrix size yields a performance
increase by a factor of over 1300. The performance increase in 64-bit precision for an
increase in N by a factor of 104 is 425 and 840, respectively. For small values of N,
the performance increases much faster than N. For large values of N, the performance
increase is still substantial and roughly proportional to N. This characteristic is true for
both the factorization and the solution phases.

The execution rate for the forward and backward block-cyclic triangular system
solvers increases significantly with the matrix size for a large number of right-hand sides.
With the number of right-hand sides equal to the number of equations, the performance
of the triangular solvers is about 50% higher than for LU factorization.

Comparing the execution rates of the LU and QR factorization routines, we observe
that except for large matrices, the execution rates of the QR factorization routine are
approximately twice that of the LU factorization routine. Hence, the execution times
are approximately equal. However, for large matrices in 64-bit precision, the execution
rate for QR factorization is only 15-20% higher than for LU decomposition, and the
execution time for QR factorization is significantly longer than for LU factorization.

Comparing the LU and QR solve routines, we observe that the QR solve routine
benefits more from an increased blocking factor than does the LU solve routine. The
execution rate of the QR solve routine is about 20% higher than the LU solve routine
for a large number of right-hand sides and a blocking factor of 1. But, for a blocking
factor of 16, the QR solve routine has an execution rate that is about 40% higher than
that of the LU solve routine.

The optimum blocking factors for LU factorization and triangular system solution
are summarized in Fig. 4. The optimum blocking factor increases with an increased ma-
trix size. For LU factorization the sensitivity of the execution rate with respect to the
blocking factor is small (on the order of 20%) for small matrices, while for large ma-
trices an increase in the blocking factor from 1 to 16 may increase the performance by
a factor of more than two. The behavior is similar for the LU solve routine. The opti-
mum blocking factor increases with the matrix size. In our implementation the optimum
blocking factor for LU factorization is 4 for matrices of size up to 1024, 8 for matrices
of size between 1024 and 8096, and 16 for sizes 8096 to 16896, the maximum size used
in our test. Note that the optimum blocking factor for the LU solve routine is generally
higher than for the factorization routine. Figures 5 and 6 show the execution rate as a
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TABLE 7
Execution rates in Mflops/sfor LUfactorization and block-cyclic triangular system solution on a 512-node

Connection Machine system CM-200 as a function ofmatrix size, blockingfactor, and the number ofright-hand
sides. Nodes in Gray code order.

32-bit precision 64-bit precision
Matrix Block

size size Factor Solve Factor Solve
N b

R 1 R---- N/2 R-- N R-- 1 R-- N/2

128 1 2.7 .1 3.1 6.1 2.6 .1
512 1 39.9 .3 45.1 82.8 37.5 .2
1024 140.7 .5 153.0 252.0 126.4 .4
2048 1 420.1 .9 417.9 624.8 342.1 .7
4096 1 944.3 1.5 915.9 1127.9 667.7 1.1
8192 1 1510.1 2.2 964.7 1.5
13312 1 1804.3 2.7 1104.8 1.8
16896 1 1910.2 3.0

128 4 3.3 .1 4.2 8.3
512 4 48.8 .5 62.2 112.8
1024 4 170.0 .9 213.1 348.8
2048 4 517.8 1.7 614.9 892.7
4096 4 1237.5 3.1 1407.0 1726.8
8192 4 2204.8 5.1
13312 4 2835.7 6.9
16896 4 3099.1 7.7

128 8 3.2 .1 4.1 8.2
512 8 48.6 .5 65.4 117.8
1024 8 169.1 1.0 224.3 369.2
2048 8 524.1 2.0 667.5 972.4
4096 8 1330.9 3.8 1603.3 2013.3
8192 8 2561.9 6.6
13312 8 3471.8 9.2
16896 8 3876.7 10.5

128 16 3.1 .1 3.9 7.6
512 16 43.8 .6 64.6 116.9
1024 16 154.8 1.1 223.4 371.8
2048 16 485.5 2.2 680.9 979.2
4096 16 1268.3 4.2 1651.2 2085.3
8192 16 2574.8 7.5
13312 16 3628.9 10.8
16896 16 4116.9 12.6

R=N

3.1 6.0
42.0 72.8

131.5 198.7
320.7 434.8
615.1 713.1

3.0 .1 4.1 8.0
43.3 .4 55.9 96.7

146.7 .8 179.1 277.2
420.3 1.5 470.8 639.3
920.0 2.6 970.9 1143.3
1506.6 3.9
1857.9 4.8

2.9 .1 3.9 7.6
42.0 .5 57.4 98.8

141.5 .9 184.4 286.5
416.8 1.7 501.1 680.4
966.9 3.2 1075.8 1289.2

1701.1 5.1
2200.0 6.7

2.7 .1 3.4 6.7
36.4 .5 55.2 95.6

125.1 1.0 179.9 281.6
374.6 1.9 498.1 674.0
907.1 3.5 1091.7 1317.4

1691.8 6.0
2270.6 8.1

function of matrix size and blocking factor for LU factorization and solve, respectively.
Figure 7 shows the execution rate of the LU solve routine as a function of matrix size
and the number of right-hand sides.

The optimum blocking factor for the QR factorization routine increases somewhat
slower with the matrix size than for the LU factorization routine. The optimum blocking
factor for the QR solve routine is higher than for the QR factorization routine, just as in
the case of LU factorization and solve. Figure 8 shows the execution rate as a function
of matrix size and blocking factor for QR factorization.

In the next few subsections we analyze the performance behavior of the communi-
cation functions and the local arithmetic as a function of matrix and machine size and
provide a model to predict the performance.

6.2. Communication. Two main pes of communication are required: (i) Spreads
copy data from a single row (or column) of nodes to all other rows (or columns); (ii)
Reductions to select the pivot row in LU factorization with partial pivoting and for col-
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TABLE 8
Execution rates in Mflops/sfor QRfactorization and block-cyclic aiangular system solution on a 512-node

Connection Machine system CM-200 as a function ofmatrix size, blockingfactor, and the number ofright-hand
sides. Nodes in Gray code order.

32-bit precision 64-bit precision
Matrix Block

size size Factor Solve Factor Solve
N b

R- 1 R- N/2 R- N R---- 1 R- N/2

128 1 5.8 .1 6.2 11.9 5.3 .1
512 1 85.7 .5 83.3 142.0 74.2 .5
1024 1 299.3 1.0 261.1 390.7 237.3 .8
2048 1 865.1 1.8 639.8 876.5 605.3 1.3
4096 1827.3 2.8 1297.0 1510.4 1104.9 1.9
8192 2750.0 4.0 1516.7 2.4
13312 1 3183.7 4.8 1701.0 2.7
16896 1 3334.3 5.1

128 4 7.2 .4 9.8 19.1 6.3 .3
512 4 106.6 1.6 134.6 235.5 88.0 1.2
1024 4 371.5 3.0 436.0 675.1 284.7 2.2
2048 4 1101.4 5.5 1126.1 1534.4 749.3 3.9
4096 4 2427.1 9.1 2235.1 2601.2 1471.4 5.8
8192 4 3902.2 12.9 2178.2 7.6
13312 4 4694.3 15.3 2544.4 8.6
16896 4 4986.5 16.3

128 8 7.0 .4 9.4 18.2 6.0 .3
512 8 102.9 2.3 146.2 253.9 80.6 1.6
1024 8 359.8 4.4 469.1 724.7 262.3 2.9
2048 8 1088.8 8.1 1272.7 1698.4 711.9 5.3
4096 8 2548.5 13.8 2557.4 3012.5 1475.9 8.5
8192 8 4361.5 20.4 2315.9 11.5
13312 8 5424.8 24.2 2797.1 13.2
16896 8 5838.8 25.8

128 16 6.3 .4 8.4 16.0 4.9 .3
512 16 85.6 2.8 143.2 251.7 63.4 1.8
1024 16 300.9 5.4 470.6 744.4 206.9 3.4
2048 16 917.4 10.2 1295.5 1729.7 572.9 6.2
4096 16 2227.2 17.7 2762.9 3297.1 1253.9 10.2
8192 16 4068.2 26.9 2113.7 14.7
13312 16 5276.3 32.5 2669.0 17.4
16896 16 5780.5 34.8

5.6
66.9

186.9
412.0
744.7

8.4
108.0
320.4
748.3

1311.3

7.8
111.6
334.5
818.4
1555.8

6.3
105.5
324.3
814.3
1577.7

R=N

10.5
104.6
255.6
514.4
827.1

16.2
179.6
469.6
960.1

1476.8

14.8
184.5
496.6

1034.9
1793.4

11.7
176.6
484.7
1048.4
1827.3

Optimum
Block size

8_

4_

LU solve oLU factor
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FIG. 4. Optimal blockingfactorfor LUfactorization and triangular system solution.



BLOCK-CYCLIC DENSE LINEAR ALGEBRA 1279

Mflops/sec x 103

2.20

2.00

1.80

0.80

b=l
b=4
b=8
,.-F6-"

Nxl03

FIG. 5. Execution ratesfor LUfactorization on a 512-node Connection Machine system CM-200 with block-
ingfactor b, 64-bitprecision. Nodes in Gray code order.

umn summations in QR factorization. In addition, general sends are used to align the
right-hand sides Y with the columns of A, to realign the solutions with the input array
Y, and, when P1 - P2, to prepermute the matrix A, or to postpermute the solution(s).
In a spread of a pivot column, Nip elements per node must be communicated to every
other node in a row for the consecutive data allocation described in 5.1. With a blocking
factor of b rows and columns, the number of elements to be spread for a block column is
Nb/p. Similarly, a block row requires that Nb/q elements be spread to every other node
in a column.

On the Connection Machine system CM-200, where the nodes are interconnected
as a Boolean cube, there exist several paths from the node that must spread the data to
any of the nodes receiving the data. Indeed, since p and q are always chosen such that
the nodes form subcubes of the Boolean cube, there exist log2 p and logz q edge-disjoint
paths between a node and every other node in a column and row subcube. Hence, the
data set that a node must spread can be divided up among the different paths to balance
the communications load and maximize the effective use of the available communica-
tions bandwidth [18]. Spreads on the Connection Machine system CM-200 are imple-
mented in this manner and use the communications bandwidth optimally [18]. Note that
for a fixed data set per node, the time for a spread decreases with an increased number
of nodes. Table 9 gives some timings for spreads of different size data sets on Connec-
tion Machine systems CM-200 ofvarious sizes. For a large data set per node, increasing
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FIG. 6. Execution ratesforsolution ofblock-cyclic triangularsystems ofequations with N right-hand sidesfor
LU decomposition on a 512-node Connection Machine system CM-200 with a blockingfactor b, 64-bitprecision.
Nodes in Gray code order.

the number of cube dimensions by a factor of 10 (from 1 to 10) reduces the time for a
spread by a factor of 3.41. Increasing the number of dimensions by a factor of 5 yields a
reduction in the time for a spread of a large data set by a factor of 2.06. The overhead is
quite substantial, making the speedup significantly less than the increase in the number
of cube dimensions.

The prepermutation P1P1, or the postpermutation P2P-1, when required, is per-
formed by the Connection Machine system CM-200 router in our implementation. These
permutations aregeneralized shuffle permutations. Optimal algorithms for Boolean cube
networks are known for these permutations when N/max(p, q) is a multiple of the block
size [19], but not implemented on the Connection Machine system CM-200. In caseswith
only one right-hand side, the cost of the alignment and postpermutation is only a small
fraction of the total cost of the solve.

Note that, on the Connection Machine systems, the default layout of the matrix A
and the right-hand sides Y is typically not the same, since the nodal array shape depends
upon the data array shape. Aligning A and Y at compile time avoids data motion at run
time. With a default layout ofY and A, the alignment constitutes a shuffle permutation,
which would be performed by the router. Similarly, with the solutions overwriting the
right-hand sides, the default data allocation requires a reallocation of the result from
being aligned with A, to the default layout. This reallocation could be combined with
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FIG. 7. Execution ratefor solution ofblock-cyclic triangular systems ofequations with r right-hand sidesfor
LU decomposition on a 512-node Connection Machine system CM-200 with a blockingfactor 8, 64-bitprecision.
Nodes in Gray code order.

TABLE 9
Time in msecforspreads ofdifferent size data sets and Connection Machine systems CM-200 ofvarious sizes:

32-bitprecision.

Number of
elements

2
4

16
32
64
128
256
512
1024
2048
4096
8192
16384
32768

2 4 8

0.0366 0.383 0.448
0.0366 0.383 0.448
0.0623 0.416 0.480
0.1136 0.470 0.515
0.2162 0.577 0.598
0.4214 0.793 0.741
0.8318 1.223 1.055
1.6527 2.084 1.654
3.3139 3.805 2.882
6.7319 7.247 5.310
13.4530 14.129 10.193
26.9059 27.895 19.931
53.8115 55.426 39.437
107.6210 110.476 78.415
215.2400 220.577 156.396

Number of nodes

0.502 0.573 0.640 0.719 0.789 0.878 0.965 1.036
0.502 0.573 0.640 0.719 0.789 0.878 0.965 1.036
0.505 0.576 0.644 0.722 0.792 0.881 0.968 1.040
0.542 0.615 0.684 0.763 0.798 0.888 0.975 1.046
0.600 0.691 0.730 0.811 0.848 0.939 1.027 1.101
0.720 0.773 0.856 0.907 0.947 1.042 1.133 1.168
0.962 0.963 0.984 1.044 1.045 1.247 1.305 1.344
1.445 1.377 1.352 1.360 1.338 1.410 1.434 1.503
2.410 2.203 2.054 1.990 1.925 1.946 1.953 2.001
4.342 3.825 3.491 3.287 3.098 3.021 2.991 2.957
8.204 7.067 6.331 5.844 5.445 5.210 5.028 4.910

15.929 13.585 12.048 10.960 10.137 9.588 9.102 8.782
31.379 26.619 23.444 21.226 19.522 18.344 17.288 16.520
62.279 52.657 46.269 41.721 38.291 35.818 33.662 31.997
124.070 104.723 91.874 82.711 75.829 70.764 66.366 62.991

16 32 64 128 256 512 1024 2048
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FIG. 8. Execution rates for QRfactodzation on a 2048-node Connection Machine system CM-200 with a
blockingfactor b, fi4-bitprecision. Nodes in Gray code order.

a postpermutation of the solution matrix X, when necessary, into a single permutation.
Such a combined permutation would require the same time as either the postpermuta-
tion itself, or the reallocation of X, using optimal algorithms [19].

Note also, that if all arrays have a default layout, then for many right-hand sides it
may be advantageous with respect to performance to align the matrix A with Y and, if a
prepermutation of A is necessary, combine this permutation with the alignment opera-
tion.

6.3. Arithmetic efficiency. Not all the work is well load-balanced, even in the block-
cyclic order elimination. Some work is applied only to a single row (or column) of the
matrix at a time. For example, in LU factorization with partial pivoting, it is necessary
to find the location of the largest element in the current column. Though this work is
of order O(N) for a single (block) row or column, compared to the O(N2) work for a
rank-b update, it is magnified in importance because the grid-based layouts do not load
balance individual rows and columns across the whole machine. Despite this drawback,
grid-based layouts are optimal for communication systems in which the communication
time is determined by the data volume leaving or entering a node, as shown in 7.

6.4. Detailed performance analysis. For simplicity, in this section and the next, we
consider only the case p q.
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Assuming that aNa floating-point operations are carried out on p2 nodes running
at rate r, while the time per unit of work spent on N2 work (some arithmetic and com-
munication) on p nodes is C, the total time is aNa/rp2 + C(N2/p). The achieved com-
putational rate is

aNa
C
N2

rp2 p

O

R--rp2
0-+-1

where

o= 7-6

For LU factorization on a 2048-node Connection Machine system CM-200, the compil-
ers by default configure the nodes as a 32 x 64 array. The algorithm we use requires three
spreads for each row and column that is eliminated; two to accomplish the pivoting row
swap and one to spread the column of coefficients. From Table 9, we conclude that the
time for a row spread is 570 + 3.1. (number of 32-bit words per column of nodes) msec,
and the time for a column spread is 640+ 2.7. (number of 32-bit words per row of nodes)
msec. For the largest matrices in Table 7, Nip , 630 (actually the submatrices assigned
to each node are rectangular 448 x 896, and v/(448 896) .. 630). Some straightfor-
ward calculus shows that communication contributes about 15 msec to C. By counting
cycles for the O(N) arithmetic part of the code, we estimate that it contributes another
12 msec to (7. For LU factorization c 2/3. We used a blocking factor of b 16 for
the timings reported in Table 7, i.e., all O(Na) work is performed by rank-16 updates.
These run at a peak rate of about 7.6 Mflops/s per node. However, including the ef-
fect of DRAM page faults reduces this performance to a little over 7 Mflops/s. Hence,
a/(rC) 2/(3.7.0.27) 1/(285), and 0 2.2, for which the performance loss factor is
0/(0+ 1) 0.69. Altogether, this analysis predicts a performance of about 4.85 Mflops/s
per node, which is very close to the measured performance.

The important conclusion is that for 0 << 1, or Nip small relative to rC/a, the
performance increases roughly linearly in Nip. Because rC is large, nearly all interesting
cases fall into this range of submatrix sizes.

A minor point relevant for fine tuning is that smaller problems should use smaller
block sizes. This need arises because one of the contributions to C is work occurring
entirely within block rows or block columns, which grows quadratically with the block
size b.

6.5. Sealability. As the matrix size N increases for a fixed machine size, the number
ofrows and columns assigned to a node increases proportionally. Hence, ifN is doubled,
so is the amount of data per row and column per node. Hence, the time required for
the O(N2) term increases in proportion to N. But the amount of work that must be
performed by each node for the factorization increases in proportion to the cube of the
local matrix size. Hence, the importance of the O(N2) term decreases with increases N
for a fixed number of nodes. However, the significance does not decrease in proportion
to N, since the efficiency of the level-2 LBLAS increases with increased N. The variation
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in the computational rate r spans a range of more than one order of magnitude, while
the performance loss factor may span two orders of magnitude. Hence, the dramatic
variation in performance as a function of the local submatrix size.

Scaling the problem size with the number of nodes such that size of the submatrix
assigned to each node remains fixed increases the efficiency of our current Connection
Machine system CM-200 implementation. The performance of the level-2 LBLAS is un-
affected by this form of scaling, but the communication is sped up because more channels
are available for spreads and reductions. Thus, increasing the number ofnodes decreases
the value of C’.

7. Optimal layouts. Communication is inevitable for the solution offull rank factor-
ization problems on a distributed memory computer [9]. Another source of inefficiency
in our implementation is the poorly load-balanced O(N2) work. We now consider the
impact on the data communication (for spreads and reductions) of some alternative data
layouts intended to improve the load balance for the O(N) work.

Consider an arbitrary layout of an N x N matrix onp nodes, which is regular in the
following sense"

Each column intersects exactly c nodes in N/c elements.
Each row intersects exactly r nodes in N/r elements.
There are exactly N/p elements on each node.
Each node intersects exactly cN/p columns.
Each node intersects exactly rN/p9 rows.

Figure 9 shows a two-dimensional data array assigned to nodes forming a one-dimen-
sional array in a Boolean cube. A binary-reflected Gray code encoding [25] is used for
the array embedding. Each square subarray of the data array is assigned to one of four
nodes, as indicated by the number in the corresponding box. In effect, the data array is
assigned to the nodes of the embedded one-dimensional array in a block-skewed way.
This layout satisfies the regularity conditions with c 4, r 4, and p 2.

FIG. 9. Layout ofa two-dimensional data array on a Boolean cube configured as a one-dimensional array.

It is clear that by making rc > p2, the load balance can be improved for row-and-
column oriented operations. To evaluate the impact on the time for a spread, we assume
that the time of the spread is proportional to max(inject, eject), where inject is the max-
imum number of data elements injected into the communications system by any node,
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and eject is the maximum number of elements ejected from the communications system
by any node. Hence, we assume that communication operations are limited by the band-
width at the nodes. Then, the time of a column spread is max(N/c, rN/p) and the time
of a row spread is max(N/r, cN/p2). Now, consider an algorithm consisting of local com-
putation, row spreads, and column spreads. Suppose that local computation consists of
a perfectly load-balanced part, a part which takes place on a single column at one time,
and a part which takes place on a single row at one time. By making re > pZ, we can
reduce the cost of the single-column and single-row operations. In return, the cost of
the row spreads and the column spreads will grow. In fact, it is likely that distributing
rows and columns across more processors will also increase the cost of the perfectly load-
balanced part of the computation, since more distributed layouts will reduce local vector
lengths. Ifwe ignore this effect of reduced vector lengths, then an optimal layout should
minimize cost a max(N/c, rN/p2) + max(N/r, cN/p) +7 * N/r+ 6 N/c, where
a,/3, 7, and 6, are parameters describing the relative importance of column spread, row
spread, single-row work, and single-column work, respectively.

To find the values of c and r that minimize this expression, we first assume that
rc K with K _> p2. Then, cN/p2 >_ N/r and rN/p2 >_ N/c, and the minimization
problem reduces to finding the minimum of (a/p2) r + (f/p2), c + 7/r + 6/c, subject
to the constraint rc K. Using the constraint to eliminate c, and solving for the critical
value of r, gives

(Zip K + 7
(c /p2) + 5/K"

Here, cost(K) 2 V/((a/p2) + 6/K) ((3/p2). K + 7). Minimizing this minimum
cost with respect to K gives Kmin V/(’) * 3)/(cz * fl) * p2. For K > Kmin, cost(K)
is increasing. So if 76 < c3, the minimum cost for all K _> p2 occurs for K p2. If
we take K < p2, then the minimization problem reduces to finding the minimum of
( + 6)/c + ( + 7)/r subject to the constraint rc K. In this case, the minimum is a
decreasing function of K, so the minimum cost for all K < p2 occurs for K p2.

The above analysis assumes that the number of columns is equal to the number of
rows, which is true for LU factorization on a matrix that fits in primary storage. For the
triangular solve, the number of right-hand sides R is often not equal to the number of
rows N. With R right-hand sides, the assumption that each column intersects c nodes in
N/c elements is still valid. But each row now intersects r nodes in R/r elements. With
NR/p2 elements on each node, each node intersects cR/p2 columns (instead of cN/p2
columns) and rN/p2 rows, as before. It is easily verified that even for the triangular
solve, K p2 is optimal.

The overall conclusion is that, provided 76 < a, i.e., provided the geometric mean
of the single-row and single-column work is less than the geometric mean of the row and
column spread work, the best choice is K p2. The condition rc p2 implies that the
optimal layout is indeed based on two-dimensional subgrids for both factorization and
triangular system solution. This conclusion is true, because any column intersects a node
in N/c elements and N/c rN/p2, which is the number of rows that meet any node.
Thus, the rows meeting any node must be exactly those N/c rows that meet any one of
the columns meeting that node. In our implementations ofLU and QR factorization, the
condition 76 < cg/is satisfied (although not bya wide margin). The optimal value of r/c
under the constraint rc p2 is . Thus, the ratio of the lengths of the axes of the
two-dimensional nodal array is proportional to the ratio between the corresponding axes
of the data array operated upon for both factorization and triangular system solution.
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The above communications model applies to some, but not all architectures. For
instance, for hypercubes with concurrent communication on all channels of every node,
such as the Connection Machine system CM-200, the above communications model must
be modified. In the example given by the diagram above, a column spread and a row
spread are actually all-to-all broadcasts [2], [18]. The time for such an operation is pro-
portional to the number of elements entering a node divided by the number of commu-
nication channels per node, i.e., the number of hypercube dimensions spanning their set
of nodes involved in the all-to-all broadcast. For a two-dimensional hypercube, all-to-
all broadcast is no more expensive than a standard column spread. Although twice as
much data must be received by each node, there are twice as many channels available
for the data to use. Therefore, on a four-node CM-200, the data layout shown in Fig. 9
would give better performance for dense linear algebra than any layout currently used,
because with the Fig. 9 layout and cyclic elimination order, all vector operations would
be perfectly load balanced.

$. Summary. We describe LU and QR factorization and solve algorithms for a
block-cyclic ordered elimination for both square and rectangular nodal arrays. We show
how prepermutation can be performed to guarantee pivoting on the diagonal for diago-
nally dominant matrices, without a need for postpermutation. The algorithms have been
implemented on the Connection Machine systems CM-2 and CM-200 and are part ofthe
CMSSL [27]. The peak execution rate of the LU factorization routine on a Connection
Machine system CM-200 is about 9.4 Gflops/s in 64-bit precision.

The routines accept any data layout that can be created in the higher-level languages
on the Connection Machine systems, either by the default layout rules, or through the
use of compiler directives. The routines also perform operations on multiple instances
concurrently, with instances distributed over different sets of nodes. The algorithms
use standard communication functions, such as multiple instance (segmented) broadcast
and reduction, and generalized shuffle permutations. Optimized routines are used for
broadcast and reduction, while the router currently is used for the generalized shuffle
permutations.

For small matrices the execution times for QR factorization without pivoting and LU
factorization with partial pivoting are comparable, while for large matrices the execution
rates become comparable, and hence the execution time for LU factorization with par-
tial pivoting is considerably shorter. The execution rate for the block cyclic triangular
solve for LU decomposition is 50-100% higher than for the factorization for a number
of right-hand sides equal to the number of unknowns. The behavior is similar for QR
factorization.

The value of blocking operations on rows and columns increases with matrix size.
For small matrices, blocking may yield an enhanced execution rate by 20%, while for
large matrices the blocking may offer an increased execution rate of about a factor of
two. In our implementations, the optimum blocking factor for LU factorization with
partial pivoting increases from 4 to 16 with the matrix size increasing from 128 to 16896.
The optimum blocking factor for QR decomposition without pivoting was observed to
increase slower with the matrix size than for LU factorization. The optimum blocking
factors for the solve routines were always higher than for the factorization routines.

The execution rate for LU factorization without partial pivoting is higher than when
partial pivoting is used. The difference in performance depends upon the problem size,
but is typically in the 10-20% range.

The peak performance for the global factorization routines is about two-thirds of
the peak performance of the local level-2 BLAS routines used for the O(Na) work in the
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factorization (but approximately equal to the performance of the global matrix multipli-
cation routine in the CMSSL). The O(Na) work is well load balanced and performed at
high efficiency through blocking of row and column operations. The O(N) work intro-
duces a significant performance penalty, even for very large matrices, and a few thousand
nodes. For submatrices of a size of about 600 600, about one-third of the time is spent
on O(N2) work on the Connection Machine system CM-200 with 2048 nodes. About
two-thirds of this overhead time is spent in communication with the remainder spent in
poorly load-balanced arithmetic.

We also show that for architectures with a very simple communication performance
model and for data layouts from a very large regular family, it is not possible to elimi-
nate the overhead from poorly load-balanced arithmetic. Specifically, we show that in a
communication model in which the time for a spread or reduction is determined only by
the amount of data that either leaves or enters a node regardless of the configuration of
the nodes, assignment of subarrays to nodes based on a two-dimensional nodal array is
optimal both for the factorization and the triangular system solution. We also show that
the ratio between the lengths of the axes of the two-dimensional nodal array is propor-
tional to the ratio between the corresponding axes of the data array operated upon, i.e.,
the matrix subject to factorization, or the set of right-hand sides for triangular system
solution. This proof does not apply directly to the CM-200, because for hypercubes the
available bandwidth for a spread depends upon the node configuration, and the simple
communication model does not fully capture the communications capabilities.
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COMPUTING THE EXACT LEAST MEDIAN OF SQUARES ESTIMATE AND
STABILITY DIAGNOSTICS IN MULTIPLE LINEAR REGRESSION*

ARNOLD J. STROMBERG

Abstract. The difficulty in computing the least median ofsquares (LMS) estimate in multiple linear regres-
sion is due to the nondifferentiability and many local minima of the objective function. Several approximate,
but not exact, algorithms have been suggested. This paper presents a method for computing the exact value
of the LMS estimate in multiple linear regression. The LMS estimate is a special case of the least quantile
of squares (LQS) estimate, which minimizes the qth smallest squared residual for a given data set. For LMS,
q [n/2] + [(p + 1)/2] where is the greatest integer function, n is the sample size, and p is the number of
columns in the X matrix. The algorithm can compute a range of exact LQS estimates in multiple linear regres-
sion by considering (pl) possible 0 values. It is based on the fact that each LQS estimate is the Chebyshev
(or minimax) fit to some q element subset of the data. This yields a surprisingly easy algorithm for computing
the exact LQS estimates. These and other estimates are used to study the stability of the LMS estimate in
several examples.

Key words, least median of squares estimator, multiple linear regression, Chebyshev, minimax
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1. Introduction. Linear regression treats the problem of estimating Oo where:

Yi XiOo + ei i=1,2,...,n,

where (xi, yi) E (Rp, R) are data points and 0o is an unknown p-dimensional parameter
vector and the ei are unknown errors. We will denote estimators of 0o by . The residuals,
yi xiO, i 1, 2,..., n, are denoted ri(O). The best known estimators of 0o is the least
squares estimator 0LS which is

n

Argmin r, (0).
0

i=1

The least squares estimator has the drawback that it is heavily influenced by outliers.
It also suffers from the problem of masking [1]; that is, it is possible that multiple out-
liers may be present in the data set, yet they are not detected by common least squares
diagnostic procedures.

The breakdown point of an estimator [5] has been shown to be a useful measure
of the robustness of an estimator. It can be thought of as the least amount of arbitrary
contamination that can drive the estimate to infinity. It is clear that the breakdown
point of the least squares estimate in linear regression is 1In. Recent research [12], [13]
has shown the usefulness of estimators with breakdown point approximately equal to- These estimators ignore outliers and seem to be able to detect masking when least2"
squares diagnostic procedures do not. The most studied, and probably most used, high
breakdown estimator is the least median of squares (LMS) estimator [11]. It is denoted
OLMS and defined as

Argmin Median 2

0 1 < i < n ri (0)
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To obtain the highest possible breakdown point for OLUS when the data are in general
position, meaning that any p points give a unique determination of 0, the median is
defined as the kth order statistic where k [n/2] + [(p + 1)/2] and [-] indicates the
greatest integer function. The LMS estimate is a special case of a more general estimate
called the least quantile of squares (LQS) estimate [12, p. 124], which minimizes the qth
smallest squared residual. The LMS estimate is used as a starting value for a number of
other high breakdown estimators, including MM estimators [20], - estimators [21], and
the Simpson, Ruppert, and Carroll (SRC) estimator [16].

The stability of computed LMS estimates under minor shifts in the data is currently
questioned by many statisticians. Hettmansperger and Sheather [9] and Ruppert [14]
discuss the engine knock data where the PROGRESS approximation to the LMS esti-
mate is vastly di erent for the original data and the data with one point changed slightly.
In these articles, it is unclearwhether this instability is due to the use of an approximation
algorithm or is inherent in the LMS estimator. Their example is discussed in 3 of this
paper. As discussed in [14], the problem with the LMS estimate is that it may be unsta-
ble for some data sets. This is undoubtedly due to its low efficiency and large number of
local minima. Ruppert argues for the use of S estimators which have a 50% breakdown
point, 28.7% asymptotic efficiency under normal errors, and apparently many fewer local
minima than the LMS estimate. He suggests that extensive comparisons be done among
S estimators, the LMS estimator, and other high breakdown estimators. The likely con-
clusion of such comparisons would be that S estimators are much more stable than LMS
estimators, but it is also likely that the S estimate will be unstable for some data sets. For
high breakdown estimates to be useful in practice, we must have methods for investigat-
ing the stability of the fit. In this paper we are concerned with whether or not the exact
LMS estimate can be unstable for minor shifts in the data for some data sets, and if so,
we are concerned with detecting instability of the LMS fit. Similar techniques could be
used to detect instability in other high breakdown estimators.

Cook and Hawkins [3, p. 643] suggest that the LMS estimate be computed over a
range ofvalues for q (LQS) "to gain some reassurance that there is one consistent story in
the data." Rousseeuw andvan Zomeren agree [13, p. 649]. This paper provides a method
for computing a range of LQS estimates exactly, and thus the exact LMS estimate is
computed. With approximate algorithms, the "story" for di erent values of q may be
di erent because of the algorithm used. The exact algorithm presented here rules out
that possibility. The algorithm also provides an additional check on the stability of the
LMS estimate by computing the exact LMS estimate for all n 1 element subsets of
the data at the same time it is computing the exact LQS estimates for a range of values
of q. Again, the goal here is to investigate the consistency of the story told by the high
breakdown estimate.

One of the drawbacks of the LMS estimate and LQS estimates is that they are quite
difficult to compute. The objective function is continuous, but not di erentiable, and it
has many local minima. The PROGRESS algorithm of Rousseeuw and Leroy [12] is the
most widely used algorithm for estimating 0LUS in linear regression. It could easily be
modified to compute LQS estimates. For a given data set and regression function, the
PROGRESS algorithm computes the exact fit, 0,, to many randomly chosen p point
elemental subsets of the data set. Denote the with the smallest median squared
residual . If the regression function has no intercept, is the PROGRESS estimate
of LS. If an intercept is used in the model, theintercept of/ is adjusted to yield the
smallest possible median residual. This adjusted 0 is then the PROGRESS estimate of
OLS. Rousseeuw and Leroy [12] note that at the expense of additional computation
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time, the intercept adjustment can be done for each elemental set. Unfortunately the
latter algorithm, which Steele and Steiger [17] show will find the exact value of 0LMS
when p 2, does not yield the exact LMS estimate in multiple linear regression when
p>2.

The MVELMS algorithm of Hawkins and $imonoff [8], which is also based on the
selection ofp point elemental sets, but which uses an intercept adjustment for all elemen-
tal sets, has been proposed as an alternative to the PROGRESS algorithm. In general,
it produces estimates ofo with a smaller objective function than the PROGRESS algo-
rithm.

Using a geometric argument, Tichavsky [18] argued that the exact LM$ estimate in
multiple linear regression can be found by considering all p + 1 point elemental sets and
for each elemental set finding the values of where the magnitudes, but not the signs,
of all p + I residuals are equal. The method leads to (2v 1)(v) values of that must
be considered in order to compute the exact value of 0LMS in multiple linear regression.
Given the complexity of the problem for moderately large n and p, Tichavsky suggests
approximating 0LMS by selectingp point elemental sets and checking the median squared
residual for the values of 0 generated by the selected elemental sets.

Because an LQ$ estimate minimizes the qth smallest residual for a given data set, it
must minimize the maximum squared residual for some q element subset of the
data. Thus, the qth LQ$ estimate is the Chebyshev (or minimax) fit (see, e.g.,
Cheney [2]) to that q element subset. Section 2 presents two theorems that can be used
to find the Chebyshev fit for given data set. The first implies that each LQS estimate
must be the Chebyshev fit to some p + 1 element subset of the data, and the second pro-
vides a surprisingly easy method for computing the Chebyshev fit to p + i points. The
theorems are used to develop an algorithm that, by considering (vl) possible 0 values,
computes exact LQS estimates in multiple linear regression. At the same time, the al-
gorithm computes the LQS estimate for a range of values of q and for n 1 element
subsets of the data as a check on the stability of the LMS estimate. Section presents
several examples.

2. The Chebyshev fit. In this section we adapt theorems found in Cheney [2] to pro-
vide a method for computing the Chebyshev fit, and thus the LQ$ estimates, in linear
regression. The first relevant theorem can be restated in the context of regression as
follows.

THORrM 1 [2, p. 36]. In linear regression, the Chebyshep]it, , ill be the Chebyshe,
fit to some p + 1 element subset ofthe data.

By Theorem 1, if we can find for all p + 1 element subsets of the data, then we
can find t for the entire data set. Theorem 2 provides a method for finding t when the
sample size is p + 1. The Haar condition says that there is one and only one exact fit to
any p points. More formally, a set of points in lily satisfies the Haar condition if every
subset ofp points is linearly independent (see, e.g., [2, p. 45].) Let Y (y, y2,..., y,)T
and z be the n x p matrix given by (x,z,... ,z,)T.

THEOREM 2 [2, p. 41]. Considerthe linearregression settingdescribed in 1 with sample
size p + 1. Assume that the Haar condition is satisfied. Then

/LS MY, where M (xTx) xT

is the least squares fit to the data. Let
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i=1
p+l

i=1

and S be the p + 1 dimensional vectorwhere si sgn(ri(/LS)), i 1, 2,... ,p + 1. Then, M(Y eS).

Remarks. Since the LQS estimate, denoted/(), is the Chebyshev fit for some sample
of p + 1 points, the following algorithm (Fig. 2.1) can be used for computing the exact
value of the LQS estimates in multiple linear regression: for each p + 1 point elemental
set, use Theorem 2 to compute the Chebyshev fit, denoted/. The with the least qth
smallest squared residual will be the exact value of O(q). As with the algorithms of 1,
implementations should take advantage of the fact that for many , computing all the
squared residuals and/or the sort to find the qth smallest squared residual can be avoided.
Suppose is the current best estimate of (q) and is the Chebyshev fit to thep+ 1 point
elemental set being considered. The squared residuals at/ need only be cpmputed until
n q are more than r)() because then it must be that r)() > r)(0). Should this

not be the case, Oc becomes the new estimate of/() and the squared residuals are sorted
to find the qth smallest squared residual at the new estimate of/().

The fact that () is the Chebyshev fit to some p + i point elemental set seems intu-

itive, but it is quite surprising that the computation of provided by Theorem 2 is only
moderately more computationally difficult than computing the exact fit, , to ppoints
as is done in the approximate algorithms of 1. This suggests that algorithms based on
computing , could be improved by computing instead of ,. For example, the
PROGRESS algorithm could be significantly improved by having it compute/ for p/ 1
point subsets instead of, for p point subsets. Because of the complexity of computing
/ for all p + 1 point subsets of the data, the exact LMS fit can only be computed for rea-
sonably small n and p, say n < 50 and p _< 5. Using the GAUSS programming language
on an IBM 386-33, such a computation could be expected to take about 33 hours. It
seems clear that there is still a need for appropriately modified approximate algorithms.
One such algorithm is discussed in Hawkins [7].

The theorems generalize results of Steel and Steiger [17]. If the Chebyshev fits are
distinct, then the LMS fit will havep/1 points with squared residuals equal to the median
squared residual, q p 1 points with squared residuals less than the median squared
residual, and n- q points with squared residuals more than the median squared residual.

The exact algorithm can easily be modified to compute LQS estimates for a range
of values of q in one pass through the . Use one row of a matrix t to hold the current
best estimate of O(q) for the range of q’s being computed. At each 0, compute and sort
the squared residuals. Then update (q) ifr)() is less than the previous smallest value

for rq) (0). After considering all , the matrix K will contain the exact values of () for

the values of q selected. As discussed in 1, the O(q) can be used to check the stability of
the LMS estimate.

The algorithm can also be modified to compute O_i, the LMS estimate for the data
set with the ith data point deleted. This can be done at the same time as the computation
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Data points

First p+l point
elemental set.

All p+l point
elemental sets.

Last p+l point
elemental set.

Compute c.

)c=initia
estimate

rq)()(q))=initial
estimate of
minimum of

bjective function.

For each ele-
mental.set, com-
pute 0c using
Theorem 2.

Compute c.

Update
estimate.

Update ((q)
estimate.

Exact value
for O(q).

FIG. 2.1. Exact algorithm for computing

of the LQS estimates for the full data set. In general, use the ith row of an n x p matrix to
hold the current best estimate of_. For each 0, check for improvement in each of the
O-i. Of course, those Oc based on elemental sets that contain point i must be excluded
from the possible

_
values. For any other , the median squared residual for the data

set with the ith point deleted will be the (q + j)th smallest residual for the entire data
set where

0
J=

1 if r (/c) _< rq)(/c).
Thus the squared residuals need onlybe computed once at each to find/(q) for a range
of q values and/_, 1, 2,..., n. As discussed in 1, these estimates can be used as
a diagnostic tool. If their residuals are quite di erent than the exact LMS residuals for
the entire data set, then the LMS estimate can be considered unstable.
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The stability of the LMS fit could also be checked by listing fits to the N elemental
sets with smallest values of the objective function. Instability in these fits would indicate
instability in the LMS estimate.

The algorithms discussed here have been programmed by the author in GAUSS,
version 2.0. A FORTRAN version is currently being developed. Its implementation will
be considered elsewhere.

3. Examples.

3.1. Regression through the origin. The most notable difference between the ap-
proximate algorithms and the exact algorithm is that the elemental sets consist ofp / 1
points for the exact algorithm, but only p points for the approximate algorithms. As an
example of how this can affect the 0LIS fit, consider the data in Table 3.1, fit by a simple
linear regression through the origin model. Both the PROGRESS and MVELMS algo-
rithms use one point elemental sets, while the exact algorithm uses two point elemental
sets. The PROGRESS and MVELMS algorithms find the line that passes through point
8 which has slope .657225 and median squared residual .107. According to this fit, points
0 through 4 should be considered outliers. The exact LMS fit is the Chebyshev fit to
points 4 and 5, which has slope .38485 and median squared residual .075. According to
the exact fit, points 6 through 9 should be considered outliers. The regression lines are
depicted in Fig. 3.1.

The

_
are useful in understanding the LMS fit to this data. If any of the first five

points are removed, the LMS fit shifts to fit the upper five points, while removing any
one of the upper five points has little impact on the LMS fit. It seems that considering
any of the points to be outliers when the LMS fit to the

_
is so variable is questionable.

TABLE 3.1
Data fit by simple linear regression through the odgin.

Point #: 0 2 3 4 5 6 7 8 9
x: 1 2 3 4 5 1 2 3 4 5
y: 0.3302 0.6590 0.9888 1.3194 1.6495 0.6596 1.3192 1.9815 2.6289 3.3011

3.2. Cloud seeding data. This data, which can be found in Cook and Weisberg [4,
p. 4], summarizes the results of a cloud seeding experiment done in Florida in 1975.
On each of 24 days suitable for seeding, the following six explanatory variables were
recorded:

A: ’Tkction" was set to zero if no seeding took place and to one if seeding occurred.
B: "Time" was the number of days since the beginning of the experiment.
S: "Suitability" was a measure of the day’s suitability for seeding.
C: "Echo coverage" was the percent of cloud coverage in the experimental area.
P: "Prewetness" was the total rainfall in the target area in the hour before seeding.
E: "Echo motion" was set to one for a moving radar echo and two for a stationary

radar echo.
The data was fit using a multiple linear regression model with the preceding six ex-

planatory variables and an intercept. The response variable was In (rainfall) in a target
area for a six-hour period. The PROGRESS approximation to OLMS (1.43, .695, --.016,
--.455, --.039, .941, 1.08) is based on the exact fit to points 0, 1, 9, 16, 17, 19, and 20. Its
median squared residual was .0601. The MVELMS approximation to OLMS (.740, 1.13,
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0 2 4 6
x-data

FIG. 3.1. PROGRESS, MVELMS, and exact LMSfit ofa simple linear regression through the origin model
for the dam in Table 3.1.

-.0047, -.567, -.056, 3.60, .990) is based on the exact fit to points 2, 3, 5, 8, 11, 21, and
23. Its median squared residual was .0278. Neither of these approximations use a seven-
point subset of the eight points (2, 3, 4, 8, 9, 11, 16, 23) that determine the exact LMS fit
(.715, 1.13, -.0052, -.551, -.056, 3.61, .962) which has median squared residual .0241.
The exact LMS computation took approximately 90 minutes on an IBM 386-33. The
MVELMS basis does have five points in common with the exact basis, which explains
why it is close to the exact LMS fit.

The plot of the LMS residuals versus fit values has been suggested [12] for assisting
in detecting outliers in multiple linear regression. The PROGRESS, MVELMS, and
exact LMS residual plots for the cloud seeding data are given in Fig. 3.2. Note that with
the exception of point 6 and possibly 15, the PROGRESS algorithm identifies outliers
di erent from the other two methods. The MVELMS plot is very close to the exact
LMS plot, but there would be no way to know this without computing the exact LMS fit.
For this data set, none of the residuals based on _, 1, 2,..., n vary much from the
residuals for the full data set (Fig. 3.2(a)); thus none of the data points are flagged as
particularly influential.

The ability to compute the exact LMS estimate allows us to study the stability ofOLMS
under shifts in the observed values. Let the modified cloud seeding data be the cloud
seeding data with the response at point 4 shifted from 0.8961 to 1.1061. The residual
plots for the three methods are almost identical to those given in Fig. 3.2. If we shift
the response for point 4 from 1.1061 to 1.1161, the PROGRESS and MVELMS fits are
virtually unchanged from those in Fig. 3.2, but the exact LMS residual plot is now similar
to the PROGRESS plot of Fig. 3.2. It is interesting that, although the PROGRESS and
exact LMS residual plots are similar in this case, the MVELMS fit has a smaller median
squared residual than the PROGRESS fit. The instability of the LMS residual plot is
shown in Fig. 3.3 where the shift of point 4 from 1.1061 to 1.1161 causes a di erent set
of outliers to be identified. In the modified data set with point 4 at 1.1161, the influence
of point 4 on the fit is evident from -4, which yields a residual plot quite di erent from
the residual plot for the entire data set (Fig. 3.3(b)). As expected, since only point 4 has
been modified, the -4 residual plot is similar to Fig. 3.3(a).
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FIO. 3.2. LMS residuals versusfit valuesfor the cloud seeding data using: (a) Exact LMS, (b) PROGRESS,

and (c) MVELMS.

3.3. Engine knock data. This data set [10] has been discussed in several recent pa-
pers on high breakdown estimators. Hettmansperger and Sheather [9] and Ruppert [14]
point out that a small recording error in the second point ("air" 15.1 instead of 14.1)
resulted in a vastly different LMS residual analysis than the correct data. Because they
use the PROGRESS algorithm, it is possible that this instability was due to the use of
an approximate algorithm. As discussed in Ruppert [14], the exact LMS algorithm is
not sensitive to the recording error. To continue the discussion of the data set, we can
compute the stability diagnostics suggested in this paper along with the exact LMS fit
for the data with the recording error. Table 3.2 contains the residuals from the estimates
that minimize the ninth through twelfth smallest residuals. Note that all the estimators
yield similar residuals and thus similar analyses; therefore we can conclude that the LMS
estimate is stable over the range of q’s considered.

To further consider the stability of the LMS fit, we can consider the residuals from
the exact LMS fit to 15 point subsets of the data. Table 3.3 presents residuals from these
fits with various points deleted. The instability in these residuals can be considered a
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FIG. 3.3. Exact LMS residuals versus fit valuesfor the cloud seeding data with point 4 at (a) 1.1061 and (b)
1.1161.

TABLE 3.2
Engine knock residuals at LMS estimatefor range ofvalues of q.

Point\q 9 10 11 12
1 0.09 0.19 0.15 0.55
2 -3.13 -3.43 -4.02 -2.22
3 -0.09 -0.19 -0.34 0.82
4 -0.03 -0.07 -0.45 -0.82
5 5.91 6.05 6.66 6.21
6 0.09 0.10 0.45 0.69
7 -1.46 -1.25 -0.45 -0.82
8 -0.09 -0.01 0.45 -0.02
9 1.31 1.59 1.72 0.82
10 0.08 0.19 -0.02 0.14
11 -0.09 0.16 0.26 -0.59
12 -0.50 -0.19 -0.07 -0.82
13 2.90 3.14 3.48 3.36
14 0.09 -0.19 -0.45 -0.82
15 3.24 3.55 3.98 3.57
16 0.09 0.19 0.45 -0.16

lack of stability in the LMS fit for the entire data set; thus conclusions based on the LMS
fit are questionable at best.

The same diagnostics were computed for the data without the recording error. In-
terestingly, no instability was detected. The LMS residuals for 15 point subsets of the
data and the LQS estimate residuals were fairly stable.

3.4. Salinity data. This data was analyzed by Ruppert and Carroll [15]. It has n
28 and p 4, and computation time for the exact LMS fit is about 12 minutes. One of
their conclusions was that the third and sixteenth points masked the influence of point 5,
i.e., after those points were deleted the influence of point 5 was evident. Rousseeuw and
Leroy [12] show that the PROGRESS approximation to the LMS estimate flags points
5, 8, 16, 23, and 24 as outliers and thus detects the influence of point 5. If the LMS esti-
mate is unstable for this data set, then the detection of point 5 by Rousseeuw and Leroy
was just chance. On the other hand, if the LMS estimate is fairly stable, their claim that
the LMS estimate detected masking is reasonable in this case. Table 3.4 presents the
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TABLE 3.3
Engine knock residuals at LMS estimate with variouspoints deleted.

Point\ 4 7 11
1 0.15 -0.22 0.19 -0.22
2 -4.02 -0.22 -3.43 -0.22
3 -0.34 0.22 -0.19 0.22
4 -0.45 4.18 -0.07 4.18
5 6.66 5.02 6.05 5.02
6 0.45 0.10 0.10 0.10
7 -0.45 -4.19 -1.25 -4.19
8 0.45 0.22 -0.01 0.22
9 1.72 0.22 1.59 0.22
10 -0.02 -0.14 0.19 -0.14
11 0.26 -0.85 0.16 -0.85
12 -0.07 -2.42 -0.19 -2.42
13 3.48 -0.12 3.14 -0.12
14 -0.45 5.69 -0.19 5.69
15 3.98 -0.17 3.55 -0.17
16 0.45 -0.22 0.19 -0.22

TABLE 3.4
Residuals at LQS estimatefor a range ofvalues of q.

Point\q 14 15 16 17 18 19
1.60 1.75 1.87 1.57 1.63 1.47

2 0.00 -0.26 -0.31 -0.24 -0.51 -0.02
3 0.88 0.26 0.31 -0.40 -0.51 -0.20
4 0.64 0.17 0.05 0.31 0.51 0.56
5 5.80 4.84 5.33 2.52 1.31 2.80
6 0.21 -0.16 -0.31 0.21 0.33 0.52
7 0.13 -0.09 -0.28 0.40 0.49 0.63
8 -2.48 -2.50 -2.74 -1.80 -1.69 -1.67
9 1.87 1.84 1.73 1.63 1.83 1.33
10 2.06 1.95 2.16 0.40 -0.19 -0.05
11 1.95 1.68 2.00 -0.22 1.12 -0.54
12 -0.21 -0.24 -0.31 -0.40 -0.51 -0.54
13 1.14 1.19 1.07 1.27 1.19 1.15
14 0.21 0.26 0.31 -0.40 -0.97 -0.63
15 -0.14 -0.26 -0.04 -1.93 -2.48 -2.45
16 13.96 12.74 13.82 7.77 5.32 7.71
17 -0.21 -0.50 -0.31 -1.78 -2.37 -1.94
18 0.01 -0.12 -0.30 0.26 0.40 0.33
19 0.07 0.09 -0.08 0.11 0.43 -0.19
20 0.21 0.26 0.22 -0.24 -0.29 -0.63
21 0.07 0.24 0.10 0.33 0.26 0.09
22 -0.04 0.17 0.11 -0.02 -0.33 -0.32
23 4.79 4.51 5.02 1.61 0.42 0.99
24 4.10 3.73 4.21 1.06 -0.12 0.63
25 1.09 1.04 1.07 0.34 0.07 0.06
26 -0.19 -0.06 -0.18 -0.13 -0.17 -0.42
27 -0.17 0.05 -0.07 0.03 -0.07 -0.28
28 1.26 1.44 1.44 0.96 0.51 0.63

residuals from a range of LQS estimates. Although the q 18 residuals are somewhat
di erent from the others, the residuals are fairly stable over the range of q’s considered.
Note that, although reasonably stable, the residuals for points 8, 23, and 24 in Table 3.3
are not large for most of the q’s; thus they should probably not be considered outliers.
Points 5 and 16 appear to be stable LMS outliers. Consideration of the LMS fits to 27
point subsets of the data yields similar conclusions and detects no additional instability;
thus this data set appears to be one in which the LMS estimate truly detects masking.
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Remark. The first three exampleswere chosen to show that the suggested diagnostics
can detect instability in the LMS estimate when it is presented. The last example is one in
which the LMS estimate is stable and thus provides useful information. The exact LMS
fit and the proposed diagnostics have been computed for many of the data sets found
in [12]. In most cases, the LMS estimate was stable; thus it appears that the argument
by Rousseeuw and Leroy that LMS is a useful statistical procedure is valid. It is the
investigator’s responsibility to check the stability of the LMS estimate for any given data
set before making inferences based on the LMS fit.

Acknowledgments. The author thanks Douglas Hawkins, Jeff Simonoff, Simon
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NUMERICALAND ASYMPTOTIC SOLUTIONS FOR PERISTALTIC MOTION OF
NONLINEARVISCOUS FLOWS WITH ELASTIC FREE BOUNDARIES*
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Abstract. A mathematical model for peristaltic motion of nonlinear viscous flows with elastic free bound-

aries is introduced. An iterative numerical method is used to solve the free boundary problem. Long wave
asymptotic expansion is developed and the zeroth order approximation is used as the numerical initial condi-
tion. The existence and uniqueness of the solution for the free boundary equation derived from the long wave
expansion are proved. Computations were conducted to study the long wave approximation, the numerical
solutions for the exact equations, and the influences of the parameters on the solutions.

Key words, peristaltic, Navier-Stokes, long wave, free boundary, elasticity
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1. Introduction. Peristaltic pumping, the physiological phenomenon of a circum-
ferential progressive wave propagating along a flexible tube, plays an essential role in
transporting fluid inside living organisms. Many modern mechanical devices have been
designed on the principle ofperistaltic pumping to transport fluids without internal mov-
ing parts, for example, the blood pump in the heart-lung machine and peristaltic trans-
port of noxious fluid in the nuclear industry. Earlier mathematical work on the problem
of peristaltic transport was based upon a viscous fluid model governed by the Navier-
Stokes equations subject to a prescribed velocity on the boundary of the tube [11], [3]. A
review of the research results can be found in the articles by Jaffrin and Shapiro [8] and
Winet [21]. Numerical study of two-dimensional and axisymmetric peristaltic flows can
be found in the articles by Takabatake, Ayukawa, and Mori 17], 18]. Recently, more re-
fined models have been developed to deal with the peristaltic transport of a fluid-particle
mixture or a heat-conducting fluid. The former was studied by Hung and Brown [7] and
Kaimal [9], and the latter by Bestman [1] and Tang and Shen [19], [20].

In reality, the shape of the tube walls (e.g., blood vessels) is often unknown. They
should be treated as free boundaries and solved as part ofthe solution. Experiments also
suggest that the elastic properties of the tube walls should be taken into consideration
[6], [10], [12]. In this paper, we introduce a three-dimensional (axisymmetric) model
for viscous peristaltic motion with elastic free boundaries that combines three impor-
tant factors: viscosity, elasticity, and free boundary. With the free boundary, this model
should give a better representation of the actual physical situation than the fixed bound-
ary models. Investigation of the free boundary model will provide useful information
for designing equipment applying peristalticmotions and will lead to better understand-
ing of some physiological processes involving peristalsis. However, the introduction of
the free boundary makes this model difficult to solve. The fact that the domain is un-
known makes it difficult to change the partial differential equation (PDE) system to a
discretized difference system, which is the first step necessary to solve the PDE system
using the finite difference method. To overcome this difficulty, we introduce a global
iterative method for this model. The idea was originated from Fung [4]. To explain, we
outline the method below.

Step 1. Obtain the long wave solution, which will be used as the numerical initial
condition. The free boundary solution obtained from the long wave approximation will

*Received by the editors April 1, 1992; accepted for publication (in revised form) December 11, 1992.
This research was supported in part by National Science Foundation grants DMS-9006043 and DMS-9209129.

Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609.
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be used as the initial guess for the exact free boundary.
Step 2. With the boundary F r H(z) obtained from Step I (H(z) is the radius of

the tube), use a local successive overrelaxation (SOR) method [20] to solve the system
as a fixed boundary problem without the elasticity. The mapping

(1.1) { z,

(1.2) r/ r/H(m)

is used to map the (z, r) domain to a rectangular (, ) domain. The number ofiterations
of the SOR method needed here should be determined by numerical experiment.

Step 3. Update the free boundary function H(z) by using the elastic condition.
Step 4. With the newly updated H(z), repeat Steps 2 and 3 until the desired accu-

racy is achieved. Adjust the number of local iterations if necessary to achieve the best
convergence.

There are three key points in this method worth mentioning. (1) By using this pro-
cedure, the unknown domain becomes "known" at each global iteration and discretizing
the PDE system becomes possible. (2) Using the long wave solution as the numerical
initial condition is important to gain fast convergence. (3) The introduction of the map-
ping (1.1)-(1.2) makes the transformation of the (z, r) domain to a rectangular domain
a fairly easy job.

In 2, we formulate the problem. The long wave asymptotic expansion is developed
and solved in 3. The global iterative method is explained in 4. Results and discussions
are given in 5.

2. Formulation. We consider viscous flow in an elastic tube while the shape of the
tube is to be determined. A tension function is prescribed on the boundary to reflect
the elastic property of the tube wall. The tube and the motion are assumed to be ax-
isymmetric and the wave traveling along the tube (z-direction) is periodic. By choosing
a coordinate system moving with the wave, the boundary becomes stationary. The prob-
lem is formulated in Fig. 1.

X

FIG. 1. Peristaltic motion in an elastic tube.

Equations ofmotion and continuity. Assuming the flow is Newtonian, viscous, and
incompressible, we use the Navier-Stokes equations as the governing equations:

pu+p(u.V)u=-Vp+#V2u, V.u=O, t_>O,zf,

where/9 is the density, u the velocity with respect to the moving coordinate system, p the
pressure, # the dynamic viscosity, and f is the domain consisting of one period of the
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tube. In terms of cylindrical coordinates, the nondimensionalized equations of motion
and continuity with axisymmetry are

(2.2) Ov Ov Ova_ Op 1 (02v 02v lOv v)O--F + v-z + v Or -0 + - Oz + Or rot r

(2.3) Ov vr Ovr
Ox + -r =0,

where v and v are longitudinal and radial components of the velocity relative to the
moving frame and R is the Reynolds number.

Free boundary. The free boundary r r H(x) is to be determined as part of the
solutions where H(x) is the radius of the tube. We assume that H(z) is periodic. Our
result shows that for each prescribed initial opening

(2.4) H(0) Ho,

there is a solution to the free boundary equation obtained from the long wave approx-
imation if certain conditions are met (see 3). This leads to the existence of the exact
free boundary when the numerical method converges. However, the theoretical proof
of the existence and uniqueness of the exact free boundary is a much harder problem
and remains to be solved in the future.

Boundary conditionsfor the velocity andpressure. Considering boundary conditions,
we assume no slipping between the fluid and wall, no penetration through the wall, and
no horizontal motion of the wall. These lead to the following boundary conditions:

where F is the free boundary, C is the wave velocity, and f is determined by the radial
motion of the free boundary. Recalling that the free boundary is H H(x) H(x*
Ct), where H(x) is the radius of the free boundry and x* is the old x-coordinate, we
obtain

dH OH dx* OH
vlr dt Ox* dt Ot CH’(x),

where the no-horizontal-motion condition dx*/dt 0 has been used. Now we have

ulr (v, v)lr (-C, -CH’(x) ).

It is easy to check that

u. nit O,

i.e., the normal component of the velocity at the boundary is zero. Wave velocity C is
prescribed with the tension function that is discussed below.

At r 0, because of the symmetry, we assume

r =0, vr =0.
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At the two ends of the tube, we impose periodic conditions on the velocity and the
pressure

(2.6) v I=0 v

(2.7) vl=0 vl=e,

(2.8) Pl=0 Pl=e’,

where e is the wave length. These periodic conditions are actually implied by the period-
icity of the tension function and the Laplace law to be described below. Some numerical
boundary conditions for the pressure at r 0 and F r H(z) will also be imposed.
The details will be discussed later.

Additional boundary condition from elasticitythe Laplace law. Because the bound-
ary is free, an additional boundary condition is needed to make the model complete.
That condition comes from the consideration of the elastic property of the tube. Be-
cause of the complexity of structure of the tube walls in real application, there are many
ways to introduce elasticity into a model. For simplicity, we will adopt the Laplace law
to represent the elastic property of the wall [13]:

(2.9) Plr
T(z, r),

r

where T(x, r) is the prescribed tension function. Several cases are discussed in this pa-
per. In practice, various functions can be introduced to find the best agreement with
experimental data. When necessary, we may introduce more complicated elasticity laws
involving stresses and strains of the walls, which would make the model more practical.
The change of the elastic condition will affect only the part of updating the free bound-
ary. Therefore, the numerical method will still be applicable with minor adjustments.

Remark. The prescribed tension is fundamental to the whole mechanism. We as-
sume that it takes the form of a traveling wave

T T(x*, t, r) T(x* Ct, r) T(x, r),

with given wave speed C, period, and wave length. We are then looking for solutions in
which the fluid velocity, pressure, and the free boundary also adopt the form of travel-
ing waves with the same wave speed, period, and wave length as the imposed wave of
elasticity.

From the Laplace law, it is clear that prescribing T is equivalent to prescribing the
pressure at the free boundary.

Flux condition. Using u. nlr 0, V u 0, and the divergence theorem, we can
prove [19]

fA ndA const Q,u.
()

where A(x) is the cross section at x and Q is the flux. This is the so-called flux condition.
In terms of cylindrical coordinates, the flux condition can be written as

u ndA v r dr dO Q
()
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or

H() Q
(2.10) vzrdr const.

27r

For the fixed boundary model, it has been proved that for each prescribed flux, there
exists a unique solution to the system [19]. A similar conclusion is also true for the fixed
boundary model if we replace the flux condition by the pressure drop condition, i.e.,

pl=e p[=0 const Pd,

where Pd is the prescribed pressure drop. The relation between the flux and the pressure
drop is almost linear for the fixed boundary model [20].

For the free boundary model, the situation is different. Due to the periodicity of the
free boundary and the Laplace law just introduced, the pressure drop over one period
of the tube must be zero. That means the pressure drop cannot be prescribed for the
free boundary model. It is found in this paper that prescribing the flux is equivalent
to prescribing the intial tube opening H(0) H0 for the free boundary model. For
theoretical convenience, we choose to prescribe H0.

Although we cannot prescribe the flux condition once H0 is given, we still have that
identity which will be used to derive the free boundary equation from the long wave
approximation. The constant Q will be determined as part of the solution.

Remark. To prescribe pressure drop, tapering of the tube must be taken into con-
sideration. This will be treated in a separate paper.

Remark. Recall that we are using a moving coordinate system. The laboratory lon-
gitudinal velocity u* can be expresssed in terms ofv by

(2.11) u* v + C.

So the laboratory flux

(2.12) Q*(x*)= fA u*dA=/A vdA+ fa CdA=const+CJa dA
(.) (.) (.) (.)

will be a function of x*, not a constant.
From the above, we have the mathematical model for the viscous flow with an elastic

free boundary (in nondimensionalized version):
1

ut + (u. V)u -Vp + V2u, (equation of motion),

7.U= O,

ulr= -C,-

Ovz
Or I=o O, vI=o O,

ul =o
pl =o

(equation of continuity),

(boundary conditions for u at F),

(boundary conditions for u at r 0),

(periodic condition for u),

(periodic condition for p),
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r H(x),
T(x,r)plF

r

H(0) H(e) H0, (conditions for the free boundary),

(Laplace law).

Assuming axisymmetry, the stationary system can be expressed in terms of cylindri-
cal coordinates as

1 {Ov lOv Ov)Ov Ov Op + +_ +(2.13) v + vr Or Ox - \ Ox2 r -r Or2

COvr Ovr cop 1 (02vr 02vr l Ovr(2.14) v-x + vr Or -0--- + - + or2’ - r Or r2

(2.15) Ov v Ov
Ox +--+r =0,

(2.16) (v,, v)lr (-C, -CH’(x)),

(2.17) Ov
Or I,-=o O, v,.I,.=o O,

(2.18)

(2.19)

(2.20) F r H(x), H(O) H(e) Ho,

T(x,r)(2.21) plr , 0 < x < , 0 < r < H(x).
r

Compared with the fixed boundary model, this model treats the boundary as a free
boundary. An additional boundary condition is introduced by using the Laplace law
of elasticity. Instead of prescribing the flux condition, the initial opening of the tube
H0 H(0) is prescribed to ensure a unique solution of the system.

3. Long wave asymptotic approximation. Assume that 0 < dig e << 1, where
d is the average radius of the tube and is the wave length. Our previous experience
indicates that p O(e-2). The Laplace law implies T O(p) O(e-z). Then by
assuming R O(e), the zeroth order long wave approximation will be essentially a one-
dimensional linear system with free boundary; therefore, it is much easier to handle.
Please note that although we made the assumption R O(), it does not imply that our
numerical method will be valid only for small Reynolds numbers since we are basically
using this approximation as the numerical initial condition. The numerical method cov-
ered in 4 does apply to finite Reynolds number cases. For simplicity, when we simply
replace, respectively, x, O/Ox, p, g, R, T, by x/e, e(O/Ox), pe-2, g/e, eR, Te-2 in (2.13)-
(2.21), the system becomes



1306 DALIN TANG AND SAMUEL RANKIN

Ov Ovr Op 1 ( 02v l Ov2v-x- + ev + e2 + +Or Oz - Oz2 r

(3.1)

OVr OVr_or -lOPer -1 ( 02Vrox2e2v-x + ev - + e

Ov v Ov+--+r =0’
(vz, v)lr (-C, -Cell’(x)),

CVx
Or 1,-=o O, v,.I,.=o O,

C2Vr 10Vr Vr )+ -O--Z - r Or r

pl=o pl=,

F: r H(z), H(0) H(e)= Ho,

Pit
T(x, r)

r

Because of the asymptotic assumptions, the odd terms of the asymptotic expansions of
u, p, and H will turn out to be zero. Therefore, we assume

U-- U0+2u2 +4U4 +...,

P Po + 2p2 + 4p4 + "’’,

H Ho + e2H2 + e4H4 +’",
where ui (v, v). Substituting these into (3.1) for the zeroth order approximation,
we obtain (in the following, we use H for Ho(x) and Ho for the initial opening),

l(OvOz 020vOw)Opo(3.2) - + Or Oz

(3.3)
Opo
Or O,

(3.4) Ov Ov

(3.5) (,)1 (-c, 0),

(3.6) 0 o
Or =o 0, v I=o 0,

o o1= o1=o o1=(3.7) vl=o v v v

(3.8) Po I=o Po I=e,

(3.9) F:r- H(x), H(O) H(e) Ho,

(3.10) polr T(x,r)
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while

Q
(3.11) vrdr

is an identity we will need in deriving the free boundary equation.
From (3.3), we see that p0 po(z). Using (3.2) and the corresponding boundary

conditions, we obtained

(3.12) 0 1 R(r2 H2 Opo c.

Plug into (3.11) and integrate

(3.13)
R Opo

Ha CH2 Q
80x

From (3.10), P0 can be expressed in terms of H(x) as

T(x,H(x))
H(x)

Thus (3.13) contains one unknown function H(x) only. If H(x) can be solved from (3.13)
and (3.9), then p0 and v are also determined. It is easy to see from (3.4)-(3.6) that

We consider the three cases below that are chosen because they are the three easiest
simplifications of the general function T(x, r). Comparison between the numerical and
experimental results must be done to see how realistic these conditions are.

Case 1. T(x, r) T(r). From (3.10), P0 (T(H))/(H) po(H). Using this
information and also letting g 1 for simplicity, (3.13) and (3.9) become

R Opo dHHa CH2 -Q, H(0) H(1) Ho.(3.14)
8 OH dx 7r

Equation (3.14) has a constant solution

(3.15) H- ( Q(71.C)) 1/2

It follows from here that

(3.16) p0 const,

0 -C(3.17) v

0---0.(3.18) v,.

We also solved (3.14) numerically and (3.15) was the only solution we found. It turns out
that (3.15)-(3.18) is also the exact solution to (2.13)-(2.21). Therefore, we suspect that
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the constant solution is the only solution to the system. However, we cannot yet provide
a theoretical proof.

Case 2. T(z, r) Tob(z), where b(z) is continuously differentiable and periodic
with period 1, 0 < rl < b(x) < r2 < . Nowwe have

Tob(x) Tob’(x)H Tob(x)H’
po

H
pox

H2

The free boundary equation is

(3.19) H’(x) -H + + 7rb(x)H2(x) H(0) H(1) Ho.

For (3.19), we have the following theorem.
THEOREM. Let b(x) E CI[0, 1] bepeodic with period 1, b(0) b(1) 1, 0 < bl <

b(x) < b2 < oo, C. Q < o, e (8/RTo). Then for each Ho > O, there is o > O, such
that for < co, there exists a Q such that the free boundry equation (3.19) has a unique
solution.

Proof. We need the following lemma.
LEMMA ([2, Thm. 15.1, p. 148 ]). Let X, Y, Z be Banach spaces, and let U c X, and

V c Ybe neighborhoods ofxo and yo, respectively. Let Y(x, y) U x V - Z be contin-
uous and continuously differentiable with respect to y. Suppose also that Y(xo, yo 0 and
Jz-(xo, Yo) L(Z,Y). Then there exist balls (xo) c U, (yo) c V and exactly
one map T B, (xo) - B(Yo) such that Txo yo and (x, Tx) 0 on B, (xo).
This map 7/" is continuous. D

Proof of the theorem. Let f(x) 1/H(x), (3.16) is changed to

Integrate from 0 to x,

b(x)f(x) f(O)- e Cf2 + Q__ f4 dx,

where f(0) l/H(0), f(0) f(1)implies

(3.20)
f f4dx

The equation now becomes a nonlinear integral equation

Introducing

b(x)f(x) f(O) + eC f2 f3 f2dx )f3 f4dx
f4 dx O.

(3.22) g(x) f(x) f(O)

(3.23) ca y(0)
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(3.24)

then/2" Y - Y is one-to-one and onto, -1 exists. Equation (3.20) becomes

(3.25) g + eAfg O.

Define

’(e, g) Z:g + eAZg.

Then " is an operator from R Y to Y. It is easy to check that

y(0, 0) 0, y(0, 0) c, y-(0, 0) c-.
Then, by the lemma, there exist balls B,o (0) c R, B(0) c Y, and a unique mapping
7" :B,o (0) B (0) such that

(e, Te) 0 for e < co.

Furthermore, the mapping 7" is continuous, i.e., for 6 small, we can choose e such that

We choose 6 small so that

y(x) a() + b(x)Ho
_>dl>0.

Then

(3.26) H(x)
1 H0b(z)

1g(x) + b(x)Ho
Hob(x)g(x) + 1

is the solution to the free boundary equation (3.19) and Q is given by (3.20). The proof
is complete.

Case 3. T(x, r) T(r)b(x), where b(x) is the same as in Case 2. For simplicity, let
T(r) To + Tlr. Similar calculation leads to

(3.27)
dH b’ 1 (_ 8C 8Q )dx -H + T1H2 + -- + TrRbH2

Equation (3.27) is similar to (3.19). By using the same procedure, similar results can be
proved. We omitted the details here.

Remark. Although we have the existence and uniqueness of the free boundary for
a long wave free boundary such as (3.19), we do not yet have the corresponding result
for the exact system.
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4. Numerical method for the exact system. The method is outlined in 2. As a nu-
merical example, let T T0(1 + asin2raz), O <_ z <_ l/a, where a 1/ is the long
wave parameter and is the wave length. Here we have assumed that the average radius
of the tube d O(1) (Note: d is unknown.). The system to be solved is

(4.1)

Ova. Ova._ Op 1 (02v, 02v,. l Ov,.
v-5- + v o -o--; + - + o ,. o
OVx Vr OVr
Ox + -r =0.

(v, vr)lr (-C, -CH’(x)),
OV
Or I=o 0, vl=o 0,

F r H(x), H(O) H(e) Ho,

P[r= To(1 + asin27raX)H 0 < x < , 0 < r < H(x).

Step 1. Obtain the long wave approximation. In terms of the new parameters intro-
duced during the long wave equation derivation, the free boundary equation is

8Q
(4.2) dHdx (2ra cos 2krx)H + zrRToH2 + /[1 + a sin 2rx],

(4.3) H(0) H(1)= H0,

where H0 is the prescribed initial radius, C the wave velocity, and Q is to be determined
with the solution. Equations (4.2)-(4.3) are solved numerically to get Hx. Back to the
original parameters and variables (indicated by *), the pressure and velocity obtained
from the long wave approximation are given by

(4.4) P0
T(1 + asin2rax*)

(4.5) vx* aR*4 (r2 H2) T2racos2rax*H T(1H2 + asin2rax*)dH/dx C,

(4.6) %o" 0,

where dH/dX is given by

8aQ 8Ca ](4.7) dHdx (2racos2zrax*)H + zrR,TH2 + R*T
/[1 + asin2rax*].
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Step 2. With the H(z) obtained from Step 1, solve the fixed boundary problem on
the domain 0 < z < 1/a, 0 < r < H(z). Using (1.1)-(1.2), z, r/= r/H(z), we can
transform the domain 0 < z < l/a, 0 < r < H(z)to 0 < < l/a, 0 <.r/ < 1. In
computing derivatives, the following formulas are useful:

(4.8)
fr=fnTr,

f f + f,. + f,.. +
f f,,..
f +f f + f.. + f,,(. + .) +

where

rH (x) 1 rHH" 2rH’2

Hz rl H x rl Ha

Using the notation (u, v) for (v, v), the system in terms of (, r/) assumes the form

(4.9)

(4.10)

u(v + v,rl) + vvnrlr -P,7"

+ +2, + v,,( +) +,+ -,
v

(4.11) u: + un + + vn O,
r

((4.12) (u,v)lr -C,-C--
(4.13) u,l,.=o O, vl,.=o O,

(4.14) 1=0 ul=e, 1=0 l==e,

(4.15) Pl=0 pl=e,

1
(4.16) F’r/= 1, 0 < < -,

(4.17) Pit
To(1 / a sin 27ra)
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where u, v, p, and the free boundary H(z) are all periodic in with period i/oz.
We use the regularized central difference scheme and the extended successive over-

relaxation (ESOR) iterative method suggested by Strikwerda [14], [15] to solve this fixed
boundary problem. The method has been used by the author successfully in [20] as it is
relatively easy to program, is of second-order accuracy, and provides good convergence.
The finite difference scheme used here is briefly explained below. Let dl and d2 be the
spans of finite differences for , , respectively. We use the following formulas for the
derivatives to convert the differential equations into finite difference equations.

f(i, j) f(, rlj) f(i. dl, j. d2).
f(i, j) [f(i + 1, j) + f(i 1, j) 2f(i, j)]/d2,
frm(i, j) [f(i, j + 1) + f(i, j 1) 2f(i, j)]/d,
fn(i,j) [f(i + 1,j + 1)-f(i- 1,j + 1)-f(i + 1,j- 1)+f(i- 1,j- 1)]/(4dd2),
f(i,j) 5oY- (1/6)d5_5+f,
fn(i,j) 5.of (1/6)d2Sr-5+f,

where

(5of)(i, j) [f(i + 1, j) f(i 1, j)l/(2dl),
(5+f)(i,j) [f(i + 1,j)- f(i,j)]/d,
(_f)(i,j) [f(i,j)- f(i- 1,j)]/d.,

and the corresponding differences for y can be defined similarly. The third-order terms
in the first difference formulas are necessary to have a regular scheme. The iterative
scheme is given below:

(4.18)

u* (i, j) u(i, j)

-w {u(i, j) [u(i + 1, J)
d
+ u(i 1, j) u(i,j + 1) + u(i,j 1) 2

d (r/Z +

R(p + p,,o.) + I
(4.19)

v* (i, j) v(i, j)

v(i, j + 1) + v(i, j 1) )+

11 + -(r/ + r/,.)+1
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(4.20) p*(i,j) p(i,j) "{r(u + unfix + v + rvvrk},

where u*, v*, and p* are the updated values of the corresponding functions, and w and "r
are iteration constants. We used both finite differences and derivatives in (4.18)-(4.20)
to shorten the formulas. When computing, those derivatives were calculated first and
then (4.18)-(4.20) were performed.

We impose periodic boundary conditions on u, v, and p in -direction. At r/ 0,
cubic interpolation was used for pressure, e.g.,

(4.21) p(i, 0) 3(p(i, 1) p(i, 2)) + p(i, 3).

Cubic interpolation was also used for pressure at 1. Boundary condition (4.12) was
used for (u, v) at 1. At 0, using second-order difference, (4.13) implies

(4.22) u(i, 0) (4u(i, 1) u(i, 2))/3,

(4.23) v(i, O) O.

For computation, our experience indicates that w 0.001--1.5 and - 0.1w give
good convergence. When the Reynolds number R is small, we chose w 1.5, 3’
0.1. For larger R(100 _< R _< 2000), we chose smaller w and "), to make the algorithm
converge.

Remark. The PDE needs two boundary conditions at r/ 0, 1, and those condi-
tions are given by (4.12)-(4.14). The cubic interpolations for the pressure at r/ 0, 1
are numerical boundary conditions and do not make the system overdetermined. For
reference on this regard, see [16, p. 298].

Step 3. We use the long wave approximation as the first guess. After a few local
iterations for the fixed boundary problem, the boundary is updated according to (4.17):

H*() To(1 + asin27rc)

Then the transformation (1.1)-(1.2) is modified using the new H* and r/x, r/, xx are
updated. This is one global iteration.

Step 4. Repeat Steps 2 and 3 as many times as needed. Our experience indicates
that for most cases the number of local iterations is around 20. For some cases, we can
achieve convergence by adjusting the number several times between 10 and 100 at the
beginning stage of the computation.

Remark. "Convergence" is used here in the sense that the corrections to the numer-
ical solutions made at each iteration, or, equivalently, the imbalances of the equations
when the numerical solutions are plugged in will become and remain small after some
iterations. (The imbalances are the Lz norms of the parts inside {...} in (4.18)-(4.20).
The relative imbalances are the above imbalances divided by the L: norms of u, v, and p,
respectively.) The theoretical justification of the numerical method will be done in the
future.

Computations were carried out for various situations and the results are given in 5.. Results of the computations and discussions. Since there are five parameters
(c,R, To, a, Ho) and the solution contains the free boundary H(x), velocity (u, v)
vx, v), pressure p, and flux Q, computations were carried out by changing each of the
parameters, and solutions were observed to study the properties of the flow. We have
made the following observations.
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1. Accuracy ofthe long wave approximation and numerical method. From Table 1 we
can see that the numerical method is roughly of second-order accuracy. The long wave
and numerical solutions agree with each other very well (Tables 2 and 3).

2. Influence ofTo on theflow. (i) Phase shift of the max-min of the free boundary.
From Fig. 2 we see the phase shift of the max-min of the free boundary when To is not
large. However, when To becomes large, the phase shift becomes small, and eventually
becomes zero.

T0=200

ion

T0=300

T0=I000

T0=5000

FIG. 2. Free boundaries with To changing, c 0.1, R 0.1, Ho 0.5, a 0.5, To 200---5000.

(ii) Flow pattern. Our computation also indicates when To becomes larger, the
positive flow portion becomes larger and the tube becomes narrower.

(iii) To -Q curve. Figure 3 shows that the relation between To and flux is not linear,
and especially that the flux increases with To very slowly when To is greater than 2000.

(iv) Table 4 shows the max-min of the solutions with To changing.
3. Backflow andpositive motion. The v-minimum (negative) always appears at the

narrower part of the tube, indicating that the fluid is leaking there. On the other hand,
there are parts of "positive motion" at the wider part of the tube indicating the fluid is
pushed forward by the wave. Usually the positive motion part is of a torus shape (note
that the tube is axisymmetric).

4. Pressurefield. Figure 4 gives the contour lines of the pressure fields. The picture
shows the maximum of pressure appears at the right side of the "neck" and minimum
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TABLE 1
Order ofaccuracy of the numerical method. R 0.2, To 250, a 0.5, Ho 0.5, e 5, d 1,

c 0.2. Numerical parameters: dl elm, d2 d/n, w 1.5, 3’ 0.1, local iteration 20, main
iteration 200.

Imbalance of equations by the numerical solutions
m n Eq. (2.1) Eq. (2.2) Eq. (2.3) Ilull Ilvll
10 6 0.000099 0.000114 0.114018 2.288 0.390 147
20 12 0.000021 0.000023 0.037850 2.023 0.356 131
40 24 0.000009 0.000012 0.023615 1.962 0.341 126
Notes: (1) Imbalance ofan equation by the numerical solution is

defined in the text. (2) Equations (2.1) and (2.2) are equations of
motion; (2.3) is the equation ofcontinuity.

TABLE 2
Comparison between the long wave and numerical solutions. Re 1.0 x o To lO/a, a 0.5,

Ho .5, (7 1.00.

Imbalance of equations
Eq. (2.1) Eq. (2.2) Eq. (2.3)

a=0.2
long .00366 .00000 .62605
exact .00051 .00027 .03053
a =0.1
long .00248 .00000 .44182
exact .00013 .00038 .03014
a 0.05
long .00223 .00000 .31195
exact .00002 .00007 .00888
a 0.025
long .00218 .00000 .22039
exact .00000 .00001 .00362
a 0.0125
long .00217 .00000 .15576
exact .00000 .00000 .00147
a 0.00625
long .00217 .00000 .11011
exact .00000 .00000 .00298
a 0.003125
long .00217 . .07785
exact .00000 .00000 .00543

L2-norms
u v p H

2.110 .000 127.8 1.402
1.978 .342 122.9 1.416

2.976 .000 714.2 1.975
2.925 .254 713.6 1.978

4.203 .000 4014.8 2.787
4.182 .177 4014.9 2.789

5.940 .000 22638.1 3.938
5.932 .124 22638.5 3.938

8.398 .000 127852.7 5.566
8.395 .088 127853.4 5.566

11.874 .000 722654.9 7.870
11.873 .061 722655.9 7.870

16.791 .000 4086283.8 11.128
16.791 .043 4086285.0 11.128

TABLE 3
Relative errors between longwave andnumericalsolutions. Re 1.0 x To lO/a2, a 0.5, no 0.5,

C 100.

L2-norms of relative errors
(u uO)/u (V VO)/P (H HO)/H

.2 .08034 .108214 .011228

.10 .02422 .010197 .002264

.05 .00730 .002346 .000662

.025 .00211 .000595 .000177

.0125 .00051 .000143 .000043
00625 .00013 .000033 .000010
003125 .00003 .000007 .000002

L2-norms of exact solutions
v p H

1.98 .342 122.9 1.4020
2.93 .254 713.6 1.9749
4.18 .177 4014.9 2.7873
5.94 .126 22854.7 3.9498
8.39 .088 127853.4 5.5662

11.87 .061 722655.9 7.8698
16.79 .043 4086285.0 11.1281
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/ longwave
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I000:2000 3000 4000 5000

tlux-=-l.040 flux+=-0.349 T0:200--5.100

alp=O, lOOOR=0.1000 HO=0,5 0.500

T0-Q curve

0
20,00(

flux- -0.27 flux+ =-0.327 TO: 1000--20.000

FIG. 3. Relations between flux Q and otherparameters.

appears at the left side of the neck. So the pressure increases when passing the neck and
decreases when going through the wider part of the tube. This agrees with the velocity
pictures.

5. Influence ofReynolds number on the flow. Table 5 shows that the solution is not
sensitive to the changes of Reynolds number when 0.001 <_ Re _< 1000 whileRe.T0
100 is maintained. Numerically, smaller iterative parameters should be chosen to com-
pute for large R values.

6. Influence of a-change on the flow. Figure 5 gives the velocity fields with respect
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TABLE 4
Max-rain ofsolutions with To changing. 200 _< To _< 1000, 1000 _< To _< 20,000, a 0.1, R 0.1,

a 0.5, Ho 0.5, c 1.0.

To xmax-min Hmin-max Umin-Umax Vmin-Vmax Pmin-Pmax flux
Numerical solutions

200 .400 .925 .493 .788 -1.69 0.65 -.113 0.89 179 469 -1.021
300 .350 .900 .468 .903 -1.87 .220 -.168 .128 278 628 -0.983
400 .325 .875 .437 .935 -1.97 .359 -.191 .145 395 806 -0.875
500 .325 .875 .407 .932 -2.03 .434 -.197 .152 529 1000 -0.774
600 .300 .850 .382 .920 -2.06 .481 -.198 .156 677 1201 -0.694
700 .300 .850 .363 .906 -2.09 .512 -.197 .158 833 1408 -0.633
800 .300 .850 .348 .892 -2.10 .534 -.195 .159 997 1614 -0.587
900 .300 .825 .337 .880 -2.12 .550 -.193 .159 1166 1825 -0.551
1000 .275 .825 .327 .870 -2.14 .564 -.191 .159 1340 2034 -0.522

2000 .275 .800 .283 .815 -2.19 .614 -.177 .159 3212 4094 -0.403
4000 .250 .775 .264 .783 -2.22 .625 -.167 .158 7143 8146 -0.356
6000 .250 .775 .259 .772 -2.21 .629 -.164 .157 11124 12163 -0.343
8000 .250 .775 .257 .767 -2.21 .630 -.162 .157, 15116 16174 -0.337
10000 .250 .750 .256 .763 -2.22 .630 -.161 .157 19110 20180 -0.333
12000 .250 .750 .254 .761 -2.22 .631 -.160 .157 23106 24184 -0.331
14000 .250 .750 .254 .759 -2.22 .631 -.160 .157 27103 28187 -0.330
16000 .250 .750 .253 .758 -2.23 .631 -.159 .157 31101 32189 -0.328
18000 .250 .750 .253 .757 -2.23 .631 -.159 .157 35100 36190 -0.328
20000 .250 .750 .252 .757 -2.23 .631 -.159 .157 39098 40191 -0.327

Long wave solutions
200 .400 .950 .493 .798 -1.72 .041 .000 .000 177 462 -1.040
300 .350 .900 .466 .910 -1.92 .233 .000 .000 276 622 -0.997
400 .325 .875 .431 .934 -2.02 .357 .000 .000 396 803 -0.881
500 .325 .875 .401 .928 -2.08 .425 .000 .000 533 1000 -0.777
600 .300 .850 .377 .915 -2.12 .470 .000 .000 683 1202 -0.698
700 .300 .850 .359 .902 -2.15 .501 .000 .000 840 1409 -0.638
800 .300 .850 .345 .889 -2.16 .523 .000 .000 1004 1616 -0.592
900 .300 .825 .334 .877 -2.18 .540 .000 .000 1174 1826 -0.556
1000 .275 .825 .324 .867 -2.20 .553 .000 .000 1348 2034 -0.527

2000 .275 .800 .283 .814 -2.24 .609 .000 .000 3219 4092 -0.407
4000 .250 .775 .264 .782 -2.26 .628 .000 .000 7150 8141 -0.358
6000 .250 .775 .259 .772 -2.26 .633 .000 .000 11131 12157 -0.344
8000 .250 .750 .257 .766 -2.25 .634 .000 .000 15123 16168 -0.338
10000 .250 .750 .255 .763 -2.26 .635 .000 .000 19116 20174 -0.334
12000 .250 .750 .254 .761 -2.26 .635 .000 .000 23112 24178 -0.332
14000 .25 .750 .254 .759 -2.26 .636 .000 .000 27109 28180 -0.330
16000 .250 .750 .253 .758 -2.27 .636 .000 .000 31107 32183 -0.329
18000 .250 .750 .253 .757 -2.27 .636 .000 .000 35106 36184 -0.328
20000 .250 .750 .252 .757 -2.27 .646 .000 .000 39104 40185 -0.327

to the moving frame for a 0.2 and 0.9. When a is small, there is no positive flow and
no trapping. When a gradually increases, a small positive flow region appears near the
center of the tube. When a becomes larger, the positive flow region becomes larger, a
is the main parameter that has a major influence on flux, i.e., the efficiency of the fluid
transport. The a Q curve is given in Fig. 3 for the a values between 0.1--0.9. The curves
show that (i) when a is too small (a < 0.2), the flux is not sensitive to a change for the
simple reason that the wave is not deep enough to push the fluid forward. (ii) When a is
greater than 0.3, the flux increases almost linearly with a.
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TABLE 5
Max-min ofsolutions with R changin 0.001 _< Re _< 1000. a 0.1, R. To 100, a 0.3, Ho

0.5, C 1.0.

Numerical solutions
R xmax-min Hmin-max Umin-Umax Vmin-Vmax Pmin Pmax Flux
0.001
0.010
0.100
1.000

10.000
100.000

1000.000

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.411 .719

.411 .720

.411 .719

.411 .719

.412 .722

.411 .720

.411 .720

-1.878 .040
-1.872 .052
-1.878 .040
-1.877 .039
-1.890 .050
-1.902 .054
-1.902 .054

-0.105 .090
-0.105 .090
-0.105 .090
-0.105 .090
-0.110 .094
-0.104 .091
-0.104 .091

155694 200000
15557 20000
1556 2000
155 200
15.4 20.0
1.6 2.0
0.2 0.2

-0.765
-0.765
-0.765
-0.765
-0.765
-0.765
-0.765

Long wave solutions
R xmax-min Hmin-max Umin-Umax Vmin-Vmax Pmin Pmax Flux
0.001
0.010
0.100
1.000

10.000
100.000

1000.000

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.30 .825

.410 .718

.410 .718

.410 .718

.410 .718

.410 .718

.410 .718

.410 .718

-1.901 .054
-1.901 .054
-1.901 .054
-1.901 .054
-1.901 .054
-1.901 .054
-1.901 .054

0.000 .000
0.000 .000
0.000 .000
0.000 .000
0.000 .000
0.000 .000
0.000 .000

156402 200000
15640 20000
1564 2000
156 200
15.6 20.0
1.6 2.0
0.2 0.2

-0.765
-0.765
-0.765
-0.765
-0.765
-0.765
-0.765

Notes: Re and To are both changing while Re.To remains constant. Smaller iterative parameters were usedfor
greater R values.

a=0.9

FIG. 4. Pressurefield with a changing, a 0.1, R 0.1, Ho 0.5, To 1000, a 0.2--0.9.

a=0.2

a=0.9

FIG. 5. Velocity field ofnumerical solutions with a changing, a 0.1, R 0.1, Ho 0.5, To 1000,
a 0.2--0.9.
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When drawing the velocity fields, the darker lines indicate forward motion while the
lighter lines indicate backward motion. In the pressure field, circles indicate where the
pressure is maximum and X indicates a minimum.
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A PARALLEL ALGORITHM FOR REDUCING SYMMETRIC BANDED MATRICES
TO TRIDIAGONAL FORM*

BRUNO LANGt

Abstract. An algorithm is presented for reducing symmetric banded matrices to tridiagonal form via
Householder transformations. The algorithm is numerically stable and is well suited to parallel execution
on distributed memory multiple instruction multiple data (MIMD) computers. Numerical experiments on the
iPSC/860 hypcrcube show that the new method yields nearly full speedup if it is run on multiple processors. In
addition, even on a single processor the new method usually will be several times faster than the corresponding
EISPACK and LAPACK routines.

Key words, symmetric banded matrix, orthogonal reduction, eigenvalues, parallel, error analysis
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1. Introduction. Reduction to tridiagonal form is a major step in eigenvalue com-
putations for symmetric matrices. If the matrix is full, then usually Householder’s or
Givens’ algorithms are the methods of choice [9], [16]. However, for banded matrices,
which is the case to be considered in the present paper, these algorithms are not opti-
mal as they do not fully exploit the band structure. Then each reduction step produces
fill-in until eventually the matrix will be full, resulting in O(na) time and O(n2) memory
requirements.
A "chasing" algorithm by Schwarz [15], [14] avoids this problem by removing any

fill-in as soon as it occurs. This algorithm is implemented in the routine BANDR of
the EISPACK library [8]. The algorithm relies on (fast) Givens rotations to selectively
introduce zeroes into the band and to remove intermediate fill-in. The main part of the
computations could be done with the _AXPY operation of the level-1 BLAS (basic linear
algebra subprograms) [5], [6], [13]. However, as the EISPACK library dates back farther
than the evolution of the BLAS, the routine BANDR contains no call to the latter.

Another version of the same underlying method is due to Kaufman [10]; by rearrang-
ing the computations she was able to increase the vector lengths, if the bandwidth d is very
small compared to the matrix dimension n. This algorithm is incorporated into the rou-
tines _SBTRD of the recent LAPACK library 1]. Again, rotations are used to transform
the matrix, but now in the form of ordinary Givens’ rotations. This leads to an increased
overall floating point operation (flop) count of 6n2d versus 4n2d flops of the BANDR
version. Another drawback of this method lies in the fact that the bulk of computation
is coded in explicit loops since there are no appropriate BLAS routines to cover them.

Both algorithms make full use of the symmetry in the given matrix and require only
the lower (or upper) half of the band to be stored. Thus, (d + 1)n memory locations are
needed.

In this paper we introduce a new reduction algorithm SBTH (symmetric banded ma-
trix, reduction to tridiagonal form via Householder transformations) which is basedas
the name indicates---on Householder transformations. The flop count for this algorithm
is roughly the same as for the _SBTRD routines from LAPACK and therefore about 50%
higher than that of the EISPACK routine.

Received by the editors June 15, 1992; accepted for publication (in revised form) November 12, 1992.
The numerical experiments were carried out on the 8 node and 128 node iPSC/860 hypercubes of the Ad-
vanced Computing Research Facility at Argonne National Laboratory and ofOak Ridge National Laboratory,
respectively.

Fachbereich 7mMathematik, Bergische Universitit GH Wuppertal, Gauss-Str. 20, W-5600 Wuppertal 1,
Germany.
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The new method has some distinct advantages over the above-mentioned imple-
mentations. First, almost all the computations can be done within the level-2 BLAS;
thus, SBTH benefits from a considerably higher data locality than the other algorithms,
a significant bonus on machines with low bandwidth from the main memory to the (vec-
tor) arithmetical unit(s). In fact, if all three algorithms are run on one processor of the
iPSC/860 hypercube parallel computer, the new method may perform several times bet-
ter than the other algorithms. In addition, the new algorithm is well suited to parallel
execution. Theoretical considerations as well as numerical experiments show that exe-
cution of this algorithm on multiple processors will yield nearly full speedup, provided
that the matrix is "reasonably large." The only major drawback of the new algorithm is
its higher storage requirements (2dn memory locations).

The remainder of the paper is organized as follows. Section 2 introduces a block
decomposition of the band matrix and a serial version of our new reduction algorithm
SBTH, which is based on this decomposition. In 3 we show how to efficiently paral-
lelize this algorithm by mapping the blocks to different processors. An additional level
of parallelism can be obtained by also performing the transformation of each block in
parallel, as explained in 4. The reader may be warned that, in order to achieve optimal
performance, the algorithms will become increasingly tricky. But the additional com-
plexity is paying well, as will be demonstrated by performance data from experiments on
the iPSC/860 hypercube (5). Finally, 6 concludes with the summary of a detailed error
analysis and with comments on another variant of the reduction scheme.

2. The reduction process. Throughout the paper, A (a) always denotes a sym-
metric banded matrix of dimension n and (semi)bandwidth d, i.e., aij 0 for li Jl > d.

The reduction process consists of applying n 2 orthogonal transformations

(1) A(’+) Q(v)T. A(’). Q(’), v 1,..., n- 2,

to the matrix A(1) :- A. The vth of these steps eliminates the vth column (and row)
of the band, i.e., the elements a,+,,,..., a+a,,., are made zero. Since all the A() are
symmetric, only their lower triangle will be stored and used during the reduction.

Suppose that for the vth step we are able to partition A() as follows.

0

At,.’) z (v)
21 22

0

a() (v)
’b,b-1 "-bb
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The first v 1 columns (and rows) of the band have already been removed; thus, the
leading v x v submatrixT of A() is tridiagonal. Let n v (b 1). d + r, 1 < r < d.
Then the blocks a() ]Raxa b) and A x. (1 < / < along the diagonal are

symmetric. At the beginning of the algorithm (v 1), the subdiagonal blocks A()
,-t- 1,/ E

]1dxd (1 < < b- 1) are upper triangular, and a(u) ]1rxd
"b,b- is upper trapezoidal.

For u > 1, however, these subdiagonal blocks will be full. A denotes the first of the
remaining columns of the band (except for its first element, which is contained in T,).

The corresponding partition of Q(") is

with a u x u identity matrix Iv and "suitable" orthogonal blocks Q(’) E Raxa (1 </3 < b)
and Q) E Rrx.
enthe transformed matrk .= Q()T.A().Q() has a block structure compatible

with that of A(). For its blocks we obtain the relations

o =Q)T’A),
()T a() () b),A 1 <
(u)T A(u) (u) (1 < fl < b).Z+,Z +1 ’+,"Remember that, by (1), we also should have A(+1). e block decomposition

of the matr A(+1), however, is shifted one column to the right and one row to the
bottom as coopared to the decomposition of A() and . is implies that some of the
elements of A will no longer be included in the blocks of A(u+l). To be more specific,
the elements at positions (2, 1),..., (d, 1) in the first column of each subdiagonal block
() (0 < < b) will be lost when the block decomposition is shifted. erefore, we#+,
must make sure that they are already zero; this can be enforced by a suitable choice of
the transformation matrices () (see below).+1
is leads to the following serial reduction algorithm (for ease of reading, the super-

scripts () have been dropped):
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ALGORITHM 2.1. Serial reduction algorithm, based on Householder transformations.
fort, 1ton- 2

(adopt the block decomposition for step
determine b and r such that n (b 1). d + r with 1 <_ r <_ d
determine an orthogonal matrix Q such thato := Q" A10 has the

form (,, 0,..., 0)T; replace Ao by to
for/3 1 to b

replace A// by/ Q A/O Qa
if/3 < b

determine an orthogonal matrix Q/+ such that the first column
of/+,O "= Q+I~" (A/+,/ Q/) has theform (,, 0,..., 0)T;
replace

As indicated earlier, the blocks Qa may be chosen as Householder matrices of size
d x d or--in the case of Qb--r r. Q1 eliminates all but the first elements of A0, which
is the first of the remaining columns in the band. To determine Q+ (/3 > 0), one
computes the first column of the matrix At+, Q and then choses Qa+ to eliminate
all but the first elements of this column d-vector.

3. Parallelism between different blocks. The serial algorithm bears a twofold po-
tential for exploiting parallelism. First, different blocks may be transformed simultane-
ously. In this section we will use a modified pipelined approach to make use of this
medium-grained parallelism between different blocks. An additional level of parallelism
can be obtained by further distributing the work for the transformation of single blocks
to multiple processors. This--slightly finer-grained--parallelism within the blocks will be
treated in 4.

In the sequel, we will always treat the blocks by pairs; to make this explicit we intro-
duce the notation of a blockpair:

B:=( A )(13>0).A+,
To keep the parallel algorithms concise we need some more abbreviations.

"eliminate Bo --, Q"

stands for the fourth and fifth line of Algorithm 2.1 ("determine Ao"),
"Q - transform B --, Q+"

comprises lines 7 through 10 of the algorithm. These abbreviations emphasize another
important point: the new transformation matrix Q+ is determined during the trans-
formation ofB (more precisely, of A+,).

There are three major steps in changing the serial algorithm into an efficient parallel
program that makes best use of the parallelism between different blocks. First, we will
make it a distributed algorithm. This means that the work is distributed among the pro-
cessors, but that at any given time only one processor is active. Then, a "local view" ofthe
block decomposition introduced in 2 will be the key for introducing parallelism. Last,
we will optimize the data layout and the algorithmic flow to improve the performance.

We begin by distributing the block pairs to different clusters C
0, 1,..., such that block pair B is assigned to cluster Co (cf. the first picture of Fig. 1).

Here, a cluster consists of p _> 1 processors. At the moment, it is sufficient to think
of the clusters as of single processors (i.e., p 1) as the value ofp has no direct bearing



1324 BRUNO LANG

on the algorithms in this section. (The use of multiple processors per cluster will be
explained in 4, when we discuss the implementation of the block transformations in
some detail.) We assume that the clusters are linearly connected to form a chain.

To match the data distribution, the work of Algorithm 2.1 must also be distributed
among the clusters. In each pass through the u loop, cluster C0 begins by eliminating
the first of the remaining columns of the band. Then (70 sends the transformation matrix
Q) to C which transforms its block pair B and thereby generates a new transforma-
tion matrix Q). NowC passes this matrix to its successor C2 which in turn transforms
its block pair B2 and determines Q(a). Continuing in this way, the activity moves along
the chain of clusters until all the block pairs are processed. At this moment, the block
decomposition must be shifted for the next pass through the v loop. This implies that--
except for C0--each cluster Ca must send the first column of its transformed block pair
to its predecessor Ca_.
A simple modification of this scheme allows some of the clusters to operate simul-

taneously. The key observation is that the first column of the transformed Bx is not
affected by the ensuing operations in any block pair B,/3 > 1. Therefore, Cx can send
this column back to Co as soon as the transformation of B is completed; there is no
need to wait until all the computations corresponding to Q() are done. This enables Co
to locally shift its block pair B0 and to eliminate the (v + 1)st column of the band, while

C2 is still transforming its block pair according to Q(2). The same argument also applies
to the other clusters C. As soon as they receive a column from their successor C+x
they locally shift their own block pair and apply the next transformation to it.

Figure 1 gives a sketch of the "start up" of the resulting parallel Algorithm 3.1. To
let the complete tridiagonal matrix T assemble in Co the v loop ends with n 1 instead
of n 2, as it did in Algorithm 2.1. The additional last pass requires no computation.
Of course, we do not send the Householder matrices as such, but only the associated
Householder vectors.

ALGORITHM 3.1. Parallel reduction algorithm, raw version (two differentprogramsfor
cluster 0 andfor the remaining clusters, respectively).

Co for= 1ton- 1
eliminate Bo -, Q
send (Q) to C
receive (Bo) from C

C (/ _> 1) for 1 ton- 1
ifB is not empty

receive (Q) from C/_
Q --. transform B --, Q+
send (first column ofBa) to C_
shift B to the right/bottom by one column
ifB+ is not empty

send (Q+) to C/+
receive (last column ofB) from C+
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Co C1 C2 C3 C4 .r

"li /,.1 (1)
1.* lil
I*** 1111

I1 1 1 11.

11111 I-(i) 11111

"1Step 0 Step 1

2

2 (2). 2 2 2
N: :11 /-)(1)

222
12,2 2 21

1. ,11 . 12 2 2 21o
[o oil I[ [2 2 2 2[o *[ (41)

II II, ::. I:," I, ,11111111Step 2 ": Step 3 1

".’x, r

133331"
13 3 3 31.
13 3 3 31" "1

12 2 2 21
[2222], 22

Step 4 12 2 2 21: tep 5 12 2 2
1222

FIG. 1. Computational activity and communication during the "start up" ofAlgorithm 3.1. The lines indicate
the block boundaries; the first picture also includes the distribution of the block pairs to the clusters. The matrix
elements depicted by digits are modified in the corresponding time step; the digit v in B/ indicates that this block
pair is transformed according to Q!), i.e., that the transformation is a consequence ofthe elimination ofthe vth
column ofthe band. The elements are not touched. F standsfor the transport ofthe first column ofa blockpair,
Q() for the newly determined transformation matrix. Communication always takesplace at the end ofthe time/+1
step, after the computations.
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As the transformations according to Q(1) progress along the band, more and more
clusters become active (cf. Fig. 1), until the end of the band is reached. Later on, as the
remaining band becomes shorter, an increasing number of clusters fall back to inactivity
because their block pairs are "empty." It is not hard to see [12] that on the average, ofthe
c* [(n 1)/d] + 1 clusters that shared the band at the start of the algorithm, only one
halfwill hold a nonempty block pair. Therefore, one-half of the available computational
power is lost by load imbalance.

In addition, only one-half of the clusters with nonempty block pairs can work at any
given time, as may be observed from Fig. 1. The other clusters are idle because they are
waiting for transformation matrices from their left neighbors and for columns from their
right neighbors. Thus, the attainable speedup is reduced by another factor of 2.

Fortunately, there is a simpleway to circumvent much ofthis loss in efficiency ifwe are
willing to use less than the c* clusters thatwere assumed for Algorithm 3.1. By halving the
number ofclusterswe can completely eliminate the "idle waiting" time mentioned above,
and further reduction of the number of clusters (to n/(10d), say) almost eliminates the
load imbalance resulting from empty block pairs. (In 4 we will show that this does not
preclude utilizing a much larger number of processors.)

The "idle waiting" time is a result ofthe fact that adjacent block pairs cannot be trans-
formed at the same time. Therefore, we now do not distribute the band to the clusters
by block pairs but by logical blocks L ( > 0), where a logical block consists of > 2
consecutive block pairs. is called the blocking factor. (Lo is an exception; it contains
only the first column of the band, that is,/30.) In addition, we use a cyclic (wrapped)
mapping: if c clusters C’1,..., C’ are available, then C’. obtains the logical blocks L
with , modc. This requires the clusters to be connected as a ring. Note that now
C’ holds the first column/30 of the band and therefore takes on the work of cluster Co
from Algorithm 3.1.

Now, in each pass through the , loop of the algorithm, a cluster generally will have
to process more than one logical block, and for each logical block there are consec-
utive block pairs to transform. To this end we subdivide the body of the , loop into
phases 1,..., 1. Before the first phase starts, the cluster receives b transformation
matrices from its left neighbor. (b varies with the progress of the algorithm. It starts
with b 0 as long as the activity has not yet reached the cluster, then slowly increases
to the number of logical blocks that are stored in the cluster, and finally decreases with
the number of nonempty logical blocks.) During the first phase the cluster transforms
the first block pair of (the first b of) its logical blocks and determines the new trans-
formation matrices. Between the first and the second phase, the first columns of the
transformed block pairs are sent back to the left neighbor where they are stored as the
last columns of the corresponding/th block pairs. In the phases 2,..., the cluster
transforms the th block pair in each logical block, using the most recently determined
transformation matrices and producing new ones. Only after the/th phase, further
communication is needed, as the transformation matrices must be passed to the right
neighbor.
A more formal description of the above is given in Algorithm 3.2. To save space, the

selection "il’me C ..." is condensed to "[... ]"; thus, statements in square brackets
are executed only by cluster C’. To keep the indices readable, we have used a "local"
numbering of the block pairs: B(::) is the th block pair in the/th logical block of
cluster C’. (that is, the block pair (fl- 1)lc+(- 1)1+q of the band). The transformation
matrices are indexed correspondingly.

Figure 2 sketches the "start up" of this algorithm.
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ALGORITHM 3.2. Parallel reduction algothm, optimized version (oneprogram for all
clusters C., 1,..., c).

b := 0 (, number of "active" (transformable) blockpairs ,)
[eliminate Bo Q
for, 2ton

send ([Q, Q(::+) 1 _</ _< b) to C+
receive (Q(:z:I) 1 _</ _< b) from C7_

(, phase I ,)
for/ i to b

Q(::) - transform B(.:/:I) -- Q(-:/:2)
shift B(::) by one column/row

send (first column ofB(:/:) 1 <_ _< b) to C_
receive ([Bo, last column ofB(.::t) 1 <_ <_ b’) from C+1

(* remainingphases ,)
for 2 to

if b > 0 and B(.:b:) is empty
b := b 1 (, my last logical block is notfull ,)

for/ 1 to b
Q(::) - transform B(::) Q(::+)
shift B(:/:) by one column

[eliminate Bo - Q1
(, for the nextpass through the loop: ,)

if b > 0 and B(-+I:b:) is empty
b := b 1 (, the last blockpair ofC. has no successor in C.+ ,)

In Algorithm 3.2 the integers b and b’ are set by the receive operation. Thus, the algo-
rithm is "self-regulating" in the sense that the number of logical blocks to transform and
the number of block pairs to complete by a new column are automatically determined
from the number of items received.

The communication pattern created by this algorithm is very regular, as indicated in
Fig. 2. For each pass through the , loop there is a cyclic shift to the left after phase 1
(columns) and a cyclic shift to the right after phase (transformation matrices).

As compared to Algorithm 3.1, the overall volume of communication is reduced by a
factor of because only one out of every transformation matrices and columns must be
passed between different clusters. This might suggest that large values of are desirable.

On the other hand, the loss of speedup, which results from the band getting shorter, is
also reduced from a factor of 2 to approximately 1 + l/w, where w is the initial wrap (the
number of logical blocks assigned to each cluster at the beginning of the algorithm) [12,
Lemma 5.2]. Because of w , n/(cld) this implies that while a large value of decreases
communication volume, it also reduces the wrap and so increases the load imbalance
between the clusters. In all our experiments 2 turned out to be optimal.

As mentioned above, the loss of efficiency due to the shrinking band is reduced from a
factor of 2 to about 1 + 1/w. This is a benefit of multiply wrapping the logical blocks onto
the cluster ring. In addition, the grouping ofthe block pairs into logical blocks completely
removes the idle waiting time and therefore prevents losing the second factor of 2 in
efficiency. Thus, if we run the algorithm on c clusters and neglect the communication
costs, we may expect a speedup of nearly c/(1+ 1/w) over the one-cluster version. Taking
a few percent (5, say) off this estimate to account for the overhead of parallel execution
gives a very good prediction for the speedup attainable in practice (see 5).
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FIG. 2. Distribution of the block pairs (for c 2 clusters and blocking factor 3) and "start up" of
Algorithm 3.2. The shaded block pairs are modified in the respective phase, the others remain unchanged. The
Q’s indicate communication oftransformation matrices, F and 2F standfor the transport ofone and two columns,
respectively, and 0 denotes empty communication. The communication is cyclic (indicated by the duplicated arrows
and labels in front ofthe blockpairs ofcluster C1 and behind those of C2, respectively) and always takes place at
the end ofthephase, after the computations.

4. Parallelism within each block. In this section we will focus on the implementa-
tion of the block operation "Qf - transform B ---, Q+I."

LetQ 1-vvT andQ+ I-Twith Ilvll I111 /, Then the computations
for the transformation of the two blocks may be arranged as follows:

QAQ Af vwT wvT
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with

l(vTx).v, where x:=Am.v,

cf. [7]. Analogously, we have
TQm+lAm+,mQm Am+,m vT T

with

& .= Am+,m v and 5 .= 5 (Ts:) .v, where T oT Amd_l,m.
If the cluster consists of just one processor, then the following serial algorithm may

be used to transform Bm. (Am+,m(1 d, 1) denotes the first column of that block.)
ALGORITHM 4.1. "I- vvT Qm transform Bm Qm+ I- 9gT,,, serial

algorithm.

x := Atom. v
5: :- Am+,m. v

(, new Householder vector ,)
h Am+,m(1 d, 1) v. 5c (,first column ofAm+,mQm ,)
determine a Householdervector , I111 v, such that (I T) h (,, 0,..., O)T

(, auxiliary vectors ,)
T :_. ,T. AmTl,m
w :-- x- 1/2(vTx).v, :-- ,- (T).V

(, rank-2 modifications ,)
Atom := Atom vwT wvT

Am+l,m :-- Am+l,m "vT (IJT

Note that the bulk of work can be done with level-2 BLAS. The computation of x,, and 5T requires a symmetric matrix vector product (remember that Atom is symmetric
with only the lower triangle stored) and two general matrix vector products. The update
of Atom is a symmetric rank-2 modification, whereas the update of Am+,m may be real-
ized by two subsequent general rank-1 modifications. These six calls to level-2 BLAS
routines account for approximately 12d2 flops. The remaining O(d) flops are covered by
the level-1 BLAS.

If the number of available processors is not too high, then the "only parallelism be-
tween different blocks" version of our parallel algorithm performs best. The need for
also exploiting parallelism within the transformation of single block pairs arises if the
number of processors exceeds c’ n/(ld). Since the band contains only c’ logical blocks,
adding more than c’ clusters cannot further increase the speedup. Therefore, the only
way to make use of a higher number of processors is to group multiple processors into
a cluster and to distribute the work for one transformation among the processors of the
cluster.

In the following discussion we assume that each cluster consists ofp _> 1 processors
P, r 1,...,p, and that 2p _< d. Then we subdivide the block pair into 2p block
columns of [d/(2p)J or [d/(2p)] consecutive columns each. Two block columns +r are
assigned to processor P, as indicated in Fig. 3. Thus, the first p of the block columns are
distributed to the processors in reverse order, the other p block columns are distributed
in their natural order. The boundary between Atom and Am+l,m further subdivides each
block column a into two subblocks $1 and $2,; see Fig. 3.
A formal description ofhow the processors work together to transform the block pair

is given in Algorithm 4.2. To simplify the notation, we partition the vectors v, x, w, , and
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(P)

(P=)

2,--3 2,--2 2,--1 21 22 23

FIG. 3. Distribution ofthe blockpair to the processors ofthe cluster (secondpicture) and numbering ofthe
subblocks for (semi)bandwidth d 24 and p 3 processors. The strict upper triangle of the block A#/ is not
explicitly stored; its entries are only indirectly accessible by transposing the lower triangle.

5 to match the decomposition of Bm into block columns, e.g., vr (v(-p)r v(_l) 7"

’’’
V(1)T v(P)T

The computation of the matrix vector products x Atom v and Am+,m v is
based on a decomposition of the sums involved. For example, we have

First, each processorP forms its "local contribution" S2,--v(-) +S2.v() to the sum,
and then these contributions are added across the processors to form the entire product

in processor Pp. This final summation may be done with a fan-in-type operation. The
computation of z is similar, with a slight complication. Here one must account for the
upper triangle of Atom; these elements are accessible by transposing the subblocks of
the lower triangle [11]. When z and : are collected in Pp, this processormwhich also
holds the first column of Am+l,m--determines the new Householder vector . As all the
processors need the vectors z, , and to proceed, these are broadcast from Pp.

It turns out that each processor needs to know only parts of the auxiliary vectors z
and 5. In particular, the "local parts" 5(+)7" of the matrix product 57" T. Am+l,m
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can be computed without any communication. The same is true for the ensuing rank-2
updates of the subblocks held in each processor.

Finally, to prepare for the next transformation, the block pairtogether with its de-
composition into subblocksmis shifted by one row and one column. This requires the
processors P, 7r 1,..., p 1, to send one column to their successors and the proces-
sors P, 7r 2,..., p, to send one column to their predecessors.

ALGORITHM 4.2. "I vvT Qo transform B Q+ I ))T,,, parallel
algorithm (oneprogram for allprocessors Pr, 7r 1,..., p, ofthe cluster).

(, compute x and 5c ,)

:=
$1,_ v(-’) + v() (, stored elements ,)

]
x(+) := x() + SI, v (, by transposition ,)

fan-in( )atPp

(, new Householder vector ,)
if me Pp

h := A+,(1 d, 1) v. (,first column ofA+,Q ,)
deteine a Householder vector , I1 11 such that

h (,, 0,..., O)
broadcast (x, , ) from Pp to P (1 r p 1)

(, locally neededpaas ofthe ailia vectors ,)
5()T := T$2,.

Tz).v
(.) := 5() (T). v(.)

(, rank-2 modificaaons ,)
S, S, vw()T wv()T

Se, S, v()T ()T

(, shi the subblockpaaitioning ,)
shi the block columns - and by one column
ifp

send rst column ofblock column -) to P+
ifr 1

receive (last column ofblock column ) from P_
ifr 1

send rst column ofblock column ) to P_
ifr Cp

receive (last column ofblock column ) from P+
An efficient implementation will not simply substitute this algorithm for the corre-

sponding lines in Algorithm 3.2. To improve performance, it is better to break up the
/ loops of Algorithm 3.2 and to move them into Algorithm 4.2. More precisely, each
processor first computes its contribution to the matrix vector products x and for all of
its b "active" block pairs; then these vectors are summed up in a single fan-in operation.
Analogously, the vectors x, , and for all the active block pairs (and later the columns)
are sent together. By packing the communication in this way, we significantly reduce the
startup cost but not the amount of data to send.
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The "reflected distribution" of the block columns to the processors balances the work
load within the cluster fairly well. A detailed analysis [12, Lemma 5.6] reveals that, of
the approximately ld flops that are necessary to transform a block pair, each processor
has a share of l/p.d. (1 +O(d/p)). Thus, we might hope for nearly full speedup for the
transformation of the block pair on a cluster of size p, as compared to a single-processor
cluster.

In practice, three factors reduce the attainable speedup. First, the relative cost of
communication is higher than for theparallelism between different blocks: each pro-
cessor communicates O(d) elements for every O(dZ/p) flops, whereas neglecting the
parallelism within the block pairs allows O(ld) flops for every O(d) elements to com-
municate. Also, the communication pattern is slightly more complicated. Second, even
though the constant in the above O-term is rather small (about 2), the number dip of
columns per processor must be quite large to make the load imbalance negligible. Third,
and often most important, the level-2 BLAS may be very sensitive to the size and shape
of the (sub)matrices with which they are called. If we exploit the parallelism within the
block pair, then the bulk of computation can still be handled by calls to the BLAS 2. But
now each processor needs to call them more often (16 times in our implementation), and
these calls operate on (sub)matrices that are much smaller than the d d blocks used
in Algorithm 4.1. Thus, the BLAS performance maybut need notbe significantly
lower.

Note that the data distribution used in Algorithm 4.1 differs significantly from the
cyclic distributions that were proposed for the Householder reduction of dense symmet-
ric matrices (e.g., [2]-[4]). In the dense case each transformation affects one row and one
column less than the previous transformation. Therefore, optimizing the overall load
balance requires consideration of not only the layout of the original matrix but also of
all the intermediate transformed matrices. Cyclic distribution of rows or columns seems
to be appropriate for small numbers of processors, while torus-wrapped distribution is
better for large numbers of processors. If the use of level-3 BLAS is essential, then a
cyclic distribution of blocks or block columns (block rows) should be used. In contrast
to the dense case, our (sub)algorithm repeatedly transforms a block pair ofconstant size.
Thus, we can optimize the overall load balance by considering only one single transfor-
mation. Apart from the different data layout our (sub)algorithm is similar to those cited
above.

5. Numerical experiments on the iPSC/860 hypercube. The numerical experiments
were performed on the 8 node and 128 node iPSC/860 hypercube parallel computers at
Argonne National Laboratory and at Oak Ridge National Laboratory, respectively.

For all three algorithms the reduction time is nearly independent of the matrix en-
tries. The timings reported in the sequel were made with banded Toeplitz matrices con-
taining 6 on the 6th subdiagonal, 6 1,..., d, and 0 on the principal diagonal, and with
band matrices containing i in the ith column.

All programs are written in Fortran77, the calls to the BLAS were directed to the
optimized assembly-coded BLAS of Kuck and Associates. All computations were done
in double precision and do not include accumulation of the transformation matrix.

The EISPACK routine BANDR is available via Netlib. As the LAPACK library was
not yet public at the time of the experiments, we had to use the final test version of
the library; thus, the DSBTRD (double precision version of _SBTRD) results are only
preliminary.

The flop counts are exact for the SBTH algorithm with Householder transformations.
We use the same flop count for the algorithms BANDR and DSBTRD although they
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actually have different operation counts: BANDR needs about 4n2d flops, DSBTRD
and SBTH require roughly 6nZd flops. Thus, the Mfiops performance of the EISPACK
routine is overestimated by about 50%.

By adopting this "biased" flop count we are able to compare the execution time of
the library algorithms BANDR and DSBTRD with the new algorithm SBTH (run on
one processor), as well as with each other. For example, if the indicated Mflops rate
of BANDR is twice that of SBTH, then SBTH needs twice as long to complete. This
information seems to be more relevant for practical use than mere Mflops throughput.

From the Mflops/processor figures for parallel execution of the algorithm SBTH, it is
easy to obtain two other figures often reported in the literature: the overall performance
Oust multiply by the number of processors in use) and the speedup (divide the overall
parallel performance by the performance on one processor).

Figures 4-8 summarize measurements for the parallel algorithm when only the par-
allelism between different blocks is exploited. As pointed out in 4, this allows for a
simpler and more efficient calling sequence to the BLAS.

Figure 4 comprises the results for matrices of (semi)bandwidth d 5 and varying
matrix dimension n. The curves indicate that the EISPACK routine is about two times
faster than the LAPACK counterpart and three times faster than our algorithm, run on
a single processor. But, if the latter is run on multiple processors, and if each processor
holds a "sufficient" number ofcolumns (about 100), we obtain nearly full speedup. Thus,
the parallel algorithm will be superior if it is run on four or more processors.

Mflops/processor

5.0

2.5

L- L L L L *. L L L L L

n
50 100 200 400 800 1600 3 200 6 400 12 800 25 600

FIG. 4. Performance of the reduction algorithms for (semi)bandwidth d 5. The "E" and "E’ curves
correspond to the algorithms ofthe EISPACKand LAPACK library, respectively, which are run on oneprocessor.
The curves "1", "2", "4," and "8" (from top to bottom) correspond to the parallel algorithm run on the respective
number ofprocessors (parallelism between different blockpairs only).

For d 10 the situation has slightly changed. Now, the parallel algorithm has caught
up with the LAPACK routine even if it is run on a single processor. Both perform at
about 2-2.5 Mflops while the EISPACK routine still leads with some 3 Mflops.

It is noteworthy that the absolute time for reducing a matrix with semibandwidth 10
with the new algorithm is less than for a matrix of the same order with semibandwidth 5,
although nearly twice as many operations are needed.

This is due to the varying performance of the underlying BLAS. For very small blocks
(d 5), the overhead for calling a subroutine more than outweighs the gain from as-
sembly coding within the BLAS, and, therefore, a Fortran program with all arithmetic
coded in loops would be about twice as fast as the BLAS-based code we used for our tim-
ings. With increasing semibandwidth, however, there are fewer calls to the BLAS, and
the blocks are bigger. Thus, for d 10 our program is competitive with its loop-based
counterpart.
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For d 20--and all values of n--the situation has turned completely in favor of the
new algorithm (see Fig. 5). It now achieves about 5 Mflops on one processor while the
EISPACK and LAPACK routines are well below.

Mflops/processor

7.5

50 100 200 400 800 1600 3 200 6 400 12 800 25 0
n

FIG. 5. Performance ofthe reduction algorithms for (semi)bandwidth d 20. For SBTH, onlyparallelism
between different blockpairs is exploited.

Again, the absolute time for reducing a matrix of semibandwidth 20 with SBTH is
less than for a matrix of the same order and d 10. This still is an effect of increasing
BLAS performance: doubling the blocksize from 5 to 10 more than doubles the Mflops
performance of the BLAS, and it does again for d lO/d 20.

With increasing semibandwidth, the performance of the new algorithm further in-
creases (Figs. 6 and 7) and reaches nearly 15 Mflops on one processor for d 113, which
is about four times the highest performance we were able to obtain from the EISPACK
and LAPACK routines.

Mflops/processor

10.0

7.5

5.0

2.5

50 100 200 400 800 1 600 3 200 6 400 12 800 25 600

FIG. 6. Performance of the reduction algorithms for (semi)bandwidth d 40. The curves "S" and "T"
correspond to theparallel algorithm run on 16 and 32processors, respectively. For SBTH, onlyparallelism between
different blockpairs is exploited.
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Mflops/processor
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IO5 I00 200 400 800 1600 3 200 6 400 12 800 25 600
n

FIG. 7. Performance ofthe reduction algorithmsfor (semi)bandwidth d 113. For SBTH, onlyparallelism
between different blockpairs is exploited.

In order to provide at least some representative "raw" Mflops and speedup figures
we summarize some of the data of Fig. 6 in Table 1. For matrix sizes n > 3 200 the serial
time had to be estimated; this is indicated by a "".

TABLE
Performance of the routines BANDRfrom EISPACK and DSBTRD from LAPACK and comparison with

theparallel algorithm SBTD, run on 1, 8, and 32processors. For SBTH, onlyparallelism between different block
pairs is exploited. The (semi)bandwidth is d 40.

EISPACK Mflops
LAPACK Mflops
SBTD
1 proc

SBTD
8 proc

SBTD
32 proc

Mflops
speedup vs EISPACK
speedup vs LAPACK

Mflops
speedup vs EISPACK
speedup vs LAPACK
speedup vs SBTD(1)

Mflops
speedup vs EISPACK
speedup vs LAPACK
speedup vs SBTD(1)

200
3.7
2.4
8.2
2.2
3.5
6.0
1.6
2.5
0.7

400
3.7
2.8
8.9
2.4
3.1

12.3
3.3
4.3
1.4

8OO
3.6
3.1
9.2
2.5
3.0

29.9
8.2
9.7
3.2

1600
3.5
2.9
9.4
2.7
3.2

42.1
12.2
14.3
4.5

49.9
14.4
17.2
5.3

200 6 400 12 800 200
3.5

9.4
2.7

3.3
54.6

16
19
5.8

115
33
39
12.1

2.9
9.5

62.0
18
21
6.5
164
47

54
17

215 243
61 69

74 84
23 26

To demonstrate that the parallel algorithm scales well if the problem size is increased
with the number of processors, we draw the data for d 80 in a slightly different
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way: now we plot the performance against the wrap w (i.e., the number of logical blocks
perprocessor) instead of the matrix dimension n. Figure 8 then indicates that the perfor-
mance per processor is almost independent of the number of processors as long as we
keep the wrap constant. In fact, the curves for 4, 8, 16, and 32 processors nearly coincide.
The curves also confirm very well the speedup prediction which was given at the end of
3. If the band is not long enough to reach all the processors (w < 1), then the speedup is
proportional to the wrap (which, in this case, is just the percentage of processors holding
a portion of the band). As soon as all the processors are contributing to the reduction
process (w > 1), the speedup is approximately p/(1 + l/w).

Mflops/processor

15.0

12.5

10.0

7.5

5.0

2.5’

0.3125 0.625 1.25 5 10 wrap

FIG. 8. Performance ofthe algorithm SBTHfor (semi)bandwidth d 80 as afunction ofthe wrap (number
oflogical blocksperprocessor). The "X" indicates a single run on 64processors. Onlyparallelism between different
blockpairs is exploited.

Finally, we investigate the performance of the algorithm if the parallelism within the
blocks is also exploited. For the runs collected in Fig. 9 we keep the number of proces-
sors constant at eight and vary their grouping into clusters, from eight single-processor
clusters to a single cluster consisting of eight processors. As expected, the "one proces-
sor per cluster" version performs best if the number of logical blocks in the band is large
enough. As mentioned earlier, the level-2 BLAS on the iPSC/860 put a severe penalty on
using small (sub)matrices in their calls. This explains the massive drop in performance
for larger matrices if we increase the number of processors in each cluster from p 1
to p 2, the Mflops per processor are nearly halved! Remember that in Algorithm 4.1
the BLAS are called with (square) blocks of size d, whereas the width of the subblocks
in Algorithm 4.2 is only d/(2p) and their height ranges from d/(2p) to d. Even so, if
the number of logical blocks is smaller than the number of processors, then it may pay
to reduce the number of clusters (and thereby to increase the wrap) by using clusters
with more than one processor. In fact, for n 500,..., 800 the configuration into four
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clusters with two processors each is optimal. This superiority of the case p > i would
be more pronounced if the BLAS performance were better balanced with respect to the
matrix size.

12.5

Mflops/processor

10.0

50 100 200 400 800 1600 3 200 6 400 12 800 25 600

FIG. 9. Performance ofthe algodthm STBH ifalso theparallelism within the blocks is exploited. The overall
number ofprocessors is eightfor all the curves. The digits indicate the number ofclusters in use. For example, the
"4" curve corresponds tofour clusters oftwoprocessors each.

6. Concluding remarks. A detailed error analysis [12, Thm. 4.3] shows that if the
computations are carried out in finite precision arithmetic with a relative error < 9 in
each operation, then the computed tridiagonal matrix T is exactly orthogonally similar
to a symmetric (but generally not banded) matrix A with

IA AIIF O(nd). 9. IAIIF.
Here, I1" IF denotes the Frobenius norm of a matrix. By the Wielandt-Hoffman theo-
rem [16, p. 104], this implies that the eigenvalues Ai of the computed tridiagonal matrix
cannot differ too much from the eigenvalues A of the original band matrix A:

(i- Ai)2 <_ O(nd). zg. IIAIIF.
i=1

Therefore, the parallel reduction algorithm is numerically stable. The error bounds for
the EISPACK and LAPACK algorithms are of the same form, although with smaller
constants in the O-term [12, Thm. 4.2].

In this paperwe do not deal with updating the transformation matrix, an option avail-
able in the EISPACK and LAPACK routines. It is, however, not very difficult to include
these updates in our parallel algorithm.

In [12] we also developed a parallel algorithm based on (fast) Givens rotations, which
is somewhat nearer to the EISPACKand LAPACKroutines than the method discussed in
this paper. This algorithm also relies on the block decompositions introduced in 2 and
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on the "parallel frame" given in Algorithm 3.2. It combines the advantages of the EIS-
PACK routine (lower memory requirements and lower operation count) with a medium-
grained parallelism, but the arithmetic must be done with the level-1 BLAS. In addition,
although there is still some potential for parallelism within the blocks, it is much more
difficult to utilize than with the Householder approach.

To conclude, the algorithm SBTH seems very promising on the iPSC/860 hypercube,
as it should be on all machines with optimized BLAS-2 kernels and low bandwidth from
the main memory to the arithmetical unit(s). The algorithm performs well if it is run on
a single processor, and also it offers nearly full speedup if the band is long enough to be
wrapped several times onto the processors.
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COMPUTING PERIODIC GRAVITYWAVES ON WATER BY USING MOVING
COMPOSITE OVEPING GRIDS*

N. ANDERS PETERSSONt

Abstract. The composite overlapping grid method is applied to compute periodic gravitywaves onwater of
finite constant depth. One component grid is made to follow the free surface while the remaining components
are independent of the location of the surface. A pseudo-arclength continuation method is used to compute
the solution as function of the phase velocity of the wave. The type of equation associated with some grid
points and the number of equations in the discretized problem will change when the surface moves. The
author expounds a stable way of switching the composite grid during the continuation procedure that works
close to limit points. An adaptive technique is also developed to efficiently resolve the solution where sharp
gradients develop.

Numerical examples are presented that show very good agreement with existing results.

Key words, adaptive grid, composite overlapping grid, pseudo-arclength continuation, water wave

AMS subject classifications. 65N50, 76B15

1. Introduction. We consider two-dimensional irrotational gravity waves moving
with constant phase velocity on water of finite constant depth. Both the infinitely deep
case [2], [10] and the present case [4], [14] have been previously studied extensively. The
aim of the research described here is to develop an accurate method that can be eas-
ily extended to compute the subcritical flow around an underwater obstacle, where we
feel that the existing methods [9] still need improvement. We remark that an efficient
method, based on a boundary integral formulation, has been devised for the special case
when the flow behind the obstacle is supercritical, i.e., when waves are absent behind the
obstacle [5]. This paper can be seen as the next step from [11] towards the solution of
the subcritical problem. We prefer to first develop the method for the periodic case to
be able to make comparisons with existing results.

We apply the composite overlapping grid method [3]. The basic idea is to make
one component grid follow the free surface and let the remaining components be in-
dependent of the location of the surface. To resolve sharp gradients in the solution we
also develop an adaptive technique. The adaptation is done locally on each component
grid by changing the number of grid points and the stretching function. We would like to
point out that the adaptive, moving grid approach developed here is general to problems
where the shape of the domain is a function of the solution and/or the solution develops
sharp gradients. One advantage of the composite overlapping grid method compared
to the more commonly used boundary integral techniques is that the composite over-
lapping grid approach can also be used if effects of vorticity and viscosity are included.
Those effects are not straightforward to include in a boundary integral formulation.

We use a pseudo-arclength continuation technique [8] to compute the solution as
function of the phase velocity. When the surface moves, the type of equation associated
with some grid points and the number of equations in the discretized problem change.
The basic method therefore needs to be modified to allow for changes in the composite
grid during the continuation procedure. A stable way of doing this that works close to
limit points is devised.
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The remainder of the paper is organized as follows. In 2 we scale the problem and
present the governing equations. We discuss how to construct the composite overlapping
grid in 3 and the problem is discretized in 4. Thereafter, in 5, we present the contin-
uation method. A stable way of switching composite grid is presented in 6. Here, we
also describe how the resolution of the grid is adapted to the solution. In 7 we discuss
some implementational issues and we make numerical comparisons with existing results
in 8. Very good agreement is found.

2. The governing equation. We describe the motion in Cartesian coordinates in a
frame of reference fixed with respect to the wave, where the z-axis points opposite to the
forward velocity and the z-axis is directed vertically upwards. We assume the motion to
be steady in this coordinate system. Let the phase velocity be U and the wavelength be
A, which is defined as the shortest period of the wave. We scale the physical quantities
by the length A/27r and the velocity V/gA/27r, where 9 is the acceleration of gravity. In
the scaled variables, z -d corresponds to the bottom and z 0 to the undisturbed
free surface. We split the total velocity potential into a free stream potential plus a
perturbation potential: (z, z) #z + b(z, z), where # U/X,/A/27r is the scaled
phase velocity. The perturbation potential is governed by (cf. [15])

(1) zx 0, -a _< z _< (), - < < ,
where r/(z) is the elevation of the free surface. The perturbation potential is subject to
the boundary condition

(2) (,-a) 0, -0 < < o.

Furthermore, at the free surface we require both the Bernoulli equation and the kine-
matic condition to be satisfied,

1
(3) +( +) + 0, - < < , z (),

(4) (# + b)r/ bz 0, -cx < x < c, z r/(x).

The choice of constant in the right-hand side of (3) fixes the origin in z to the level of
the free surface where the velocity, V/(/z + b)2 + b, equals the phase velocity, #.

The problem is to find the perturbation potential b and the surface elevation r/as
functions of the phase velocity #. We are interested in solutions that are/-periodic in
the x-direction, with 27rk, k 1, 2, The surface elevation will be studied in the
interval 0 < z < and the perturbation potential in the domain (x, z) f, f 0 <
x < l, -d < z < r/(x). A convenient measure of a solution is its wave height, which is
defined as the vertical distance between the highest crest and the deepest trough of the
wave.

A solution of (1)-(4) at a fixed # is not isolated. This is due to the Galilean invariance
in the x-direction and the fact that b is only determined up to a constant. Denote a
solution (b, r/) by b and let E[b, #] be the operator described by (1)-(4). Expanding
around a solution b() yields

(5) [(0 + ,, #] z:[(0, #] + [(0, #], + o(1,1).
The two degrees of freedom correspond to two zero eigenvalues of E. It is easy to see
that the eigenfunction connected to the undetermined constant is b’ const., /’ 0.
The eigenfunction corresponding to the Galilean invariance is the x-derivative of the
present solution, i.e., b’ b(), r/’ r/().
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3. The composite overlapping grid. The composite overlapping grid method is a
general tool for solving partial differential equations (PDEs) on complex domains (cf.
[3]). The basic idea is to divide the complex domain into simple overlapping subdomains,
the union ofwhich completely covers the region of interest. Each subdomain is covered
by a structured component grid and the set of component grids taken together is called
the composite grid.

There are three different kinds of grid points in the composite grid: discretization,
interpolation, and unused grid points. The discrete version of the differential equation
or the boundary condition operator is applied at a discretization point. The interpola-
tion points are situated at an interior boundary where the subdomains overlap. Here,
the solution is interpolated from an overlapping component grid. The unused points
are, as the name indicates, not used in the discretization of the differential equation.
Henceforth, the discretization plus the interpolation points will be called the grid points
used in the composite grid.

From previous investigations of the present problem, it is known that the spatial
scales of the solution can be very small close to the surface. The scales are also known to
grow rapidly with the distance from the surface. To resolve the solution without wasting
grid points, we will use a coarse component grid close to the bottom, a fine component
grid close to the surface, and component grids of intermediate grid sizes in between.

The component grid that includes the surface will be called the surface grid. To make
the discretization of the boundary conditions (3), (4) straightforward and accurate, we
locate the uppermost grid line of the surface grid at the position of the surface, (z). In
order to keep the dependence on close to the surface and simplify the discretization,
we choose the remaining component grids to be Cartesian and independent of r/.

Let there be Q component grids and denote by fq the subdomain in the (z, z)-plane
that corresponds to grid number q. The component grids are numbered beginning at
the bottom and increasing towards the surface (see Fig. 1). The grid number equals the
priority of that component in the composite grid. The composite grid will primarily use
grid points from the component with the highest priority, secondarily from the grid with
the second highest priority, and so on.

3.1. The mapping functions. For each subdomain, we will design a one-to-one map-
ping function that transforms the unit square in the (r, s)-plane onto fq. These mapping
functions are used to construct the component grids by transforming the grid points in a
Cartesian grid in the (r, s)-plane onto the (z, z)-plane. In the following, the (r, s)-plane
will also be called the parameter space.

For the Cartesian component grids, the mapping functions are simply

(6) xq(r) lr,
(7) zq(r, s) aq(1 s) + bas,
where aq and bq are constants; q is the grid number, 1 _< q _< Q 1.

To make the dependence of ? in the transformed Laplace equation reasonably sim-
ple, we choose the mapping function for the surface grid to be

(8)
(9) zO(r, s) rl(lto(r)) bo(1 uo(s)).
Here, bO is the constant vertical thickness of the grid. The function to (r) clusters grid
points in a layer around the crest of the wave and the function uo (s) is used to concen-
trate grid points in a layer close to the surface. For example, to(r R-l(r), where
R(t) (t + U(t) Up(0))/(1 + Up(l) U(0)) and
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Free Surface

Grid #4

Grid #3

Grid #2

Grid #

Bottom

FIO. 1. The numbering ofthe component grids. In this case,

(10) Up(t)= E u(t + ), u(t)

The stretching is concentrated around t "yr and the parameter/3r determines the
ratio between the smallest and the largest grid size. The constant a governs the width
of the layer, i.e., the number of grid points that will be in the layer compared to the
number outside it. The derivatives of the function uO (s) are not required to be periodic.
Therefore, the function U replaces Up in the corresponding expression.

q x(r)and zjk zq(r, 8qk), whereThe grid points of grid q are given by xj

(11) r (j- 1)h,j 1,2,...,N,
(12) sqk (k- 1)hq,k 1,2,...,Mq,

with hq 1/(Nq 1) and hq 1/(Mq 1); Nq > 1 and Mq > 1 are natural numbers.

4. Diseretizing the equations. In this section, wewill describe how the Laplace equa-
tion and the boundary conditions are discretized by a second-order accurate scheme on
a composite grid. We adopt the mapping method which uses the previously constructed
mapping functions to form the discrete set of equations on each component grid. The
component grid problems are coupled to each other by interpolation relations at the
interior boundaries where the subdomains overlap.

We begin with some definitions. We define a component grid function on grid q by
gjq,k g(x, Zjq,k) and a surface grid function on grid Q by fj f(xQ). The forward,
backward, and central divided difference operators in the r-direction on grid q are de-
fined as

q q

D+jgjq,k
gj+l,k gj,k

hq

D+g_,,
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1
Dojgj,k - (D+j + D_i) g’,k"

A corresponding notation is used in the s-direction.
On the Cartesian grids, we discretize (1) by

(13) (1-2D+jD_j + (bq aq)-2D+kD_k) ’,k O.

This stencil is applied to the discretization pointswith indices in the range 1 <_ j <_ Nq- 1,
2 <_ k _< Mq 1. The periodicity in the x-direction implies periodicity in the r-direction
for all component grid functions. It is enforced by eqo,k egq-l,kq and Vq,k ,k"
We discretize the boundary condition at the bottom (2) by the second-order accurate
one-sided formula

(4/ (1 1/- D/ D/D/ }, 0,

fork= land1 _<j _< N-1.
To discretize the Laplace equation on the surface grid, we transform it to the param-

eter space and replace the derivatives of in the resulting expression by second-order
accurate divided differences. This yields

(15) (Aj,kD+jD_j + Bj,kDojDok + Cj,kD+kD-k + :Dj,kDoj + j,kDok) eQj,k O,

for the discretization points in i < j <_ NQ 1, 2 <_ k <_ MQ 1. The coefficients are
(cf. [13])

(16) A (rQ)2 + (rQ)2, B 2(rQ sQ + rQ, sQ, ), C, (sQ + (sQ, ,
and

(17) v + ?,, e ? + ?,.
Here, rQ and sQ are the inverses of the mapping functions xQ and zQ, respectively,
evaluated at the grid point in question. The subscripts on the metric quantities denote
partial differentiation, i.e., rQ cOrQ/Ox, etc.

The boundary conditions at the free surface are discretized by the same technique
as the Laplace equation. This yields

1 sQD Q 2

+ + +
(18)

1 2
sQD Q

sQD Q(19) (# --(rxQn0j -[- x lk)Oj,k) rQx nojT]j (rQz noj -[- 8?nlk) OQj,k--O.
In these formulaewe used Dlk D-k+hD_kD_k/2, which is a second-order accurate
approximation of the s-derivative. We apply (18), (19) to k MQ and I <_ j <_ NQ 1.

The component grid functions are coupled by interpolation relations. Our differ-
ence scheme is a second-order accurate approximation of a second-order equation and
the component grids have an overlap which is proportional to the grid size. To get
second-order accuracy for the total solution, it is necessary to use (at least) third-order
accurate interpolation (cf. [3]). For example, let ,m be an interpolation point with in-

bterpolation location (j, k, b). This means that ,, will be interpolated from ej+p,k+q,
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-1 < p,q < 1. Let (?, g) satisfy x, xb() and z,m zb(’, ,). The biquadratic
interpolation yields

a , b(2o/ o,
p=--I q=--I

where ap and/3q are quadratic polynomial base-functions.

5. Continuation in #. Wewill use a pseudo-arclength continuation method to calcu-
late (, ) as function of the phase velocity #. The basic method described in [8] cannot
be used directly due to the two degrees of freedom that make the linearized operator
singular. The method also needs to be modified because the number of grid points used
in the composite grid depends on the surface elevation. However, the discussion of that
aspect will be postponed to 6.

To handle the two degrees of freedom, one can add two new degrees offreedom and
two extra equations such that the Jacobian of the extended problem becomes nonsingu-
lar [7]. However, it is possible to avoid adding extra unknowns and equations by instead
enforcing the increments in the Newton iteration to be orthogonal to the nullspace con-
nected to the two zero eigenvalues. This is equivalent to solving (1)-(4) in the subspace
orthogonal to the nullspace. The part of the solution in the nullspace is of no interest,
since it only corresponds to adding a constant to the perturbation potential and shifting
the solution in the x-direction.

To enforce the orthogonality of the increments in the Newton iteration, we also need
the nullspace of the adjoint operator. Unfortunately, it is difficult to numerically com-
pute accurate approximations of these nullspaces. To overcome this difficulty, we modify
the boundary condition at the bottom to fix the constant part of the solution. Instead of
(2), we use

(21) (x,-d) + (0,-d) O, 0 _< x < I.

The discrete boundary condition (14) is modified in a corresponding way. The idea is
that a solution with (0, -d) 0 satisfies the original boundary condition without intro-
ducing an undetermined constant. The linearized modified operator will therefore only
have one zero eigenvalue. This makes an accurate computation of the corresponding
nullspace much easier. Due to nonconservation, we cannot expect (0,-d) to be zero
in the discrete approximation. Instead, it will get a small value that indicates how well
the continuous conservation property is satisfied. We regard this value as a measure of
the accuracy of the discrete solution.

The discrete set of equations can be written in abstract form as L[u, #] 0, where
L 2’ -+ X. Here, 2’ is an n-dimensional vectorspace and n is the number of grid
points used in the composite grid plus the number of grid points along the surface. The
vector u contains at every used grid point and r/at the grid points along the surface.
We define a scalar product and a norm for x, y 2’ by

n
1

xiyi, Ilxll-(22) (x, y)
i=1

The eigenvalue connected to the Galilean invariance will henceforth be called the
shift-eigenvalue. Let er and e denote the right and left eigenvectors of the Jacobian
matrix OL/Ou corresponding to the shift-eigenvalue. Let the eigenvectors be normalized
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to have Ilell 1 and (et,er) 1. The projection P maps A’ onto the eigenspace
according to Pf (et, f)e,., f X.

We will consider solving

(23) (I P[u, #])L[u, #1 O,

for part of the solution in (I P)A’. The part in PA" corresponds to the phase of the
solution and it will be determined during the solution procedure. A point (u, #) that
satisfies (I P[u, #])L[u, #] 0 will be called a solution point and we will call a point
nonsingular if all eigenvalues of OL/Ou except the shift-eigenvalue are bounded away
from zero.

5.1. The nonsingular case. Following [8], the solution (u, #) will be considered as a
function of the pseudo-arclength a, u u(a) and # #(a). Assume that a nonsingular
solution point (u0, #0) is known, and let it have pseudo-arclength a0. We define the
pseudo-arclength relative to that point by

(24) + (/,o, + f,o

The tangent (/t0,/20) is the solution of

(25) IL= [uo, #0]6o Lu [uo, #o]/20.

IHere we used the notation Lu[uo #0] (I- P[uo, #0])L,[u0, #0]. Equation (25) is
solved under the side-condition P60 0 and the normalization 1160112 + 1/201 1.
We also require the scalar product between the previous and the present tangent to be
positive.

To get the same number of equations as dependent variables, we augment (I
P[u,/z])L[u, #] 0 by the arclength equation N[u, #; a] 0, where

(26) N[u, #; a] (60, u uo> + o(# #o) (a ao).

We use the predictor (u, #o) (uo + 6oAa, #o +/2oAa) as initial guess for the solution
at a ao + Aa. The predictor is corrected by Newton’s method on the augmented
system, where the improvements of the solution are found by solving

(27) L[u #k] Auk LI [uk,

Nt,[uk, #k] A#k N[uk, #k]

by the bordering algorithm, under the side-condition P[u, #]Au 0. The solution is
then updated according to

(28) uk+ uk + Auk,

(29) #k+l #k + A#k.
We iterate until Iluk+l uk II + I#k+ #kl < e.

If the iteration converges, we may repeat the procedure after the composite grid has
been updated. The number of iterations which was required to get convergence is used
to determine next stepsize Aa. However, if the iteration diverges, we halve the stepsize
and try again.
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The continuation method requires the knowledge ofthe Jacobian matrix OL/Ou and
the derivative OL/O#. Only the boundary conditions at the surface (18), (19) depend
explicitly on #. Hence, OL/O# will only be.nonzero along the surface. The Jacobian
matrix is most naturally split into the two parts OL/O and OLIOs. L depends nonlinearly
on only in (18) and (19), so OL/O is very straightforward to form. We refer the reader
to [12] for a detailed description of how to set up the part cOL/Orl.

5.2. The singular case. The smallest eigenvalue, except for the shift-eigenvalue, is
monitored along the solution curve to detect singular points. The pseudo-arclength
method easily passes through limit points, but special care is necessary to switch branches
at a bifurcation point. One can proceed as in [8]. In that method, the tangent to the so-
lution curve on the other branch is computed by using second derivative information of
L. The continuation then proceeds in the direction of the new tangent starting at the sin-
gular point. In the present work, we have instead used a Lyapunov-Schmidt reduction
technique that does not use the second derivatives of L.

We only consider the situation when OL/Ou has exactly two small eigenvalues, one
of which is the shift-eigenvalue. We further assume the eigenvectors of the two small
eigenvalues to be linearly independent. Our task is to find one point on every solution
curve (u, #) that satisfies (I P[u, #])L[u, #] 0, close to the singular point.

Let e’ and e be the right and left eigenvectors of the second small eigenvalue, nor-
malized to have I1 ’ 11 I and (e, e) 1. Let P’ be the projection that maps A’ onto
the second eigenspace. It is defined by P’f (e, f)e’, f E X.

Let (u0, #0) be a solution point close to the singular point and set u u0 + x and
# #0 + T. We split x into three parts, x xI + xH + xHI, where x (I P P’)x,
xI P’x, and xIII Px. The part of x in P’ can also be expressed as xII

a (e, x), and the part in Pwill be set to zero, xHI 0, since it only shifts the solution.
We now split the problem according to

(30) (I- P’)(I- P)L[u, #] O,

(31) P’(I- P)L[u, #1 O.

Let A OL/Ou[uo, #0] denote the Jacobian matrix. We can solve the linear system
Ax b for b (I- P- P’)X uniquely in (I- P- P’)X, where P and P’ are evaluated
at (u0, #0). Therefore, (30) can be used to compute xI xI (a, T) by iteration. First, we
choose some values of a and T that will be fixed throughout the iteration. We take the
initial guess to be x0 0 and compute the subsequent iterates by solving

(32) Lu[uo, #0]Axk --(I- P P’)L[uo + x + ae’, #o + T],

(33) I (I P P’z+=+ )/xz.

We truncate the iteration when x+ xJ < e. The iteration will converge for suffi-
ciently small c and r because, by assumption, OL/Ou has only two small eigenvalues and
the corresponding parts of the solution are kept constant by the projections. The itera-
tion only requires L to be factored once; it is therefore relatively inexpensive compared
to the Newton iteration.

The second relation (31) is equivalent to the scalar equation #(a, 7-) 0, where

(34) g(c, T) (e, L[uo + x (a, T) + ae’, #o + T]).

This equation can, for instance, be solved by the following two-step technique. We first
approximately locate the zeros ofg by evaluating it at a number ofpoints on the small cir-
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cle a2 + -2 r, r << 1. For each zero, we solve g 0 by bisection with the approximate
location as initial guess.

We can proceed with the nonsingular continuation approach starting from a solu-
tion point sufficiently far away from the singularity in the (a, -)-plane. We trace out all
solution curves that connect at the singular point by doing this for one point on each
branch.

6. Changing the composite grid. When the surface moves during the continuation
procedure, the amount of overlap between the subdomains fO and DO_1 will change.
Component grid Q has the highest priority so all its grid points will always be used in
the composite grid. The situation is different for grid Q 1. After the surface has
moved, some grid points that were previously used might no longer be needed, while
some formerly unused grid points might be required in the composite grid. Therefore,
the type of equation associated with a grid point and the number of used grid points in
grid Q 1 will depend on the location of the surface. Furthermore, even if the type
of equation remains unchanged for all grid points, the interpolation locations might be
different for some interpolation points. For these reasons, the continuation method must
be modified to allow for changes in the composite grid.

The basic idea is to fix the interpolation locations and the type of equation associated
with each grid point during the Newton iteration and only update the mapping function
for the surface grid. This means that, for instance, the discretization points are prevented
from changing to interpolation points or unused points. For stability reasons, the amount
the surface is allowed to move between two solution points is restricted by the amount
of overlap, i.e., we do not allow for extrapolation in the interpolation relations. With
the notation of (20), extrapolation occurs if at least one of the following inequalities is

b bsatisfied: < rj_l, < sbk_, r+ < or sk+ < . If extrapolation should occur in
any interpolation relation, we stop the Newton iteration, decrease the stepsize Aa and
restart the continuation from the previous solution point.

Once the iteration has converged to a solution where there is no extrapolation in the
interpolation relations, we verify that the composite grid is consistent with the position
of the surface. This is done by ensuring that the interpolations are sufficiently centered.
The criterion

_< +(35) r- 0.6hb < f < rj +

has been found to work well in practice. We have a valid solution if all interpolation
points satisfy (35); we maythen proceedwith the continuation. Otherwise, the composite
grid and the solution must first be corrected.

6.1. The correction step. We begin by constructing a corrected composite grid. We
mention in passing that this can be done at a much lower computational cost than would
be involved in constructing a completely new grid. Thereafter, we repeat the last contin-
uation step on the corrected grid. We get u0 on the corrected grid by interpolation from
the previous grid. With this approach, it is possible to correct the grid close to a limit
point. The simpler idea to solve (I P[u, #])L[u, #] 0 on the corrected composite
grid, but fixing # at the current value, might fail close to a limit point because its location
depends slightly on the grid (see Fig. 2). The correction step has been found to be very
stable with the present restriction on the movement of the surface.

The reason for allowing the interpolation points to be slightly noncentered is to
ensure that the corrected solution will satisfy (35) on the corrected grid. The difficulty
which otherwise might arise is illustrated in Fig. 3. Consider the situation when 0.6 is
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Corrected
grid

Previous
grid

No solution on the corrected grid
for t > t*

FIG. 2. The location ofa limitpoint might depend slightly on the grid.

replaced by 0.5 in (35). Let some interpolation point have s + 0.5h + e, 0 < e << 1
before the correction step. The corrected composite grid will use more grid points in
grid b to make Sk+lb 0.Sh + e. The problem is that the solution on the corrected
grid might be slightly different than the solution on the previous grid. In particular, the
corrected location of the surface can make sk+lb 0.5h , 0 < << 1, which
would call for correcting the composite grid back to the initial state. This problem does
not occur if a less restrictive tolerance is used. Instead, both composite grids in Fig. 3
would be valid. The history of the previous locations of the surface determines which of
the possible composite grids will be used. This is acceptable because we can expect the
solutions on the different grids to be very similar if the solution is well resolved.

FIG. 3. The oscillation between two very similar composite grids that can be avoided by allowingfor slightly
noncentered interpolation points.

6.2. Adapting the grid to the solution. The solution becomes steeper as the wave
height increases. In particular, the derivative of the surface elevation tends to a discon-
tinuity at the crest of the wave. A very fine grid is therefore necessary to resolve the
solution close to that point, but it is difficult to a priori estimate how fine the grid needs
to be for a certain wave height. It is also very uneconomical to use the fine grid all the
way from the trivial solution. For these reasons, we have developed an adaptive tech-
nique where we allow the resolution in each component grid and the stretching in the
surface grid to change during the continuation procedure.

Ideally, one would like to monitor the truncation error of the discrete solution and
increase the resolution when and where it is necessary. In the present work, we have
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used a simpler approach, namely, to monitor how well the solution is resolved on the
grid. In particular, for the perturbation potential, we look at the largest difference in
each direction, i.e.,

(36) diffa := maxlhD+.,k I, diff := maxlh,qD+,l.
For the surface elevation, we are concerned with resolving the sharp gradient in r/ that
develops when the wave height gets close to its limiting value (see Fig. 4). We therefore
monitor diffrr/x.

Fro. 4. The x-derivative ofthe surface elevation close to the maximum wave height.

At each valid solution point, we calculate diffrCq, diffsq, and diffr/x. The idea is to
keep these quantities in the predetermined ranges

(37) A<diffrq<B, A< diffsq<B and An<diffr/<B"

by changing the number of grid points and the parameters in the stretching function.
The constants A, Be, An, and Bn will be called the resolution thresholds.

Initially, the solution is trivial, and we can use a coarse grid to start the continuation.
During the continuation, some difference will eventually exceed its limit and we then
need to construct a grid with better resolution. For example, let diffq > Be. We
increase the number of grid points in the r-direction of grid q by changing Nq such that
the solution on the new grid approximately satisfies diffq A.

We control the stretching function (10) by monitoring O(x) (see Fig. 4). To avoid
wasting grid points, we adjust the parameters and 7 to make hD+rl(x)
as uniform over the grid as possible. It is clear that has maxima at the crest
(x Xcrest) and at the trough (x Xtrough) of the wave. To concentrate the layer
in the stretching function around the crest, we choose 7 xt/l. The ratio be-
tween the largest and the smallest grid sizes equals approximately r. We therefore
take Ir(Xr)/r(Xough)l.

When the number of grid points and the stretching have been properly adjusted,
we perform a correction step (6.1) to update the grid and get a valid solution on the
refined grid. To make the process stable and reliable, the solution must be reasonably
well resolved on the grid before we try to change the resolution. If it is not, we decrease
the stepsize Aa and compute an intermediate, more well-resolved, solution before we
change the resolution. Without this precaution, the correction step might diverge. An-
other important rule is to avoid changing the resolution too drastically. Practically, we
found that the correction step converges quickly if the number of grid points changes by
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less than 20% in each direction on each component grid, and the stretching strength
changes by less than an absolute amout of 5.0.

7. Implementation. In the present implementationwe have used the software pack-
age CMPGRD (cf. [1]) to generate the composite grids. A composite grid is created by
calling CMPGRD as a subroutine with an input consisting of the component grid trans-
formations, the number of grid points in each direction on each grid, and the priority
between the component grids. On output, each grid point is labeled according to how it
will be used and the interpolation locations are also given for the interpolation points.

When CMPGRD is called to correct an existing grid, the previous composite grid
and the corrected mapping function for the surface grid are given as input. For the case
when the resolution has been changed, the new number of grid points is also supplied.
The fast algorithm for correcting the composite grid only works if the new interpola-
tion points can be found, at most, one grid point away from some previous interpolation
point in the same component of the previous composite grid (cf. Fig. 5). This restriction
is consistent with the aforementioned requirement to disallow for extrapolation in the
interpolation relations. However, we have encountered situations when the fast algo-
rithm fails after the stretching has been changed drastically. In those rare cases, a new
composite grid must be constructed from scratch.

,-,--,-,--,-,--,-,--,-,--,-,--,-,
L J L .4. ..L.. .-t.. .L.. .-t.. I- J L J L J

ltii:: ::i::i:: iiiiii:: iitli!iiiii::::::i!i::ii ::li I:iii::ii iii::i iiiiiill I:iiiiiii iiii::i:; iiiiiiliiii::iiiiii iiiiiii::::li::::i::i::i::i::ii!iii::iiili::::::i

FIG. 5. The band in the (r, s)-plane that is searchedforthe location ofthe interpolationpoints in the corrected
grid. The solid line indicates theposition ofthe interpolation points in theprevious grid.

The information supplied by CMPGRD is sufficient to form the discrete set of equa-
tions for a composite grid that is composed of an arbitrary number of component grids,
each having an arbitrary number of grid points. The only restriction on the component
grids is that they must overlap sufficiently. However, the implementation of a general
solver in FORTRAN-77 requires a dynamic memory allocator. For this purpose, we have
used the DSK-package, which is an autonomous part of CMPGRD.

The emerging linear systems of equations were solved by the YALE sparse matrix
package (cf. [6]). We found experimentally that the accuracy of the solution was im-
provedwhen the equations corresponding to the boundary conditions at the surface were
inserted early in the system matrix. Actually, this trickwas necessary to make the Newton
iteration converge properly for solutions with wave heights close to the limiting value.
The reason for this behavior might be that this package does not pivot for numerical sta-
bility when it LU-decomposes the matrix. Our main motivation for using this package
despite this deficiency is that it is fast.

8. Numerical results. We begin by studying a single wave, i.e., 27r, on deep
water. We compare our results with those reported by [2] and [10] for the infinitely deep
case. To investigate the effect of the finite depth in our computation, we performed
two sets of calculations with d 27r and d 47r, respectively. To also investigate the
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dependence of the grid size, we varied the resolution thresholds. For simplicity, we used

A An and By B, A+5x 10-3. We used a composite grid with four components
and the mapping functions for the component grids had the parameters a -d, b
-2.5, a2 -3.0, b2 -0.7, a3 -1.2, b3 0.65, and b4 0.4. In the case d, we
used the following number of grid points in the start grid: N1 14, M1 8, N2 23,
M2 11, N3 39, M3 13, N4 63, and M4 7. For the deeper case, we used
Mx 20.

For the continuous problem, the bifurcation from the trivial solution occurs at #0
v/tanh d. With the present start grid, it was displaced by O(10-).

Let h denote the wave height. In Tables 1 and 2 we present h/l as function of the
resolution thresholds. The three different/z-values correspond to solutions where the
maximum slope of the surface is approximately 17.0, 22.4, and 27.8 degrees, respectively.
For A6 10-2, the absolute difference between our results and those reported by [10]
are of the order O(10-3). We conjecture that the discrepancies are mainly caused by
truncation errors and not by the finite depth. Both the accuracy and the efficiency of the
present method would probably be improved by using a higher-order difference scheme.

TABLE 1
h/l asfunction ofthe resolutionfor the depth d 27r. The results obtained by lO] for infinite depth are given

at the bottom ofthe table.

A /z 1.04247 /z 1.07029 /z 1.09184

3.0 x 10-2 0.092107 0.117823 0.135427

2.0 x 10-2 0.092481 0.118119 0.136440

1.0 x 10-2 0.092278 0.117885 0.136362

[10] 0.091809 0.117572 0.136178

TABLE 2
h/l asfunction ofthe resolution for the depth d 4r.

A # 1.04247 /z 1.07029

3.0 x 10-2 0.092083 0.117908

2.0 x 10-2 0.092557 0.118228

1.0 x 10-2 0.092257 0.117877

1.09184

0.135623

0.136455

0.136353

The value of b(0,-d), which occurs in (21), indicates how well the conservation
property of the continuous problem is satisfied. By starting from the trivial solution, it
is initially zero. For A6 10-2 it was of the order (.9(10-6) along the solution curve.

To demonstrate the result of the adaptation technique, we present the start grid in
Fig. 6 and the grid corresponding to A6 3 x 10-2,/z 1.09184 in Fig. 7.

In Figs. 8 and 9, we plot h/l as function of the phase velocity for the depth d and
the resolution A 10-. During the computation of this solution curve, the stepsize
in the pseudo-arclength was chosen to make the Newton iteration converge in approxi-
mately four steps. We calculated 43 solution points and the resolution was changed 24
times. The composite grid was corrected 43 times due to noncentered interpolations; six
of those were done after the resolution had been changed. The fast algorithm for cor-
recting the composite grid did not fail during any correction step. This implies that the
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III

Fro. 6. The start grid.

overhead for changing the resolution corresponded to 30 out of a total of 110 continua-
tion steps, i.e., approximately 27%. To give an example of the amount of work that was
saved by using an adaptive grid, we report the number of equations as function of hi1 in
Fig. 10. The sparse matrix solver requires of the order O(n2) operations to perform one
Newton step. This means that one Newton iteration with 104 grid points requires the
same effort as performing (.9(100) iterations with 103 grid points. These figures clearly
show the benefit of using an adaptive grid.

Next, we investigate the subharmonic bifurcation reported by [2] for the infinitely
deep case. In this computation, we started with two waves in the domain 47r. The
depth was d 27r and the grid sizes for the start grid were the same as in the single-wave
case. We used the resolution threshold A 10-2. The smallest eigenvalue except for
the shift-eigenvalue was monitored along the solution curve to detect singular points.
Initially, the solution has period 1/2 and it is identical to two adjacent single wave solu-
tions. A solution with this property will be called regular.

In dose agreement with [2], we found a singular point in the vicinity of # 1.08414,
hi1 0.06447. By applying the technique described in 5.2, we detected a bifurcat-
ing solution curve that connects to the regular solution curve at the singular point. The
eigenfunction corresponding to the second small eigenvalue is given in Fig. 11. It has pe-
riod in the z-direction, which implies that the solution on the bifurcated curve also has
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FIG. 7. The grid at # 1.09184 with the resolution As 3 x 10-2.

period l, i.e., twice the period of the regular solution. The bifurcated solution curve was
traced out with the nonsingular continuation method starting on the bifurcated branch
close to the singular point. On the bifurcated solution curve, one of the crests becomes
sharp while the other stays rounded when the wave height increases (see Fig. 12). Ob-
viously, the two possible locations of the sharp crest correspond to identical solutions
shifted by 1/2; they are found by proceeding in opposite directions along the solution
curve. In Fig. 13, we give hi1 as function of the phase velocity for the bifurcated solu-
tion. The continuation was truncated when the number of equations exceeded 25,000.

A direct comparison with previous results for the shallow water case [4], [14] was
not possible because those results were obtained by keeping the flux #d constant during
the continuation. In the present method, we instead kept the constant in the Bernoulli
equation (3) fixed, which implies that the flux varies slightly along our solution curves.
The average depth in the two approaches will therefore be different at the same velocity
for nonzero wave heights. However, an approximate comparision was performed by
interpolating between the results in [4] for different depths. We made the comparison
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FIG. 8. h/l as function ofthephase velocityfor the case d 27r and A 10-9. The solid line represents
the result reported by [10]; the dashed line corresponds to thepresent work.

0.141

0.140

0.139

0.138

0.137

0.136

0.135

1.0905 1.0910 1.0915 1.0920 1.0925 1.0930

FIG. 9. The same case as in Fig. 8, close to the solution ofmaximum height. Here, the solid line corresponds
to the results of [2].

for the solution curve with the initial depth d 1.2039728, which corresponds to Table
A3 in [4]. In our computation, we used the resolution threshold A 10-2 and traced
out the solution until the number of gridpoints exceeded 15,000. The average depth

was computed along the the present solution curve to make a comparison with Cokelet’s
results possible. The difference in depth did not exceed 5% between the solution curves,
and the average depth in the present calculation was always smaller than those in Table
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5000.

0.04 0.06 0.08 0.100.00 0.02 0.12 0.14

FIG. 10. The number ofequations as function of h/l for the case d 27r and A 10-2. The first grid
had 1,086points and the last grid had 22,053points.

FIG. 11. The surface component ofthe eigenfunction connected to the second small eigenvalue, close to the

bifurcation point.

A3. In order to interpolate, we also used the data for the initial depths d 1.6094379
and d 0.91629073, i.e., Tables A2 and A4 in [4], respectively. For each solution curve,
a scaled phase velocity was defined by c (# rnin #)/(max # min #). Let the data
points in the present computation be denoted c, d, and h, i 1, 2,..., np, and let
those corresponding to Table Ak be denoted c(k) d:k), and hk), i 1, 2,..., no. The
following interpolation procedure was applied: A cubic spline parametrized by the index
was interpolated through the data points in each of Cokelet’s tables: Ak) (), 2() (), andint int

.(k)
int ()’ k 2, 3, 4. For each i 1, 2, Up, we solved ki Vint (ki) C and evalu-
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FIG. 12. The surface elevation as function of x. The solid line represents the regular solution close to the
bifurcation point (1 1.08414, h/l 0.06447) and the dashed line corresponds to the bifurcated solution at
/ 1.08132, h/l 0.06786.
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FIG. 13. h/l as function ofthe phase velocity for the bifurcated solution. Here, d 27r and A 10-2.
The solid line represents the infinitely deep case reported by [2] and the dashed line corresponds to thepresent work.

ated h(k) (k) and d() (i) We then assumed the interpolated average depth to behaveint
like

(38) d-(r]) (T] 1)(T] 2)d(2)(2i) T](] 2)t(3) (3i) -- T](T] 1) t(4)(4i)
2 2
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Thereafter, (38) was solved for d-(r/) d. The wave height was also assumed to
vary parabolically for each fixed, i.e.,

(r/- 1)(r/- 2) h(2) (c2ia, ( 2/(3)/.3i;,o’, + r/(r/-- 1)
’,a(39)

2 2

The interpolated wave height was found by evaluating (39) for Oi. The results are given
in Fig. 14. The absolute difference in relative wave height was of the order O(10-2).
The discrepancy between the results is one order of magnitude larger for the shallow
water case compared to the deep water case. We conjecture that this is related to the
interpolation error.

0.10

0.08

0.06

0.04

0.02

0.00
!

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

FIG. 14. h/1 as function ofthephase velocityfor the case d 1.2039728 and A 10-9. The solid line
represents results interpolatedfrom data reported by [4] and the dashed line corresponds to thepresent work.

9. Conclusions. In this paper, it has been shown that composite overlapping grids
together with finite difference methods can be used to accurately calculate steep peri-
odic water waves. It has been indicated that an adaptive grid is necessary to achieve
well-resolved solutions close to the wave of maximum height. We have shown that the
overhead connected with changing the grid is small compared to the cost involved in
always using a fine grid.

An underwater obstacle could easily be introduced by adding a component grid close
to the obstacle and replacing the periodicity in the z-direction with appropriate in- and
out-flow boundary conditions. The solution is only asymptotically periodic behind the
obstacle, and it would be interesting to see if the subharmonic bifurcation also appears
here. This will be investigated in a future paper.
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A MODIFIED BROYDEN UPDATE WITH INTERPOLATION*
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Abstract. A new class of Hessian updates is introduced for quasi-Newton methods obtained by modifying
the Broyden class of updates so that it interpolates function values. In general, the members of this new class
do not satisfy the quasi-Newton equation. Through the use of a weak inverse updating strategy, a specific
choice of update within this class is then introduced. Numerical results are given to illustrate the behaviour of
this new update and to compare it with other updating sequences.

Key words, unconstrained optimization, quasi-Newton methods, Broyden class, interpolation, inverse
sizing, weak sizing, nonlinear optimization
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1. Introduction. This paper considers quasi-Newton methods for solving

(1.1) min f(x)

where f is assumed to be twice continuously differentiable. However, only first derivative
(gradient vector) evaluations are required by these methods.

These methods are iterative. The required initial data is a starting point x0
0 .nXnand an initial approximation B0 for the Hessian - E of f, which is typically

chosen as B0 I, x,,, when no additional information about f is known a priori.
Given this initial information, at the kth iteration, a local quadratic model f is used

to approximate f

(1.2)
1 sT Bk s,f(xk -t s) f(xk) -t" g[ 8 + -where gk V f(xk), and Bk is the current approximation to the Hessian. Minimizing f

gives the descent direction

P -B gk,

which is used for f in a line search satisfying the Wolfe conditions (see [1] and [3] for
more details). A new point z+ is computed and then taken as the next point for the
iteration.

A key element of each iteration is the updating of the Bk matrix by taking advan-
tage of the new information about f gathered during the current iteration. Usual re-
quirements are that the update Bk+l must be symmetric positive definite and satisfy the
secant or quasi-Newton equation
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(1.3) B+ s ,
where s xk+ Xk and y gk+l gk. This equation effectively requires that B+
approximate the curvature of f along the step s. The main motivation for imposing that
Bk+ satisfies (1.3) follows from the fact that if the real Hessian were constant (i.e., if
f were a quadratic function), then after n quasi-Newton linearly independent steps,
would equal the real Hessian [4].

One class of updates satisfying these conditions is the Broyden family of updates:

(1.4) Bk+ Ba Bk s 8T Bk
8T B s

yyT
8
T+y--s+(1-) Bk s w wT,

where yT S > 0, Bk is symmetric positive definite, and

y Bksw yT S ST Bk s"

ac whereSince Bk+ positive definite is required, an additional condition is that < -b,
we have

a yTB y, b yT s and c 8
T Bk s.

For i this becomes the BFGS update; for 0 the DFP update is obtained.
Corresponding update formulas for B-1 can also be used. For more details, refer

to [1]-[3].
2. Recent developments. In this section we introduce two updating techniques that

have been developed recently. The first is a Broyden class update which incorporates
sizing techniques. The second is a BFGS update modified to satisfy an interpolation
condition used in the study of conic methods for unconstrained optimization.

2.1. The Dennis-Wolkowicz update. The research and extensive testing of Dennis
and Wolkowicz in [2] yielded a Broyden class update that improves on the BFGS update.
This update possesses a self-scaling property as we now describe. Scaling is presented
by Oren and Luenberger in [6] as a way to improve the performance of quasi-Newton
updates. Following [2], we shall term it sizing.

Sizing consists in replacing at each iteration the current B by a scalar multiple of
it and subsequently applying an updating formula. Both Ba and B-1 can be sized and
the results are generally different. Sizing the latter is termed inverse sizing and we only
discuss this technique.

Inverse sizing is effective in the first iteration of a quasi-Newton algorithm, but in
subsequent iterations it may ruin the spectral information previously gathered in B.
Dennis and Wolkowicz [2] observe that inverse sizing

yT BI y
Bk(2.1) k yT s
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effectively yields a matrix for which the condition

(2.2) yT [3 y yT S

holds. They thus suggest that while this condition is satisfied, the change in the spectrum
ofB should be minimized. They then show that the rank-one update of B-

(2.3) --- 1 yT yBk B;1 + (yT B; y)2
(yT S B;X y)B- yT B;

is the unique solution to

(2.4) min WT (-1 B;1) W IIF,

(2.5) s.t. yT [3- y yT 8

for any W such that Bk WWT. In this sense, - is the closest matrix to B-satisfying (2.2). We note also that -1.is symmetric positive definite if and only if yT s >
0. The use of the update (2.3) to obtain a matrix satisfying (2.2) is termed weak inverse
updating. Refer to [2] for more details.

The Dennis-Wolkowicz update performs weak inverse updating with the rank-one
---1

update (2.3) followed by a BFGS update of Bk Interestingly, this sequence of two
inverse updates is equivalent to a single rank-two update of Bk. This update is performed
as follows: let

a yT BI y, b yT 8 and c 8
T Bk .

1. First iteration: Inverse size the current Hessian approximation, i.e.,

a
Bo Bo

and perform a BFGS ( I in (1.4)) update on the sized matrix. Inverse sizing is done
explicitly to avoid possible ill conditioning.

2. Subsequent iterations: Use the Broyden class update with

1
b
c aa

which is equivalent to weak inverse updating followed by BFGS [2, Thm. 4.5 (iv)].
This update is hereditarily positive definite and it satisfies the quasi-Newton equa-

tion (1.3).
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2.2. The Yuan update. The modified BFGS update introduced by Yuan in [8]

Bk s 8T Bk y yT
(2.6) Bk+l Bk + tk

sT Bk s yT S

is a modification of the BFGS update arising from considering the interpolation condi-
tion

(2.7) sT Bk+l s =-- 2 [f(xk) f(x+) + sT g+],

which is used in Davidon’s study of conic models, as summarized in [7]. This condition
is equivalent to requiring function values from the previous iteration to be matched by
the conic model. It is motivated by considering that the use of function values as well as
gradient values should increase the efficiency of the overall optimization algorithm [7].

While such conic models can satisfy both the quasi-Newton equation (1.3) and (2.7),
this is not possible with the quadratic model f. However, Yuan [8] shows that condition
(2.7) will be satisfied by Bk+ in (2.6) if we let

tk yTs,

which is then truncated if necessary to lie in the interval

0.01 _< tk <_ 100.

Yuan [8] argues that this truncation ensures global convergence for convex f with the
inexact line searches typically used by these methods. Furthermore, B+I is symmetric
positive definite if and only if tk > 0 together with B symmetric positive definite and
b > 0. This update is not a member of the Broyden class (1.4) and, in general, it does
not satisfy the quasi-Newton equation (1.3).

3. The new MBI update. Motivated by wanting to exploit the information avail-
able in known function values, the interpolation (2.7) contains valuable new information
about f at each iteration. We thus consider imposing it on the entire Broyden class. For
B+ a member of the Broyden class (1.4), we have

8
T Bk+ 8 8

T Bk 8 8
T Bk s + 8

T y + (1 )8T Bk 88
T wwT 8

sTy

since it is easily verified that

WT8-- STw--O
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which implies that the last term of the Broyden class of updates has no influence on
whether or not the interpolation condition is satisfied. Making the same minor modifi-
cation to its general member as the modification made in [8] will yield a class of updates
satisfying the interpolation condition (2.7), namely,

(3.1) Bk+ Bk- Bk s 8T Bk
8T Bk S

y yT
8
T

W
T+ tk + (1 ) Bk SW

where tk and truncated to 0.01 _< tk _< 100 for the same reasons as in [8].
This new class is the basis for defining a new Hessian update, which we shall denote

by MBI (modified Broyden update satifying the interpolation condition), and into which
we incorporate the weak inverse updating properties of the Dennis-Wolkowicz update
via the parameter.

The MBI update is performed as follows: Again let a yTB y, b yT 8, and
c sT Bk s;

1. First iteration" Inverse size the current Hessian approximation

a
Bo Bo

to avoid possible ill conditioning and perform the I update of the class (3.1).
2. Subsequent iterations: Use the update of the class (3.1) with

1

c ac

Positive definiteness of the MBI update follows from tk > 0 and the hereditary
positive definiteness of the Dennis-Wolkowicz update.

It is important to note that the MBI update will not generally satisfy the quasi-
Newton equation (1.3). Furthermore, because of the choice *, it is not simple
to extend one of the classical convergence arguments in quasi-Newton methods to the
MBI update.

However, the quasi-Newton equation and the interpolation (2.7) will be simultane-
ously satisfied when

tk=yTs =1

and the MBI update is then a member ofthe Broyden class. Standard local Q-superlinear
convergence results should then be extendable to the MBI update. Our numerical tests
have shown that this seems to correspond to the asymptotic behaviour of the MBI up-
date. To illustrate this fact, we include in the numerical results section an example of the
behaviour of tk for the MBI update when solving the Wood function problem. Thus, as
in [8], we believe it is reasonable to expect local Q-superlinear convergence for a quasi-
Newton algorithm using the MBI updating formula.
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4. Numerical results. The update MBI was tested for comparison with the b 1
Broyden update (BFGS), the Dennis-Wolkowicz update (DW) and the Yuan modified
BFGS update (Yuan). We also included two other updating sequences, namely the
BFGS and Yuan updates with inverse sizing at the first iteration only (BFGS+IS and
Yuan+IS, respectively).

The testswere performed on a DECstation 3100 using the same MATLAB code as in
[2] that implements the routines described in [1]. The algorithm followed the minimiza-
tion procedure for quasi-Newton methods described in 1 of this paper. In particular, a
failure to converge for a method was declared after 450 unsuccessful iterations. At each
step of the algorithm, a line search (Algorithm LINESEARCHMOD in [1]) was used to
find a step satisfying the Wolfe conditions. Finally, we note that the criteria used to de-
clare that a minimum of f has been reached is developed and commented on thoroughly
in [1]. We thus refer the reader to that reference for further details on the algorithm.

We include the results for the six updating sequences on six test problems from [5].
For each problem three different starting points were considered:

the suggested starting point in [5];
the suggested starting point scaled by 10;
the suggested starting point scaled by 100.

We tested the updates on all the problems from [5] and report a sample of these results
which suggests the types of problems for which the MBI update appears to offer an im-
provement over the other methods. They also reveal instances where the MBI behaves
rather poorly.

In the listings, F denotes a failure to solve the problem after 450 iterations. The data
is reported in the format number ofiterations offunction evaluations.

The first problem shows that as the scaling increases, the sized updates are perform-
ing much better than the other two updates. It is not simple to determine a dominating
update here, though.

Problem 1. Wood function (dimension
Exact minimizer: (1, 1, 1, 1).

4). Starting point: (-3, -1, -3, -1).

Scaling BFGS DW Yuan BFGS+IS Yuan+IS MBI
1 40/44 37/41 36/38 35/39 38/40 36/38

I10 100/107 62/65 101/108 67/69 64/67 64/66
100 324/33 105/110 324/326 104/110 107/116 106/115

The same difference between sized and nonsized updates is observed in the next
problem. It is possible though to observe a difference in performance between the up-
dates. We note that the BFGS+IS and Yuan+IS updates dominate while the MBI per-
forms rather poorly.

Problem 2. Extended Powellfunction (dimension 16). Starting point: (3,-1,0,
1,..., 3, -1, 0, 1). Exact minimizer: (0,..., 0).

II
45/47 34/36 51/53 39/41 51/53 46/48

I10 137/145 70/75 93/99 89/96 78/81 71/75

100 F 122/126 F 104/113 102/105 159/166
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Problem 3 shows the MBI update dominating for the given starting point. As the
scaling increases, however, the Yuan+IS update is slightly better overall. Note the excel-
lent performance of DW for the scaling 10, which, together with the MBI performance,
indicates the positive effects ofweak inverse updating when solving this problem.

Problem 3. Box 3D function (dimension 3). Starting point: (0,10,20). Exact
minimizer: several.

II

40/44 36/39 39/42 37/40 38/40 32/34

100 F 41/46 F 40/45 38/42 40/44

Like Problem 1, the next problem also illustrates the importance of a sizing strat-
egy. Furthermore, it is an example where the sized and interpolating updates seem to
outperform the others. In particular, for large scaling, the MBI update is second only to
the Yuan/IS update.

Problem 4. Penaltyfunction I (dimension 10). Starting point: (1, 2,..., 10). Exact
minimizer: not available.

II
65/74 61/74 58/66 62/74 61/70 60/69

100 F 242/246 F 276/278 170/172 206/208

Problem 5 illustrates the same advantages for the interpolating updates as Problem
4, but in this case the MBI update dominates for the large scaling of the initial guess,
while being competitive for the other scalings.

Problem 5. Tdgonometricfunction (dimension 10). Starting point: (1, 7,..., 0)"
Exact minimizer: not available.

II

23/25 26/28 23/25 27/29 26/28 25/28

]110 ]47/51 40/43 90/93 40/43 41/44 42/45

100 145/149 103/107 143/145 104/108 56/59 52/54

Finally, Problem 6 is an example where the MBI update seems to be the overall best
update.

Problem 6. Brown and Dennis function (dimension 4). Starting point: (25, 5,
-5, 1). Exact minimizer: not available.

44/46 31/33 42/44 33/35 32/34 29/31

[110 95/97 64/66 94/96 66/68 65/67 62/64

100 F 84/86 408/410 91/93 88/90 85/87
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Overall, from these results, we observe that interpolation can improve the perfor-
mance of a quasi-Newton algorithm using a Hessian update satisfying it.

Among the interpolating updates, we see that the MBI update consistently outper-
forms both the Yuan and Yuan+IS updates for the usual starting point ofthese problems,
but is sometimes superseded by Yuan+IS for a large scaling of the initial guess.

Finally, we report the following data to exemplify the behaviour of tk for the MBI
update. This data comes from minimizing the Wood function (Problem 1) with the initial
guess suggested in [5].

Iteration

5

6

7

8

9

10

11

12

13

14

15

16

17

18

k

0.930058

0.888828

0.901655

0.897605

0.897991

0.894728

0.885345

0.84989

0.528055

1.90101

0.717606

1.18575

1.0616

0.996262

0.995617

1.03186

1.00877

1.0261

Iteration

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

k

1.00128

0.993555

0.999559

1.00006

1

1

1

1.00002

1.00012

1.00038

1.00044

0.999271

0.999504

0.999988

0.999965

5. Conclusion. We have obtained a new family of Hessian updates satisfying the in-
terpolation condition introduced by Yuan in [8] by generalizing his development to the
well-known Broyden class. We then introduced the MBI update, a specific choice of up-
date in this class that simultaneously incorporates the weak inverse updating techniques
introduced by Dennis and Wolkowicz in [2]. Our numerical results showed the merits
of these two approaches and illustrated the performance of the MBI update on typical
test problems. We conclude that the MBI update seems to offer a slight improvement
for certain problems over the other updates tested.
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FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA*
A. DUTTt ArD V. ROKHLINt

Abstract. A group of algorithms is presented generalizing the fast Fourier transform to the case of nonin-
teger frequencies and nonequispaced nodes on the interval [-r, r]. The schemes of this paper are based on a
combination of certain analytical considerations with the classical fast Fourier transform and generalize both
the forward and backward FFTs. Each of the algorithms requires O(N log N + N- log(I/e)) arithmetic
operations, where e is the precision of computations and N is the number of nodes. The efficiency of the
approach is illustrated by several numerical examples.

Key words, fast Fourier transform, Fourier analysis, trigonometric series, interpolation, approximation
theory

AMS subject classifications. 65R10, 65T10, 65T20, 65Y20

1. Introduction. Fourier techniques have been a popular analytical tool in the study
of physics and engineering for more than two centuries. A reason for the usefulness of
such techniques is that the trigonometric functions e’ are eigenfunctions of the differ-
entiation operator and can be effectively used to model solutions of differential equa-
tions which arise in the fields mentioned above.

More recently, the arrival of digital computers and the development of the fast
Fourier transform (FFT) algorithm in the 1960s (see [6]) have established Fourier analy-
sis as a powerful and practical numerical tool. The FFT, which computes discrete Fourier
transforms (DFTs), is now central to many areas, most notably spectral analysis and sig-
nal processing. In some applications, however, the input data is not uniformly spaced,
a condition that is required for the FFT. In this paper we present a set of algorithms for
computing more efficiently some generalizations of the DFT, namely, the forward and
inverse transformations described by the equations

N

(1) fY
k--O

for j 0,... ,N, where fj e C, ck E C, oak e [-N/2, N/2], and xj [-rr, r]. Each
algorithm requires a number of arithmetic operations proportional to

(2) N.logN+N.log(),
where e is the desired accuracy, compared with O(N2) operations required for the direct
evaluation of (1) and O(N) for the direct inversion.

Remark 1.1. The DFT can be described by either of the two closely related formulae

N-1

(3) y;
k=0
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forj 0,...,N- 1, and

N/2-1

(4) fJ E k e2’kj/N

k=-N/2

for j -N/2,..., N/2 1. While the form (3) is normally used when the FFT is
discussed, the form (4) is usually preferred in applications of the DFT to analysis (see,
for example, [2], [9]).

Remark 1.2. The FFT algorithm reduces the number of operations for the DFT
from O(N2) to O(N. log N) by a sequence of algebraic manipulations (for more details
on FFTs, see [4], [6], [7], [12]-[14]). In the more general case of (1), the structure of
the linear transformation is also exploitable, and the algorithms of this paper combine
certain analytical results with the existing FFT.

The plan of the pper is as follows. We start in 2 with some results from the anal-
ysis and approximation theory which are used in the design of the algorithms. An exact
statement of the problem in 3 is then followed by informal descriptions of the algo-
rithms in 4. In 5 we introduce some notation that is used in a set of more detailed
algorithm descriptions in 6. Six numerical examples are presented in 7 to illustrate the
performance of the schemes. Finally, 8 lists some generalizations and conclusions.

2. Mathematical and numerical preliminaries.

2.1. Elementary analytical tools. In this subsectionwe summarize somewell-known
results to be used in the remainder of the paper. Lemmas 2.1 and 2.2 are obvious, and
Lemmas 2.3 and 2.4 can be found, for example, in [10].

LEMMA 2.1. For any real

(5) eZdx sin(cTr).

LEMMA 2.2. For any integer k,

__1 eikdx(6)
27r , 0 otherwise.

(7)

LEMMA 2.3. For any real b > 0 and complex z,

e-bx eZdx ezg/4b.

LEMMA 2.4. For any real b > 0 and a > O,

cx) -baz
(8) e-bdx <

2ba

(9)

Proof

e-bXZdx e-b(x+a)dx < e-baz e-2baXdx
2ba
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2.2. Relevant facts from approximation theory. The principal tool of this paper is a
somewhat detailed analysis of Fourier series of functions [-Tr, 7r] C given by the
formula

(10) (x) e.-bx2 icx,

where b > 1/2 and c are real numbers. We present this analysis in the lemmas and theo-
rems of this subsection, numbered 2.5-2.10.

Lemmas 2.5 and 2.6 provide two inequalities that are used in Theorem 2.7, and
Theorems 2.7-2.9 are intermediate results leading to Theorem 2.10. This final theorem
explains how to approximate functions of the form e using a small number of terms,
and the algorithms of this paper are based upon this result. We derive error bounds
for all approximations that allow us to perform numerical computations to any specified
accuracy.

LEMMA 2.5. For any real b > 1/2, c and any integer k,

(11) cos((c- k)x)dx + e-bE ei(-k)Zdx (1)<27re-b’? 1+-
Proof Using the triangle inequality and Lemma 2.4, we have

(12) < 2 e-bxdx + 27re-b,r < 27re-br
1

2bTr2

<27re-br ( 1 )-+1
LEMMA 2.6. For any real b > 1/2, c and any integer k,

(13)

cos((c k)x)dx + e-b. ei(-k)dx

+1)

2 e-b2 cos((c- k)x)dx + e-b2. ei(-k)dx <

Proof. Integrating by parts, we have

2 e-bx2. cos((c k)x)dx

(14) 2[ + xe-bz sin((c k)x)dx
c- k

e-bx"sin((c-- k)x)
c- k

2 -b sin((c k)Tr) +
4b

xe-bx sin((c k)x)dx.

After rearranging the terms in (14) and integrating by parts again, we obtain

(15)

2 e-b cos((c- k)x)dx /
2e-br2
c- k

sin((c- k)Tr)
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4b
xe-bx2 sin((c k)x)dx

4b ([xe_bx2(_ k). co((- k)) (1 2bx2)e-b" cos((c- k)x)dx)
+ e + x 2bxe-bX’dx<

(c k)2
re-br -b:dx

(c- k)2
71"e

-bTr2 -I- e

Finally, due to (15) and Lemmas 2.1 and 2.4, we have
(16)

2 e-b cos((c- k)x)dx + e-b. ei(C-k)Xdx < (c_k)" 27r+2-
8bTre-br (< (c-k) 1+-

The following theorem provides an explicit expression for the coefficients of a Fourier
series that approximates functions of the form (10).

THEOREM 2.7. Let (z) e-beiCfor any real b > 1/2, a Then, for any z E (-Tr, 7r),

(17)

where
1 _(c_k)2/4b(18/ Pk 2x/--

for k
Proof We denote by ak the kth Fourier coefficient for , so that for x E (-Tr, 7r),

(19) (z)= aei,

and due to Lemma 2.3 and (18), we have
(20)

xf (x)e-ikdx

e_bxg, eicxe-ikXdx e-bx eicae-ikXdx e-bx" eicxe-ikZdx

Pk
1

e-b cos((c- k)x)dx.
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Rearranging (20) and applying Lemmas 2.5 and 2.6, we obtain the inequalities

(21) [ak Pk

(22) lak p

e-br it__. eicxe-ikXdx
27r r

-br

it__ eicxe-ikxdx
27r r

( 11< e-br 1 + -4be-br(<

and it now follows from the combination of (19), (21), and (22) that, for any x e (-Tr, 7r),

(23)

Some elementary analysis yields

1 1 f dx 1 1 4
(24/ ZV < +j3 x--ff= +=’k=3

and substituting (24) into (23), we have

(25)

To complete the proofwe make use of the triangle inequality and (25) to obtain

(26)

Remark 2.1. According to Theorem 2.7, functions of the form e-bxeiCX can be ap-
proximated by a Fourier series whose coefficients are given analytically, and the error of
the approximation decreases exponentially as b increases.

Remark 2.2. The coefficients Pk as defined by (18) have a peak at k [c], the near-
est integer to c, and decay exponentially as k - +/-oc. We keep only the q + I largest
coefficients, where the integer q is chosen such that

(27) q _> 4br,

so as to satisfy the inequality

(28) e-(q/2):/4b <_ e-br2
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The following theorem estimates the truncation error under the conditions of Re-
mark 2.2 and thus provides away of approximating functions ofthe form (10) by a (q+ 1)-
term series.

THEOREM 2.8. Let (x) e-bz2eicx for any real b > 1/2, and let q be an even integer
such that q >_ 4tin. Then, for any E (-Tr, 7r),

(29)
[c]+q/2

(x)-- Z Pkeik:r
k:[cl-q/2

where {Pk } are defined by (18).
Proof. For any x E (-Tr, r),

< e-b"2. (4b+ 9),

(30)

[c]+q/2

k=[c]-q/2

k:-o k> [c]+q/2 k< [c]-q/2

Due to (18) and the triangle inequality, we have the inequalities

(31)

(32)

pkeikx
k>[clTq/2

k<[c]-q/2

e_(c_k)2/4b -k2/4b
<

k=[cl-l-q/2-l-1 k:q/2

[c]--ql2--1 _(c_k)2/4b o _k2/4b

2,1- <
k=q/2

Some elementary analysis and an application of Lemma 2.4 yields

(33) Z e’--k2/4b < e-(q/2)2/4b "3L e-x2/4bdx < e-(q/2)2/4b" 1 + 2q/2
k=q/2 /2

and it follows from the combination of (27), (28), and (33) that

(34) Z e-k2/4b < e-bTr2 1+
k--q/2

Substituting (34) into (31) and (32), we have

and finally, substituting (26) and (35) into (30), we obtain

(36)
[c]+q/2

k--[c]--q/2
( 70 ) (--b71"2 (4b 9)< e-bE2 4b + - + < +
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The following corollary describes a formula for approximating eicx using a series of
q + I terms.

COROLLARY 2.9. Suppose that m > 2 is an integer and that the conditions ofTheorem
2.8 are satisfied. Then, multiplying both sides of (29) by ebx, we obtain

(37)

[1+/2
eicz ebz Pkeik

k=[c]
< eb e-br (4b + 9)

< eb/m e-b (4b + 9)

for any x E [- ,r

Finally, Theorem 2.10 makes use of a simple linear scaling to generalize the inequal-
ity (37) from [-, ] to any interval [-d, d]. This is the principal result of the section.

THEOREM 2.10. Let b > 1/2, c, d > 0 be real numbers, and let m > 2, q > 4br be
integers. Then, for any x [-d, c,

[cmd/Tr]+q/2

(38) e eb(xr/md)2 pkeikxr/md < e-brg(1-1/m2) (4b + 9)
k=[cmd/Tr]-q/2

where {Pk } are defined by (lS).
Remark 2.3. The error bounds obtained in the above theorems are rather pes-

simistic. Numerical estimates for the actual errors can be found in the Appendix to
this paper.

3. Exact statement of the problem. In the remainder of this paper we will operate
under the following assumptions:

1. w {w0,..., WN} and x {x0,..., Xg} are finite sequences of real numbers.
2. wk e [-N/2, N/2] for k 0,..., N.
3. xj [-Tr, 7r] for j 0,..., N.
4. c {cz0,...,CZN}, f {f-N/2,...,IN/2}, fl {3-N/2,...,3N/2}, g

{g0,.-., gN}, 7 {70,’’’, 7N} and h {ho,..., hN} are finite sequences of complex
numbers.

We will consider the problems of applying and inverting the Fourier matrix and its
transpose, i.e., we are interested in the transformations F, G CN+I CN+I and their
inverses defined by the formulae

N

(39) fj F(c) Z ck eiwk’2rj/N

k=0

for j -N/2,..., N/2, and

N/2

(40) gj G(B) Z 3k’e’
forj 0,...,N.

Remark 3.1. If xk --Wk 27r/N for k 0,..., N, then (39) can be rewritten as

(41)
N

--ijxk
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or alternatively as F G*.
We will also consider the more general transformation H CN+I --+ CN-t-1 defined

by the formula

N

(42) h H(7)
k=0

More formally, we consider the following problems:
Problem 1. Given a, find f F(a).
Problem 2. Given , find g G(fl).
Problem 3. Given 7, find h H(7).
Problem 4. Given f, find a F- (f).
Problem 5. Given g, find G-l(g).

Remark 3.2. We wish to perform all calculations with a fixed relative accuracy e > 0.
In the case ofProblem 1, for instance, we are looking for a vector ] {LN/,..., ]N/}
such that

(43)
Ilfll

In this sense, all algorithms described in this paper are approximate ones.

4. Informal descriptions ofthe algorithms. In this section we give informal outlines
of algorithms for Problems 1-5 of 3. More formal descriptions of these algorithms are
presented in 6.

4.1. Algorithms 1, 2, and 3 for Problems 1, 2, and 3. The algorithms for these prob-
lems are based on the following principal observation.

Observation 4.1. According to Theorem 2.10, any function of the form ecx can be
accurately represented on any finite interval on the real line using a small number of
terms of the form ebx ek, and this number of terms, q, is independent of the value
of c.

The FFT algorithm applies the Fourier matrix to arbitrary complex vectors in
O(N log N) operations when {wk} are integers and {xj} are equally spaced in [-Tr, 7r].
For the efficient application of the transformations described by (39), (40), and (42), we
relate these more general cases to the equispaced case of the FFT. Observation 4.1 is
used in two ways to achieve this:

to approximate each e in terms of a q-term Fourier series;
to approximate the value of a Fourier series at each xj in terms of values at the

nearest q equispaced nodes.
This interpolation between equispaced and nonequispaced sets of points can thus

be performed in O(Nq) operations.
Observation 4.2. The overall complexity of each such algorithm that couples the FFT

with the interpolation scheme will be O(N log N + Nq) operations.

4.2. Algorithms 4 and 5 for Problems 4 and 5. Here we are interested in applying
the complex matrices A- and (A*)- to arbitrary complex vectors where the elements
of A are defined by

(44) Ajk eikx

for j 0,..., N and k -N/2,..., N/2.



1376 A. DUTrAND V. ROKHLIN

We make use of the following two simple observations.
Observation 4.3. The matrix AA* is Toeplitz, and furthermore, its 2N + 1 distinct

elements can be computed in O(N log N + Nq) operations due to Observation 4.2.
Proof. It is obvious from (44) that

N N

(45) (aa*)j e’j e-a e’0-0,
k=0 k=0

which is a function only of (j 1), and is of the same form as (41), the description for
Problem 1. El

Observation 4.4. From elementary matrix identities we see that

(46) A-1 A*(AA*)-1,

(47) (A*) -1 (AA*)-A.
The Toeplitz matrix AA* can be applied to arbitrary vectors in O(N log N) opera-

tions using an FFT-based discrete convolution. (AA*)-I can therefore be applied to a
vector in O(n(A).N log N) operations using the conjugate gradient method where n(A)
is the condition number of A.

Observation 4.5. A- and (A*)- can be applied to arbitrary vectors using O(n(A).
N logN + Nq) operations due to Observations 4.2 and 4.4.

Remark 4.6. It is well known that the condition number of A is 1 if the points {zj }
are equally spaced. While the condition number deteriorates as the distribution ofpoints
becomes more nonuniform, in many cases of practical interest the points will be fairly
uniformly spaced, so the condition number will not be very large.

4.3. Algorithm 6 for a variant of Problem 5. The following lemma describes a way
of computing the coefficients of an (N/2 + 1)-term Fourier series that is tabulated at
N + 1 points.

LEMMA 4.1. Suppose that the N+ lfunction values Y0, YN are given by theformula
N/4

(48) g. /.ei:,
k---N/4

and the rector {o,...,N} is the unique solution ofthe linear system described by the
equation

N { 1 ifk=O,
(49) .eikz

j=o 0 otherwise

for k -Y/2,. N/2. Then, for k -Y/4,. g/4,

N

(50) flk j "gj" e-’kz
j=0

Proof. Substituting for gj from (48), we have for k -N/4,..., N/4

(51)
N N N/4

j=0 j=0 t=-N/4
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(52)

(53)

N/4 N

l---N/4 j--O

k. D

Remark 4.7. According to (49) and Lemma 2.2,

(54)
N 71"

ZJ eikX __1 f eikXdx
j=o

27r r

for k -N/2,..., N/2. Thus, the set of numbers (j } can be considered as quadrature
weights that integrate exactly all Nth order trigonometric polynomials at the nodes {x }.

Observation 4.8. Rewriting (49) in matrix notation, we see that

(55) AT (0,..., O, 1, 0,..., O)T A*,

where Ajk eik, so the vector is real and can be computed using O(a(A).N logN+
Nq) operations due to Observation 4.5.

Observation 4.9. Equation (50) is of the same form as (41). Thus, provided the
vector is known, the vector/ can be computed in O(N log N + Nq) operations due to
Observation 4.2.

Remark 4.10. According to Observation 4.9, if a function described by an (N/2+ 1)-
term Fourier series is tabulated at N + 1 arbitrary nodes, the (N/2 + 1) coefficients can
be obtained in O(N logN + Nq) operations. Also, due to Observation 4.8, the precom-
putation of the numbers {} needed for this algorithm requires O(a(A).N logN+Nq)
operations.

5. Notation. In this section we introduce the notation to be used in the next section
for the detailed algorithm descriptions.

For an integer m > 2 and a real number b > 0, we will define a real number e > 0
by

(56) e e-brz(1-1/m2). (4b + 9),

and we will denote by q the smallest even natural number such that

(57) q _> 4bTr.

For an integer m and a set of real numbers {wk }, we will denote by #k the nearest
integer to rnwk for k 0,..., N, and by {P} a set of real numbers defined by the
formula

1 _(mwk_(pkh_j))2/4b(58) Pjk 2x/
e

for k 0,...,N andj -q/2,...,q/2.
Observation 5.1. Setting d 7r in Theorem 2.10, we see that

(59)
q/2

eiWx eb(x/m) Z Pjk ei(tt+j)x/m
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for any k 0,..., N and any z E [-Tr, 7r], where e is defined by (56).
For a given set of complex numbers {ak }, we will denote by {73 } the unique set of

complex coefficients such that

so that

(61) "rt c. P.
j,k,lk+j=l

We will denote by {Tj } a set of complex numbers defined by the formula

(62) T y T. e2ik/mN

k=-mN/2

for j -mN/2, mN/2 1.
Furthermore, we will denote by {f } another set of complex numbers defined by the

formula

(63) ]j eb(2rj/mN)2 Tj

forj -N/2,...,N/2.
Observation 5.2. Combining (59)-(63) with the triangle inequality, we see that

N

(64) If l < e- Z Ickl
k=0

for j -N/2,..., N/2, where {fj F(c)} are defined by (39).
For an integer m and a set of real numbers {x# }, we will denote by u# the nearest

integer to x#mN/27r for j 0,..., N, and by {Q#k } a set of real numbers defined by the
formula

1
(65) Qjk 2x/--

e-(xjmN/27r-(vj+k))2/4b

forj 0,...,N and k -q/2,...,q/2.
Observation 5.3. Setting d N/2 in Theorem 2.10, we see that

(66)
q/2

ekj eb(Z-/m) Q# e(,#+t)k/,N
l---q/2

for any j 0,..., N and any k [-N/2, N/2], where e is defined by (56).
For a given set of complex numbers (/3k }, we will denote by {uk } a set of complex

numbers defined by the formula

(67) Uk --/k eb(2rk/mN)9



FFTS FOR NONEQUISPACED DATA 1379

for k -N/2,..., N/2, and by {Us } a set of complex numbers defined by the formula

N/2

(68)
k=-N/2

for -mN/2, mN/2 1.
Furthermore, we will denote by {j} another set of complex numbers defined by the

formula

(69)
q/2

t E Q U+
t=-q/2

forj 0,...,N.
Observation 5.4. Combining (66)-(69) with the triangle inequality, we see that

N

(70) < I kl
k=0

for j 0,..., N, where {g G(/3) } are defined by (40).
For a set of real numbers {xj}, we will denote by / the nearest integer to xjN/27r

for j 0,..., N, and by {Rk} a set of real numbers defined by the formula

1 _(,jN/27r_(rl+k))2/4b(71) Rjk 2x/
e

forj 0,...,N and k -q/2,...,q/2.
Observation 5.5. Setting d N/2 in Theorem 2.10, we see that

(72)
q/2

eikx/m eb(27rk/mN)2 ei(rl +l)27rk/mNR.
l----q/2

for any j 0,..., N and any k E [-N/2, N/2], where e is defined by (56).
For a given set of complex numbers {Tk }, we will denote by {vj } the unique set of

complex coefficients such that

N q/2 raN/2

(73) E
k--0 j----q j----mN/2

so that

(74) vt E 7k Pjk.
j,k,rl +j=l

We denote by {V} } a set of complex numbers defined by the formula

(75) V
raN/2

k=-mN/2
Vk eb(27rk/mgN)9. e2rikl/mgN

for -m2N/2, m2N/2 1.
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Furthermore, we will denote by {hi } another set of complex numbers defined by the
formula

(76)

forj O,...,N.

that

q/2

h=/>

Observation 5.6. Combining (59) and (72)-(76) with the triangle inequality, we see

N

(77) IhJ hJ < 8" Z lTk]
k=0

for j 0,..., N, where {hi H(7) } are defined by (42), and

(78) 6 2e-b(1-2/’2). (4b + 9).
For a set of real numbers {x}, A will denote a complex matrA whose elements are

given by

(79) Ajk eikx

for k -N/2,..., N/2 and j 0,..., N, and a {a-N,..., aN} will denote a set of
complex numbers defined by the formula

N

(80) .
j=0

Finally, {o,...,s} will denote a real vector defined by

(81) (A*)-(0,..., 0,1, 0,..., 0).
Remark 5.7. It is clear from Obseation 4.3 that

(82) (AA*) a_.

6. Detailed descriptions of the algorithms. This section contains step-by-step de-
scriptions and operation counts for the six algorithms of this paper. In the tables below

m2we will make use of the facts that q log() and << N.
ALGORITHM 1.
Step Complexity Description

Init O(Nq) Comment [Input parameter is the vector {wo,..., wN}.]
Choose precision e to be achieved.

Set b log(l/e) and q [4/nr].
dok =0, N

Determine #k, the nearest integer to rmvk
do j --q/2, q/2

ComputeP according to (58)
end do

end do

do j -/, N/Z
Compute eb(2rj/mN)2

end do
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1 O(Nq)

2 O(mN log N)

3 O(N)

Total

ALGORITHM 2.
Step Complexity

Init O(Nq)

O(N)

2 O(mN log N)

3 O(Nq)

Comment [Input parameter is the vector {a0,..., aN}.]
Comment [Compute Fourier coefficients -j.]
dok=0, N

do j --q/2, q/2

"r, +. + +P a
end do

end do

Comment [Evaluate this Fourier Series at equispaced points in [-mTr, mTr] us-
ing inverse FFT of size raN.]

-mN/2--1 e27rikj/mNCompute Tj Z-k.--mN/2 Tk for

j -mN/2,..., mN/2 1.

Comment [Scale the values at those points which lie in [-Tr, 7r].]
doj -N/2, N/2

if Tj eb(2rj/mN):

end do

O(N. log( 1-) + mN. log N)

Description

Comment [Input parameter is the vector {xo,..., XN).]
Choose precision e to be achieved.

Set b log(l/e) and q [4bTr].
doj 0, N

Determine uj, the nearest integer to xjmN/27r
dok -q/2, q/2

Compute Qjk according to (65)
end do

end do

do k -N/2, N/2
Compute eb(27rk/mN)2

end do

Comment [Input parameter is the complex vector {-N/2,...,/N/2}.]
Comment [Compute new, scaled Fourier coefficients.]
do k -N/2, N/2

Uk k eb(27rk/mN)2
end do

Comment [Evaluate this Fourier Series at equispaced points in [-Tr, 7r] using
inverse FFT of size raN.]

’N/2 e2,rcikj/mNCompute Uj z.-k=-N/2 k for j -mN/2, mN/2 1.

Comment [Compute approximate values at desired points in terms ofthe values
at equispaced points.]
doj 0, N

do k -q/2, q/2

O +Q u.+
end do

end do

Total O(mN. log N + N. log(1/2))
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ALGORITHM 3.
Step Complexity
Init O(Nq)

Description
Comment [Input parameters are the vectors {too,..., toN }
and {xo, XN }.]
Choose precision e to be achieved.

Set b log(l/e) and q [4/nr].
dok =0, N

Determine #k, the nearest integer to

do j --q/2, q/2
ComputeP according to (58)

end do

end do
do k -raNraN

Compute e(2/mN)

end do

doj 0, N
Determine r/j, the nearest integer to xj N/27r
do k -q/2, q/2

Compute Rjk according to (71)
end do

end do

doj 0, N

Compute eb(x
end do

1 O(Nq) Comment [Input parameter is the vector {7o,..., 7N }.]
Comment [Compute Fourier coefficients vj.]
dok =0, N

do j --q/2, q/2
vt, + vg+ + Pk 7re

end do

end do

2 O(mN) Comment [Scale the coefficients.]
do k -mN/2, mN/2

Vk Vk eb(2rk/m2N)2
end do

3 O(m2N log N)

4 O(Nq)

Comment [Evaluate this Fourier Series at equispaced points in

[-mTr, mTr] using inverse FFT of size m2N.]
"mN/2 e2rikj/mg.NCompute Z-,k=-mg/2 vk

for j --m2N/2,..., m2N/2 1.

Comment [Compute approximate values at desired points in

terms of the values at equispaced points.]
doj 0, N

do k --q/2, q/2

h h +R v,+
end do

end do
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s O(U) Comment [Scale the values.]
doj 0,N

hj hj eb(xJ
end do

Total O(mZN logN + N. log(T))

ALGORITHM 4.
Step Complexity
Init O(N log N + Nq)

1 O(N log N + Nq)

2 O(e(A). N log N)

Total O(e;(A). N. log N + N. log(}))
ALGORITHM 5.
Step Complexity
Init O(N log N + Nq)

1 O(n,(A). N log N)

2 O(N log N + Nq)

Total O(n,(a). N. logU 4- U. log(T))

ALGORITHM 6.
Step Complexity

Description
Initialization for Algorithm 1.
Initialization for Algorithm 2.
Compute elements {ak} of Toeplitz matrix (AA*) as defined
by (80) using Algorithm 1.

Compute Af using Algorithm 2.

Compute & (AA*)-1 (Af) using Conjugate Gradient algo-
rithm.

Description
Initialization for Algorithm 1.
Compute elements {ak } of Toeplitz matrix (AA*)-1 as defined
by (80) using Algorithm 1.

Compute (AA*) 9 using Conjugate Gradient algorithm.

Compute A* ((AA* )- 9) using Algorithm 1.

Description

Init O(e(A). N log N 4- Nq)

O(N)

2 O(N log N 4- Nq)

Total O(U. log N 4- U. log(}))

Initialization for Algorithm 5.
Compute as defined by (81) using Algorithm 5.

Compute 0j jgj for d 0,..., N.

Compute/ A* using Algorithm 1.

The storage requirements ofan algorithm are also an important characteristic. From
the above descriptions for the initialization steps, the asymptotic storage requirements
for each algorithm are of the form

(83) A.N.q,
where the coefficient A is software- and hardware-dependent.

7. Implementation and numerical results. We have written FORTRAN implemen-
tations of the six algorithms of this paper in both single and double precision arithmetic
and have applied these programs to a variety of situations. In this section we discuss sev-
eral details of our implementations and demonstrate the performance of the algorithms
with six numerical examples.

Several technical details of our implementations appear to be worth mentioning
here.
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1. Each implementation consists of two main subroutines: the first is an initializa-
tion stage in which the matrix operators of the algorithm are precomputed and stored,
and the second is an evaluation stage in which these operators are applied. Successive
application of the linear transformations to multiple vectors requires the initialization
to be performed only once.

2. For the single precision versions of each algorithm our choice of parameters was
ra 2, b 0.5993, and q 10. For double precision we chose ra 2, b 1.5629, and
q= 28.

3. The algorithms as described in this paper all require an FFT of size proportional
to N, and thus will perform efficiently whenever the FFT does. This restriction on the
FFT size can be removed by extending the input vector to length 2 [og. N] (i.e., the small-
est power of 2 which is greater than N) and padding it with zeroes. This ensures that the
algorithms will perform efficiently for any choice of N. In our implementations, these
changes were made.

4. Each of the algorithms of this paper requires the evaluation of sums of the form

N/2-1

(84) fJ E ak e2’’kj/N

k---N/2

for j -N/2,..., N/2 1, whereas most FFT software computes sums of the form

N-1

(8s)
k=0

for j 0,..., N 1. We used a standard FFT to evaluate sums of the form (84) by
defining &k ak for k 0,..., N/2 1, &k ak-N for k N/2, N 1, ]j fj
for j 0,..., N/2- 1, and ]j fk-N for j N/2,..., N- 1. This substitution
converts the form (84) to the form (85).

Our implementations of the algorithms of this paper have been tested on the Sun
SPARCstation 1 for a variety of input data. Six experiments are described below and
their results are summarized in Tables 1-6. These tables contain accuracies and CPU
timings for the algorithms with computations performed in both single and double pre-
cision arithmetic, and the input size N varying between 64 and 4096. In addition, each
table contains the CPU times required to solve the same set of problems via a direct
calculation, and Tables 1-3 include timings for an FFT of the same size. Tables 1-3 also
contain the accuracies of the direct single precision calculations.

Two measures of accuracy were chosen for each example. In Examples 1, 2, and 3,
these are defined by the formulae

(86)

and

E max Ifj fjl I1,
O<_j<_N / j=0

(87) E2 E IL fj Ifj
j=0 / j=0

where a is the in.put vector, f is the result of a direct computation in double precision
arithmetic, and f is the result of the computation being considered.
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(88)

and

In Examples 4, 5, and 6, they are defined by

E max I&. a.l / max
O<_j<_N /O<_j<_N

(89)
j=0 / j=0

where a is the input for a direct double precision computation, and is the result of
applying the algorithm to the result of this computation.

Remark 7.1. The formulae (86)-(89) measure fairly accurately the errors of all single
precision computations. However, they can only provide rough estimates of the errors
produced by the double precision versions of the algorithms.

Remark 7.2. In the direct methods for Problems 1 and 2, we used the fact that
ek (e)k to reduce the number of exponential computations from N to N. N
exponentials are required in the direct method for Problem 3, and, for larger N, the
available memory on the machine is insufficient for the precomputation and storage of
these numbers. The direct implementation we used for this problem computes each
exponential when it is needed.

Remark 7.3. Standard LINPACK Gaussian elimination subroutines were used as
the direct methods for comparing timings in Examples 4, 5 and 6. Estimated timings are
presented for larger N, where this computation became impractical.

Following are the descriptions ofthe experiments and the tables ofnumerical results.
Example 1. Here we consider the transformation F CN+I __.+ cN+I of Problem 1

as defined by the formula

N

(90) F(a)j Z Ol,k Eiw.2"xj/N
k=0

for j -N/2,... ,N/2. In this example, {w0,... ,WU} were randomly distributed on
the interval I-N/2, N/2], and {a0, , aN} were generated randomly on the unit square
in the complex plane defined by the formulae

(91) 0 _< Re(z) _< 1, 0 _< Im(z) _< 1.

The results of applying Algorithm 1 to this problem are presented in Tables l(a) and
l(b).

Example 2. Here we consider the transformation G CN+ -, CN+ of Problem 2
as defined by the formula

N/2

(92) G()j
k---N/2

for j 0,..., N. In this example, {0,... ,N} were randomly distributed on the inter-
val [-r, r], and {3-N/2,..., DN/2 } were generated randomly on the unit square in the
complex plane defined by the formulae

(93) 0 < Re(z) < 1, 0 < Im(z) < 1.
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N

25(

204
409

TABLE l(a)
Example 1. Singleprecision computations.

Errors

Algorithm Direct

Eoo E2 Eoo E2
0.959 E-06
0.108 E-05
0.122 E-05
0.176 E-05
0.199 E-05
0.255 E-05
0.427 E-05

0.149 E-05
0.265 E-05
0.329 E-05
0.796 E-05
0.113 E-04
0.230 E-04
0.431 E-04

0.411 E-06
0.724 E-06
0.996 E-06
0.154 E-05
0.197 E-05
0.317 E-05
0.506 E-05

0.979 E-06
0.182 E-05
0.370 E-05
0.691 E-05
0.146 E-04
0.280 E-04
0.555 E-04

Timings (sec.)
Algorithm Direct

Init. Eval.

FFT

0.011 0.003 0.01 0.0008
0.022 0.006 0.03 0.0015
0.044 0.014 0.13 0.0034
0.088 0.029 0.49 0.0078
0.174 0.065 1.90 0.0174
0.348 0.136 7.47 0.0352
0.701 0.315 30.24 0.0846

N

64
128
256
512
1024
2048
4096

TABLE l(b)
Example 1. Doubleprecision computations.

Errors Timings (sec.)

Eoo E2 Alg. init. Alg. eval. Direct FFT

0.602 E-14
0.356 E-14
0.437 E-14
0.519 E-14
0.518 E-14
0.755 E-14
0.118 E-13

0.638 E-14
0.715 E-14
0.946 E-14
0.160 E-13
0.314 E-13
0.631E-13
0.125 E-12

0.036
0.075
0.148
0.297
0.600
1.204
2.418

0.008 0.02 0.001
0.016 0.06 0.002
0.034 0.22 0.005
0.075 0.84 0.012
0.155 3.23 0.026
0.322 12.55 0.059
0.713 49.69 0.132

TABLE 2(a)
Example 2. Singleprecision computations.

N Errors

Algorithm Direct

Eoo E2 Eoo E2
64
128
256
512
1024
2048
4096

0.870 E-06
0.148 E-05
0.780 E-06
0.953 E-06
0.182 E-05
0.209 E-05
0.427 E-05

0.176 E-05
0.199 E-05
0.349 E-05
0.890 E-05
0.103 E-04
0.181E-04
0.318 E-04

0.147 E-06
0.541 E-06
0.414 E-06
0.828 E-06
0.311 E-05
0.685 E-05
0.211 E-04

Timings (sec.)
Algorithm Direct

Init. Eval.

FFT

0.298 E-06 0.011 0.003 0.01 0.0008
0.764 E-06 0.022 0.005 0.03 0.0015
0.114 E-05 0.043 0.012 0.12 0.0034
0.334 E-05 0.086 0.027 0.46 0.0078
0.534 E-05 0.174 0.055 1.80 0.0174
0.923 E-05 0.345 0.124 7.11 0.0352
0.222 E-04 0.687 0.283 29.03 0.0846

N

64
128
256
512
1024
2048
4096

TABLE 2(b)
Example 2. Doubleprecision compuations.

Errors Timings (sec.)

E2 Alg. init. Alg. eval. Direct FFT

0.814 E-i40.249 E-14
0.501 E-14
0.418 E-14
0.356 E-14
0.793 E-14
0.138 E-13
0.278 E-13

0.746 E-14
0.623 E-14
0.831 E-14
0.192 E-13
0.405 E-13
0.904 E-13

0.038
0.075
0.148
0.297
0.596
1.188
2.387

0.005 0.01 0.001
0.012 0.05 0.002
0.028 0.18 0.005
0.060 0.69 0.012
0.126 2.72 0.026
0.264 10.86 0.059
0.573 43.36 0.132
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The results of applying Algorithm 2 to this problem are presented in Tables 2(a) and
2(b).

Example 3. Here we consider the transformation H Cu+ Cu+ of Problem 3
as defined by the formula

N

(94) H(’7) Z "/" e’
k=0

for j 0,... ,N. In this example, {w0,... ,0)N} were randomly distributed on the in-
terval [-N/2, N/2], {z0,..., ZU} were randomly distributed on the interval [-Tr, 7r], and
{’)’0,..., ")’N } were generated randomly on the unit square in the complex plane defined
by the formulae

(95) 0 _< Re(z) _< 1, 0 _< Im(z) < 1.

The results of applying Algorithm 3 to this problem are presented in Tables 3(a) and
3(b).

TABLE 3(a)
Example 3. Singleprecision computations.

N Errors

Algorithm Direct

Eo E2 Eo E2
64 0.133 E-05
128 0.154 E-05
256 0.152 E-05
512 0.188 E-05
1024 0.277 E-05
2048 0.734 E-05
4096 0.828 E-05

0.232 E-05
0.362 E-05
0.550 E-05
0.956 E-05
0.151E-04
0.364 E-04
0.726 E-04

0.341E-06
0.405 E-06
0.736 E-06
0.113 E-05
0.163 E-05
0.290 E-05
0.461E-05

0.673 E-06
0.121E-05
0.292 E-05
0.642 E-05
0.110 E-04
0.267 E-04
0.526 E-04

Timings (see.)
Algorithm Direct

Init. Eval.

FFT

0.022 0.007 0.12 0.0008
0.044 0.013 0.46 0.0015
0.087 0.029 1.90 0.0034
0.177 0.061 7.79 0.0078
0.352 0.131 32.04 0.0174
0.706 0.299 131.41 0.0352
1.404 0.644 532.95 0.0846

TABLE 3(b)
Example 3. Doubleprecision computations.

N Errors

Eo E2
64
128
256
512
1024
2048
4096

0.166 E-13
0.252 E-13
0.318 E-13
0.131 E-13
0.203 E-13
0.324 E-13
0.244 E-13

Timings (sec.)
Alg. init. Alg. eval.

0.226 E-13 0.074
0.216 E-13 0.153
0.315 E-13 0.302
0.289 E-13 0.601
0.425 E-13 1.210
0.801E-13 2.403
0.124 E-12 4.824

Direct FFT

0.015 0.20 0.001
0.034 0.79 0.002
0.069 3.18 0.005
0.146 12.76 0.012
0.297 51.12 0.026
0.643 205.17 0.059
1.326 827.52 0.132

Example 4. Here we consider Problem 4 of 3. In this example, the numbers {wk}
were defined by the formula

N N
(96) wk 2 + (k + 0.5 + 6k) N + 1

for k 0,..., N, where 6k were randomly distributed on the interval [-0.1, 0.1]. In
addition, the numbers {a0,..., aN} were generated randomly on the unit square in the
complex plane defined by the formulae
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(97) 0 < Re(z) < 1, 0 < Im(z) < 1,

and the numbers {f-N/2,..., fNl2} were computed directly in double precision arith-
metic according to the formula

N

(98) fj ak" e’’zj/N

k=0

The vector f was then used as input for Algorithm 4. Results of this experiment are
presented in Tables 4(a) and 4(b).

TABLE 4(a)
Example 4. Singleprecision computations.

N

64
128
256
512
1024
2048
4096

Errors Timings (sec.)

Eo E2 Alg. init. Alg. eval. Direct

0.492 E-05
0.154 E-04
0.424 E-04
0.809 E-04
0.203 E-03
0.428 E-03
0.106 E-02

0.339 E-05
0.568 E-05
0.128 E-04
0.252 E-04
0.474 E-04
0.979 E-04
0.195 E-03

0.02
0.04
0.08
0.18
0.36
0.78
1.66

0.05
0.11
0.20
0.45
0.82
1.91
4.64

0.36
2.78
23.0
184

1472 (est.)
11776 (est.)
94208 (est.)

TABLE 4(b)
Example 4. Doubleprecision computations.

N

64
128
256
512
1024
2048
4096

Errors Timings (sec.)

Eo
0.143 E-13
0.208 E-13
0.493 E-13
0.121 E-12
0.279 E-12
0.593 E-12
0.138 E-11

E2 Alg. init.

0.109 E-13 0.07
0.149 E-13 0.11
0.256 E-13 0.20
0.500 E-13 0.48
0.926 E-13 0.94
0.192 E-12 1.95
0.375 E-12 4.02

Alg. eval.

0.17
0.34
0.75
1.67
3.55
7.75
18.28

Direct

0.37
2.96
23.6
189

1512 (est.)
12096 (est.)
96768 (est.)

Example 5. Here we consider Problem 5 of 3. In this example, the numbers {zj }
were defined by the formula

(99) x -Tr + 2r.
j + 0.5 + 6
N+I

for j 0,..., N, where 6j were randomly distributed on the interval [-0.1, 0.1]. In
addition, the numbers {-N/2,..., DN/2} were generated randomly on the unit square
in the complex plane defined by the formulae

(100) 0 _< Re(z) _< 1, 0 < Im(z) < 1,

and the numbers {go,..., gN} were computed directly in double precision arithmetic
according to the formula

N/2

(101) gJ Z /3k.eix.
=-N/Z
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The vector g was then used as input for Algorithm 5. Results of this experiment are
presented in Tables 5(a) and 5(b).

TABLE 5(a)
Example 5. Singleprecision computations.

N Errors

Eo E2
64 0.212 E-05
128 0.117 E-04
256 0.190 E-04
512 0.287 E-04
1024 0.560 E-04
2048 0.106 E-03
4096 0.225 E-03

Timings (sec.)
Alg. init. Alg. eval. Direct

0.183 E-05 0.02
0.523 E-05 0.04
0.955 E-05 0.09
0.202 E-04 0.19

0.06
0.10
0.19
0.41

0.36
2.78
23.0
184

0.376 E-04 0.37
0.752 E-04 0.78
0.148 E-03 1.66

0.83
1.90
4.67

1472 (est.)
11776 (est.)
94208 (est.)

TABLE 5(b)
Example 5. Doubleprecision computations.

N Errors

Eo E2
64 0.310 E-13
128 0.389 E-13
256 0.577 E-13
512 0.673 E-13
1024 0.118 E-12
2048 0.190 E-12
4096 0.429 E-12

Timings (sec.)
Alg. init. Alg. eval. Direct

0.120 E-13 0.06
0.146 E-14 0.10
0.204 E-13 0.24
0.325 E-13 0.47
0.817 E-13 0.97
0.134 E-12 1.86
0.288 E-12 3.93

0.18
0.36
0.76
1.61
3.54
7.73
18.21

0.37
2.96
23.6
189

1512 (est.)
12096 (est.)
96768 (est.)

Example 6. Here we consider the variant of Problem 5 which was described in 4.3.
In this example, the numbers {xj } were defined by the formula

(102) + j + +
N+I

for j 0,..., N, where 6j were randomly distributed on the interval [-0.1, 0.1]. In
addition, the numbers {/3-N/4,..., fiN were generated randomly on the unit square
in the complex plane defined by the formulae

(103) 0 _< Re(z) _< 1, 0 _< Im(z) < 1,

and the numbers {go,..., gN} were computed directly in double precision arithmetic
according to the formula

N/4

(104) g= /.e’.
=-N/4

The vector g was then used as input for Algorithm 6. Results of this experiment are
presented in Tables 6(a) and 6(b).

The following observations can be made from Tables 1-6 above and are in agreement
with results of our more extensive experiments.

1. The errors produced by Algorithms 1, 2, and 3 are comparable with those pro-
duced by the corresponding direct methods.
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TABLE 6(a)
Example 6. Singleprecision computations.

N Errors

Eo E2
64
128
256
512
1024
2048
4096

N

0.195 E-05
0.412 E-05
0.105 E-04
0.195 E-04
0.474 E-04
0.836 E-04
0.173 E-03

Timings (sec.)
Alg. init. Alg. eval. Direct

0.174 E-05 0.09
0.286 E-05 0.17
0.913 E-05 0.34
0.147 E-04 0.70
0.320 E-04 1.41
0.631E-04 3.05
0.135 E-03 7.22

0.004
0.007
0.014
0.031
0.066
0.147
0.330

0.36
2.78
23.0
184

1472 (est.)
11776 (est.)
94208 (est.)

TABLE 6(b)
Example 6. Doubleprecision computations.

Errors Timings (sec.)

E2 Alg. init. Alg. eval. Direct

64 0.878 E-14
128 0.102 E-13
256 0.213 E-13
512 0.444 E-13
1024 0.679 E-13
2048 0.151E-12
4096 0.308 E-12

0.762 E-14
0.981 E-14
0.180 E-13
0.376 E-13
0.520 E-13
0.115 E-12
0.232 E-12

0.32
0.62
1.25
2.64
5.82
12.37
27.61

0.008
0.018
0.039
0.083
0.170
0.359
0.766

0.37
2.96
23.6
189

1512 (est.)
12096 (est.)
96768 (est.)

2. The timings for Algorithms 1 and 2 are similar, which is to be expected since
Problem 2 is the adjoint of Problem 1. Algorithm 3 is about twice as costly, which is in
agreement with the fact that it is a synthesis of Algorithms i and 2.

3. In single precision computations for this particular architecture, implementation
and range of N, Algorithms 1 and 2 are less than four times as costly as an FFT of the
same size. For double precision the ratio is roughly six. These ratios decrease as N
increases.

4. The extrapolated break-even point of Algorithms 1 and 2 is at roughly N 32
if the initialization time is ignored. If the initialization time is included, the break-even
point is at N 256. For Algorithm 3, the break-even points are at N 8 without
initialization and at N 32 with initialization.

5. The timings for Algorithms 4 and 5 are similar as expected, since Problem 5 is the
adjoint of Problem 4.

6. The break-even points of Algorithms 4 and 5 are at roughly N 32. For Al-
gorithm 6, the break-even points are at N 32 if the initialization time is taken into
account and at N 16 if it is ignored.

7. Algorithms 1 and 2 tend to be slightly more accurate than their inverses, Algo-
rithms 4 and 5.

8. The initialization for Algorithm 6 is computationally costly, but subsequent eval-
uations require much less CPU time than evaluations for Algorithm 5.

Remark 7.4. The CPU timings for Algorithms 1, 2, and 3 are independent of the par-
ticular distributions of w and z, whereas the timings for Algorithms 4 and 5 are sensitive
to the distributions of these vectors.

$. Generalizations and conclusions. The results of this paper can be generalized in
the following ways.
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1. Simple modifications to Algorithms 1, 2, and 3 will allow the efficient application
of the linear transformations F1, (71, H1 Cu+l - CM+I defined by

N M M
(105) Fl(a):i Z" ei"’2j/M for j

2 "’" -’k--0

N/

(106) GI()j Z k" ei forj 0,...,M,
=-g/2

N

(107) Ul(7)j ZTk" e’x for j 0,..., U.
k=0

These changes have been implemented.
2. The algorithms ofthis paper also assume that wk E I-N/2, N/2] and xj

Other distributions can be handled by appropriately partitioning the vectors w and x,
treating each partition separately and finally combining the results. The following ob-
servation describes translation operators which can be used for each partition, in com-
bination with one of Algorithms 1, 2, or 3.

Observation 8.1. Let a, b > 0, c, d > 0 be real numbers and suppose that wk
[a b, a + b] for k 0,..., N and x 6 [c d, c + d] for j 0,..., M. Then we can
write

N N

(108) a. e’x e’. a. ei(-) e’(-)(-)

k=0 k=0

N

(109) eiax Z Oltk
k=0

where

(110)

Remark 8.2. Such an algorithm will perform efficiently when the points within a
partition are close together and there are very few partitions and not so efficiently if
the points are widely separated and there are many partitions. Most cases likely to be
encountered in practice fall in the former category.

3. The algorithms of this paper are based on a special case of a more general idea,
namely, the adaptive use of interpolation techniques to speed up large scale computa-
tions. Other examples of this approach include the use of wavelets for the construc-
tion of fast numerical algorithms (see, for example, [1], [3]) and the useof multipole or
Chebyshev expansions for the compression of certain classes of linear operators (see, for
example, [5], [11]).

4. A paper describing a set of algorithms based on a different interpolation tech-
nique is currently in preparation.

5. One of the more far-reaching extensions of the results of this paper is a set of
algorithms for higher dimensional discrete Fourier transforms. Investigations into this
are currently in progress.
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6. The Helmholtz equation in two dimensions is given by

(111)

and has particular solutions of the form

(112) (z, y) e

where z + u n. Solutions of this equation consist of linear combinations of such
functions that satis a set of bounda conditions, and the results of this paper admit a
generalization that constitutes a fast Helmholtz solver.

In conclusion, a group of algorithms has been presented for the rapid application
and inversion of matrices of the Fourier kernel. These problems can be viewed as gen-
eralizations of the discrete Fourier transform, and the algorithms, while mang use of
certain simple results from analysis, are ve versatile and have wide-ranging potential
applications in many branches of mathematics, science, and engineering.

Appendix. In this Append we present numerical estimates of error bounds for
eorem 2.10 of 2.2. For our eeriments we chose c 0 and d and chose the
o sets of values of m, b, and q, which are used in our single and double precision
implementations of the algorithms of this paper. The expression

(113) r(x) 1 e
k=-q/2

where Pk is defined by (18), was evaluated at n 1000 equally spaced nodes (xk) in the
inteal [-, ], and the following three quantities were computed:

the mmum absolute errorE defined by the formula

(114) E m [r(xk)[,
l<k<n

the relative L2 error E2 defined by the formula

(115) E2 =1 n[r(xk)12’
the error bound EB of Theorem 2.10 defined by the formula

(116) (ab + 0).

The results of theseo eeriments are presented in Table 7.

TABLE 7

m b q

2 0.5993 10

2 1.5629 28

Eoo E2 EB
0.825 E-05 0.176 E-05 0.135 E-00

0.400 E-13 0.580 E-14 0.163 E-03

We observe from Table 7 that the error bound EB of Theorem 2.10 is very weak
compared with the experimentally obtained bounds. Indeed, the requirement that En
be appropriately small would impose much larger values of b and q than are actually
needed for the algorithms.
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NUMERICAL SOLUTION OF THE RIEMANN PROBLEM FOR
TWO-DIMENSIONAL GAS DYNAMICS*

CAI:tSTEN W. SCHULZ-PINNEt, JAMES P. COLLINSt, AND HAR.LAND M. GLAZ

Abstract. The Riemann problem for two-dimensional gas dynamics with isentropic or polytropic gas is
considered. The initial data is constant in each quadrant and chosen so that only a rarefaction wave, shock
wave, or slip line connects two neighboring constant initial states. With this restriction sixteen (respectively,
fifteen) genuinely different wave combinations for isentropic (respectively, polytropic) gas exist. For each
configuration the numerical solution is analyzed and illustrated by contour plots. Additionally, the required
relations for the initial data and the symmetry properties of the solutions are given. The chosen calculations
correspond closely to the cases studied by T. Zhang and Y. Zheng [SIAMJ. Math.Anal., 21 (1990), pp. 593--630],
so that the analytical theory can be directly compared to our numerical study.

Key words. Riemann problem, gas dynamics, Godunov method, wave interaction

AMS subject classifications. 35A40, 35L65, 35L67, 65M06, 76N15

1. Introduction. The interaction ofelementarywaves for systems ofhyperbolic con-
servation laws is the key mechanism in determining the qualitative properties of solutions
to more general initial value problems. For the genuinely nonlinear case and one space
dimension, these basic interactions along with the Riemann problem can be worked out
analytically, at least for small enough jumps in wave strength [16], and are often solv-
able for large jumps as well [3], [18]. This knowledge is the basic building block in using
techniques such as the random choice method (RCM) to obtain existence results [8] as
well as information about the qualitative behavior of solutions [12], and this is especially
the case for certain systems that are derived from physical principles, e.g., gas dynam-
ics. Indeed, one can go further and conjecture that RCM, with enough mesh points and
sufficient accuracy in the Riemann problem solution, will almost always produce a very
close approximation to the exact solution for scalar conservation laws, gas dynamics, and
certain other systems in the one-dimensional planar case.

It is natural to try to use elementarywaves and Riemann problems as building blocks
in constructing solutions in two and three dimensions since the idea is so successful in
one dimension. For the scalar case, a great deal of work has been done [10], [11], [17],
[19], and much is known about the analytic structure of solutions. However, even here
it seems difficult to work in analogy to the methods of [8] and [12] and obtain deep
results for general data; also, finite difference schemes based directly on two-dimensional
Riemann problem solutions have not appeared.

For gas dynamics and two space dimensions, the situation can be expected to be quite
complex and is certainly difficult; very few analytic results are available. Our approach
here is to use a high-resolution finite difference scheme as an experimental tool and
to try to catalogue the phenomenology of the two-dimensional gas dynamic Riemann
problem for a restricted set of initial data; our choices have been strongly influenced by
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the conjectures reported in [20]. A similar approach using the front tracking method is
also possible [9], but our results here indicate that such an effort would be awkward to
implement. However, the set of results obtained here, suitably augmented to account
for a larger data set, might be useful in constructing numerical methods along these lines
by supplying the appropriate jump conditions at solution singularities.

The most important feature ofelementarywaves and Riemann problems is that their
solutions may be assumed to be self-similar; this reduces the number of dimensions by
one and leads to the analytic theory for the one-dimensional case. The dimensional re-
duction in two-dimensions is from three to two dimensions and the resulting system is
still a partial differential equation (PDE). A set of interesting self-similar data for gas
dynamics, from a historical point of view, is the problem of oblique shock wave reflec-
tion, which can be experimentally simulated by situating a wedge in a shock tube down-
stream of the incident shock. Experimental, analytical, and numerical investigations of
this problem go back to Mach and von Neumann; the extensive literature is discussed
in [5]. The numerical scheme used to obtain the results in our work here has been im-
plemented for this configuration as well [6], [7]. It has been conjectured [20], and will
be shown here (by computational experiments), that at least some of these results also
arise from two-dimensional Riemann problems.

The collection of self-similar data in two-dimensions is very diverse, as already illus-
trated by the possible wedge configurations and their solutions. Actually, any collection
of rays centered at some point (always the origin here) and separated by constant states
will lead to a self-similar solution. Our study here is restricted to the special case of
four constant states, one in each quadrant. We impose a further restriction by insisting
that the waves separating each pair of adjoining states be a single elementary wave; this
corresponds to the set of conjectures proposed in [20], which partially inspired the work
here.

We remark that even the case of a single planar shock wave situated in 2 is not
necessarily trivial, at least numerically. Indeed, certain conditions must be satisfied by
the data and the equation of state in order that the wave be stable [13], [14]. However,
stability is guaranteed for the genuinely nonlinear case and our work so far has been for
polytropic gases.

All computations are performed using the second-order Eulerian Godunov method
as formulated in [1] along with the dissipative mechanisms discussed in [2]. The capa-
bilities of this scheme applied to a wide variety of applications are summarized in [4].
The boundary conditions are trivial for this study, of course. The initial data is laid
down on the grid with the jumps at (the Cartesian) grid interfaces. The calculations are
started smoothly by taking the initial Courant-Friedrichs-Lewy (CFL) constraint to be
very severe and gradually relaxing it. The (z, /)-plane is covered with a uniform mesh
containing 400 cells in each direction for all problems reported here. The calculations
were performed on Sun workstations at the ETH Zurich.

The equations of motion, the Riemann problem initial data, and the resulting self-
similar equations are discussed in 2; this section also contains a summary of the classi-
fication based on [20] and derived in [15].

In 3 the numerical solutions and their structures are presented and analyzed.
Through observation of the time-dependent solution, it is clear that our mesh is suffi-
cient for the solutions to relax to their pseudosteady states; thus, our illustrations may
be assumed to be situated in the (, )-plane. A few computations exhibit an unsteady
Kelvin-Helmholtz instability across slip surfaces. For these cases, we cannot assume the
existence of a true pseudosteady state although the overall structures are stable in time;
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see [5] for further discussion. The results are illustrated by contour plots of the density
and self-similar Mach number. In the (, r/)-plane the pseudostationary flow is transonic.
The four elementary waves, extending from the boundary of the domain parallel to the
coordinate axes, interact and/or reach the region of subsonic flow. In the cases with four
shock waves, the interaction of the shock fronts results in simple, complex, or double
Mach reflections depending on the initial strength of the waves. Four slip lines lead to
large-scale vortex creation in one case. With some wave combinations the region of sub-
sonic flow is partly bounded by newly created shocks. Our conclusions are presented
in 4.

2. Problem formulation and classification. The Riemann problem for gas dynamics
in two space dimensions, both for isentropic and polytropic gas, is formulated as follows.
We start with the Euler equations of inviscid compressible isentropic flow consisting of
the equations for conservation of mass and momentum. For polytropic gas we have
an additional equation for the conservation of energy. The conservation form of these
equations in Cartesian coordinates is

(1) + F(U) + o,
where

p pu pv

F(V) + p C(V)

pv puv pv + p

for isentropic gas and

p pu

pu pu2 + p
U= F(U)= C(V)=

pv puv

pE u(pE + p)

pv

puv

pv2 +p

v(pE + p)

for polytropic gas. Here p is the density, u the x-velocity component, v the y-velocity
component, p the pressure, and E the total specific energy. The system is dosed by
specifying an equation of state. For isentropic gas we take p Ap"v, where A > 0 and
"r > i are constants. For polytropic gas we have instead

1 p u2 +v2

E- ,
(- 1) p 2

where > 1 is constant. The number is called the polytropic exponent and, since it
is assumed constant in the present study, may be interpreted physically as the ratio of
specific heats for the polytropic case.

The eigenvalues of the 3acobian matrix VuF (or VuG) are A_ u c, A0 u and
A+ u + c (or A_ v c, A0 v and A+ v + c). These are the characteristic speeds
for one-dimensional gas dynamics and are needed here only for the implementation of
the (operator split) numerical method. The sound speed c is defined by c /p/p.

The Riemann problem in the (x, y)-plane is the initial value problem for (1) with
initial data

(:) 0) i 1,..., a
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for isentropic gas and

(2’) (p, p, u, v)(x, y, 0) (pi, pi, ui, vi), i 1,..., 4

for polytropic gas where i denotes the ith quadrant.
The solution is a function of the similarity variables x/t and y/t. In these

new variables, (1) becomes

(3). -u n u,, + F(U) + a(U),, O.

Introducing the so-called pseudovelocifies 2 u and v r/, the system (3) is
equivalent to

F(O) + a(O). + S(O) O,(4)
where

for isentropic gas and

with

p 2p

p S(O) 3pg

p5 3p5

P

0 P s(O)
p

2p

3p2

3pO

2(p/ + p) + p(22 + 02)

1 p ,/2 .._ ,2
E=

(7- 1) p 2

for polytropic gas. The system (4) can be expressed in quasilinear form as

where

V + AVn + B O,

A= -- - B= -- S,

and V represents an arbitrary change of coordinates satisfying det(A) 0. Then the
eigenvalues of A are

o v__- and X+ ’Q q- CV/’/2 @ Q2 C2 Q2 C2
u c c2 + c

The initial value problem becomes a bounda value problem at infini:

(p, u, v)(, n) --+ (p,, ,,, ,)
or

(p, p, , v)(, n) --+ (p,, p,, ,, ,)
for +r/ and

>0, r/>O, i=l

<0, r/>O, i=2

<0, r/<O, i=3

>0, r/<O, i=4.
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The self-similar solution in the (, r/)-plane is called pseudostationary flow. Far
enough away from the origin the general solution consists of four planar waves, each
parallel to one of the coordinate axes, separating the four constant initial states; also,
the eigenvalues + are guaranteed to be real. In general, a planar wave is formed by up
to three elementary waves corresponding to the eigenvalues A_, A0, and A+: a backward
rarefaction wave or shockwave S, a slip line (respectively, a contact discontinuity) for
isentropic (respectively, polytropic) gas J, and a forward rarefaction wave or shock
wave . In our study of the interaction of the four planar waves we restrict ourselves to
situations where each planar wave is a single elementary wave.

The Riemann problem is classified according to the combination of the four elemen-
tary planar waves used to define it. Thus we assume that the initial data (2) or (2’) are
chosen so that only a rarefaction wave, shock wave, or slip line connects two neighboring
constant states. Under this assumption it was proved in [15] that sixteen (respectively,
fifteen) different configurations for the Riemann problem for isentropic (respectively,
polytropic) gas in two space dimensions exist (symmetric or rotated configurations are
systematically eliminated).

4R: R2R32R34R4 R21R32R34-41
4 S: $21 $32 $34 41 $21 $32 $34-41

2 R + 2 S: R2 $32R34-41 (only for isentropic gas)

4 J: J’21 J32 J34 J41 J21 J32 J34 J41

2 J + 2 R: R21 J32 J34+41 R21 J32 J34 R41 J21 R32J34 +41
2 J + 2 S: -21 J32 J34 -41 $21 J32J34 41 J21 -32 J34 -41
2 J + R + S: R--21 J32 J34 -41 21 J32 J34 41 J21 -=--32 J34 +41

In this table and in the following, Eij with E e {J, , , -, if} and i, j e {1, 2, 3, 4}
denotes an elementarywave E between the ith and jth quadrant. The notation in the 4 J
cases serves to distinguish the two possibilities which are explained in the next section.

3. Computational results. In this section we present the numerical solutions to the
configurations one by one. For each of them, we give the relations that must be satis-
fied by the initial data and the symmetry properties of the solution. The formulas for
one-dimensional elementary waves between two constant states, which follow from the
simple wave and Rankine-Hugoniot relations [3], are stated in [15]. We use the formulas
and the abbreviations introduced there; that is, for a given left and right state (denoted
by the indices and r), we define

r r :=
9"- 1 PlPr

and

In the following, the use of the term slip line always denotes a slip line for isentropic gas, but should be
read to include the possibility of a contact discontinuity for polytropic gas.
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Furthermore, we describe the main features of the solution in the (, r/)-plane. It
always contains a subsonic area~ ()17/ < 1) that is separated from the supe_rsonic area
(M > 1) by the sonic curve (M 1). Here the self-similar Mach number M is defined
by AT/u (2 + Ou)/c. In the supersonic domain the curves given by d/d + are
called the + characteristic lines. As in [20] we outline the behavior of these lines inside
the rarefaction waves. The numerical solutions are illustrated by contour plots of the
density and self-similar Mach number in the (, r/)-plane. In the Mach number plots the
subsonic contour lines are dashed. For some configurations containing rarefaction waves
the +(_) characteristic lines inside the fan are shown as solid (dashed) lines. The initial
data listed in the figure captions, together with the relations given for the corresponding
configuration, are always sufficient to uniquely define the solution.

3.1. Cases not involving slip line initial data. Four rarefaction waves. In this case
the flow is isentropic.

Configuration 1. R R zzR z4#41 (Figs. 1 and 3(a)). We have

Pl > P2, P4 > P3

and

2 Ul (1)21, U3 4 (1)34, U3 U2, U4 Ul,

V4 Vl (1)41, V3 V2 (1)32, V2 Vl, V3 V4.

This gives the so-called compatibility condition (I)21 (I)3a. For polytropic gas, we must
include the following equations:

p/p (p/p)Xh for (i,j) e {(2,1), (3, 4), (3,2), (4,1)}.

(a)

FIG. 1. Configuration 1. p, 1, P2 .4, P4 .15, pl 1, Ul 0, Vl 0. (a) Self-similar Mach
no. (0.01 to 2.99); 29 contour lines: 0.10 to 2.90 step 0.10. (b) Density (0.102 to 1.000); 30 contour lines: 0.11
to 0.98 step 0.03.

For the case of a vanishing pressure jump in the /-direction, the sonic curve consists
of a circle behind the rarefaction fan and a straight line called the sonic stem extending
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horizontally from the circle to the front of the wave. Inside the rarefaction fan the A+
characteristic lines are parallel to the contour lines between the boundary and the sonic
stem. There the lines turn downwind to end at the sonic circle.

For the general case, the sonic circles of az and R jointly form the subsonic area
behind the interaction of the waves. The rarefaction wavesz and4 meet at a point
P in the first quadrant. The A_ characteristic through P forms the lower boundary ofthe
undisturbed R wave. It crosses R 2, continues in the second quadrant, turns down-
ward, crosses R az, enters the third quadrant, and ends at the sonic curve. Analogously,
the A+ characteristic through P forms the left boundary of the undisturbed wave.
It crosses R 4, continues in the fourth quadrant, turns left, crosses, and ends at the
sonic curve in the third quadrant. The A_ characteristic lines inside are parallel
to the contour lines inside the fan and turn downwind to end at the sonic curve. The
equivalent is true for the A+ characteristic inside R az. The traces of the sonic stems in
R 32 and R 34 are easily found in the Mach number plot (Fig. 1).

For an extensive range of initial data, we found that an intersection of the A+ char-
acteristic lines at the lower left side of the subsonic area does not occur; compare [20,
Figs. 4.2 and 4.3].

(Figs. 2 and 3(b)). We haveConfiguration 2. R 21 t{ 32 R 34 41

P > P2, P4 < P3

and

U2 Ul (1)21 U4 3 (1)34 U3 U2 U4 Ul

V4 Vl (1)41 V2 V3 (1)32 V2 Vl V3 V4

so that the compatibility conditions are 21 -(1)34 and (1)41 --(1)32. For polytropic
gas we include the same additional equations as in Configuration 1.

Thus we must have pl pa and p2 p4 implying u2 u v4 Vl and u4 u3

v2 -v3. Consequently, the solutions are symmetric to r/- vl -ux and +r/= u2 +v2.
Therefore the description focuses on the region 4- /> u2 4- v2 of the domain.

The nonconvex subsonic area lies between the four rarefaction waves. On the seg-
ment of the sonic curve facing the first quadrant a shock wave appears. The rarefac-
tion waves R 2 and 4 meet at a point P in the first quadrant. The A_ characteristic
through P forms the lower boundary of the undisturbed R 21 wave. It crosses R 21 and
turns slightly downward ending at the sonic curve. Analogously, the A+ characteristic
through P forms the left boundary of the undisturbed +41 wave. It crosses +41 and
turns slightly left ending at the sonic curve. The other A+ characteristic lines inside the
fans are almost parallel to the corresponding characteristics mentioned above.

The overall structure of our solution corresponds reasonably well with the predic-
tion of [20, Fig. 4.5], although the computed shock on the sonic curve is not present in
the prediction. Also, for the calculation presented here, as well as for many others per-
formed by us, the A+ characteristic structure never exhibited tangential incidence with
the sonic curve and the behavior depicted in [20, Fig. 4.6] was not observed.

Four shock waves.
Configuration 3. S 21 S 32 S 34-41 (Figs. 4 and 5). We have

Pl >P2, P4 >P3
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(a) (b)
FIG. 2. Configuration 2. Pl 1, p2 .4, pl 1, u 0, v 0. (a) Self-similar Mach no. (0.01 to

2.95); 29 contour lines: 0.10 to 2.90 step 0.10. (b) Density (0.258 to 1.000); 25 contour lines: 0.26 to 0.98 step
0.03.

(a) (b)

FIG. 3. (a) Configuration 1. Same initial data as in Fig. 1. Self-similarMach no. with char. lines; 10 contour
lines: 0.10 to 1.00 step 0.10. (b) Configuration 2. Same initial data as in Fig. 2. Self-similar Mach no. with char
lines; 10 contour lines: O. 10 to 1.O0 step O. 10.

and

U2 Ul lI/21 3 ?4 I/34 U3 U2 ?4 Ul

V4 Vl 1/41 V3 V2 11/32 V2 Vl V3 V4.

This gives the compatibility conditions #2 #34 and 941 I/32. For polytropic gas
the following equations are added:

p/pj Hj for (i,j)e {(2,1), (3,4), (3,2), (4,1)}.
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(a) (b)

FIG. 4. Configuration 3. p. 1.5, p: .3, Pl 1.5, u:t 0, v. 0. (a) Self-similar Mach no. (0.00
to 4.67); 46 contour lines: 0.10 to 4.60 step 0.10. (b) Density (0.138 to 1.756); 32 contour lines: 0.16 to 1.71
step 0.05.

FG. 5. Configuration 3. (a) p:t 1.5, P2 .3, Pl 1.5, u O, v O, showing 130 x 130 cells

ofthe upper-rightpart ofthe third quadrant. Self-similar Math no. (0.01 to (3.78); 47 contour lines: 0.04 to 3.72
step 0.08. (b)pl 1.2, p2 =.35, p. 1.2, u. 0, va O. showing 120 x 120cells ofthe upper-Eghtpart
ofthe third quadrant. Self-similar Math no. (0.00 to (3.01); 50 contour lines: 0.0,4 to 2.98 step 0.06.

It has been proved in [15] that the pressure inequalities required for this config-
uration and the compatibility conditions listed above can only be satisfied if p4 p
assuming that 1 < q, < 3 for polytropic gas. Therefore, we must choose p4 p (which
implies p4 p), and we get u u v4 Vl. Hence the solutions are symmetric to
r/- v u, and we can concentrate on the region 7 > va Ul of the domain.
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For the shock speeds aij of the shocks -ij, the following inequalities hold:

a2 < cr3a and o41 < 0:32.

By definition, they are equivalent to

P1 (Pl P2)
u2 --2 (Pl P2)

and

Pl (Pl P4)

P4 (P4 P3)
<’0,3-- 3 (P4 P3)

P2 (P2 P3)<

Using u3 u2, v3 v4, and the compatibility conditions, both inequalities become

PiP3 < P2P4 which is equivalent to PiP3 < P2P4.

Considering the symmetry (for a more general argument not using the assumption p:
p4, see [20]), we set

Then we must prove that

Pl rp3 and p2 p4 8p3.

r < 8
2 for r > s > 1

under the compatibility condition

(r--8)(8-1/’7---1/) --(8--1)(1--8-1/7)
for isentropic gas and

(r- s)2/[(9’ + 1)r + (9’- 1)s] (s- 1)2/[(9’ + 1) + (9’- 1)s]

for polytropic gas. The functions

fi(r) (r- s)(s-1/7- r-1/7) --(8- 1)(1- s-1/7)
and

fp(r) (r s)2 [(3’ + 1) + (3’- 1)s]- (s 1) 2 [(3’ + 1)r + (3’- 1)s]

have the following properties:

fi(s) -(s- 1)(1 s-1/7) < 0,

fi(s2) (s- 1)(1 s-1/) (s(7-1)/7 1) > 0,

f[’(r) 3"-2r-("+1)/" [(7- 1)r + (7 + 1)s] > 0,

fp(8) -23’8(8- 1)2 < O,

fp(a2) (3’_ 1)s(s- 1)2(s2 1) > 0,

f;’(r) 2 > O.
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Thus the root r > s of f or f,, which is also the solution of the corresponding compati-
bility condition, satisfies r < s2.

The shock 2 intersects the sonic circle of the constant state in the first quadrant
before t meets 2 as expected from the shock speed inequalities. 2 bends toward
the subsonic area. The intersection of 2 and 2 creates a three-shock configura-
tion. The Mach shock and its symmetric counterpart join and bound the subsonic area.
A slip line reaches from the branch point into the subsonic area toward the symmetry
axis. Depending on the strength of the shocks we observe the different types of Mach re-
flections: the simple Mach reflection where the area between the reflected shock and the
slip line is subsonic, the complex Mach reflection (Fig. 5(b)) where a part of that area is
supersonic, and the double Mach reflection (Figs. 4, 5(a)) with another three-shock con-
figuration. Thus far, we have not observed regular reflection and, for all cases of Mach
reflection which we studied, the slip line rolls up into a vortex rather than intersecting
the symmetry line at a self-similar stagnation point. The prediction of [20, Fig. 5.2] is
remarkably accurate. We note that the extra slip lines at the interfaces of the quadrants
in Fig. 4 are numerical artifacts that had been studied earlier [1], [6] and are due to a
"starting error."

Configuration 4. S 21 S z2 S z-4 (Fig. 6) We have

Pl >P2, P4 <P3

and the same equations and compatibility conditions as in Configuration 3.

y//////,"

FIG. 6. Configuration 4. pl 1.1, p2 .35, pl 1.1, Ul 0, Vl 0. (a) Self-similar Mach no.
(0.00 to 3.39); 33 contour lines: 0.10 to 3.30 step 0.10. (b) Density (0.506 to 1.932); 29 contour lines: 0.52 to
1.92 step 0.05.

Necessarily, we must have pl p3 and p2 p4 (which implies pl p3 and p2 p4)
yielding u2 ul v4 v and u3 u4 v3 v2. Consequently, the solutions are
symmetric to v u and + r/= u2 + v2. Therefore, the description focuses
on the region r/- > v ul of the domain.

It is easy to conclude from the equations that a2 < aa4 and a4 < aa2. Accordingly,
the shock S 2 interacts with S. This interaction creates a pair of three-shock config-
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urations. The subsonic area is bounded by the joining Mach shocks and the reflected
shocks so that it has an oval shape. As in Configuration 3 we observe the different types
of Mach reflections determined by the strength of the shocks. Illustrated here is a case
of simple Mach reflection.

Two rarefaction and two shock waves.
Configuration 6. R 21 S 32R 34 5’ 41 (Fig. 7). We have

Pl >P2, P4 <P3

and

/’2 Ul (I)21 U4 t3 (I)34 t3 2 4

U4 Vl /41 V3 V2 /32 V2 Vl V3

SO that the compatibility conditions arc (I)21 -(I)34 and 941

(a) (b)

FIG. 7. Configuration 6. A 1, 3’ 1.4, pl 1, p2 .5, Ul 0, Vl 0. (a) Self-similar Mach no.

(0.00 to 4.00); 40 contour lines: 0.10 to 4.00 step 0.10. (b) Density (0.495 to 1.002); 25 contour lines: 0.51 to
0.99 step 0.02.

For polytropic gas, the equations

p lp: PalPl II1, P21Pl (P21Px)1 and p/pa (p/pa)l.
must be added. As mentioned in 2, this configuration is impossible for this case [15].

For isentropic gas the pressure inequalities required for this configuration and the
compatibility conditions listed above can only be satisfied if p3 pl and p4 p2 [15].
Consequently, we must choose p3 pl andp4 p2 (which implies p3 pl and p4 p2).
Thus the solutions are symmetric with respect to the point (, r/) (Ul, v), and we can
focus the description on the upper part of the domain.

The shock S--32 bends downward before it dissolves inside the rarefaction fan of
T kR 21. hus, the predicted intersection of the shoc s S 32 and -41 (see [20, Fig. 6.4])

does not occur in our computations; as a consequence, the calculated results do not
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contain any slip surfaces in contrast to [20, Fig. 6.4]. The rarefaction wave4 turns
right in front of the shock S a. The subsonic area is centered about the point (, Vl).
The A+ characteristic lines inside R are parallel to the contour lines inside the fan and
end at the sonic curve.

3.2. Cases involving slip line initial data. Now we discuss the eleven possible con-
figurations involving slip lines. Beside the relations for the initial data listed for each
configuration, we must include additional relations for polytropic gas. For a rarefaction
or a shock wave between the ith and jth quadrant (i, j { 1,..., 4}), we add

respectively.
The predicted results of [20] are considerably more speculative for these more diffi-

cult cases. Consequently, a feature-by-feature comparison with the computed solutions
will not be attempted.

Four slip lines.

Configuration A. JzJaJa4J4 (motion in opposite directions; Fig. 8). We have
p p pa p4 and

1 Z/,2 < Z/,3 ’/t4 Vl V4 < V3 V2.

(a) (b)

FIG. 8. Configuration/L pl 1, pl 1, P2 2, Pa 1, p4 3, u =-.75, ua .75, v
-.5, v2 .5. (a) Self-similar Mach no. (0.00 to 3.39); 33 contour lines: 0.10 to 3.30 step 0.10. (b) Density
(1.000 to 4.011); 30 contour lines: 1.05 to 3.95 step 0.10.

Only for isentropic gas are the solutions symmetric with respect to the point (, )
((Ul + ua), 1/2(Vl + v)). The slip lines J and Ja meet the sonic circle of the constant
state in the second quadrant and continue as almost straight lines so that a quarter of
the sonic circle lies in between. The equivalent is true for the slip lines Ja4 and J4
in the fourth quadrant. Inside the subsonic area the slip lines bend and end in spirals.
Centered about the point (1/2(u + ua), 1/2(v + v)) there is an oval part of the subsonic
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area bounded by shocks. These shocks form simple Mach reflections near the slip lines
(the contact surfaces emanating from the triple points are only barely discernible here).

Configuration B. J21J32J34J41 (clockwise motion; Fig. 9). We have pl p2

p3 p4 and

Ul Z$2 3 Z$4 Vl V4 V3 V2.

FIG. 9. Configuration B. pl 1, pl 1, p2 2, p3 1, pa 3, ul .75, ;u3 -.75, vl
-.5, v2 .5. (a) Self-similar Mach no. (0.04 to 2.35); 23 contour lines: 0.10 to 2.30 step 0.10. (b) Density
(0.207 to 3.064); 29 contour lines: 0.25 to 3.05 step 0.10.

The solutions have the same symmetry properties as in Configuration A. The struc-
ture of the solutions is one of a vortex turning clockwise. The slip lines spiral around its
center, and the subsonic area has the shape of a four-bladed propeller.

Two neighboring slip lines.
Configuration C. R 21J32J34R 41 (Fig. 10). We have Pl > P2 P3 P4 and

U2 Ul (1)21 U3 4 Ul V4 Vl (1)41 V3 V2 Vl.

The solutions are symmetric to r/- vl ul. In the region + r/ > U3 -]- V3
the solution resembles that of Configuration 2. The slip lines Jz and Jza meet the sonic
circle of the constant state in the third quadrant and continue as almost straight lines so
that a quarter of the sonic circle lies in between.

Configuration D. R21Jz2Jz4Ral (Fig. 11). We have pl < p2 pz pa and

Ul U2 (1)21 U3 4 Ul Vl V4 (1)41 V3 V2 Vl.

The solutions are symmetric to 7 Vl l/,1. The slip lines Ja2 and Ja4 meet the
sonic circle of the constant state in the third quadrant and continue slightly bent so that
a quarter of the sonic circle lies in between. The A+(_) characteristic lines inside 41
(21) are almost parallel to the contour lines inside the fan and end at the sonic circle.
Outside the rarefaction waves the subsonic area is bounded by a circular shock wave.
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(b)

FIG. 10. Configuration C. pl 1, p.- .4, pl 1, pa .8, u .1, v --.1. (a)Self-similarMach
no. (0.00 to 2.60); 26 contour lines: 0.10 to 2.60 step 0.1.0. (b) Density (0.2/58 to 1.000); 37 contour lines: 0.27
to 0.99 step 0.02.

(a) (b)

Fit3. 11. Configuration D. p .4, p2 1, pg. 1, pa .8, u .1, vl .1. (a) Self-similar Mach
no. (0.00 to 2.61); 26 contour lines: 0.10 to 2.60 step 0.10. (b) Density (0./503 to 1.001); 2/5 contour lines: 0./51

to 0.99 step 0.02.

Configuration E. S 21J32J34-41 (Fig. 12). We have pl > p2 p3 P4 and

U2 1 11/21, U3 4 Ul V4 Vl 1/41 V3 V2 Vl.

The solutions are symmetric to Vl Ul. The shocks S 21 and ’41 in-
tersect the sonic circle of the constant state in the first quadrant and end at the slip
lines. Between the slip lines J32 and J34, which bend inside the subsonic area and end in
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(a) (b)
FIG. 12. Configuration E./91 1, p: .4, /91 1, /93 .8, ul .1, vl 0. (a)Self-similar Mach

no. (0.01 to 2.43); 24 contour lines: 0.10 to 2.40 step 0.10. (b) Density (0.531 to 1.225); 34 contour lines: 0.55
to 1.21 step 0.02.

spirals, the subsonic area is bounded by an oval shock wave. This shock is connected to
the shocks -21 and -41 by two simple Mach reflections.

Configuration E S J3zJ34- (Fig. 13). We have pl < pz p3 p4 and the
same equations as in Configuration E.

FIG. 13. Configuration E Pl .4, p2 1, pg 1, Pa .8, ul 0, v 0. (a) Self-similar Mach
no. (0.00 to 2.84); 28 contour lines: 0.10 to 2.80 step 0.10. (b) Density (0.531 to 1.708); 30 contour lines: 0.54
to 1.70 step 0.04.

The solutions are symmetric to r/- { ’01 Ul. The slip lines J3 and Jz4 meet the
sonic circle of the constant state in the third quadrant and continue as almost straight
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lines so that a quarter of the sonic circle lies in between. Inside the subsonic area the slip
lines bend and end in spirals. The shocks S-I and if41 interact like the pair of shocks
in Configuration 4.

Configuration G. -21JazJa4 (Fig. 14). We have p > p2 pa p and

U2 Ul (1)21 U3 U4 Ul V4 Vl 11/41 V3 V2 Vl.

(a) (b)

FIG. 14. Configuration G. pl 1, p2 .4, pl 1, p3 .8, u .1, v -.3. (a)Self-similar
Mach no. (0.03 to 2.69); 26 contour lines: 0.10 to 2.60 step 0.10. (b) Density (0.429 to 1.004); 29 contour lines:
0.43 to 0.99 step 0.02.

The slip lines J32 and J34 bend after entering the subsonic area and end in a spiral.
The rarefaction wave R turns backward in front of the shock1 that ends at the slip
line J34. The )+ characteristic lines inside R 21 are almost parallel to the contour lines
inside the fan and end at the sonic circle.

Configuration H. R 21J32J34 -41 (Fig. 15). We have Pl < P2 P3 P4 and

Ul U2 (I)21 ’/3 U4 Ul V4 Vl 1/41 V3 V2 Vl.

The slip lines J32 and J34 bend after entering the subsonic area and end in a spiral.
The shock ff bends downward before it dissolves inside the rarefaction fan of 2x

that turns right after crossing the slip line Ja2. The ,k_ characteristic lines inside 21

are almost parallel to the contour lines inside the fan and end at the sonic circle.
Two nonneighbodng slip lines.
Configuration I. J21R 32J34+41 (Fig. 16). We have pl P2 > P3 Pa and

Ul U2 U3 U4 V4 Vl (1)41 V3 V2 (1)32.

The slip lines J2 and J34, which bend and join inside the subsonic area, divide the
solution into a left and right part. In general, the rarefaction waves R 32 and 41 move
with different velocities so that they are shifted against each other. Below these waves
the sonic curve is almost circular. Depending on the vertical velocities, weak shocks are
formed below the rarefaction waves.
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(a) (b)

FIG. 15. Configuration H. pl .4, p: 1, Pa .8, p4 1, ul .1, Vl .1. (a)Self-similarMach
no. (0.06 to 2.87); 28 contour lines: 0.10 to 2.80 step 0.10. (b) Density (0.524 to 1.023); 24 contour lines: 0.53
to 0.99 step 0.02.

(a) (b)

FIG. 16. Configuration I. pl 1, p3 .4, pa 1, p2 2, Ul 0, v. .3, v2 -.3. (a)
Self-similar Math no. (0.02 to 2.44); 24 contour lines: 0.10 to 2.40 step 0.10. (b) Density (0.515 to 2.000); 30
contour lines: 0.53 to 1.98 step 0.05.

Configuration J. J21 ’ 32J34-41 (Fig. 17). We have pl p2 > p3 p4 and

The slip lines J21 and da4 separate the solution into a left and right section. Typically,
the shocks -a2 and -4 are shifted against each other. Above these shocks the sonic
curve is nearly circular. S 2 and -4 are connected by two simple Mach reflections.
Their slip lines as well as J and Ja4, meet in a vortex inside the subsonic area.
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(a) (b)

FIG. 17. Configuration J. pl "-1, /93--.4, /91 --1, p2 2, ul 0, vl =-.3, v2 .3. (a)
Self-similar Mach no. (0.04 to 2.55); 25 contour lines: 0.10 to 2.50 step 0.10. (b) Density (0.531 to 2.407); 37
contour lines: 0./57 to 2.37 step 0.05.

Configuration K. J21 ’ 32J34R 41 (Fig. 18). We have pl P2 > P3 P4 and

’//’1 ’a2 ’/3 ’/4 V4 Vl (I)41 V3 V2 32.

(b)

FIG. 18. Configuration K. p 1, P3 .4, p 1, p2 2, u 0, v .3, v2 -.3. (a)
Self-similar Mach no. (0.01 to 2.09); 20 contour lines: 0.10 to 2.00 step 0.10. (b) Density (0.512 to 2.003); 30
contour lines: 0.53 to 1.98 step 0.05.

The slip lines J21 and J34, which bisect the solution into a left and right portion, join
in a vortex inside the subsonic area. The shock 32 ends at J3a. Below 4x the subsonic
area is partly bounded by a shock wave.



TWO-DIMENSIONAL RIEMANN PROBLEM 1413

4. Conclusions. The computational results presented here demonstrate the com-
plex phenomenology inherent in the two-dimensional gas dynamic Riemann problem,
despite the limitation that each of the four jumps consists of a single elementary wave.
The predictions of [20] are close to our results in most cases where this is reasonable to
expect. One discrepancy is that predicted shockwaves do not appear in the computations
or that we have found unpredicted shock waves. Also, for Configuration 2 and Config-
uration C, predicted compression waves are actually computed as shock waves over a
substantial range of parameter space. These changes can have further consequences for
the overall solution. However, the present work has led to the discovery of many new
flowfield patterns; this is especially true for cases involving slip line initial data. For such
cases we remark that some of the other cases appear as part of the flowfield pattern, as
might be expected.

An important result is that many of the familiar oblique shock wave reflection
(OSWR) flowfields appear here. An interesting question is whether or not OSWR is
a subset of the two-dimensional Riemann problem, i.e., given a wedge angle and shock
wave Mach number [5], can Riemann problem initial data be found so as to construct
the given OSWR case? Note that this is nontrivial only because of the restricted set of
initial data allowed.

We note here that if the four initial states were separated by two lines not necessarily
perpendicular, the number of allowable distinct initial configurations would increase to
77 (respectively, 75) for isentropic (respectively, polytropic) gas. Given the many other
possible generalizations, including a change of equation of state, it is easy to see that the
two-dimensional Riemann problem contains many possibilities.

It would appear that this is a very negative result regarding the direct use of the
two-dimensional Riemann problem in constructing an unsplit RCM (for analytical or
numerical purposes) or finite difference schemes. However, the set of points in physical
space-time involving such complex interactions is of high codimension, and it still might
be hoped that such schemes are possible. Whether or not the present calculations will
prove useful in this endeavor, we can certainly expect that the results here can be used
as test or reference cases in the code development process.

Acknowledgment. The authors would like to thank Tai-Ping Liu for helpful discus-
sions.
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TRIANGULATIONS USING LOCAL TRANSFORMATIONS*
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Abstract. In [SIAM J. Sci. Statist. Comput., 10 (1989), pp. 718-741] and [Comput. Aided Geom. Des., 8
(1991), pp. 123-142] the author presented algorithms that use local transformations to construct a Delaunay
triangulation ofa set ofn three-dimensional points. This paper proves that local transformations can be used to
construct a Delaunay triangulation of a set of n k-dimensional points for any k > 2, and presents algorithms
using this approach. The empirical time complexities of these algorithms are discussed for sets of random
points from the uniform distribution as well as worst-case time complexities. These time complexities are about
the same or better than those of other algorithms for constructing k-dimensional Delaunay triangulations
(when k > 3).

Key words, k-dimensional triangulation, Delaunay triangulation, Voronoi tessellation, local transforma-
tions, computational geometry, mesh generation
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1. Introduction. Given n k-dimensional (k-D) points (i.e., points in Euclidean
space Ek), the k-D Delaunay triangulation problem is to connect them into nonover-
lapping simplices that fill the convex hull of the points such that the empty circumhy-
persphere criterion is satisfied, i.e., the hypersphere passing through the k + 1 vertices
of any simplex of the triangulation contains none of the given n points in its interior.
(A simplex is the convex hull of k + 1 affinely independent points; it is a triangle in two
dimensions and a tetrahedron in three dimensions.) A Delaunay triangulation is unique
if no k + 2 of the n given points are on the same hypersphere.

The Delaunay triangulation is also the dual of the Voronoi tessellation of the n given
points or sites, where the Voronoi tessellation is the partitioning ofEk into n subregions
such that each subregion contains the points of Ek that are closer to one site than all
the other sites [22], [5]. Given the Delaunay triangulation, it is straightforward to con-
struct the Voronoi tessellation in time proportional to the size of the triangulation (and
vice versa). Two- and three-dimensional Delaunay triangulations are used for finite el-
ement mesh generation [3], [10], [11], [14], [25]. k-D Delaunay triangulations are used
for surface interpolation and contouring [17], [18], [20]. Other applications of the two
geometric structures are given in [2] and [29].

We are interested in algorithms that can construct k-D Delaunay triangulations (or
Voronoi tessellations) for any k > 2. Some algorithms work only in two dimensions (so
far), e.g., the O(n log n) divide and conquer approach [22], [19] and sweepline approach
[9]. The edge swapping approach can be used for constructing two-dimensional Delau-
nay triangulations [17], [28]. This local transformation approach was recently extended
to the three-dimensional case [12], [13], where face swaps are used instead ofedge swaps.
Lawson has shown that there are two different ways to triangulate some sets of k / 2 k-D
points [18]. Hence local transformations are also possible in k dimensions, k > 4. In
this paper, we prove that local transformations can be used to construct k-D Delaunay
triangulations using an incremental approach, and we present algorithms that are k-D
versions of those in [13].
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Other algorithms for constructing k-D Delaunay triangulations (or Voronoi tessel-
lations) are given in [29], [2], [1], and [5]. Watson’s algorithm [29] uses an incremental
approach in which the Delaunay triangulation of the first i data points is updated from
the Delaunay triangulation of the first i 1 data points by first deleting all simplices
whose circumhypershere contains the ith data point and then adding the simplices in-
volving the ith data point. Bowyer’s algorithm [2] also uses an incremental approach, but
updates the Voronoi tessellation instead of the Delaunay triangulation. The estimated
time complexities of these two algorithms (for sets of random points) are O(n(-)/)
and O(n+/k), respectively. The worst-case time complexities are not discussed in these
two papers. We are assuming here that k is a small fixed constant; as a function of k and
n, the time complexities would also include a factor involving k, e.g., ka, which depends
on implementation details.

The algorithm by Avis and Bhattacharya [1] constructs a Delaunay triangulation by
finding one simplex at a time; from an unmatched facet of an existing simplex, a search
is made for the vertex of the other simplex sharing this facet. For sets of random points
from the uniform distribution, the empirical time complexity of this algorithm is O(n:)
for any k. The worst-case time complexity is O(n[k/2]+1). This is because in the worst-
case, the number of simplices in a Delaunay triangulation is O(n[/zq [5].

An algorithm for constructing k-D Delaunay triangulations based on their relation-
ship with (k + 1)-D convex hulls is described in [5]. This algorithm projects the n k-D
data points onto a paraboloid in k + 1 dimensions and constructs the convex hull of
the (k + 1)-D points; the k-D Delaunay triangulation is then obtained from an appro-
priate portion of the convex hull. The worst-case time complexity of this algorithm is
O(nlogn) for k 2 and O(nlk/j+) for k > 3; these complexities are based on the
worst-case time complexities of algorithms for constructing convex hulls [21], [26]. Since
[k/2] [k/2J + i for odd k, the time complexity is worst-case optimal for odd k. The
time complexity for sets of random points is not discussed in [5].

Of the three algorithms based on local transformations presented in this paper, the
first has an empirical time complexity of O(n(log n)k-) for sets of random points from
the uniform distribution, and a worst-case time complexity of O(nlk/J+l). Thus this
first algorithm is also worst-case optimal for odd k. The empirical and worst-case time
complexities of the other two algorithms are theoretically not as good, but in practice
they are faster than the first algorithm. Our algorithms use an incremental approach
as in Watson’s algorithm (i.e., the Delaunay triangulation of the first i data points is
updated from the Delaunay triangulation of the first i 1 data points), but using local
transformations, the deletion and addition of simplices are intermixed when adding the
ith data point.

This paper is organized as follows. In 2, we describe local transformations in k di-
mensions. In 3, we describe an incremental approach for constructing k-D Delaunay
triangulations using local transformations. In 4, we prove that this approach always con-
structs a Delaunay triangulation. In 5, we describe three algorithms and a data structure
based on this approach. In 6, we discuss the time complexities of the algorithms and
present experimental results from our implementation of these algorithms.

2. Local transformations. We first give some terminology before describing local
transformations. In k dimensions, a (nondegenerate) simplex is the convex hull of k + 1
affinely independent points, a (nondegenerate) j-face is the convex hull ofj + 1 affinely
independent points, and a facet is a (k 1)-face. A degenerate simplex or degenerate
j-face is the convex hull of k + i or j + 1 affinely dependent points, respectively. In this
paper, simplices and faces are nondegenerate unless preceded by the word "degenerate."
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Let ; be a set of n > k + I distinct k-D points, not all in the same hyperplane, and
let t7 be the convex hull of 1;. A triangulation of 1; is a set S of simplices satisfying the
following properties:

(a) All vertices of each simplex of S are members of ;.
(b) Each simplex of S contains no points of 1; other than its vertices.
(c) The union of the simplices of S is C.
(d) The interiors of the simplices of S are pairwise disjoint.
(e) Each facet of a simplex of S is either on the boundary of C (called a boundary

facet) or is common to exactly two simplices of S (called an interiorfacet).
Let al, a2,..., ak+2 be k+2 distinct k-D points, not all in the same hyperplane. Then

there are either one or two ways to triangulate these k / 2 points, and there are a finite
number of different configurations of the k + 2 points such that the configuration type
determines how many simplices are present in the one or two possible triangulations.
These results are proved in [18]. If two different triangulations are possible, then a local
transformation is defined to be the replacement of one of these triangulations by the
other.

For example, in three dimensions, the five different configurations are shown in Fig.
1. In the first two configurations, no four of the five points are coplanar; line segment
aa intersects the interior of facet aa2a in configuration 1 and al is in the interior
of the convex hull in configuration 2. In the last three configurations, al, a2, a4, and a5
are coplanar and form the possible configurations of four planar points, so these can be
considered to be degenerate three-dimensional configurations. Local transformations
are possible only if the five points are in configuration 1 or 3; the triangulation changes
from the A to the B version or vice versa. In configuration 1, the interior facet aa2a3 in
triangulation A is swapped for the interior facets aaa, a2aa, aaa in triangulation
B. In configuration 3, the edge ala2 in triangulation A is swapped for the edge a4a5 in
triangulation B (this is the diagonal edge swap used for two-dimensional triangulations).

a4 a4 a2

a4
a5

al
a3

al
a3

v5 5

configuration 1A configuration 1B configuration 2

configuration 3A configuration 3B configuration 4 configuration 5

FG. 1. Tetrahedra are (1A) aa2aaaa, aa2aaas; (1B) aa2aaas, aaaaaas, a2a3aaas; (2) aa2a3a4,
aa2a3as, ala2aaas, ala3aaas; (3A) ala2a3a4, aa2a3as; (3B) ala3aaas, a2a3aaas; (4) ala2a3a,l,

ala2a3as; (5) ala2a3a4, ala2a3as, ala3a4as.
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In k dimensions, the type of configuration and the number of simplices in the one
or two possible triangulations can be determined as follows [18]. From the k + 2 vertices
al,.. ak+2, let Si denote the (possibly degenerate) simplex formed from k + 1 of these
vertices with ai excluded, and let Fi,j denote the (possibly degenerate) facet formed
from k of these vertices with a and aj excluded. Suppose the vertices are labeled so that
Sk+ and S+2 are nondegenerate simplices sharing common facet F+l,k+ with
and ak+z on opposite sides of the hyperplane containing F+,+z (this labeling is always
possible). Let (a, a,..., a+) be the barycentric coordinates of a+2 with respect to

-k+lal ak/l i.e., z_,i= tiai ak/2 and z_,= a 1, and let a+2 -1. Note that
the labeling of vertices implies that ak+l < 0. For 1 _< _< k / 2, define i (a) to be a
negative, positive, or zero index (vertex) if ai is negative, positive, or zero, respectively.
If z is a zero index, then the k / 1 vertices ai, i z, lie on the same hyperplane. Let aN,
ap, and a0 be the number of negative, positive, and zero indices, respectively. Note that
O’N 2, O’p 1, and O"N -- O’p -- O"0 k / 2.

The type of configuration determined by a,... ,ak/2 is characterized by a

(aN, tTp, a0). (Two sets of k + 2 vertices have the same type of configuration if and only
if their a vectors are identical or differ only by the interchange of the aN and tTp values.
Any configuration with aN

_
2, ap

_
1, a0

_
0, and aN d- ap + a0 k / 2 is possible.)

Let ,Y and Sp be the sets of simplices S with negative and positive indices, respectively
(if i is a zero index, then S is degenerate). If tp 1, then only one triangulation of the
k 4- 2 vertices is possible, and it contains the aN simplices of SN; the simplex Sj, where
j is the positive index, is nondegenerate but is not a valid simplex of a triangulation be-
cause it contains the point aj. If erR

_
2, then exactly two triangulations of the k / 2

vertices are possible; the first contains the aN simplices of SN, and the second contains
the ap simplices of Sp. Each simplex of SN (Sp) is adjacent to (shares an interior facet
with) all the other simplices of SN (Sp if ap

_
2).

We have the ap

_
2 case when a local transformation is possible. If a0 >_ 1, the local

transformation can be considered to be applied in k a0 dimensions as follows. For a
negative or positive index i, let E be the (k a0) face consisting of the negative and
positive vertices, excluding ai. Let N (P) be the set of O"N (O’p) faces Ei with negative
(positive) index i. The local transformation swaps the faces of N for the faces of p,
with the a0 zero vertices being part of all simplices.

Since our Delaunay triangulation algorithms are based on processing and swapping
facets, we now describe the facets involved in a local transformation from the simplices
of triangulation SN to the simplices of triangulation Sp. Let N, P, n, nN, and
ffBP be the sets of interior facets of SN, interior facets of Sp, boundary facets common
to both SN and Sp, boundary facets unique to SN, and boundary facets unique to Sp,
respectively. ’N contains the aN(aN-- 1)/2 facets Fi, where i and j are negative indices.
’p contains the O’p(tTp 1)/2 facets Fi, where i and j are positive indices. ’n contains
the tTNO’p facets Fi,j, where i is a negative index and j is a positive index. ’nN and
BP are nonempty if and only if a0 _> 1. ’nN contains the aNa0 facets F,, where
is a negative index and j is a zero index, ff’BP contains the apa0 facets Fi,, where is
a positive index and j is a zero index. If a0 >_ 2, then facet Fi, with zero indices i, j is
degenerate.

3. Delaunay triangulations from local transformations. In this section, we describe
an incremental approach for constructing k-D Delaunay triangulations using local trans-
formations. Let V {v, v,..., v, } be a set of n _> k + i distinct k-D vertices, not all
in the same hyperplane. A Delaunay triangulation of V is a triangulation that satisfies
the (global) empty circumhypersphere criterion, i.e., the hypersphere passing through



K-DIMENSIONAL DELAUNAY TRIANGULATION 1419

the k + 1 vertices of any simplex of the triangulation contains none of the n vertices
in its interior. A Delaunay triangulation also satisfies a local empty circumhypersphere
criterion as indicated by the following definition and theorem from [18].

DEFINITION 1. Let a 0;lO;2... 0;k be an interior facet of a triangulation of , and
let ab and ac be the simplices sharing facet a (with vertices b, c on opposite sides of
the hyperplane containing a). Then a is said to be locally optimal if and only if the
circumhypersphere of ab does not contain c in its interior.

THEOREM 1 [18]. A triangulation 7" is a Delaunay triangulation if and only if every
interiorfacet of 7" is locally optimal

Note that Definition 1 is not affected by the labeling of b, c, and Theorem 1 provides
a simple way to checkwhether or not a given triangulation 7" is Delaunay. This definition
and theorem lead to the following corollary. A different version of part of this corollary
is given and proved in [18].

COROLLARY 1. Let a, a2,..., ak+2 be k / 2 distinct k-D vertices, not all in the same
hyperplane. IfT is the unique triangulation ofthese vertices, then all interiorfacets ofT are
locally optimal. If there are two different triangulations T, T’ of these vertices, then either
all interiorfacets ofT (T’) are locally optimal or all interiorfacets ofT (T’) are not locally
optimal, and the latter case cannot occurfor both T and T’.

Proof. If T is the unique triangulation, then it must be a Delaunay triangulation
(since this always exists), so all interior facets of 7" are locally optimal by Theorem 1.
Suppose two triangulations are possible. If a, a,..., a+ lie on the same hypersphere,
then both triangulations are Delaunay, otherwise exactly one of the triangulations is
Delaunay. Suppose T is not Delaunay. By Theorem 1, there exists an interior facet F
of T that is not locally optimal. Suppose F does not contain the two vertices a, a. Let
S be the simplex formed from F and a. Then the circumhypersphere of S contains aj
in its interior. This implies that all interior facets of S are not locally optimal (since a
is always the other vertex). Since S is adjacent to all other simplices of T, it follows that
the circumhypersphere of each simplex of T contains the other vertex (not involved in
the simplex) in its interior, and all interior facets of T are not locally optimal.

Theorem 1 and Corollary 1 suggest that one approach for constructing a Delaunay
triangulation of is to apply local transformations to nonlocally optimal interior facets to
remove them from a triangulation of V. The following definitions suggest that removing
these facets may not be straightforward.

DEFINITION 2. Let a ala2.., ak be an interior facet of a triangulation 7" of V,
and let a0;k+l and a0;+2 be the simplices of 7" sharing facet a. Suppose the notation of
2 is used. If r0 0, then a is said to be transformable if and only if crp > 2 and the crv
simplices of Sv are all in 7". If or0 > 1, then a is said to be transformable if and only if
(1) crp > 2, (2) the crv (k cr0)-faces ofv are all in T, and (3) for any two faces Ei, Ej
of v, Eib... bo (the simplex containing face Ei and vertices b,..., bo) is a simplex
of T if and only if Ejbx... b,o is a simplex of T.

If a is nontransformable, then a local transformation cannot be applied to remove a
from the triangulation. If k 2, then any nonlocally optimal interior facet (edge) aa2
is transformable since, by Corollary 1, rv cry, 2 and r0 0 for this facet. Suppose
k > 3 and or0 > 1. If interior facet a is transformable, then q > 1 simultaneous local
transformations can be performed to remove a, where q is the number of simplices of 7"
incident on a face E of v. Note that these local transformations must be performed
simultaneously in order to guarantee that a valid triangulation is produced.

For example, suppose k 3, r0 1, and the tetrahedra are aaa3a,t and aa2a3a
as in configuration 3A of Fig. 1, as well as aa2a6aa and ala2a6a5 (with a6 and a3 on



1420 BARRY JOE

opposite sides of ala:a4). Then two simultaneous local transformations can be per-
formed to produce tetrahedra aaagaaa and a4aaaa2 as in configuration 3B of Fig. 1,
as well as aaaaal and aaa6a2.

The following examples illustrate how nontransformable facets can arise in a trian-
gulation 7".

(a) k 3, a0 0: Suppose vertices a,..., a are as in .configuration 1B of Fig.
1 with tetrahedra alaaasa2 and aaaasa3, but tetrahedron a:aaaaa is replaced with
tetrahedra a2aaasa and aaaaasa (where a lies between a2 and a3 in circular order
around aaas). Then ala4a is nontransformable.

(b) k 3, ao 1: Suppose the tetrahedra are aa2a3a4 and aiaza3a5 as in config-
uration 3A of Fig. 1, aa2a4 and aaza5 are interior facets of T, and the other two tetra-
hedra incident on these two facets are aa2a4b and aia2asc with b # c. Then aia2a3 is
nontransformable.

(c) k 4, ao 1" Suppose the simplices are aaaasa6a2 and aa4asa6a3, where
al,..., a are in the same hyperplane as in configuration 1B of Fig. 1. Then aia4asa6 is
nontransformable if either facet a2a3a4a5 is not in 7" or simplex a2a3aaasa6 is not in 7"
or aa2a4a5b, aiaaa4a5c, a2aaa4a5d are simplices of 7" such that b, c, and d are not all
the same vertex.

(d) k 4, ao 2: Suppose the simplices are aa2aaa6a4 and aa2a3a6a5 where
al, a2, a4, a5 are in the same hyperplane as in configuration 3A of Fig. 1. Let E4 (5) be
the set of edges bib2 such that aia2a4bxb2 (aa2asbb2) is a simplex of T. Then aa2aaa
is nontransformable if the sets :4 and 5 are not identical.

DEFINITION 3. A triangulation 7" of 1) is said to be pseudolocally optimal if every
nonlocally optimal interior facet of 7" is nontransformable.

Any triangulation of V can be transformed to a pseudolocally optimal triangula-
tion by a finite sequence of local transformations applied to nonlocally optimal trans-
formable interior facets, i.e., the sequence of triangulations cannot cycle. This is proved
in [12] for the case k 3, and the proof can be easily extended to any dimension k.
For k 2, a pseudolocally optimal triangulation is always Delaunay since nonlocally
optimal nontransformable facets (edges) cannot occur. However, for k _> 3, a pseudolo-
cally optimal triangulation may not be Delaunay. An example of a pseudolocally optimal
non-Delaunay triangulation for k 3 is given in [12]. By changing the three-dimensional
points (x, y, z) in this example to k-D points (x, y, z, 0,..., 0) and adding the k-3 k-
D points (0, 0, 0, 1, 0,..., 0),..., (0, 0, 0, 0,..., 0, 1) to get k-D simplices from the tetra-
hedra, an example of a pseudolocally optimal non-Delaunay k-D triangulation for any
k > 4 is obtained.

The existence of pseudolocally optimal non-Delaunay triangulations implies that a
Delaunay triangulation cannot generally be constructed by applying local transforma-
tions in any order to any triangulation. To guarantee that a Delaunay triangulation of
V is constructed, we use the following incremental approach. Suppose the vertices of
); are relabeled if necessary so that v,..., v_ are not in the same hyperplane and a
Delaunay triangulation TD_ of v,..., Vi_l has been constructed (when i k + 2, the
Delaunay triangulation consists of a single simplex). If i < n, then vertex vi is inserted
into T_D1 and an initial triangulation T() involving vi is constructed as follows.

If vi lies outside the convex hull of vx,..., Vi_l, then simplex avi is added to T/_D
for every boundary facet a of TD_ that is visible from v (a is visible from v if v and
any point w in the interior of the convex hull of Vl,.. v_ are on opposite sides of the
hyperplane containing a). If vi lies in the interior of simplex S ala:.., ak+ of TD_,
then S is deleted and replaced with the k + I simplices S, where S is 5’ with vertex a
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replaced by vi, j 1,..., k + 1. We have the remaining case when vi lies in the interior
of (p 1)-face a ala2.., ap of T/_nl, where 2 < p < k. In this case, any simplex
q ab.., bk+-p ofT containing face a is deleted and replaced with the p simplices
S, where q is q with vertex as replaced by v, j 1,..., p.

In the next section, we prove that T() can be transformed into a Delaunay trian-
gulation TD by a finite sequence of local transformations applied to nonlocally optimal
transformable interior facets.

4. Proof ofDelaunay triangulation construction. The proof that T() can be trans-
formed into a Delaunay triangulation TD is just a generalization of the proof for the
three-dimensional case given in [13]. To simplify the proofs of lemmas, we assume that
no k + 1 points of V lie on the same hyperplane and that no k + 2 points of V lie on
the same hypersphere. The former assumption implies that all local transformations are
nondegenerate, i.e., r0 0. The latter assumption is only needed for the last lemma of
this section. These assumptions apply to the proofs only; the lemmas still hold in the de-
generate cases (this is indicated by parenthesized phrases). The extension of the proofs
to handle the degenerate cases can be done in a way similar to that in [13] for k 3,
where the two assumptions are not made.

First, we give some notation. The interior of the circumhypersphere of simplex
aa2.., ak+1 is denoted by ()aa... a+. For r > I, let T/(r) be the triangulation
obtained by applying a local transformation to a nonlocally optimal transformable in-
terior facet of T(r-) (or q > 1 simultaneous local transformations if r0 > i). For

>_ 0, (facets is a simplex in

{facets a... a_iv there exists a such that a... a_akv is a simplex in T()}.
If avi a... a_xvi is an interior facet of) incident on simplices abv and acre,
then let 0) (a) denote the angle at a between (the hyperplanes containing) facets ab
and ac as viewed from vi, i.e., the angle is taken to be larger than 7r if and only if c and
v are on opposite sides of the hyperplane containing ab.

Since T is Delaunay, all interior facets in T_I are locally optimal by Theorem
1. This implies that in T(), all nonlocally optimal interior facets are in -0) t_J $0)
(since the two simplices incident on other interior facets are unchanged), and for all
interior facets avi in 0), 00)(a) > 7r (< 7r)if v, is outside the convex hull of Vx,...,
(in the interior of a simplex of T_). To show that T(’) is Delaunay for some m, we

first show that the local transformations applied to the T() are type-N transformations,
where a type-N transformation is a local transformation in which v is one of the k + 2
vertices and is a negative vertex (using the notation of 2). In other words, a type-N
transformation replaces aN simplices, exactly one ofwhich does not have vi as a vertex,
by crp simplices, all having vi as a vertex. For k 3, Fig. 2 illustrates the two different
kinds of nondegenerate type-N transformations.

LEMMA 1. Supposefor all r < m, the local transformation applied to T() is a type-N
transformation (or simultaneous local transformations are type-N transformations). For all
r<m:

(A) all nonlocally optimal interiorfacets ofT() are in () U ), and

(B) ifaaz a+ is a simplex in T() such thatnone ofits vertices is vi then Oaaz
ak+ does not contain any vertex exceptpossibly vertex vi.

Proof (by induction). Statements (A) and (B) are clearly true for r 0. Suppose
they are true for 0 < < m and T/() is not pseudolocally optimal. Suppose that a
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FIG. 2. Two kinds ofnondegenerate type-N transformations for k 3 ("before" on left, "after" on right).
Vertex vi is not shown; imagine that it is above the page. Facets in .r) are solid lines, other edges are dashed
lines. (1) a4 below ala2a3, a4vi intersects ala2a3: ala23vi ala2a3a4 ala2a4vi al3a4vi 23a4vi.

(2) 0r) (ala2) > 7r, ala2 intersects a3a4vi: ala2a3vi, ala2a4vi, ala2a3a4 alaaa4vi, a2a3a4vi.

type-N transformation is applied to nonlocally optimal transformable facet al... ak of

T(r) to get T(r+l). Let the other two vertices of the type-N transformation be ak+l and
ak+ v. Using the notation of 2,

.T.r+l) (.r) {Fj,k+2 J is a negative index}) t_J {Fj,k+2 J is a positive index},
(+) (G)-{F,tlj, are negative indices < k+2})O{F,lj,1 are positive indices}

(Note that the deleted facets are in ’N.) The new interior facets of T(+1) that may
become nonlocally optimal are in

-B {Fy,t J is a positive index and is a negative index},

{(r+l) There are no new simplices in T(+) notand these facets are all in ..+1) t_J .-i

involving vi. Hence (A) and (B) are true for r + 1.

LEMMA 2. Supposefor all r < m, the local transformation applied to T() is a type-N
transformation (or simultaneous local transformations are type-N transformations). For all
r<m:

(C) for all interior facets al...ak-lv, in Gr),/f 0r)(al ...ak-1) < 7r, then facet
al ak-lv is locally optimal

Proof (by induction). With the assumption that no k + 1 points of Y lie on the
same hyperplane, an interior facet av, al... ak-xV, in G0) satisfies 0) (a) > rie is

outside the convex hull of vl,..., v-l, and 0) (a) < 7r if vi is in the interior of a simplex
S of T_D1 In the latter case, av is locally optimal by Corollary 1 since the triangulation
of v and the vertices of S are unique. Hence statement (C) is true for r 0.

Suppose (C) is true for 0 < r < m. Suppose that a type-N transformation is applied
to nonlocally optimal transformable facet a... a of T() to get T(+). Let the other
two vertices of the type-N transformation be ak+l and ak+2 v. Using the notation
of 2, ’p {Fj,t J, are positive indices} contains the only facets of 7+) not in

G). Suppose Fj,t E ’p and a is the (k 2)-face of Fj,t that does not contain v. Then
(r+l)O (a) < 7r since aaj and aat are in ’S, and Fy,t is locally optimal by Corollary 1 since

al... ak is nonlocally optimal.
The only facets of (,+1) ,.) 0,.) (,+1).. fq such that their and 0i values are different

(if they are interior facets) are in
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{F,t J is a positive index and is a negative index < k + 2} c ’n.

Suppose F,, g is an interior facet of+), a is the (k 2)-face of F,t that does not
(r/i) 0r) (r+i)contain vi, and 0 (a) < 7r. Then (a) < 0 (a) since aaj .N f).T’/(r) (aajvi

is a simplex of T()) and aat B (’+) (aazv is a simplex of T(’+l)). Let the other
simplex of T() and T(+x) incident on Fj,z be avib. Then aj and b are on the same side
of (the hyperplane containing) aaz as v. Since aaat is a simplex of T(’), by Lemma
1, aaat does not contain b. The fact that aa is not locally optimal in T(’) implies
aajaz contains v. Hence the part of aatvi on the same side of aaz as v is a subset
of the corresponding part of aata. This implies that aatv does not contain b, i.e.,

avi Fi,t is locally optimal in ’Ti(r+l). I-1
LEMMA 3. For all m > 0:
(D) a type-N transformation (or simultaneous type-N transformations) is the only type

of local transformation that can be applied to a nonlocally optimal transformable interior

facet ofT(m).
Proof (by induction). The basis and inductive steps are the same. Suppose m 0 or

statement (D) is true for all r < m. By Lemma 1, all nonlocally optimal interior facets
of T(’) are in ’(") U g). First suppose that a ai... a is a nonlocally optimal
interior facet in ’’) incident on simplices aa+ and avi. Then a local transformation
involving these two simplices must have v as a negative vertex, i.e., it must be a type-N
transformation.

Now suppose that avi ai... a_ivi is a nonlocally optimal interior facet in

incident on simplices avia and ava+i. By Lemma 2, 0’) (a) > 7r. This angle implies
that aaa+ is a simplex in the triangulation of al,. ak+l, vi that includes ava and
ava+. By Corollary 1, there is another triangulation of ai,... ,a+i,v. The local
transformation that removes facet av must be a type-N transformation since simplex
aakak+l would be removed. Therefore, (D) is true for m.

LEMMA 4. If all inteNorfacets ofT() not in ) are locally optimal, then all intedor

facets in ) are locally optimal.

Proof. By Lemmas 1 and 3, all nonlocally optimal interior facets ofT() are in ’() U
g). Suppose all interior facets in ’) are locally optimal. Suppose avi ai... a_ivi

is a nonlocally optimal interior facet in g). By Lemma 3, a type-N transformation is
the only type of local transformation that can remove av. But a type-N transformation
would also remove a nonlocally optimal interior facet from ’(). This contradiction
implies that av is locally optimal.

LEMMA 5. Let aak al ak_ak be a nonlocally optimal and nontransformable
interiorfacet in () incident on simplices aaa+ and aavi in T(). Suppose the non-
transformability is due to (k- 2)-face a, i.e., aa+ v is not a simplex ofT() but it is needed
for the local transformation that removes aa (or a is in a configuration with cro > 1). Then
there exists another interiorfacet ab, b a, in () that is nonlocally optimal

Proof. Let the vertices in circular order about face a be vi, a, a+ =do, d,..., d,
b, vi where s > 1, i.e., avian, aado, adod,... ,ad_d, advi are simplices in T().
Since adovi is the missing simplex, d,..., d must be on the same side of (the hyperplane
containing) facet ado as vi. By Lemmas 1 and 3, interior facets ado,..., ad_ are locally
optimal since they are not in ’() t_J ). The fact that aa is nonlocally optimal implies
that aado contains v. adoak does not contain d so the part of adod on the
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same side of ado as vi contains the corresponding part of Oad0ale; in particular (adodl
contains vi. This argument can be repeated to show that (adld2,..., Oads-lds all
contain vi. But the fact that Oads-ld8 contains vi implies that interior facet ad, ab
is nonlocally optimal, where ab is in .r).

To complete the proof that a Delaunay triangulation T() is obtained for some m,
we need to show that ifT() is not a Delaunay triangulation, then there exists a nonlocally
optimal transformable interior facet in ’(r). This will be done in the next three lemmas,
which use the following notations.

For a simplex ab al... aleb, let alb denote the half-space that consists of the hy-
perplane containing facet a as well as the points on the opposite side of this hyperplane
from b. For two simplices ab and ac sharing common facet a, ab is said to be in front of
ac with respect to a viewpoint p if there exists a half-line L starting at p, such that L inter-
sects the interior of both ab and ac, and all intersections of L with the interior of ab are
between p and any intersection of L with the interior of ac. Note that if b and p are both
in alc and p does not lie on the hyperplane containing a, then ab is in front of ac with
respect to p. Also, for a point p and a simplex al... ale+l, let bv(al... ale+l) 62

where 6 is the Euclidean distance between p and the centre of Oal... ale+l, and p is the
radius of al...

LEMMA 6. Suppose T() is not a Delaunay triangulation and all nonlocally optimal in-

teriorfacets in) are nontransformable. Then there exists a cycle ofsimplices a o
ak+

ak+l at-i t--1 /(r)ale+l, all at+l aol o in such that vi is not a vertexak+
ofany of these simplices, andfor all j, a a+l and a+l ajle+l+l share common facet
a a, a a is locally optimal, and v, E a ala+r

Proof. By Lemmas 1, 3, and 4 and Theorem 1, there exists a nonlocally optimal in-
terior facet aak a... a-iak in 2"(). By hypothesis, aa is nontransformable. Let
aalevi and aaleale+l be the two simplices incident on aale in T(). Without loss of gen-
erality, suppose the nontransformability is due to (k 2)-face a as in the statement of
Lemma 5. Then, byLemma 5, abl E ’) is also a nonlocally optimal interior facetwhere
bl # ale. By hypothesis, abl is also nontransformable. Suppose its nontransformability is
due to (k 2)-face b, where b consists ofvertex bl and k 2 of the vertices al,...,

(since the angle at face a between facets aale+l and avi as viewed from bl is less than 7r,

it is not possible that the nontransformability is due to face a). Let abl bble, and
and bbleble+l be the two simplices incident on bble in T(). There are two possible cases:
either ale+l ble+l or ale+l # ble+l.

First suppose that a+ b+l. Then v aa+la and by Lemmas 1 and 3,
aa+ is locally optimal. Let aa+a, aa+lbx be the start of a sequence of simplices.
Now suppose a+ # b+. Let the vertices in circular order about face a be v, a,
ale+l do, dl,..., d ble+l, bl, v where s > 1, i.e., avian, aaledo, adodl,..., adbl,
ablv are simplices in T(). By Lemmas 1 and 3, interior facets ado,..., ad are locally
optimal. Since the nontransformability ofaa is due to a, v lies in the half-spaces adola,
adlldo, adsld-l. Let adoak, adldo,. add_l, adbl be the start of a sequence
of simplices.

The above argument can be repeated with bble and b taking on the role ofaa and a,
and bc taking on the role of abx, and so on, with more simplices added to the sequence
of adjacent simplices. Since there are a finite number of facets in 9r(), there must be a

cycle of adjacent nonlocally optimal nontransformable interior facets of ’(). Without
loss of generality, suppose this cycle of facets starts and ends at aa. Then the proof of
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this lemma is completed by taking the sequence or cycle of adjacent simplices starting
and ending at aak+lak. [3

To show that this cycle of simplices cannot occur, we need the following lemma from
[6]. For completeness, we provide a simpler proof of this lemma here.

LEMMA 7. Suppose ab and ac are simplices sharing commonfacet a al ak such
that ab is in front of ac with respect to point p. If c is outside the circumhypersphere of ab,
then bv(ab < bv(ac).

Proof. Suppose the coordinate system (zx, z2,..., z) is first translated so thatp is at
the origin and then rotated so that the normal of facet a is (0,..., 0, 1) and a lies on the
hyperplane z a with a > 0. Note that this change to the coordinate system does
not affect the value of bv. Let the radii of Oab and C)ac be p and p, respectively, and
let the centre of @ab have coordinates (7,..., 7-, "Y) in the new coordinate system.
Then the centre of C)ac has coordinates (7, 7-, ")’) with 3’ > "Y, since c is outside
the circumhypersphere of ab and ab is in front of ac with respect to p. A formula for p is

where (ai,..., Ok-1, Ok) are the coordinates of ai. A similar formula exists for p. By
simple algebraic manipulation,

LEMMA 8./.fT/0") is not a Delaunay triangulation, then there exists a nonlocally optimal
transformable interiorfacet in (i r).

Proof. By Lemmas 1, 3, and 4 and Theorem 1, there exists a nonlocally optimal in-
terior facet in .T}’9. Suppose all nonlocally optimal interior facets in .T(’0 are nontrans-
formable. Then, byLemma 6, there exists a cycle ofsimplices1 +1, +1
ai-1 ak+lt-1 a a+ al o in T/(r) such that vi is not a vertex of any ofak+
these simplices, and, for all j, a{ a+ and a+1 aj+l share common facet a ajk+l ka a is locally optimal, and vi a alak+l"

From the nondegeneracy assumptions made at the beginning of this section, a+1

aJ+k+ll is in front of a a+ with respect to p vi for all j, and by Lemma 7,

dpp(a a+l) > dpp(a al+i) >... > dpp(atl at+).

But the first and last values of this sequence of inequalities are identical. Therefore, this
contradiction implies that the cycle does not exist, and there exists a nonlocally optimal
transformable interior facet in ’). Vl

THEOREM 2. If Ti_l is a Delaunay triangulation, then there exists a finite m > 0 such
that Ti(’) Ti is a Delaunay angulation.

Proof. By Lemma 3, the sequence of triangulations T/(), T/(1),... cannot cycle since
each type-N transformation removes exactly one simplex that does not have vi as a vertex
and creates only simplices having vi as a vertex. Hence there exists a finite m such that

T(’) is pseudolocally optimal. By Lemma 8, T(’) is a Delaunay triangulation. [3

5. Algorithms and data structure. In this section, we describe three algorithms for
constructing a k-D Delaunay triangulation based on the results of the previous section,
as well as a data structure for representing the varying triangulations. These algorithms
are k-D versions of the three-dimensional Delaunay triangulation algorithms in [13] and
[15]. The first two algorithms differ in the order of adding the vertices to the triangu-
lation. In the first, the n vertices are first sorted so that v is always outside the convex
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hull of Vl,..., vi-t. In the second, the vertices can be added in any order and a walk
through adjacent simplices is used to determine the location of vi in triangulation T_I.
The third algorithm does not explicitly perform the local transformations; they are made
"implicit" so that nonlocally optimal nontransformable interior facets do not occur. Un-
like the approaches in [29] and [28], a bounding simplex is not required in our algorithms.

The first and second algorithms are described by the following steps. By Lemmas 1,
3, and 4, only the facets of the .T’r) need to be tested for local optimality, so these facets
are kept in a queue and the queue is updated as type-N transformations are performed.

ALGORITHM S
(1) Initialization: Sort vl, v2,..., v, in lexicographic increasing order of their co-

ordinates, and reorder the vertices slightly if necessary so that the first k + 1
vertices are not in the same hyperplane. Form the first simplex viva.., v+,
and compute its centroid w. Initialize queue Q to be empty.

(2) For i k + 2,..., n, add vertex vi to T_, and apply local transformations to
get T9 as follows:

(a) Find a boundary facet a0 visible from vi, i.e., vi and w are on opposite sides
of the hyperplane containing a0 (if v_ appears before vi in lexicographic
order, then there is a boundary facet containing V_l that is visible from
v). Starting from ao, determine the adjacent boundary facets that are vis-
ible from v by checking neighbouring boundary facets of visible boundary
facets. For each visible boundary facet a, add simplex av to the triangula-
tion and insert a at end of queue Q.

(b) While queue Q is not empty, remove the head facet a from Q and if a is
still in the triangulation, do the following: Let aak+l and aak+2, ak+2 Vi,

be the two simplices sharing interior facet a. If ()aak+ contains vi and
a is transformable, then apply one or more local transformations (more
than one may be needed if a0 _> 1). For each local transformation, for
each facet of ’B (as defined at the end of 2) that is an interior facet of
the triangulation and does not have v as a vertex, add the facet to the
end of Q.

ALGORITHM W
(1) Initialization: Reorder the vertices slightly if necessary so that the first k + 1

vertices are not in the same hyperplane. Form the first simplex vv2... Vk+l,
and compute its centroid w. Initialize queue Q to be empty.

(2) For k + 2,..., n, add vertex v to TI, and apply local transformations to
get Tz as follows:

(a) Starting from a simplex having v-i as a vertex, walk through neighbouring
simplices of T_ to find a simplex or facet containing vi (the location of
v with respect to the facets of a simplex, as determined by barycentric
coordinates, determines which adjacent simplex to visit next) or determine
that vi is outside the convex hull of v,..., vi_ (the walk goes through
a boundary facet a0). Lemma 7 guarantees that the walk does not cycle
through simplices since each simplex is in front of the previous one with
respect to v. If vi is outside the convex hull, then create the new simplices,
and add the visible boundary facets to queue Q as in Algorithm S, else
delete and add the simplices described at the end of3 and add the interior
facets of .(0) to Q.

(b) This part is the same as in Algorithm S.
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From 4, it can be seen that TD T(’) is obtained from T_D1 via type-N transfor-
mations that delete all simplices al... ak+ in T_D1 whose circumhypersphere contains

vertex vi in its interior and add all simplices ax... akvi, where ax... a E ’(’) -/D
(there are also some "temporary" simplices involving v that appear in the T() but not in
TD). Therefore, another approach is to not explicitly perform local transformations and
record the temporary simplices ofthe form a... akvi, but to delete simplices al... ak+l
whose circumhypersphere contains v in its interior, record the facets that may form sim-
plices with vi, and create the simplices al... avi of TD after the deletion is completed
(as in Watson’s algorithm [29]).

This "implicit" local transformation approach can be used in place of the explicit
local transformations of Algorithm S or W. We provide the steps for Algorithm M be-
low, where this algorithm is the "implicit" version of Algorithm W, since Algorithm W
is faster than Algorithm S for sets of random points from the uniform distribution (see
the next section). In Algorithm M, queue Q is used in a similar way to Algorithm W.
In addition, stack S records the facets of -D. Algorithm M should be faster than Algo-
rithm W, since local transformations are not explicitly performed and nonlocally optimal
nontransformable interior facets do not occur. However, Algorithm W is more numeri-
cally robust than Algorithm M for the following reason. For sets of points on the same
hypersphere, it is possible that round-off errors in determining whether a vertex is inside
a hypersphere may cause an invalid triangulation with overlapping or missing simplices
using the approach of Algorithm M in floating point arithmetic [29], [3], [13]. On the
other hand, it is not possible for Algorithm W to produce invalid triangulations, since
local transformations only change the simplices in a fixed local volume.

ALGORITHM M
(1) Initialization: Reorder the vertices slightly if necessary so that the first k + 1

vertices are not in the same hyperplane. Form the first simplex vv2.., v+,
and compute its centroid w. Initialize queue Q and stack S to be empty.

(2) For k + 2,..., n, add vertex v to TD_ and delete and add simplices to get
TD as follows:
(a) The walking phase of this part is the same as in Algorithm W. If v is out-

side the convex hull, then add the visible boundary facets to queue Q as in
Algorithm S, else delete the simplices containing vi from the triangulation
and add the interior (boundary) facets of .0) to queue Q (stack S).

(b) While queue Q is not empty, remove the head facet a from Q, and if a
is still in the triangulation, do the following: Let aa+l be the remaining
simplex incident on facet a. If aak+l does not contain v, then push a
onto q, else delete aa+l and a from the triangulation and for the other k
facets of aa+l, do the following: Let b be one of these other facets. If b is
already in Q, then delete b from the triangulation; else if b is a boundary
facet such that v lies on the hyperplane containing b, then delete b; else
if b is a boundary facet, then push b onto fi’; else insert b at end of Q.

(c) While stack q is not empty, pop the top facet a from Algorithm S, and add
simplex av to the triangulation.

As in the two-dimensional Delaunay triangulation algorithm in [28], the time in
the walking phase of Algorithms W and M can be reduced by the following prepro-
cessing bin sorting step (so that each vertex is likely to be closer to the previous one).
Let [Zl,min, Zl,mex] X X [Zk,min, Zk,max] be the smallest hyperrectangle containing
vertices vl,..., v,. This hyperrectangle is subdivided into m n hyperrectangular
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bins of size (Xl,max Zl,min)/m ... x (Xk,max Xk,min)/m, where c is chosen based on
the distribution of points v,..., v. (For example, for random points from the uniform
distribution, c 0.5 and c 0.4 are optimal for two and three dimensions, respec-
tively, [15].) The integers 1 to mk are assigned to the bins such that consecutive integers
correspond to adjacent bins, and the vertices are sorted based on their bin numbers, i.e.,
the vertices are inserted in increasing bin number order.

The data structure that we use to represent the varying triangulations in the three
algorithms is the k-D version of the one for three-dimensional triangulations in [12],
with the modified representation for boundary facets described in [13]. This data struc-
ture facilitates the walk through a triangulation, the determination of the neighbouring
boundary facets of each boundary facet, the addition of new simplices involving v, the
addition, deletion, and searching of facets, and the updates due to local transformations.
The data structure consists of the following four arrays.

The vertex coordinates are stored in an array VC, where VC[i].x, VC[i].xz,...,
VC[i].xk are the coordinates of the vertex vi. The facets are stored in a hash table HT
with direct chaining, where HT[j] is the head pointer ofthe linked list offacets with hash-
ing function value j. Anew facet is added at the head ofa linked list, since it is more likely
to be referenced again. Let i < iz < < i be the k indices in VC ofthe k vertices of a
facet. We use the hashing function h(i, i2,..., i) (ilnk-1 --i2nk-2 dr-.. "--ik) mod P,
where the hash table size P is a prime number that is approximately one-eighth of the
number of facets in the final triangulation, since experimental results indicate that in-
sertion, deletion, and searching operations take constant time, on average, with these
choices.

We store the elements of the hash table linked lists in an array FC of facet records
with origin index 1 (we use the array form of linked lists, which is more suitable for im-
plementation in Fortran). The k + 4 fields of FC[j] are il, i,..., i, i+, i+ bfp,
htlink, qlink, where 0 < il < < i are the k vertex indices of a facet; i+ and pos-
sibly i+z are the indices of the other vertex of the one or two simplices with (boundary
or interior, respectively) facet vi vi; bfp is used for boundary facets only and is the
negative of an index of the BF array described below (so the sign of i+:1 bfp indicates
whether the facet is an interior or boundary one); htlink is a pointer to the next element
in the hash table linked list and is an index of FC or 0 (for end of list); qlink is used by
the algorithms to indicate whether or not the facet is in queue Q or some other list, and
in the former case its value is a pointer to the next facet (i.e., an index of FC or 0), and
in the latter case, its value is -1.

If a facet is in queue Q but is no longer in the triangulation, then the i2 field is set
to zero to indicate this and the facet record is deleted when it reaches the head of Q.
We also use the i field to maintain an available linked list of deleted facet records (the
negative of the actual pointer value is stored to distinguish deleted facets from existing
facets), so that a new facet record can be obtained from the available list if it is nonempty
or the end of array othenvise.

The neighbouring boundary facets of each boundary facet are stored in an array
BF of boundary records with origin index 1. The k fields of BF[j] are p, p,..., p,
where eachp is a pointer to a facet record (an index of FC) determined as follows. Let
iiz.., i be a boundary facet stored in FC[1] where the i are orderedvertex indices, and
suppose the bfp field of FC[1] is -j. Then the p field of BF[j] is a pointer to the other
boundary facet sharing the (k-2)-face ix... i_ i+... i. As for FC, we also use the pl
field ofBF to maintain an available linked list of deleted boundary records. An example
of the FC, HT, and BF arrays for a four-dimensional triangulation is given in Fig. 3.
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FC il i2 ia
1 2 3 4
2 1 3 4
3 1 2 4
4 1 2 3
5 1 2 3
6 2 3 5
7 1 3 5
8 1 2 5
9 1 2 3
10 2 4 5
11 1 4 5
12 1 2 4
13 3 4 5
14 1 3 4

i4 i %lbfp htlink qlink
5 1 -1 0 -1
5 2 6 0 -1
5 3 6 0 -1
5 4 6 0 -1
4 5 -5 0 -1
6 1 -8 4 -1
6 2 4 5 9
6 3 4 1 -1
6 5 -7 3 14
6 1 -6 9 -1
6 2 3 6 -1
6 5 -2 2 -1
6 1 -3 12 -1
6 5 -4 8 0

HT

BF pl

13
10
10
13
1

13
6
13

P2 Pa P4
10 6 5
14 9 5
6 14 1
12 9 5
14 12 9
6 12 1
14 12 5
10 9 1

FIG. 3. Illustration of FC, HT, and BF arrays for the four-dimensional triangulation containing the sim-
plices 12345, 12356, 12456, 13456 (a simplex is represented by its vertex indices). There are threefacets in queue
with head 7 (index ofFC).

In addition to the data structure operations, the main operations required are find-
ing the hypersphere passing through the k + 1 vertices of a simplex, finding the barycen-
tric coordinates of a point with respect to the k + i vertices of a simplex (this is used
to determine the type of configuration and the direction of walking through adjacent
simplices), and finding the hyperplane passing through the k vertices of a facet. The
hypersphere and barycentric coordinates can each be found by solving a k-by-k system
of linear equations, and the hyperplane can be found by solving a k 1-by-k system of
homogeneous linear equations. We use Gaussian elimination with partial pivoting to
solve these systems.

The three algorithms described above have been implemented in standard Fortran
77 (including all degenerate cases such as simultaneous degenerate local transforma-
tions), and this software has been added to GEOMPACK [15]. Relative tolerances are
used throughout the implementation, e.g., for determining whether a point lies on a hy-
persphere or a hyperplane. The time complexities of the algorithms are discussed in the
next section.

6. Time complexity. We first derive the time complexity ofAlgorithm S, in the worst
case and for sets of random points from the uniform distribution. Then we explain how
these time complexities are different for AlgorithmsW and M. For simplicity, we assume
that k is a constant in this analysis, although we will afterwards briefly discuss the factor
of the time complexity that depends on k. We also present experimental results from
our implementation of the three algorithms.

First we state some results from [5] and [27] on the worst-case size of convex hulls
and Delaunay triangulations ofn k-D vertices. The k-D convex hull has O(nLk/2J / [k/2J !)
facets in the worst case. The k-D Delaunay triangulation contains O(n [k/2] / [k/2] l) sim-
plices in the worst case. (Any k-D triangulation also contains O(n [k/2q simplices in the
worst case, since the simplices of a k-D triangulation become facets of a (k + 1)-D con-
vex hull if one extra (k + 1)-D vertex is added, and [(k + 1)/2/ [k/2].) This means
that the worst-case time complexity of any algorithm for constructing a k-D Delaunay
triangulation is at least O(n/ ).

We now derive the worst-case time complexity ofAlgorithm S; this is a generalization
of the three-dimensional case in [13]. O(n log n) time is required for the initial sorting of
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vertices in step 1. For step 2, we use the fact that using our hash table data structure with
storage proportional to the maximum number of facets in the intermediate triangula-
tions (which is usually close to the number of facets in the final Delaunay triangulation),
searching, insertion, and deletion of a facet can each be performed in constant time, on
average [16]. If 2k extra pointer fields are added to each facet record (one pointer to
each other facet of each of the two simplices incident on the facet), then hashing and
searching can be avoided and data structure operations can always be performed in con-
stant time. The time complexity for step 2 can be obtained as follows.

For between k + 2 and n inclusive, let the following variables denote the quantities
when vertex vi is added to the triangulation:

BFi number of boundary facets in ’/_D1,
DF number of facets in Q that are no longer in triangulation when facet is at

head of Q,
LO number of facets that result in locally optimal when tested,
NTFi number of facets that result in nontransformable when tested,
LT number of local transformations applied,
DS number of deleted simplices not involving vertex ,
AS number of added simplices involving vertex in D.
Then the time complexity for step 2 is

(1)
i--k+2

The variables in (1) can be bounded as follows. DFi < (k- 1)LTi since each type-N
transformation removes at most k 1 facets of -r). Similarly, NTFi <_ (k 1)LTi
since a nonlocally optimal nontransformable facet does not get put back in queue Q, but
does get swapped out later by a type-N transformation or (simultaneous type-N trans-

formations) involving another facet of the .T’/(r). LOi < ASi since every tested locally
optimal facet forms a simplex with vertex vi in TiD. LTi DSi since each type-N trans-
formation removes exactly one simplex not involving vertex vi. Since each deleted sim-
plex not involving vertex v must have been added at the insertion of a previous vertex,

n n--1-]i=a+2 DSi < 1 + -]i=+2 ASi. With these bounds, (1) becomes

(2) O(=k+2[BF+ASi] )
BFi O(i [k/21 as mentioned above for the worst-case number of facets on a k-D

convex hull. Also, AS O(iI/1 for the following similar reason. Since all points on
all facets of ’fl are "visible" from vi, the points of the facets can be linearly projected
from v so that the projected facets are on the boundary of the convex hull of at most
i 1 vertices (alternatively, project the facets onto a hyperplane and use the worst-
case number of simplices in a (k 1)-D triangulation). Hence (2) and the worst-case
time complexity of Algorithm S are O(nkk/2J+l). Since [k/2J + 1 [k/2] for odd k,
Algorithm S has a worst-case optimal time complexity for odd k.

For sets of random k-D points from the uniform distribution (in a hypercube), the
expected number of facets in the convex hull of the points is O((log i)k-l) [4]. This size
complexity for BFi also occurs empirically, as seen in the following tables. Our measure-
ments for ASi show that it is also empirically O((log i)k-1). So from (2), the empirical
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time complexity of Algorithm S for sets of n random points from the uniform distribu-
tion is O(n(log n)k-). The expected time complexity would also be O(n(log n)-) if it
could be shown that the expected size of ASi is the same as that for BFi.

The derivation of the worst-case time complexity for AlgorithmsW and M is similar
to that above, except there is one extra term WS for the number of simplices visited
during the walk through T_D. Since WSi may be O(i[/ in the worst case which is
the same or worse than the O(i/1 bounds for BFi and ASi in (2), the worst-case time
complexity of Algorithms W and M may be O(n[/2q+), which is worse than that for
Algorithm S when k is odd (see the end of this section for further remarks on this). For
sets ofn random points from the uniform distribution, the time complexity ofAlgorithms
W and M is harder to analyze (but it is the same for the two algorithms). Empirically,
Algorithms W and M are faster than Algorithm S (see the tables below), because the
bin sorting or some other preprocessing step can be used to reduce the time spent in
the walking phase and, when v is added to the triangulation, there are about a constant
number of local transformations applied when vi is inside the convex hull of the previ-
ous vertices compared with about O((log i)-) local transformations applied when vi is
outside the convex hull.

As a function of k and n, the time complexities have an extra factor involving k
that depends on implementation details. In our implementation, Gaussian elimination
is used to solve k by k linear systems for hyperspheres, hyperplanes, and barycentric
coordinates in O(ka) time per system. Also, each local transformation Updates O(k)
facets in the data structure, and each insertion, deletion, or search operation in the hash
table takes O(k) time to order the k vertex indices of a facet (we assume k is small
and use insertion sort for this); so it takes O(k4) time to update the data structure due
to a local transformation. There is also an O(k4) factor from updating the BF array
when vi is added outside the convex hull of the previous vertices (since there are O(k)
(k 2)-faces in a simplex). Therefore, for the three algorithms, the extra factor in the
time complexity is O(k4) (ignoring the constant factor for the convex hull size which is
1/[k/2J! in the worst case and unknown for random points).

We now present experimental results from our Fortran 77 implementation of Algo-
rithms S, W, and M, first for sets of random points from the uniform distribution and
then for sets of points yielding a worst-case number of simplices in the Delaunay trian-
gulation. The results are obtained from running our routines on a Sun 4/20 workstation
using the f77 compiler with optimizing option. For each k, problems with four or five
different values of n are used. For each n, five different problems are run and the mea-
surements are averaged. Due to the increase in the CPU times and the number of facets
as k increases, smaller sizes of n are used as k increases.

In Tables 1-4, for k 2 to 5, are the CPU times in seconds for Algorithms S, W, and
M (denoted by STIM, WTIM, and MTIM, respectively) and number of facets (NFAC)
and boundary facets (NBF) in the Delaunay triangulation for sets ofrandom points from
the uniform distribution. For the average entries in the left half of the tables, at least
three significant digits are given. The number of simplices is given by the formula (2
NFAC NBF)/(k + 1). For k 2 and 3, the bin-sorting preprocessing step was used
with about n’ and n’4 bins, respectively, for Algorithms W and M. For k 4 and 5,
the bin-sorting preprocessing step was not used since the n values are too small for it to
be effective. These tables show that NFAC O(n), NBF O((logn)-), and STIM

O(n(log n)-x). Although Algorithm S has the better theoretical time complexity (be-
cause of no walking phase), Algorithms W and M are faster for the random points (with
Algorithm M being the fastest because it does not apply local transformations explicity
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and has no nonlocally optimal nontransformable facets). Using larger n values and the
bin-sorting preprocessing step for k 4 and 5, we expect that the empirical time com-
plexity of Algorithms W and M for k 4 and 5 would be closer to that for k 2 and 3,
i.e., O(n1"1).

TABLE 1
Average measurementsforfive random two-dimensionalproblems ofeach size.

2000
4000
6000
8000
10000

NFAC NBF STIM WTIM MTIM

5976 20.8 11.03 8.38 8.01
11976 21.4 24.64 17.80 17.04
17974 23.0 39.44 27.79 26.31
23974 22.8 55.30 38.62 36.68
29971 25.8 70.87 49.19 46.68

NBF STIM WTIM MTIM
lOglO lOglO 1.1 1-1

6.30 .00167 .00196 .00187
5.94 .00171 .00194 .00186
6.09 .00174 .00194 .00184
5.84 .00177 .00197 .00187
6.45 .00177 .00196 .00186

TABLE 2
Average measurementsforfive random three-dimensionalproblems ofeach size.

1000
2000
3000
4000
5000

NFAC NBF STIM WTIM MTIM

12762
25978
39237
52635
65980

143 44.06 29.08 23.20
174 105.21 62.99 50.17
193 172.33 98.67 77.52
210 241.60 134.51 106.33
204 315.90 171.31 135.41

NBF STIM WTIM MTIM
(log10 n) n(logl0 n) n1.1 nl/1

15.9 .00490 .0146 .0116
15.9 .00483 .0147 .0117
16.0 .00475 .0148 .0116
16.2 .00466 .0147 .0116
14.9 .00462 .0146 .0116

300
600
900
1200
1500

TABLE 3
Average measurementsforfive randomfour-dimensionalproblems ofeach size.

NFAC NBF STIM WTIM MTIM

16682 530 68.20 52.35 35.50
37290 710 186.72 132.01 88.75
58287 874 330.56 218.45 146.15
79841 1031 487.20 310.37 208.76
101192 1186 672.41 400.06 270.33

NBF STIM WTIM MTIM
(log10 n) n(logl0 n)3 1.2 nl.2

34.9 .0150 .0558 .0378
33.1 .0145 .0612 .0411
33.9 .0142 .0623 .0417
35.3 .0139 .0626 .0421
37.0 .0140 .0618 .0417

TABLE 4
Average measurementsforfive random five-dimensionalproblems ofeach size.

8O
160
240
320
400

NFAC NBF STIM WTIM MTIM

11879 942 41.80 40.61 24.39
35730 1597 169.40 148.77 86.96
61731 2258 343.25 291.90 168.13
90903 2869 558.16 448.61 260.34
119136 3565 800.99 630.37 363.65

NBF STIM WTIM MTIM
(log10 n)4 n(logl0 n)4 1.5 nl.5

71.8 .0398 .0568 .0341
67.7 .0449 .0735 .0430
70.3 .0446 .0785 .0452
72.8 .0443 .0784 .0455
77.8 .0437 .0788 .0455

Tables 1--4 illustrate how the CPU times increase for the k-D Delaunay triangulation
algorithms as k increases. In [15], similar timing results are given for two- and three-
dimensional versions ofAlgorithms S andW that work for one dimension only. Since the
data structure and matrix operations in these versions do not have to work for arbitrary
dimensions (for k 2, a much simpler data structure can be used), these special versions
are faster by the following factors. For the two-dimensional version, STIM is faster by
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a factor of about 4.2 and WTIM is faster by a factor of about 5.0 over the k-D version
run with k 2. For the three-dimensional version, STIM and WTIM are both faster
by a factor of about 1.6. We expect that special two- and three-dimensional versions of
Algorithm M would have improvement factors similar to those of Algorithm W.

We use the following sets of points to obtain k-D Delaunay triangulations containing
the worst-case number of simplices for k > 3 (all two-dimensional triangulations have
O(n) triangles). In [24], it is shown that if the n k-D points lie on the moment curve
(t, tz,..., t) with parameter t, then there exists a triangulation ofthe n points containing
O(n[/:] simplices. Our routines show that the Delaunay triangulation of these points
contains O(n[k/21 simplices. In Tables 5-7, for k 3 to 5, are the CPU times in seconds
for Algorithms S, W, and M, and number of facets and boundary facets in the Delaunay
triangulation for sets of random points on the moment curve, where the first coordinate
t is a random number in the interval [0, 1] from the uniform distribution. For Algorithms
W and M, the n points are added to the triangulation in random order. For k 3, NFAC

(n 2) and NBF 2(n 2). For k 4, NFAC (n 3) (3n 10)/2 and NBF
n(n 3)/2. For k 5, NFAC (n 3) (n 4)/2 and NBF (n 3) (n 4).

TABLE 5
Average measurementsforfive three-dimensional moment curveproblems ofeach size.

60
120
180
240
300

NFAC NBF STIM WTIM MTIM
3364 116 1.33 2.61 2.51
13924 236 5.60 11.42 11.45
31684 356 12.81 26.35 26.77
56644 476 23.07 47.26 47.28
88804 596 37.37 75.08 75.98

STIM/n9. WTIM/n9. MTIM/n9.

.000369 .000724 .000696

.000389 .000793 .000795

.000395 .000813 .000826

.000401 .000820 .000821

.000415 .000834 .000844

TABLE 6
Average measurementsforfivefour-dimensional moment curveproblems ofeach size.

5O
100
150
200
250

NFAC NBF STIM WTIM MTIM
3290 1175 1.78 4.50 4.03
14065 4850 7.80 21.63 19.22
32340 11025 18.11 54.05 48.22
58115 19700 32.85 93.81 82.66
91390 30875 52.98 173.78 150.67

STIM/ng WTIM/n9. MTIM/n9.

.000713 .00180 .00161

.000780 .00216 .00192

.000805 .00240 .00214

.000821 .00235 .00207

.000848 .00278 .00241

TABLE 7
Average measurementsforfivefive-dimensional moment curveproblems ofeach size.

15
30
45
60

NFAC NBF STIM WTIM MTIM
726 132 0.44 0.63 0.63
9126 702 5.68 9.95 9.09

35301 1722 22.17 40.37 36.42
89376 3192 57.77 104.40 98.15

STIM/na WTIM/n3 MTIM/n3

.000129 .000187 .000188

.000210 .000369 .000337

.000243 .000443 .000400

.000267 .000483 .000454

Tables 5-7 show that the time complexity ofAlgorithms S, W, and M for the moment
curve problems are each the same as the size complexity of the Delaunay triangulation,
i.e., O(n[:/2]). Algorithm S is faster than Algorithms W and M for these problems,
because no local transformations are performed by Algorithm S as a result of the lexico-
graphic increasing order of the vertices while O(n/1 local transformations are per-
formed by Algorithm W.
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TABLE 8
Average measurementsforfive worst-case time moment curveproblems ofeach size.

n

500
1000
1500
2000

k=2 k=4

STIM STIM/n2 n STIM STIM/na

67.70 .000271 50 30.45 .000244
277.68 .000278 100 274.32 .000274
632.71 .000281 150 950.79 .000282
1118.40 .000280 200 2274.26 .000284

For k 4, Algorithm S does not achieve the worst-case time complexity of O(na)
for the moment curve problems in Table 6. This is due to the ordering of the vertices.
If they are added in the reverse order, or equivalently, the first coordinate t is a random
number in the interval [-1, 0] from the uniform distribution, then the worst-case time
complexity is achieved as shown in Table 8. This is because the addition ofv causes (i
4) (i 5)/2 local transformations, 6,..., n, for a total of (n- 3) (n- 4) (n- 5)/6 local
transformations. For k 2, Algorithm S also achieves the worst-case time complexity of
O(n2) for moment curve (or parabola) problems generated in the same way, as shown in
Table 8. In this case, the addition ofv causes i- 3 local transformations, i 4,..., n, for
a total of (n 2) (n 3)/2 local transformations. With the vertices ordered in the same
way as Algorithm S, Algorithms W and M also achieve the worst-case time complexity
for k 2 and 4. For k 3 and 5, the reverse ordering of vertices still results in no local
transformations for Algorithm S.

For k 3, Algorithms W and M could achieve a time complexity of O(n3) if the
Delaunay triangulation ofthe first i- 1 vertices contains O(i2) tetrahedra and the walk to
determine the location ofvertex v goes through O(i2) tctrahedra for all i. Edelsbrunner
[7] has constructed the following example in which there is a line going through O(n2)
tetrahedra in the Dclaunay triangulation. For even n, the n vertices are vi (0, 1+ (i-
1) h, 1), i 1, 2,..., n/2, and vi (-1 + (i 1 n/2) h, (-1)ie, 0), i n/2 / 1,..., n,
where h 2/(n/2 1) and e is a small positive number. The first n/2 vertices are on
the line x 0, z 1. The last n/2 vertices are small perturbations of points on the line
y 0, z 0. If e is sufficiently small, then the Delaunay triangulation contains (at least)
the (n/2-1)2 tetrahedra vivi+lVjVj+ for 1,..., n/2-1 and j n/2 + 1,..., n- 1.
The line y 0, z e goes through the interior of each of these (n/2 1)2 tetrahedra.
However, awalk through the Delaunay triangulation to determine the location of a point
p on this line does not have to go through all of the (n/2 1)2 tetrahedra since the walk
does not have to proceed in a straight line. From running our routines on this example,
the walk actually goes through only O(n) tetrahedra.

Therefore, this example cannot be used to obtain a time complexity of O(n3) for
Algorithms W and M. So far, we have not been able to construct any examples for which
the time complexity of Algorithms W and M is worse than O(n2) for k 3. So it is
an open question whether the worst-case time complexity of Algorithms W and M is
actually worse than that of Algorithm S for odd k.

7. Concluding remarks. We have presented Algorithms S, W, and M for construct-
ing Delaunay triangulations of sets of n k-D points. We have shown that the worst-case
time complexity of Algorithm S is O(n[k/2j+l), which is worst-case optimal for odd k.
For sets of random points from the uniform distribution, the empirical time complexity
of Algorithm S is O(n(log n)k-).
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Algorithms S and W both use local transformations, and only differ in the order of
inserting the vertices into the incremental Delaunay triangulations. By allowing vertices
to be inserted in the interior of the convex hull of the previous vertices, Algorithm W
is faster than Algorithm S in practice, although Algorithm S has the better theoretical
time complexity. Algorithm M differs from Algorithm W in that local transformations
are not explicitly performed. So Algorithm M is faster than Algorithm W in practice,
but is less numerically robust since invalid triangulations may be created by Algorithm
M in floating point arithmetic when there are many points on (or nearly on) the same
hypersphere. Using the criteria of efficiency and robustness, the best algorithm depends
on the distribution and number of points to be triangulated.

In practice, we do not expect point distributions yielding a worst-case time com-
plexity to occur. For example, in finite element mesh generation, the empirical time
complexity will depend on how the points are generated, but should be close to that for
the case of random points from the uniform distribution, e.g., see [14].

Shortly after submitting this paper, the author discovered similar work in [23] and
[8]. In the former paper, it is shown that the incremental approach using local transfor-
mations can construct k-D Delaunay triangulations if the local transformations at each
step are applied in a special order using a priority queue (instead of a more general
topological order using a queue as in this paper). In the latter paper, which was written
independently at about the same time as this one, a different approach is used to prove
the results of 4 for regular triangulations (which include Delaunay triangulations as a
special case).

Acknowledgment. The authorwould like to thank the referees for their helpful com-
ments.
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Abstract. A systematic approach is developed for gaining insight into complicated systems of partial differ-

ential equations (PDEs) in order to construct efficient smoothers for multigrid solvers. The method is derived
from local mode (smoothing) analysis and employs algebraic graph theory, but it requires no knowledge of
either in its implementation. It is applied to several problems, for which finding the best approach without
such an analysis can be quite challenging.
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1. Introduction. Multigrid methods are widely considered to be one of the most
powerful and versatile approaches to the solution of problems with many variables, par-
ticularly discretized partial differential equations (PDEs) and systems. As more and
more scientists and engineers become acquainted with these techniques, much of the
mystery surrounding successful application of multigrid is lifted. And yet it is clear that
the vast majority of multigrid solvers that are actually applied in scientific calculation
are used for single equations or very simple systems. When multigrid methods are em-
ployed in truly complicated problems, they are usually applied only to small parts of the
problem, e.g., some elliptic boundary value problem. Thus, the enormous potential of
multigrid is rarely realized in practice. The main reason for this is that general tools
that have been developed for dealing with complicated systems are frequently difficult
to apply.

A method is introduced here for constructing the most important part of the multi-
grid solver, the smoother, for complicated systems. This method, which can be mastered
readily by anyone capable of constructing a multigrid solver for a simple problem, fre-
quently enables one to find a solution procedure that is as efficient as solving the equa-
tions of the system separately. Even when that is impossible, much is learned by applying
this analysis, because it points out where the difficulties are.

Much ofwhat is presented here has appeared in different form and from a different
point of view in [1, 3]. When it exists, the equivalence between the two approaches will
be noted.

A secondary purpose of this work is to suggest the use of graphs (via algebraic graph
theory) in analyses. This may enable one, as here, to obtain tools that are far easier to
utilize than the commonly used tools of linear algebra.

In 2 the analysis is presented along with examples. No mathematical justification is
included in this section, but rather a heuristic motivation. In 3 the theoretical basis of
the method is given, with more precise concepts. In 4 is a discussion of the main results,
a comparison to present techniques and conclusions.

2. The coupling analysis. In constructing efficient relaxation schemes for multigrid
solvers of discretized systems of PDEs, it is important to gain some understanding of
the interrelationship between the equations. This is determined both by the differential
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work was supported by the National Science Foundation through the National Center for Atmospheric
Research.

tNational Center for Atmospheric Research, Boulder, Colorado 80307-3000.
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system and by the proposed relaxation scheme. The approach that motivates the analy-
sis presented here is to consider the relaxation process as a feedback system. When an
equation (or a block of equations) within a system is relaxed by some relaxation scheme,
its residuals are decreased. But, due to the coupling between equations, the residuals of
other equations in the system are perturbed. When these equations are relaxed in turn,
such perturbations propagate and others are formed. Eventually, some of the pertur-
bations caused by the relaxation of each equation may be fed back into the residuals of
the equation, amplified by a certain factor that depends on the operators in the system
(in particular, their orders and the size of their coefficients), on the discretization and
relaxation scheme, and on the meshsize. If this factor is small enough for all the equa-
tions and all the possible routes such perturbations can follow, then the system behaves
in relaxation almost as if it were decoupled. But if this is not the case, then the proposed
relaxation process will generally fail.

As will be seen in 3, the same qualitative behavior is exhibited whether the equa-
tions are relaxed simultaneously, whereby the variables are updated only after all the
equations have been relaxed, or successively, whereby the variables are updated as soon
as each equation is relaxed.

The initial search for a useful relaxation scheme is greatly simplified by assuming a
vanishingly small meshsize and finite coefficients of the operators. Then the feedback
properties are determined by the orders of the operators in a straightforward manner,
which is presented through the following example.

Suppose one wishes to construct an efficient, fully implicit, multigrid solver for the
incompressible Euler equations in two dimensions, which can be written in terms of the
vorticity ((z, V, t) and the streamfunction b(z, V, t) as

(1) Ab-ff--O,

(2) Dt 6 + J(, () 0,

where J(b, () bx(v buG, and A is the Laplace operator. Suppose that central
differencing of some sort is used for the spatial discretizations, and Crank-Nicholson (or
backward Euler) is used in time. Equation (1) is the Poisson equation for b, and it is well
known (e.g., [1]) that point Gauss-Seidel (GS) relaxation, particularly in red-black (RB)
ordering, provides an extremely efficient smoother. But GS relaxation for the advection
operator Dt is useful only for small and moderate timesteps. When the timestep (more
precisely, the Courant-Friedrichs-Lewy (CFL) number) becomes too large, point GS
relaxation can no longer be used. It can be replaced by Kaczmarz relaxation (see [1, 1]
and also 2.7 below), but this relaxation loses its efficiency very rapidly as the timestep
is increased, and it is also more expensive. One might therefore attempt the following.

Consider the newvariable # bt. This leads to the following system, which is equiv-
alent to (1)-(2).

(3)

(4) fft-A=O,

(5) J(b, if) A 0.

Now, in the multigrid solution at each time-level, one can relax (3) by applying GS re-
laxation to b, relax (4) by applying GS relaxation to , and (5) by similarly relaxing #.
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For each of these equations separately the relaxation is extremely efficient (indeed, GS
relaxation applied to (4), considered as a function of ( alone, is an exact solver). But,
due to the coupling of the equations, relaxation of each equation affects the residuals
of the others. Let us determine by analysis whether or not this effect of the coupling is
prohibitive.

Given a system of k PDEs in k unknowns, the first step is to associate with each equa-
tion the variable for which the equation is relaxed. Thus, (3), (4), and (5) correspond to, , and I,, respectively. We shall later see what must be done if there is no such clear
choice. The next step is to construct the k-by-k order-array Q: qi,j, the element of Q in
the ith row and jth column, is simply the order of the operator that operates on variable
j in equation i. If variable j does not appear in equation i, then the null symbol N is
placed in the (i, j)th position. For (3)-(5) the order-array is

2 0 N
Q= N 1 2

1 1 2

Note that the time-derivative is treated here similarly to the spatial derivatives. But there
is an important distinction. We return to this in 2.3, 2.5, and 2.7.

From Q we next construct the k-by-k weight-array W: wi,i, the diagonal elements
of W, are the null symbol N; also, if q,j N, then w,i N; the remaining elements
are given by

wi,. qj,j qi,j

that is, the corresponding element in Q is subtracted from the diagonal Q element of the
same column. For (3)-(5) W is given by

N 1 N
W= N N 0

1 0 N

Now we plot the coupling graph, k nodes are plotted and numbered, each representing
an equation. Then we go through the elements of W. If a null element is encountered it
is skipped. But when w, is an integer, we draw a directed edge (an arrow) from node
j to node and label it with its weight w,j. The coupling graph for (3)-(5) is plotted in
Fig. 1.

The final step in the analysis is to go over all possible simple loops (closed paths) in
the coupling graph, moving only in the direction of the arrows, and sum up the weights
along the loops. In Fig. 1 it is seen that only two such loops exist, (1,3,2,1) and (2,3,2),
whose respective weight-sums are

8(1,3,2,1) W3,1 + W2,3 + Wl,2 2

and

8(2,3,2) W3,2 "q- W2,3 O.

DEFINITION 1. If the weight-sum of a loop is positive (nonpositive), then the equa-
tions whose nodes are included in the loop are said to be weakly (strongly) coupled.
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FIG. 1. Couplinggraph for (3)-(5).

DEFINITION 2. If no loops exist, then the system is, in effect, decoupled. Otherwise,
if the weight-sums of all the loops are positive, then the system is said to be weakly
coupled.

Rule 1. If a system is weakly coupled, then relaxing its equations separately (succes-
sively) yields for the system a smoothing factor (i.e., the largest per-sweep amplification
factor for high-frequency errors; cf. [1]) that tends to the largest (worst) ofthe smoothing
factors of the operators on the diagonal of the system as the meshsize tends to zero.

This means that if a system is weakly coupled, then at least on fine enough grids it can
be treated in relaxation as if decoupled, since the feedback is small for all the equations.

From the point ofview of [1, 3], weak coupling implies that the principal part of the
(linearized) matrix-operator is a diagonal matrix. Then, Brandt’s principle that only the
principal part of the operator needs to be relaxed (on fine enough grids) is automatically
satisfied.

Rule 1 and the rules that follow are all derived from local mode (smoothing) analysis
(see [1]) and hold under the same conditions as local mode analysis. But local mode
analysis is well established as providing excellent prediction of smoothing performance,
even when the assumptions on which it is based are not maintained exactly. In general,
it can be said that the prediction holds so long as the coefficients of the (linearized)
system are smooth on the scale of the mesh, i.e., their variation over a few meshsizes
tends to zero with the meshsize. In practice, even if this condition is not satisfied over
relatively small parts of the domain of solution, the smoothing efficiency is not affected
significantly (see also [1].)

We find that (4) and (5) are strongly coupled. Therefore, these must generally be re-
laxed collectively, or else another formulation must be tried. Since the weight-sum of the
corresponding loop is exactly zero, it is conceivable that relaxation may still be reason-
ably effective with this approach, depending on certain parameters. This is elaborated
below. However, if the analysis had shown that the system were only weakly coupled,
then the smoothing factor of the system would have been known to be the worst of the
separate smoothing factors--that of the Laplace operator.

Nonlinear operators. As the first example indicates, the coupling analysis is not lim-
ited to linear systems. The order of a nonlinear operator is defined as follows.

Rule 2. The order of a nonlinear operator is determined by that of the linearized
operator.

Thus, J(b, ) is a first-order operator for both b and (, and (u)a is a first-order
operator for u, since the linearized operator is 3(u)0. However, note that the order
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of a nonlinear operator is determined by the discrete operator, not the differential oper-
ator. Normally the orders are the same. But suppose, for example, that some nonlinear
operator, say J(, ), is discretized in conservation form,

J(, ) u u ()v (u)

Although J is a first-order operator, this form includes second derivatives of , which
cancel each other in the differential operator. But they will only cancel each other in
the discrete form if the discretizations of the two terms employ e-variables of the same
mshpoints. If this is not satisfied by the discretization, then the operator is considered
to be second-order in for the purpose of the coupling analysis. Hence, in special cases
such as will be examined later, one may choose to put off the decision of choice of dis-
cretization until after the analysis has been carried out.

2.1. Searching for weak-coupling configurations. Frequently, there is a natural and
obvious correspondence between the equations in a system and the variables for which
they should be relaxed. But, especially in complicated systems, there may be several
plausible choices, and in other systems there may be no good choice at all. Treatment of
the latter situation is examined in 2.5. Here we describe a general algorithm for find-
ing a one-to-one correspondence between equations and variables that leads to a weakly
coupled system, if it exists. Such a one-to-one correspondence is called a configuration,
and a configuration that yields a weakly coupled system is called a weakly coupled con-
figuration. Our convention is, as usual, that the the elements on the diagonal of the
operator (and on the diagonal of the order-array Q) correspond to the unknowns for
which the equations are relaxed.

The algorithm for searching for a weakly coupled configuration is as follows. Con-
struct the order-array Q for some arbitrary configuration. Then find the permutation of
the rows of Q that maximizes the trace (i.e., the sum of the diagonal elements), where
the null symbol N is considered as -c. The following rule holds.

Rule 3. A configuration is weakly coupled if and only if the trace of its order-array
Q is the unique maximum of the traces of all matrices obtainable by permutations of the
rows of Q.

Hence, it suffices to find a permutation that maximizes the trace of Q, calculate the
corresponding weight-array W, and construct the coupling graph. If the graph indicates
that the system is weakly coupled, then it is the only weakly coupled configuration. But
if the graph indicates strong coupling, then there exists no weakly coupled configuration
for the formulation considered. An example of the application of this algorithm is given
in 2.4.

The problem of maximizing the trace by row permutations is equivalent to the well-
known maximal (weighted) matching problem, for which there are efficient algorithms
(see, e.g., [5]). However, this problem is very easy by any means, unless the system is
extremely large and complicated.

2.2. Coping with strong coupling. The following example illustrates what can be
done when too strong a coupling is diagnosed. Suppose we wish to construct a smoother
for the system

(6) Au aw 0,

(7) Av + (w) 0,
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(8) A2u + J(u, v) + Aw O,

where M is some operator whose order qM is yet to be determined, and a is a constant.
Let u, v, and w, respectively, correspond to (6), (7), and (8). The order-array is given

by

2 N 0 1Q= N 2 qM

4 1 2

and the weight-array by

N N 2

N N 2 qM

--2 1 N

The coupling graph is plotted in Fig. 2. The weight-sums of the loops are

8(1,3,1) W3,1 -- Wl,3 0

and

8(2,3,2 W3,2 -t- W2,3 3 qM.

The first and third equations are found to be strongly coupled. One way to solve this
problem is to relax these equations collectively, but the resulting smoothing factor is
uncertain and this form of relaxation is more expensive and complicated. It would be
better if we could somehow sever the edge leading from the first equation to the third.
Suppose we apply the Laplace operator to (6), subtract the resulting equation from (8)
to obtain

(9) J(u, v) + (1 + a2)Aw O,

and use (9) instead of (8). The edge from the first equation to the third is not quite
removed, but its weight increases from -2 to a very satisfactory 1, and the resulting
system is weakly coupled provided that qM is smaller than 3. A weakly coupled system
has thus been obtained by reducing the order of a crucial off-diagonal operator, whose
adverse effect was apparent in the coupling graph.

A more generally useful approach for coping with strong coupling is to transform
the variables implicitly in such a way as to weaken the coupling. This is frequently the
best approach, especially with staggered discretizations. It is a somewhat generalized
form of Brandt’s distributive relaxation (see, e.g., [3] or [1]). The generalization is that
we do not necessarily require that the operator in the transformed variables form a tri-
angular matrix. It suffices to obtain a weakly coupled system, which might ease the task
of constructing the distributive scheme and lead to a less complicated smoother. This is
especially important near boundaries, where ad hoc treatment of distributive relaxation
is generally required (see, e.g., [4]). An example of this approach is given in 2.5.

Finally, if neither of these approaches is found to be useful, some or all of the equa-
tions might have to be relaxed collectively (once again relaxing the principal part of the
operator, as suggested in [1, 3].) But even then the coupling analysis is useful in pointing
out which equations are strongly coupled and therefore require such treatment.
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FIG. 2. Couplinggraphfor (6)-(8).

2.3. Finite meshsizes and the inclusion of coefficients. In applying the coupling
analysis we have so far implicitly assumed that the coefficients in the equations were
independent of the meshsize, and were therefore much larger (in absolute value) than
the meshsize h and much smaller than 1/h. This, however, need not be the case when
finite meshsizes are considered, even in linear systems. A quantitative assessment of the
strength of the coupling, which takes into account the meshsize and the coefficients, can
be obtained just as easily. This includes, of course, the case of nonlinear systems, where
the coefficients depend on the solution and its derivatives.

Rule 4. When the full coupling analysis is applied, the system must be written so that
the coefficients of the operators on the diagonal (i.e., the operators of the variables that
are relaxed) are O(1).

If the coefficients of the operators on the diagonal are very large or very small, the
equations must be divided through by these coefficients before the analysis is applied.

Consider the following linear elliptic system, whose solution is part of the explicit
solution process of the shallow water balance equations [6], written in matrix form:

(10)
A+ (R/H)VO.V 1/H

0

R(AA + V. V) 0

0

A + 2R3/1

A

where and are given functions, 1 is a second-order operator, R is a constant, which
may be small or moderate, and H and A, which may vary considerably in size, are given
functions ofthe spatial coordinates. Note that the system is written with O(1) coefficients
on the diagonal (indeed 1, but that is not essential).

The order-array and weight-array are, respectively,

2 0 N N 2 N
Q= N 2 2 W= N N 0

2 N 2 0 N N

The coupling graph is plotted in Fig. 3, and we find that there is a single loop, (1,3,2,1),
whose weight-sum is 2. Hence, the system is weakly coupled.

In order to obtain a more quantitative assessment of the strength of the coupling,
we now construct the coefficient-array C, whose element ci,j is some norm of the coeffi-
cients of the highest derivatives in the operator in equation i that operates on variable
j. Here it is assumed that ci,j/h is not small compared to the norm of the coefficients of
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FIG. 3. Couplinggraphfor (10).

the second-highest derivatives in the corresponding operator, as may happen in singular
perturbation problems. Otherwise, ci,j, and also qi,j, are defined as the coefficient-norm
and order of the second-highest derivatives. Approximate values for c, are sufficient.
For example, since R is known not to be large in (10), c2,3 1. The coefficient-array of
(10) is

1 1/H N 1N 1 1

RA N 1

Nowwe return to the coupling graph and, for every element in C that is different from N
(l’s can also be disregarded), we write this element (in parentheses) on the edge leading
from node j to node i. Finally, we go over all the loops and multiply the coefficients that
are encountered. For (10) the coefficient-product of the only loop is

P(,3,2,) c,2 "c3, RA/H.

In order to determine if the system is weakly coupled for a given meshsize h, we must add
to the weight-sum of each loop the log of the loop’s coefficient-product, divided by log h,
and still obtain a positive result. (This is due to the relative effects of coefficients and
orders of the operators, and is clarified in 3). However, since now we are dealing with
orders of magnitude, and with nonintegers, a more meaningful criterion is the following.

DEFINITION 3. Let s and p be the weight-sum and coefficient-product of a loop,
respectively. Then the equations whose nodes are included in the loop are said to be
h-weakly coupled if

ph << 1.

DEFINITION 4. If all loops are h-weakly coupled, then the system is said to be h-
weakly coupled.

Rule 5. If a system that is discretized on a grid with meshsize h is h-weakly coupled,
then relaxing its equations successively yields for the system a smoothing factor

# m.ax# + O(ch’),

where fi are the smoothing factors of the operators on the diagonal of the system, and
c, c > 0, with c depending on the coefficients of the operators in the system.
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Hence, if the meshsize is small, the equations can be treated in relaxation as if de-
coupled. Ofcourse, the actual size of this positive power is of interest, and its calculation
is explained in 2.6.

Sometimes (for example, in singular perturbation problems) the second-highest
derivative terms may impose a greater restriction than the highest-derivative terms (be-
cause their coefficients are much larger). In such cases one can substitute some variables
for the order and coefficient ofthe relevant operatorwhen performing the coupling anal-
ysis and obtain conditions for weak coupling in terms of these variables.

Time derivatives. Consider once again the advection operator Dt cot + uOx + vOv.
The coefficient ofthe spatial derivatives can be any rough estimate ofthe velocities u and
v. In determining the coefficient of the time-derivative, however, we must multiply the
actual coefficient (which is one in this case) by h/At, where At is the timestep. Thus,
a good choice for the coefficient of Dt is, say, h/At + lul + Ivl. More generally, 0tq is
treated in the analysis as (h/At)qO. Similar treatment must be used whenever spatial
meshsizes differ significantly too. Returning to the first example, we find that (3)-(5) is
h-weakly coupled only if/xt(ll + Ivl)/h << 1, i.e., at small CFL numbers, rather than
at moderate and large ones for which the approach is required. This misfortune is not
surprising, as at large CFL numbers the system loses its h-ellipticity (see [1]), and no
point relaxation can be efficient. But the coupling analysis discovers this automatically,
without requiring such insight.

Note the difference between time derivatives and spatial derivatives. In the solution
process at each time level, the timestep At is fixed and only the spatial mesh is coarsened.
This implies that the coupling of loops that include equations in which terms with time-
derivatives are relaxed remains truly weak on coarse grids as well. The analysis predicts
this phenomenon automatically. Such cases are considered in 2.5 and 2.7.

2.4. Coupling analysis of the shallow water balance equations. Let us see how the
coupling analysis and the algorithm presented in 2.1 are employed to find an efficient
fully implicit solver for a nonlinear, nonsymmetric coupled systemmthe shallow water
balance equations (SWBE), which describe accurate, gravity-wave-free states on the so-
called "slow manifold" ofthe shallowwater equations. The full treatment ofthis problem
is described in [6]. The nondimensionalized SWBE can be written for small or moderate
Rossby number R and Burger number/3 as

(11) A + Dt + RAAx O,

(12) Dt+ HAX O,

(13) -A+ 2RJ(x, Cy) 0,

(14) ( A O,

where Dt Ot + J(, .) + RVx. V, A R-1 q-- , and H B + Re. Here, , is a
nondimensional viscosity coefficient, and in the following we consider for simplicity only
the inviscid case ofvanishing ,, which is the most difficult case with respect to smoothing.
The system is discretized using a conservative central differencing in space and Crank-
Nicholson in time.

Now we need to find a good smoother. Here it is not immediately obvious what,
if any, effective correspondence between equations and variables exists. Following the
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algorithm of 2.1, we therefore construct the order-array for some configuration, and
look for the permutation of rows that maximizes the trace. The maximal trace turns out
to be seven, with (11), (12), (13), and (14) corresponding to , X, , and , respectively.
The order-array and weight-array are

1 2 N 1 N 0 N 1

N 2 1 1 N N 1 1w
0 N 2 qM 1 N N 2 qM

0 N N 2 1 N N N

and the coefficient-array is

(16) C

1 RAo N o

N 1 1/Ho 1/H
1 N 1 R
1 N N 1

where qM denotes the order of the discretized nonlinear operator in (13) and tx At/h.
Here, Rule 4 has been applied, and the coefficients in the advection operators were
assumed to be O(1). The coupling graph is plotted in Fig. 4. There are four loops,
(1,3,2,1), (1,4,1), (1,4,2,1), and (1,4,3,2,1). The first three have weight-sums two, and the
fourth 4 qM. So the system is weakly coupled even if such a discretization is chosen
that qM 3. The condition for weak h-coupling is that ceh2 oRA/Hh2 RAh2/H,
and R2Ah4-qu/H be much smaller than one.

( O(RA) (

FIG. 4. Couplinggraphfor (11)-(14).

Thus it turns out that the SWBE can be smoothed efficiently simply by relaxing the
equations separately.

2.5. Weakly coupled systems and distributive relaxation. As noted above, the cou-
pling analysis requires that there be a one-to-one correspondence between each equa-
tion in the system and the variable for which it is relaxed. More generally, ifsome of the
equations are relaxed collectively, then this block of equations is associated with the cor-
responding relaxed variables. But this is a condition that virtually any relaxation scheme
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must satisfy anyway. Sometimes there is no good choice. Consider, for example, the
incompressible Euler equations in two dimensions in primitive variable form:

(17) LIE v 0 Dt 0v v 0

0 0

where Dt Ot + uO + roy. The first and second equations can be relaxed for u and v,
respectively, but the third does not even include . Brandt and Dinar (in [3]) and Brandt
(in [1]) propose a highly efficient approach for dealing with this problemdistributive
relaxation. This is a means of obtaining a weakly coupled system by an implicit transfor-
mation ofvariables, defined by a disaibution matrix M. The transformedvariables never
truly appear, but are used to determine how changes must be made in the actual vari-
ables so that relaxation of one equation will have a small effect (at most) on the residuals
of the others (see [1], [3], or [4] for details). For (17) the suggested distribution matrix
M is given by

(18) v 0 1 -0
O0 Dt

and the resulting system for the transformed variables is

(19) LIEM 0 Dt 0 0
-A q 0

This system is seen to be decoupled (as triangular operators yield no loops), with a
straightforward correspondence between the transformed variables and the equations
in which they are relaxed. Actually, the system is decoupled in a true sense only in the
case of constant coefficients and periodic boundary conditions. Otherwise, as in the ac-
tual system here, the resulting system is only weakly coupled, since terms that cancel in
the constant coefficient case do not cancel when the coefficients vary.

Triangularization of the transformed system is not the true object of the transforma-
tion, but rather, the transformed system needs to be weakly coupled (i.e., its principal
part must be a diagonal matrix.) This is a more general goal. Suppose, for example, that
we change the order in which the equations in (17) are written by exchanging the second
and third rows of the matrix operator. Now, in order to obtain the same distributive
relaxation, we must similarly permute the columns of the distribution matrix in (18), and
the resulting transformed system, though weakly coupled, is no longer triangular.

There are no general rules for determining what distribution matrix is the simplest
and most efficient. But the coupling graph provides a tool that frequently points to the
best approach. Consider the nondimensional shallow water equations (SWE):

(20) Lsw v 1/R Dt Ou v 0

0 0 Dt 0
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where 1/F2 + , F is the Froude number and R is the Rossby number. For this
system,

Q- o 1 1 w-- 1 N 0

1 1 1 0 0 N

and the coupling graph (Fig. 5) shows that the first and third, as well as the second and
third, equations are strongly coupled. The graph indicates that it suffices to raise the
order of the diagonal operator of the third equation (without raising the order of the
other operators). This can be done by applying the same distribution matrix M that
is used for the incompressible Euler system. The resulting system for the transformed
variables is

(21) LswM 1/R Dt -Oz/R 0

/0 (Dr)2 A 0

The coefficient/it is known to be moderate or large (for physical reasons). Furthermore,
assume that it is large compared to the square of the velocity, yielding an elliptic opera-
tor with a known good smoother for in the third equation (regardless of timestep size),
this being the usual regime of solution. Hence, the coefficient of the operator on the di-
agonal of the third equation is approximately a-2 + , and we divide the third equation
through by this coefficient. The one-to-one correspondence ofvariables and equations is
now clear, and we can construct the order, weight, and coefficient arrays, obtaining

1 0 1 N 1 1 1 air air
Q= 0 1 1 W= 1 N 1 C= aiR 1 aiR

1 1 2 0 0 N 1 1 1

where a At/h, and the first two equations were multiplied by a in accordance to
Rule 4. Here c3,1 and c3,2 are chosen to be one, rather than the more precise
/ira2/(1 +/ira2), for simplicity. The latter term is bounded from above by one, and
hence this choice represents the worst-case regime (since smaller off-diagonal coeffi-
cients weaken the coupling). But this is the typical case unless At is particularly small.
The coupling graph of the transformed system is plotted in Fig. 6. The system can be
seen to be h-weakly coupled under the condition

At/R << 1.

An efficient smoother is thus obtained that is virtually as simple as that of the incom-
pressible Euler system.

Thus, while in (6)-(8) weak coupling was achieved by decreasing the order of an off-
diagonal operator, the same end is reached here by increasing, in effect, the order of an
operator on the diagonal. While here, as in (19), the prinCipal part of the transformed
system is triangular, this would not be the case if the equations were written in different
order, and, as stated, it is not generally necessary.
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FIG. 5. Couplinggraphfor (26).

FIG. 6. Couplinggraphfor (27).

2.6. Estimating the weakness of coupling. An important notion, which is not fully
addressed in Definition 4 and Rule 5, is the degree to which a given system is weakly
coupled. This question requires a slightly more elaborate calculation.

Suppose that a given system of k partial differential equations in k unknowns is
weakly coupled. Let denote the smoothing factor corresponding to the ith equation.
Then the following rule is used to calculate/2, the smoothing factor of the system.

Rule 6.

where

fit m.ax z + O phS /m

((phs)l/m)i mx (pthS) 1/m(;’’)

with the maximum taken over all loops that include equations whose corresponding
smoothing factor is approximately equal to # (i.e., tends to # as h tends to zero). Here,
Pt is the coefficient-product of loop l, st is its weight-sum, and mt(#i) is the number
of equations in loop whose corresponding smoothing factors are approximately equal
to #.

We clarify this rule with examples. Consider the coupling graph in Fig. 3, which
corresponds to system (10). There is only one loop, for which
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But in all three equations of the system the relaxed operator is the Laplacian, and all
three are included in the loop. Therefore, by Rule 6, the smoothing factor of the system
is

# # + 0 --.h

where #z is the smoothing factor for the Laplacian operator. So the smoothing factor
of the system tends to that of the Laplacian only at the rate that h/: tends to zero. This
rate, however, can be improved (see 2.6.1 below).

Next, consider the coupling graph of (21), the shallow water system, which appears
in Fig. 6. Now the relaxed operators of the first two equations are the same, but the
third is different. There are three two-edge loops. Loop (1,3, 1) and loop (2,3,2)
have ph8 At/R, but distinct #i’s. Loop (!, 2, 1) does have two identical #i’s, but
ph (At/R). Finally, there are two three-edge loops, (1, 2, 3, 1) and (1, 3, 2, 1),
in which the advection operator again appears twice, but ph (At/R). Hence, the
smoothing factor of the system differs from the worst of the smoothing factors of the
individual equations ostensibly by only O(At/R) on all the grids. (There is actually an
O(h) difference, due to the fact that the distribution matrix M yields exactly system (21)
only if the coefficients are constant.)

2.6.1. Weakening weak coupling. Consider (10) once again. Suppose we multiply
the first equation by RA, subtract the result from the third equation, and use this instead
of the third equation (this manipulation is clearly "legal" for any finite values of R and
A). For the new system

2 0 N N 2 N
Q= N2 2 W= NN 0

1 0 2 1 2 N

1 1/H N
C-- N 1 1

R(IVIRA/H + IVI) RA/H 1

The coupling graph is plotted in Fig. 7, ignoring coefficients for simplicity. It appears as
if the strength of the coupling has not changed, since there is still a loop with weight-sum
2, but there is a subtle difference: this is a two-edge loop, and includes only two identical
#i’s, whereas the loop of length three, which includes three identical #i’s, has a weight-
sum of 3. So now the smoothing factor of the system tends to that of the Laplacian at
the rate at which h (rather than h2/3) tends to zero.

2.6.2. Weakening coupling by under-relaxation. When a system is h-strongly cou-
pled, but only marginally so, a simple, yet frequently effective method for weakening the
coupling is employing under-relaxation. In this well-known technique, the changes that
are introduced in the relaxed variables are first multiplied by some factor 0 < w < 1.
This will frequently reduce the efficiency of relaxation for a single equation (though not
always, e.g., Jacobi relaxation for the Poisson equation requires under-relaxation in order
to be effective). But when the equation is part of a system, the perturbations its relax-
ation produces in other equations are reduced proportionally to the under-relaxation
parameter.
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FIG. 7. Couplinggraph for modified (10) in 2.6.1.

Suppose that, in a system of k equations, equation i, 1,..., k, is relaxed with
an under-relaxation parameter wi. Then Rule 6 must be modified by multiplying each
loop-product p by the product of the under-relaxation parameters wi corresponding to
the equations participating in the loop. Also, # is now the smoothing factor of equation
with w under-relaxation (see 3.3.1. for details.)

The under-relaxation parameters can be conveniently introduced in the coupling
graphs by labeling the nodes. These results hold for over-relaxation (w > 1) as well, of
course, but the coupling is then strengthened.

Employing under-relaxation may be useful especially on coarse grids, where h-weak
coupling may be lost due to the relatively large meshsize (see [6].)

2.7. Numerical experiments. Numerical tests were performed to check various as-
pects of the coupling analysis. Far more extensive tests with the SWE and SWBE solvers
will appear in separate reports. All experiments reported here were performed on a
27r-periodic square domain with uniform square mesh. The finest meshsize in all exper-
iments was 128 by 128, and the coarsest 4 by 4, so that six levels were employed. The
experiments were performed with the incompressible Euler equations in the formula-
tions of (1)-(2) and (3)-(5), with system (10) (modified as suggested in 2.6.1), which
appears in explicit solution of the SWBE system, with the fully implicit SWBE solver of
(11)-(14), and with the SWE system (20). These are referred to as problems 1, 2, 3, and
4, respectively, below.

The multigrid cycle is defined by three parametersmthe number of presweeps vl
(relaxation sweeps performed prior to each visit to the coarse grid), postsweeps (sweeps
performed following coarse grid correction), and the cycle index, which is the number
of times the next-coarser grid is visited before the correction of any intermediate grid
is added to the next-finer grid solution [1]. We use the notation V(Vl, v2) to denote V
cycles (i.e., cycles with cycle index 1) with vl presweeps and ,2 postsweeps, andW(, v)
to similarly denote W cycles (whose cycle index is 2).

In all of the problems, initial conditions were prescribed on the finest grid, and a
single step in time was performed, with multigrid cycles carried out until (fourteen-digit)
roundoff errors were encountered. Here, problem 2 was tested within the framework of
the SWBE explicit solver, but of course this has no effect on the results. The effective
smoothing factor/2 was determined by calculating the asymptotic reduction factor per
fine-grid relaxation sweep of the L norms of the dynamic residuals averaged over all
equations in the system.

In all problems, second-order Crank-Nicholson discretization was employed in time.
In problems 1, 2, and 3, a conservation form was used for the spatial-derivative terms,
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with second-order central differencing on a nonstaggered grid (full details appear in [6]).
In problem 4, nonconserving central differencing was used on a staggered grid, as in the
steady-state incompressible Navier-Stokes solver described in [1], [3], and [4].

Where necessary, the average of the solution was subtracted from the solution be-
fore transferring residuals in order to maintain compatibility requirements necessary on
the periodic domain (for example, existence of solution to (3) requires that the average
over the domain of solution be zero).

2.7.1. Incompressible Euler equations. Initial conditions for problem I were pre-
scribed to be

(x, y, 0) sin(x) sin(y) + rnd(-O.1, 0.1),

where rnd(a, b) denotes a uniformly distributed random number in the range (a, b). As
noted in 2.3, the efficiency, indeed success or failure, of the proposed scheme (3)-(5)
depends strongly on the CFL number, defined here by

CFL max/xt(ll + ICul)/h.

The numerical results confirm this. Employing V(1,1) cycles with GS relaxation in RB
ordering, bicubic interpolation of corrections and full weighted residual transfers for
all equations, the effective smoothing factor with CFL= 1 was found to be 0.57, but al-
ready at CFL=2 there was no convergence at all. This of course is entirely unrelated to
temporal stability considerations. The smoothing factors corresponding to formulation
(1)-(2) with Kaczmarz relaxation in RB ordering for (2) were 0.25 in both cases since
the smoothing factor of the Laplacian still dominates at CFL=2 (see problem 3 below).

2.7.2. System (10). System (10) was solved by V(1,1) cycles with GS relaxation in
RB ordering and full weighted residual transfers. The effective smoothing factors were
0.25 with bicubic interpolation of errors and 0.30 with bilinear interpolation. The re-
spective smoothing factors exhibited in the solution of the Poisson equation in seclusion
were found to be 0.25 and 0.32. So the system performed as well as the Poisson equation,
as predicted. (0.25 is of course the well-known smoothing factor predicted, e.g., in [1]
for RB GS relaxation of the Poisson equation by precise smoothing analysis.) In these
experiments the Rossby number R was 0.5, yielding RA/H in the range .37-2.2.

2.7.3. SWBE fully implicit solver. The fully implicit solver of the shallow water bal-
ance equations was tested under severe conditions by choosing the following form for
the nonlinear term in (13):

J(x,y) V. ((V)- A(V. V)

Hence qM in (15) is three rather than two, and due to the introduction of first derivatives
of, w3,1 in (15) is now zero rather than one. The main effect is that now the weight-sum
of the loop (1,4,3,2,1) is one. Hence, by Rule 6, # of the system is given by

max [#L + O(hV3), #A q- O(h)],

where L and A denote the smoothing factors of the Laplacian and the advection op-
erator Dr, respectively.

The initial conditions for problem 3 were the same as for problem 1. A full account
on how to obtain the other initial values is given in [6]. The tests were performed for the
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inviscid case, since the addition of viscosity leads to a smoothing factor that is at least
as good. For all equations but the first, GS relaxation in RB ordering was employed. In
the first equation, (11), Kaczmarz relaxation in RB ordering is used. In this relaxation
the variables are scanned in the prescribed order, and the equation at each location is
satisfied, in turn, by introducing to the variables changes that are proportional to the co-
efficient of these variables in the corresponding discretization stencil. This relaxation
(unlike GS) remains stable at all CFL numbers, and is very efficient at moderate CFL
numbers, provided that the viscosity coefficient is at most of the order of the meshsize.
(Indeed, Kaczmarz relaxation for steady state (i.e., infinite CFL number) advection, dis-
cretized by first-order upstream discretization with no additional viscosity, is equivalent
to GS relaxation ofthe Laplace operatorwhen the streamlines are maximally nonaligned
with the grid.) With greater viscosity, GS relaxation is efficient at all CFL numbers. In
these equations the CFL number is defined by

CFL max

Residuals were transferred by full-weighting, and both bilinear and bicubic interpo-
lation of corrections were tested. R was again chosen to be 0.5, yielding a coefficient of
one for the nonlinear term in (13), and B was prescribed to be one.

The results are listed in Table 1. At small CFL numbers, the 0.25 smoothing factor of
the Laplacian dominates. At larger CFL numbers, relaxation of the advection operator
becomes less efficient, and the corresponding performance of the advection equation in
seclusion under similar conditions is included in Table 1 for V(1,1) cycles with bilinear
interpolation for comparison.

TABLE 1
Effective smoothingfactors exhibited by the implicit SWBEsolver, with some results ofthe advection-equation

solverfor comparison.

c cl Cycle Interpolation

1.0 V(1,1) bicubic
1.0 W(1,1) bicubic
1.0 V(1,1) bilinear
1.0 W(1,1) bilinear

2.0 V(1,1) bicubic
2.0 W(1,1) bicubic
2.0 V(1,1) bilinear
2.0 W(1,1) bilinear

3.0 V(1,1) bicubic
3.0 W(1,1) bicubic
3.0 V(1,1) bilinear
3.0 W(1,1) bilinear
4.0 V(1,1) bicubic
4.0 W(1,1) bicubic
4.0 V(1,1) bilinear
4.0 W(1,1) bilinear

/SWBE

0.26
0.26
0.36 0.21
0.29
0.27
0.25
0.35 0.18
0.30
0.30
0.30
0.33
0.30
0.42
0.42
0.42
0.43

0.31

0.43

The tests clearly indicate that the fully implicit solver of the SWBE performs as well
as expected, yielding effective smoothing factors that are almost as good as that of the
Laplacian at small CFL numbers and fully matching the performance of the advection-
equation solver at larger CFL numbers. Indeed, given the severe conditions, the perfor-
mance is somewhat better than the analysis might indicate. This is not unusual, as the
analysis is based on a (quantitatively) slightly pessimistic view.
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2.7.4. SWE solver. The SWE forms a system that is third-order in time, and there-
fore requires three initial conditions over the entire domain. In the tests these were given
by

u(x, y, O) sin(x) cos(y) + rnd(-O.1, 0.1),

v(x, y, O) cos(x) sin(y) + rnd(-O.1, 0.1),

u, 0) 0.es[co (e ) + co (eu)].

The equations were solved with F 0.25 and R 1 and CFL numbers 1, 2, 3, and 4,
defined here by

CFL max At(lul + Ivl)/h.

v(1,1) cycles were employed with bilinear interpolation of corrections. The effective
smoothing factors with CFL numbers 1-4 were 0.27, 0.26, 0.30, and 0.38, respectively.
Comparison to Table 1 shows that the performance is as good as if the equations were
decoupled.

2.7.5. Conclusions of numerical experiments. All the numerical experiments
yielded results that conformed extremely well with the prediction of the coupling analy-
sis. V cycles were found to suffice in order to obtain full efficiency. The reason for this
is that, in equations with time derivatives, the CFL number is inversely proportional to
the meshsize, so that the CFL number on coarse grids is much smaller than on the finest
grid, leading to superior smoothing performance on the coarse grids. The steady-state
type equations, on the other hand, are Poisson-like, and therefore V cycles easily suffice
for these as well. Thus, in no case was any special treatment required on the coarse grids.

The smoothers for the SWE and SWBE are extremely efficient and straightforward
to implement.

2.8. A systematic approach. We summarize the techniques introduced in this sec-
tion by presenting a systematic approach to the development of an efficient relaxation
scheme for a general system. This is done by taking the following steps.

1. Construct the order-ar_ray Q for some arbitrary configuration.
2. Permute the rows of Q so as to maximize the trace. Denote the resulting order-

array by Q.
3. From Q construct the weight-array W and the coupling graph. Check for weak

coupling.
4. If a weakly coupled system has been obtained, such that diagonal elements of

Q correspond to operators that can be relaxed efficiently, then an efficient relaxation
scheme for the system has been found. Check regime of weak coupling by including
coefficients in the analysis (remember O(1) coefficients for the diagonal operators).

5. If the resulting system is not weakly coupled, perform manipulations or implicit
transformation of variables via a distributive relaxation scheme, so as to obtain a weakly
coupled system. This is accomplished by raising the orders of key operators on the diag-
onal or lowering the orders of key off-diagonal operators. The key operators are deter-
mined from the coupling graph.

6. If a weakly coupled system cannot be obtained, relax equations that are strongly
coupled collectively.
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3. Theoretical development. The coupling analysis is derived from local mode anal-
ysis, which is the main tool for analyzing smoothing performance in particular, and multi-
grid processes in general. The full derivation is quite lengthy and will not be reported
here. However, the main theorems are presented here with outlines of the proofs. Some
acquaintance with smoothing analysis is presumed, but not with algebraic graph theory.

It should be noted that the full account of how to implement the coupling analysis is
already described in 2.

3.1. Graphs and matrices. The basic concept upon which the coupling analysis is
based is the following. Given a k-by-k matrix A, a directed graph G that describes A can
be plotted. This is done by plotting k nodes, and for every nonvanishing element ai,j
of A, connecting node j to node i with a directed edge (arrow), and labeling it with the
"weight" a,. (This convention is nonstandard with respect to the orientation, but it is
convenient in the present application.) Here, j is referred to as the tail-node and i as
the head-node. The diagonal terms of A correspond to edges that lead from the nodes
to themselves and are treated similarly. As will be seen, certain matrix operations have
useful meanings from the point of view of the corresponding graphs.

The following concepts will be used. Apath is a concatenation of edges, such that the
tail-node of each edge (except the first) coincides with the head-node of the preceding
edge. A simple loop is a path whose every node is the tail-node of exactly one edge
and the head-node of exactly one edge; this includes all single-edged loops unless noted
otherwise. A multiple loop is a path that consists of two or more connected simple loops
(i.e., simple loops with common nodes). The weight of a path is defined as the product
of the weights of its edges.

LEMMA 1. Let A be a k-by-k matrix and G its corresponding graph. Then each term
in the determinant ofA equals theproduct (or its negative) ofthe weight(s) ofone or more
disjoint simple loops in G, whose union includes every node in G exactly once. Conversely,
every such product ofloop-weights (or its negative) is a term in the determinant ofA.

Proof. Each term in the determinant ofA is a product (or its negative) of k elements
of A, no two ofwhich share the same row or column. Hence, each node i is the tail-node
of exactly one edge (corresponding to the element in the ith column) and the head-node
of exactly one edge (corresponding to the element in the ith row). This proves the direct
statement. Furthermore, every product of k elements from distinct rows and columns is
a term (or its negative) in the determinant. This proves the converse.

3.2. Smoothing analysis. Consider a system of k linear, constant-coefficient PDEs
in k unknowns,

(22) Lu f

over 7’, where L L(O) is a k by k matrix partial differential operator, u is the vector
of unknowns, and f is the vector of forcing functions. Here, z__ (zl,..., z,). All op-
erators, variables, and functions are assumed to be in discretized form throughout the
discussion.

Given some approximation fi to u, the error v is defined as the difference between
the exact and approximate solutions,

(23) v u- ft.
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Suppose that the system is discretized on a grid of meshsize h. Then v lends itself to the
Fourier expansion

fv(z_) (O_)-’/hdO_,

where _0 (01,..., 0,). u and fi can be similarly expanded.
The purpose of relaxation in the multigrid process is to greatly reduce the amplitude

of high-frequency components, defined as components satisfying

where

101 101.
i=1

If the relaxation of the equations is performed simultaneously, that is, each equation is
relaxed using presweep values for all variables not corresponding to the relaxed equation,
then

(24)

where

Lnew + Lold L.

Here, fi,o and lold are the approximate solutions after and before the sweep, respec-
tively, and Lo and Logd constitute a partition of L that is determined by the particu-
lar relaxation that is applied. Equation (24) assumes that no over-relaxation or under-
relaxation is used, but the generalization to such cases follows. Subtracting (24) from
(22), and substituting (23), yields

LnewVnew + LoldVold O

and, hence,

(25) -1
Vnew --LnewLoldVold

where v,o and Vold are the errors after and before the sweep, respectively.
In the following, it is convenient to consider the effect of relaxation in terms of re-

duction of the residual, Lv, rather than the error. Applying L to (25) produces

(26)

-1 -1Lv,w --LLnewLoldVold --(Lold q- L,)L,,LotdVotd
-1--(Lold q- LoldLnewLold)Vold -LoldL’lew(Lnew q- Lold)Vold

-1-LotdL,o (LVotd).

The relaxation operator R is therefore given by

(27) R -LotdL-ew
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The smoothing analysis is mainly based on the assumption that the operators do not cou-
ple Fourier components, or couple only a small number of such components. Therefore,
the components can be examined separately (or in small groups), with the difference-
operators replaced by their symbols, defined for the operator L by

(28) L(tgx__)ei-’O--/h g(iO__) ei’O--/h

Here, the matrix L, whose elements are generally polynomials in exponentials of ion, is
the symbol of L. The symbol of the relaxation operator R is denoted by R. If relaxation
is such that there is no coupling between components, as in Jacobi relaxation, then/ is a
k-by-k matrix, but if several components are coupled, as in GS relaxation in RB ordering,
then the dimension ofR is multiplied by the number of coupled components. Such cases
are not considered here.

The smoothingfactor # corresponding to/ is its maximal spectral radius p over all
the high frequencies. Here, p p(0__) is the largest of the absolute values of the eigen-
values. A successful relaxation scheme must obviously have a smoothing factor that is
significantly smaller than one. Also, the spectral radii for all components can be as-
sumed to be at most one (this condition can be weakened slightly, but the distinction is
unimportant here).

Note that the smoothing properties in terms of the relaxation operator defined by
the residual-reduction are the same as those defined by the error-reduction, since their
eigenvalues are the same. (For any square matrices A and B, if AB. v )v, multiply-
ing by B yields BA. Bv )Bv, proving that AB and BA have the same nonvanishing
eigenvalues. For vanishing eigenvalues the result is trivial.)

3.3. Weakly coupled systems. Suppose that L is such that to each equation in system
(22) there corresponds a variable for which it is relaxed, having a satisfactory smoothing
factor for that equation in seclusion. The equations and their corresponding variables
(and smoothing factors) will be denoted by the same subscripts. Also, let the equations
be written so that the coefficients of the operators on the diagonal are all O(1). There
are generally two ways of relaxing the equations: simultaneously, whereby all the equa-
tions are relaxed, and only then the approximate solution is updated; and successively,
whereby the equations are relaxed in some prescribed order, and the approximate solu-
tion is updated as soon as each equation is relaxed. The former is simpler to analyze and
shall be considered first. Also, the discussion is simplified by only considering relaxation
that does not couple components. The generalization to schemes that do couple a few
components is straightforward (and all the numerical results in 2.7 were obtained with
such schemes). Similarly, we do not consider here the case where some of the equations
are relaxed collectively. Therefore, all the elements of L,o and LogO, except elements
on the respective diagonals, are either the elements of ], which shall be denoted by l,j,
or zero. The iagonal elements of ,,o are denoted by n, and those of Loa by o. The
elements of R are denoted by r,j. q, denotes the order of the operator in L in the
(i, j)th position, and c, denotes some norm of the coefficients of the highest deriva-
tives in this operator. Here it is assumed that c,y/h is not small compared to the norm
of the coefficients of the second-highest derivatives in the corresponding operator. Oth-
erwise, c,y and q,j are defined as the coefficient-norm and order of the second-highest
derivatives.
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3.3.1. Simultaneous relaxation. When the relaxation is performed simultaneously,
,o is a diagonal matrix, since only old values are used for all the unknowns except
those relaxed. Hence, by (27),/ is given by

oj/nj=_# ifi=j,
(29) r,j

l,/n otherwise,

where #i(_0) is by definition the reduction factor for an error Fourier component of fre-
quency 0__ corresponding to the ith equation in seclusion. (The smoothing factor, #, is
the maximal of the absolute values of# over all the high frequencies.)

Now, a consistent discretization and the condition that # (and similarly #) be smaller
than one imply

(30) n O(h-’,’).

For the off-diagonal terms in/, this yields

(31) ri,j O(ci,jhq,-q’,), i : j,

since li,j is at most O(ci,jh-q’, ). (Indeed, it is only as large as this for high-frequency
components and is only O(ci,) for smooth components.)

The eigenvalues of/ are the roots A, 1,..., q, of the characteristic equation

(32) I/- AII 0.

Rewrite (32) in the form

(33)
k

1-I
where all the terms but the product of the diagonal terms of- A1 have been trans-
ferred to the right-hand side. Equation (33) implies the following.

LEMMA 2. Ifrhs O(ch for somepositive c and , then the eigenvalues of1 satisfy

(34) )i #i -- O((cha)l/mi)where rn is the multiplicity of#, defined as the number ofdiagonal elements oft that tend
to # as h O.

Proof. By (33),

(# Ai)’’ < ch

for some constant , from which the proof follows.
The effect of the multiplicity is depicted in the following example. Let

/.__ (#1 ’1,2 )’2,1

The characteristic equation is

(#1 ))(#2 )) r1,2r2,1 O,
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and its roots are

1
A,z { (;z + #z) 4- [(# #9)9 + 4r,rg, ]/z }.

Hence, , # + O(rl,2r2,1) if # # O(1), but , #d + O(v/rl,2r2,1) if
#--#2 0.

Consider now the graph G corresponding to / ,I or, equivalently, to/.
LEMMA 3. If the maximal loop-weight over all the ulti-edged simple loops of G is

O(ch)for somepositive c and c, then the eigenvalues ofR satisfy

), It, + O((ch)l/m’).

The proof follows from Lemma 1 and Lemma 2. This is of course the h-weak cou-
pling of the system defined in Definition 4, and Rule 5 follows. Rule 1 also follows by
fixing the coefficients and sending h to zero. Rule 6, however, and indeed the concept of
the strength of coupling within subsets of equations, requires a closer look at rhs.

THEOREM 4. Let wz denote the weight ofsimple loop l, in a system for which all loops
satisfy 1 > w O(ch) for somepositive c and a. Then the eigenvalues ofl satisfy

(35) A # +O (mx(wt)i/’)
where the maximum is taken over all multi-edged simple loops, and m0 is the multiplicity
of #i in loop l, defined as the number ofequations in loop whose corresponding diagonal
element in R tends to #i as h O.

Sketch of Proof. Representing each group of #j’s that tend to the same value for
vanishing meshsize by/2j, we have from (33)

where rhsj are the terms of rhs, and rhsk maxj rhsj. Here and below ci denote
constants. Now, fix , where , is the eigenvalue of/ that tends to # as the
meshsize tends to zero (following Lemma 3). Assume ,i # + O(). Then

mi c3rhsk.

Let k denote the set of all multi-edged loops in rhsk, and let s,k denote the number
of single-edged loops in rhsk corresponding to/2i. Then, by Lemma 1, rhsk c4d’,k

1-Itec wt. Hence,

Wl

()But (mi si,k) ,teZk mj so that

---C6 < c max(wt)/’;’’ < co mx(wt)/m;’’
IEEk

The simple proof of the inequality used here is omitted for brevity.
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Note that since, by Lemma 1, all products of disjoint simple loops that include all

the nodes appear in rhs, one of the terms must have the loop with the maximal wt
as its only multi-edged loop-weight factor; and, therefore the estimate of Theorem 4 is
the best general estimate possible. Rule 6 follows directly from Theorem 4.

Under-relaxation. Let f be a diagonal matrix whose elements f,i are the respective
under-relaxation (or, equivalently, over-relaxation) parameters employed, f I (the
identity matrix) implies that no under-relaxation is applied. When under-relaxation is
employed, (27) is replaced by

(36) R I / D(R- I),

where R R is as defined in (27). Following the proof of Theorem 4, it is now straight-
forward to generalize this theorem to the case where under-relaxation is employed, ob-
taining

(37)
lm, 1 f,i + Izf,i + 0 mx wH fJ,J

where the product is taken over the under-relaxation parameters corresponding to the
equations included in loop 1.

3.3.2. Derivation of Rule 3. To outline the proof of Rule 3, let L be a matrix whose
elements are

Then, by (29)-(33), the weak-coupling condition of Lemma 2, viz., rhs O(ch), is
satisfied if and only if

(39) ILl 1 + O(ch),

barring freak cancellations that are neglected throughout this work and are discussed in
4. But, by (38),

(40) I1 ILl/1-I z,,
where the product is taken over all the diagonal elements of ,. In orders of magnitude
of h, this yields

(41)

Now ILl is invariant under row permutation, so I,[ is minimalwhen the sum ofthe orders
qy,j of the diagonal operators of L is maximal. Furthermore, limh-0 min ILl _> 1, where
the minimum is taken overall row permutations of ILl, since the diagonal elements of L
are all ones. Hence, if the sum of the orders of the diagonal elements corresponding to
some row permutation of L is smaller than the maximum by some positive integer m,
then (41) implies ILl O(h-m), yielding a strongly coupled system. Moreover, if there
is more than one permutation that maximizes the sum of the orders of the diagonal
elements of L, then (39) cannot hold, since there is then at least one term in ILl other
than the product of the diagonal l’s which is O(1) (the term(s) corresponding to the
other permutation(s) that maximize the product of the orders of the diagonal elements
of ILl). This implies uniqueness of the weakly coupled configuration.
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3.3.3. Successive relaxation. Relaxation whereby the equations are relaxed in some
prescribed order, with the variables updated immediately, yields a much more compli-
cated relaxation operator. However, note the following.

THEOREM 5. Theorem 4 holdsforsuccessive relaxation. Furthermore, every term in the
rhs quantityforsimultaneous relaxation appears in a term in the rhs quantityfor successive
relaxation, multiplied by one or more diagonal elements of R AI

Theorem 5 implies that, barring freak cancellation of terms which is discussed in
4, there is no qualitative difference in smoothing performance between simultaneous
and successive relaxations. The sole exception is that in the (entirely moot) case where
two or more #i’s in a loop are approximately equal to zero, their multiplicity should be
considered to be one. Indeed, only when all the smoothing factors vanish does this have
any influence on the overall smoothing factor, and even then this influence is only on the
rate at which the smoothing factor of the system tends to zero and not on whether or not
it does.

The proof of Theorem 5 is quite lengthy and is only sketched here. In order to
analyze successive relaxation, we first prescribe the order in which the equations are
to be relaxed, then calculate the relaxation operator of each equation separately, and
finally multiply the symbols (as is done in two-level analysis) to obtain the full successive
relaxation symbol, which shall be denoted by/ and its elements by r. The symbolZ,3

of the relaxation operator for simultaneous relaxation analyzed above will be denoted
by/P and its elements by re. / will denote the symbol of the relaxation operator of3"
equation i, 1,... k. Its elements are given by

P ifm i,rj,i

r,m 1 if j m i,
0 otherwise.

That is,/i acts as the identity matrix with respect to relaxation of all equations but the
one relaxed, while the effect of relaxing equation i on the residuals ofthe other equations
is the same as in simultaneous relaxation and is manifest in the corresponding column
of the relaxation operator./8 is defined by

(42)

Consider Gi, the graph corresponding to/. It is obtained from Gv (the graph of/P)
by eliminating all the edges whose tail-node is not node i, and adding single-edged loops
of weight one at all nodes but i. By the definition of matrix multiplication it is straight-
forward to show that the elements of8 are given by the following:

r. the sum of the weights of all consistently oriented paths in Gv,
which lead from node j to node i,

where a consistently oriented path is defined as follows.
DEFINITION 5. Let (no, nl,..., ne) define a path of e edges from node no to node ne.

Then the path is consistently oriented if for all 1 < j < e, nj_l < nj, but ne_ > n.
Now, since all terms in r. are paths from node j to node i, it follows from an anal-

ogous statement to Lemma 1 that the terms in rhs corresponding to the determinant of
R are all products of loops (though not necessarily simple loops). Furthermore, since
all simple loops can be constructed by concatenation of consistently oriented paths, all



1462 RAD YAVNEH

the terms in rhs of/P must appear in rhs of/, albeit multiplied by elements of the di-
agonal of/ (which include the corresponding diagonal elements of/P as terms). This
outlines the proof of Theorem 5.

4. Discussion and conclusions. A systematic approach for developing smoothers
for multigrid solvers of complicated systems of partial differential equations has been
presented, and its power and straightforward implementation have been depicted by
examples taken mostly from problems describing interesting physical phenomena.

The coupling analysis is derived from local mode analysis. Its main advantage is its
straightforward and systematic implementation. Although general principles for relax-
ing systems have already been formulated by Brandt in [1], the present approach expands
their scope, especially when used in conjunction with Brandt’s approach. In particular,
the coupling analysis offers a quantitative estimate of the strength of coupling. This,
along with the structure of the coupling, which is clearly depicted by the coupling graph,
suggests the methods ofweakening coupling brought forth in 2.6.

The coupling analysis does not provide a precise quantitative prediction of the
smoothing performance as does local mode analysis (although Rule 6 normally gives
quite a narrow estimate). In particular, in some special cases for which the coupling
analysis predicts strong coupling, the system may conceivably perform well under the
usual simultaneous or successive relaxation of the equations, due to an "accidental"
cancelling (or near-cancelling) of O(1) terms in rhs of (33) (or of "perturbations"by
the interpretation offered in the beginning of 2). But this may well be more of a help
than a hindrance, since robustness considerations (with respect to size and variability
of coefficients) will usually make such a relaxation scheme unattractive. Furthermore,
once a strongly coupled loop has been diagnosed, it can be analyzed precisely by revert-
ing to the actual symbols, rather than orders of magnitude. This reduces the problem
to examining a scalar rather than a full matrix. It may then be possible to find a way to
reduce the feedback sufficiently, by such means as under-relaxation or different relax-
ation schemes for the equations in the loop, or perhaps other means, as suggested by the
feedback-system interpretation. This approach requires further research.

A potentially important notion, presented in 2.5, is the broadening of the scope
of distributive relaxation to include transformed operators that are not triangular--only
weakly coupled. Here and in other examples, the coupling analysis can be employed to
determine the best way to use existing multigrid tools. The quick and simple application
of the basic analysis, which is all that is required in the preliminary stage, allows even a
trial and error search for a successful scheme, which may be useful in very complicated
systems.

It is important to note that the performance predicted by the coupling analysis, as by
the usual smoothing analysis, is asymptotic performance. A single cycle might exhibit re-
duced performance due to high-derivative off-diagonal terms in the operator. This can
usually be overcome by using higher-order interpolation of the error-correction (and
perhaps the solution itself in the full multigrid (FMG) algorithm) for some of the vari-
ables, or by an extra relaxation sweep for the corresponding equation(s), but, in practice,
such measures are seldom necessary (see [6], for example). A discussion of required or-
ders of interpolation appears in [1, 4.3] and [2].

Implementation of the coupling analysis can be facilitated by a small computer pro-
gram that calculates the weight-array from the order-array and plots the coupling graph.
Then, examination of even quite complicated systems becomes extremely fast, even on
a trial and error basis. Indeed, a black-box type of search can be automatized, at least
for the preliminary phase.
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COMPUTING THE GENERALIZED SINGULARVALUE DECOMPOSITION*
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Abstract. A variation of Paige’s algorithm is presented for computing the generalized singular value de-
composition (GSVD) of two matrices A and B. There are two innovations. The first is a new preprocessing
step which reduces A and B to upper triangular forms satisfying certain rank conditions. The second is a new
2 x 2 triangular GSVD algorithm, which constitutes the inner loop of Paige’s algorithm. Proofs of stability
and high accuracy of the 2 2 GSVD algorithm are presented and are demonstrated using examples on which
all previous algorithms fail.

Key words, generalized singular value decomposition, CS decomposition, matrix decomposition, Jacobi
algorithm, Kogbetliantz algorithm
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1. Introduction. The purpose of this paper is to describe a variation of Paige’s algo-
rithm [28] for computing the following generalized singular value decomposition
(GSVD) introduced by Van Loan [33] and Paige and Saunders [25]. This is also called
the quotient singular value decomposition (QSVD) in [8].

THEOREM 1. Let A E ]R’x’ and B ]Rpx’ have rank(AT, BT) n. Then there
are orthogonal matrices U, V, and Q such that

(1.1) UTAQ-- IR, VTBQ- 2R,

where R is n n upper triangular and nonsingular, and

(1.2)

k
m-l-k

p-n+l
k
n-l-k

k n-l-k

D1
O

k n-l-k
O

D2
I

I1 txt and I2 ](n-l-k)x(n-l-k) are identity matrices, 01 (m-l-k)x(n-l-k) and
02 (p-,+t)xt are zero matrices,

(1.3) D1 diag(at+l,..., at+#,), D2 diag(/t+l,...,/t+k),
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1The assumption that rank(AT, BT) n is not essential but simplifies exposition.
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(1.4)

The GSVD is a generalization of the singular value decomposition (SVD) in the sense
that if B is the identity matrix, then the GSVD ofA and B is the SVD of A. Moreover, if
B is nonsingular, then the GSVD ofA and B reduces to the SVD ofAB-1 If (AT, BT)T
has orthonormal columns, then the GSVD ofA and B is the CS decomposition [31]. The
pairs (ci,/3i) defined by the diagonal elements of PI and P2 are called the generalized
singular value pairs (GSVpairs). The quotient Ai ci/i is called a generalized singular
value (GSV). Note that the A are the square roots of the eigenvalues of the symmetric
pencil ATA ABTB.

The GSVD of two matrices A and B is a tool used in many applications, such as
the Kronecker canonical form of a general matrix pencil [22], the linearly constrained
least-squares problem [35], [5], the general Gauss-Markov linear model [27], [3], the
generalized total least squares problem [21], and real time signal processing [30]. As a
further generalization of the SVD, Ewerbring and Luk [13], Zha [36] proposed a gener-
alized SVD for matrix triplets, and De Moor, Golub, and Zha [8], [9] have generalized
the SVD into a factorization of any number of matrices. For all these applications and
multimatrix generalization of the SVD, the development of a stable and efficient algo-
rithm for computing the GSVD of two matrices is a basic problem.

Stewart [31] and Van Loan [34] proposed two algorithms for computing the GSVD.
Their algorithms have two phases: The first phase is to compute the QR decomposi-
tion (or the SVD if necessary) of (AT, BT)T. The second phase is to compute the CS
decomposition. Paige’s algorithm is a Jacobi-Kogbetliantz approach [28], which applies
orthogonal transformations to A and B separatelywithout the CS decomposition. It also
has the following two phases.

Phase 1. Reduce matrices A and/3 to the following forms

(1.5)

r q n-t
r All AI2 Ala

UTAP q 0 0 0

m-t 0 0 0

r q n-t
r Bll B12 B13

VTBp q 0 B22 B23
p-t 0 0 0

where m x m matrix U and p x p matrix V are orthogonal, P is an n x n permutation
matrix, All E 1Rrxr is nonsingular upper triangular,/311 E IRrx is upper triangular,
t r / q, and if q > 0,/3 lRqx q is nonsingular upper triangular.

Phase 2. Compute the GSVD of two n x n upper triangular matrices of forms (1.5)
by a generalized Kogbetliantz algorithm.2

Phase 1 can be done first by the QR factorization with column pivoting [17] ofmatrix
A and determine the rank r of A, meanwhile permuting the columns of matrix B in the

2We may need to add zero rows or columns to get square matrices. This is not essential but it simplifies
the description.
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same way, and then applying the QR factorization with column pivoting to the block of
the last p r rows and n r columns of B and obtain the rank q of the block; this yields
the forms (1.5) [4]. Phase 2 is iterative.

In this paper, we will present a variation of Paige’s algorithm for computing the
GSVD. There are two innovations. The first is as follows: In [28], it is assumed (with-
out providing detail) that in (1.5) the nonzero part of VTBp has full row rank. It is
known that it is complicated to choose V to guarantee this condition and P may not be
a permutation matrix. However, in the preprocessing step (1.5), we do not require this
condition, and so we can simply use conventional QR factorization with column pivot-
ing. Moreover, note that the GSVD is independent of column scaling of A and B. The
forms (1.5) preserve this property.

The second innovation is a new 2 x 2 triangular GSVD algorithm, which constitutes
the inner loop of Paige’s algorithm. We will present proofs of stability and high accuracy
of our method, and we will demonstrate it using examples on which all previous algo-
rithms fail. Hereafter, we assume that A and/3 have been preprocessed to the upper
trapezoidal forms (1.5).

The numerical technique developed in this paper can be extended to deal with the
numerical computation of other closely related decompositions such as the CS decom-
position and the product SVD of two matrices [20], [15]. We will not go into the details.

The rest of the paper is organized as follows. Section 2 reviews the Kogbetliantz al-
gorithm for computing the SVD of a triangular matrix and Paige’s generalization of the
Kogbetliantz algorithm for computing the GSVD. Section 3 explores the inner loop of
Paige’s algorithm, which includes the GSVD of a 2 2 matrix in terms of exact and float-
ing point arithmetic. In 4, we describe the overall algorithm. The last section reports
the results of numerical experiments. In the Appendix, we include the 2 2 triangular
SVD code of Demmel and Kahan, which has not been published in its entirety before,
and which plays an important role in our algorithm.

2. Paige’s GSVD algorithm. To describe Paige’s algorithm, we first review the Kog-
betliantz algorithm [23] for computing the SVD of an upper triangular matrix A. Then
we describe Paige’s algorithm for computing the GSVD of A and B with B nonsingular.
Finally, we discuss how to generalize the idea to the case where B is ill conditioned or
singular.

2.1. Kogbetliantz algorithm for the SVD of a triangular matrix. The Kogbetliantz
algorithm [23] is a kind of Jacobi scheme. Assume that the kth transformation of the
algorithm operates on the rows and columns i and j of A, let Aj be the 2 2 submatrix
subtended by rows and columns i and j of A. Let the rotation matrices U rot(c,,
and Vk rot (cv, sv) be chosen so that

TUk AjVk diag(7, 7)

is the SVD of Aij, where c, cos ek, s, sin ek and c, cos ek, s, sin ek. Let Ok
and rk be identity matrices with (i, i), (i, j), (j, i), and (j, j) elements replaced by the
(1,1), (1,2), (2,1), and (2,2) elements of U and V, respectively. Then let

where A0 A. After the first sweep through all the (i, j) in row cyclic order, an upper
triangular matrix A will become lower triangular. The second sweep will restore upper

3Throughout this paper, we use rot(c, s)to denote the rotation matrix
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triangular form and so on [20], [19]. There is a literature on the different sweep orders
for sequential and parallel computations beside the conventional row and column order;
for example [24].

Forsythe and Henrici [16] considered the convergence ofthe row cyclic Kogbetliantz
algorithm. Fernando [14] proved a global convergence theorem under the assumption
that one of the rotation angles {k, k} at each (i, j) transformation lies in a closed
interval J c (-7r/2, 7r/2), i.e.,

(2.1) CkEJ or ekE J, k-l,2,...,.

This is the condition that our algorithm will satisfy. Furthermore, it has been proved that
the cyclic Kogbetliantz algorithm ultimately converges quadratically [29], [2], [7].

2.2. The generalization of the Kogbetliantz algorithm for the GSVD. We begin by
computing the GSVD oftwo upper triangular matrices A and B with B nonsingular. It is
known that this is equivalent to computing the SVD of the triangular matrix C AB-
Of course, it is unwise to form C explicitly. We note that a sweep of the Kogbetliantz al-
gorithm applied to C will make it lower triangular. This means that there are orthogonal
matrices U and V such that

(2.2) uT1 C gl

where C is lower triangular. Recasting (2.2) as U1TA 1V1TB, we see that if we can
determine an orthogonal matrix Q1 satisfying

A1, el,

where A1 and B1 are lower triangular, then C A1B1. This means that using a sweep
of the Kogbetliantz algorithm on the upper triangular C to get the lower triangular C is
equivalent to the problem of finding orthogonal matrices U1, V1, and Q1 SO that U1TAQ
and V1TBQ, are lower triangular. Heath et al. [20], Paige [28], and Hari and Veseli6
[19] have shown that we may take advantage of the triangular structures of A and B and
the ordering of sweeps to get the desired orthogonal transformations U1, V1, and
without forming AB-1 explicitly. Specifically, at the (i, j) transformation, the needed
2 x 2 submatrix C of C is given by

aii aij bii bij
C AiiB

0 a 0 bii
(2.3)

where aij and bij are the elements subtended by the rows and columns and j of the
updated A and B, respectively. By using the SVD ofC TCUi V/ diag(5i, 5j), we
have

TUAij diag(eii Cjj) TVii Bij.

This shows that the corresponding rows of T TUA and VB are parallel. Hence if we
choose rotation Q so that 7-Vi BiQi is lower triangular, then UiAijQi must also be
lower triangular, which is just the GSVD of the 2 x 2 triangular matrices Ai and B.
With this observation, we see that after completing a sweep in row order, the desired U1,
V1, and Q1 are the products U12U13 Un-l,n, V12V13 Vn-l,n, and Q12Q13... Q,n-l,n,
respectively. By the end of the row cyclic sweep, we obtain lower triangular matrices
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Ax and B1.4 Then the next sweep consists of zeroing lower off-diagonal elements of
Ct AB- in column order to return it to upper triangular form, and so on. Over-
all, we are actually carrying out the Kogbetliantz algorithm to diagonalize the implicitly
defined matrix C. Upon convergence, this gives UT(AB-)V E, a diagonal matrix.
That is

UTAQ VTB Q,

i.e., the ith rows of UTAQ and VTBQ are parallel, which is the desired GSVD of A
and B.

In general, ifB is ill conditioned with respect to inversion or B is singular after phase
1, then usingB is not recommended. Paige [28] suggests using

instead ofCij in (2.3), where adj (Bij) stands for the adjugate of Bij. Since Bi.adj(Bi)
det(Bij)I, it seems to be direct and natural to use adj (Bij) instead ofB1. The incorpo-
ration of (2.4) into the above procedure circumvents the numerical difficulties when
is ill conditioned with respect to inversion or B is singular. But it also introduces two
questions. First, are there still rotation matrices U, Vj, and Qj such that T

and VfBQ are the GSVD of 2 2 matrices A and B? Second, does the scheme
converge to our required GSVD forms of A and B? The following section will address
these questions.

3. The GSVI} of2 2 triangular matrices. Aswe see in 2, the kernel of computing
the GSVD using a generalized Kogbetliantz algorithm is the computation of the GSVD
of 2 2 matrices. In this section, we first discuss the computation of the 2 2 GSVD for
different possible 2 2 matricesA andB in exact arithmetic, and then we will discuss
the computation in the presence of floating point arithmetic.

3.1. The 2 2 GSVD in exact arithmetic. When A and B are processed to have
upper trapezoidal forms (1.5), we see that at the (i, j) transformation, the 2 2 matrices
A and B are of the forms

(3.1) A= al a2
and B=

0 a22 0 b22

where at 0, if A is nonzero. We have the following lemma.
LEMMA 1. There exist 2 2 rotation matrices U, V, and Q, such that

ft uTAQ ( a2t
fi’~ [ VTBQ ( ~b21 b22

is the GSVD ofA and B. Moreover,

4By incorporating Gentleman’s suggested row and column permutations [28] after each transformation,
we need only use an upper triangular array to carry out the computation. But, for clearer exposition, we will
use the entire square array in this paper.

5For simplicity of exposition, we drop the subscript ij from the 2 x 2 triangular matrices Aij and Bij.
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(a) ?z11 76 0 ifA is nonzero,
(b) b22 76 0/fboth A and B are nonzero, except that
(c) ifthefirst rows ofA and B areparallel and the second rows are zero, then U V

I, and Q can be chosen to zero the (1,2) entries ofA and B simultaneously.
Proof. The proof proceeds by considering all possible cases. If B is nonsingular,

the lemma follows immediately by 2.2. If A or B is zero, the results are trivial. The
remaining cases are for B singular but not zero. This includes the following three cases,
where C A. adj(B):

bll b12 )(1) B with bll # 0.
0 0

In this case,

If c12 0, i.e., the first row vectors of A and B are parallel, then if c22 is also equal to
zero, U V I. Qij is chosen to zero (1,2) entry ofA and must also zero the (1,2) entry
of B, yielding the result (c). If c22 # 0, then both U and V are chosen as permutation
matrices. Q is chosen to zero the (1,2) entry of UTA.

If t212 5 0, then U is chosen to zero (2,2) entry of C and V rot(0, 1). VT"B has
second row nonzero. The lemma follows by choosing Q to zero (1,2) entry of UTA.

0 /912 )(2) B with b22 5 0.
0 b22

Hence

C 011
b22 -b12 )0 0

Then U 1, and V is chosen to zero (1,2) entry of C, i.e., to zero the (1,2) entry of B.
The lemma follows by choosing Q to zero (1,2) entry of A.

0 b12 )(3) B with b12 0.
0 0

We see that

0 -o;11b12 )C:
0 0

Thenwe can choose U I, V rot(0, 1). Therefore the second row ofVTB is nonzero.
The lemma follows by choosing Q to zero (1,2) entry of UTA.
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It has been shown by induction (see [28], [4]) that with the properties of Lemma 1,
a sweep in row order with possible reordering takes the initial upper trapezoidal forms
(1.5) of A and B into the forms

(3.2)

r Tt-r

r n-r

B1 V1TBQ1
n r B21 B22

where AI, BI, and B22 are lower triangular, and AI, B22 are nonsingular. BI may
be singular, but there must exist nonzero diagonal elements in the nonzero rows of BI.

From (3.2), we see that at (i, j) transformation in column ordering, the 2 2 matrices
A and B are lower triangular matrices, where if A is singular, then A is either the zero
matrix or its second row is zero, and moreover, if b22 0, then b21 0. By a similar
argument as in Lemma 1, we can show that there are 2 2 orthogonal matrices U, V,
and Q such that UTAQ and [3 VTBQ both are upper triangular and the GSVD
of A and B. The proof of Lemma 1 suggests the following algorithm, where for brevity,
we omit the part for lower triangular matrices.

ALGORITHM 1. (The 2 2 GSVD algorithm).
form C A. adj(B);
compute the SVD of C: uTcv diag(at, a2);
form the products G UTA, H VTB;
ifA is nonzero, then

determine Q to zero out (1,2) entry of G;
else

determine Q to zero out (1,2) entry ofH;
end if
=GQ; [3 HQ; 512-0; 12 "-0;

Again, from [28], [4], at the end of the second sweep, we have A2 U2TAIQ2 and
B2 V2TB1Q2, such that

rl r2 n r rl r2 n r

(3.3) A2 r2 0 A22 A23 B2 r2 0 B22 B23
n r 0 0 0 n r 0 0 B33

where All, A22, B22, and B33 are upper triangular matrices and nonsingular, rl +r2 r.
Hence there is a unique (n rl) (n r) upper triangular matrix T such that

A22 A23
T

0 0 0 B33
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This implies that the rest of computation is essentially equivalent to computing the SVD
of the implicitly defined matrix T. By the global convergence theory of the cyclic Kog-
betliantz algorithm (see 2.1), we have

(3.4) T ,
where E is a diagonal matrix, and the convergence is ultimately quadratic, provided the
rotation angles of U and V obey (2.1). Equation (3.4) implies that there exists diagonal
matrices E and E with E + E22 I, and an upper triangular matrix R, such that

A2-R and B2
which gives the desired GSVD of A and B.

3.2. The 2 x 2 GSVD in floating point arithmetic. In this section, we will use the
usual model of floating point arithmetic: barring over/underflow, fl(xoy) (1 +6)(xoy)
where o is one of the basic operations {+,-, x, +}, and ]61 _< e where e is the machine
round-off. This model eliminates machines like the Cray without guard digits, but with
some effort all the results can be extended to these machines as well.

When using floating point arithmetic, round-off can cause the row vectors of A and
/ computed by Algorithm 1 not to be parallel. This means and/ are not the GSVD
of the 2 x 2 matrices A and/3, or, in short, the algorithm is not convergent. Another
pos_sibility is that~ the computation may not be backward stable, because the entries
or bl ( or b.l), which are explicitly set to zero by Algorithm 1, may be much larger
than O(e)llAII and O(e)llBII, respectively.6 Thus, the algorithms in [28], [20], [4], which
use the SVD of 2 x 2 triangular matrix to guarantee convergence, are potentially numer-
ical unstable. On the other hand, to guarantee numerical stability, it is suggested in [18],
[6] that after computing the SVD of the 2 x 2 triangular matrix C, one uses U (say) to
form G UTA, then determines Q such that GQ is lower triangular and finall deter-
mines Q such that frTBQ is also lower triangular. However, in practice, uTCv might
not be diagonal, which results in divergence. In 5, we will present numerical examples
illustrating the failures of these schemes. In this section, we propose a new algorithm to
overcome these shortcomings. We first discuss the two fundamental algorithmic building
blocks: SLASV2 and SLARTG.

SLASV2 computes the SVD of a 2 x 2 upper triangular matrix

-Su cu 0 h Sv cv 0 42

Barring over/underfiow, SLASV2 computes all of c, s=, c, s., al, and 42 to nearly full
machine precision. This algorithm was described briefly in [10], but not published in its
entirety. For completeness, we include a listing ofFORTRAN code in the Appendix and
a statement and proof sketch of its error analysis. As discussed in [10], the high accu-
racy of SLASV2 is based on the fact that the algorithm uses formulas that only contain
products, quotients, square roots, sums of terms of like sign, differences of computed
quantities only when cancellation is impossible, and the difference Ill Ihl of the input
data, which, if cancellation occurs, is exact.

6Throughout, will denote the matrix 2-norm.
7This exact cancellation property, which is essential for the accuracy claim of SLASV2, requires a guard

digit and so fails on machines like the Cray. On a Cray we retain backward stability of SLASV2, but lose
forward stability. Since the proof uses forward stability of SLASV2 in an important way, it does not apply to
Cray. However, there is a more complicated proof which does work on the Cray. The reader is invited to try
to find it.
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SLARTG(f, , c, s, r) generates a rotation matrix ro(c, s) from f and g to zero
i.e., c fir and s g/r, r V/f + gg., but this is subject to spurious over/underflow
if we directly compute them from these formulas. A more robust way to compute c, s,
and v can be found in [17]:

(handle f 0 and 0 as special cases)
if Ifl > I1 then

t #/f; tt v/1 + t2; c lift; s t c; r f tt
else

t f/; tt v/1 + tz; s lift; c t s; r g tt;
endif

The same techniques used to analyze SLASV2 in the Appendix can be straightforwardly
used to show that the relative error in the computed c and s is bounded by 6e.

Using SLARTG and SLASV2, we present a high-level description of an algorithm
for computing the 2 x 2 GSVD. Later we will show that the proposed algorithm guaran-
tees numerical stability and convergence. We will use the notation IXl

ALGORITHM GSVD22. Let A and B be 2 x 2 upper triangular matrices. The fol-
lowing algorithm computes the orthogonal matrices U ro(c,, s,), V ro(c, s),
and Q ro(cq, Sq), such that

are the GSVD of A and B. For brevity, we omit the part for lower triangular matrices,
which can be described similarly.

compute C A. adj(B);
use SLASV2 to compute the SVD ofC UTCV ;
compute G UTA; H VTB;
compute Iu[TIAI; [-I IvITIB[;
/* The angles ofU and V are chosen to satisfy the convergence condition (3.4). */
if lcl >_ Isl or Ic.I >_ Isl then

/* Choose Q to zero out (1,2) entries ofUTA and VTB */

ife/(Igl / Igxel) < h2/(lhxl / Ih21)then
call SLARTG(-g, g2, %, sq, r) /* Compute Qfrom UTA */

else
call SLARTG(-h, h2, cq, sq, r) /* Compute Qfrom VTB */

end if
GQ; [3 HQ; 12 O; 12 O.

else
/* Choose Q to zero out (2,2) entries ofUTA and VTB and then swap rows. */
if[22/(Ig211 / Ig221) < 22/(Ih21 + Ih221)then

call SLARTG(-g2, g22, %, sa, r) /* Compute Qfrom UTA */
else

call SLARTG(-h2, h22, ca, sq, r) /* Compute Qfrom vTB */
end if

GQ; [ HQ; a=O; =0.
/* Swap, where P rot(O, 1) */
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U - UP; V - VP;
end if
We now present a theorem about the stability and convergence of the above algo-

rithm. Quantities with ba_rs (like_C) denote computed quantities.
THEOREM 2. The A and B computed by Algorithm GSVD22 have the following

properties:
(a) Both are triangular;
(b) OTfr is within 132e1111 ofbeing diagonal;
(c) The rows ofA and B are within 87ellAII and 87e]lBII, respectively, ofbeingparallel;
(d) They are computed stably, i.e., there exist 6A and 6B, where IIAII _< 377ellAII and

116BII 377ellBII, and orthogonal U, V, and Q such that

4 UT(A + 5A)Q, 3 VT(B + 5B)Q,

Proof. We only prove a branch of the algorithm where Q is computed from UTA
and used to zero out the (1,2) entries of UTA and VTB; the proof for the other cases
is similar. We will also leave some of the more tedious details of error analysis to the
ambitious reader.

We first note the following facts about the algorithm.
Fact 1. C (A+6A adj(B +6B), where 6A and 6B1 are small componentwise

relative perturbations of A and B.

(- [ a11b22 (1 +el)o -a1b2(1+ 2e2) + a2b11(l + 2e3)
1 + ea

-abl2 -k- al2bl
0 a22b

where all all (1 + el), bll bll (1 + ea), a2 a12 (1 + 2e3)/(1 + ea), and bi2
b12(1 + 2e2)/(1 + el). (The ei are independent quantities bounded in magnitude by the
machine precision e.) So there is at most a 3-ulp (unit in last place) perturbation in any
entry, and also 116Alll < 4ellAII and 116Bill <_ 4ellSll.

Fact 2. The computed U and V from SLASV2 satisfy U U + 6U, V V + 6V,
where uTv is the exact SVD of , and 6U (6V) is a small componentwise relative
perturbation of U (V), bounded by 46.5 in each component (see the proposition in the
Appendix). This also implies 116Ull _< . 46.5e < 66e and 116V[[ < 66e.

Fact 3. The error in the Oi (hi) is bounded by 48.5ei (48.5ehi). In the factor
48.5, two comes from the round-off in computing fl(UTA) or fl(vTB), and 46.5 comes
from the errors in U and V.

Fact 4. Using simple geometry, one can show that changing f to f+6f and 9 to 9+69
can change c f/v/f + 9 and s g/ v/f + g to c+6c and s+6s, respectively, where
V,6c2 + 6s2 <_ 2((6f2 + 6g2)/(f2 + g2))1/2.

Fact 5. Subroutine SLARTG computes c f/v/f + g and s g/v/f + g with
relative errors bounded by 6e. This means the 2 x 2 matrix rot(c, s) has an error bounded
in norm by x/" 6e < 9e.

Fact 6. If X and r are 2x2 matrices, then [[fl(X Y) X- Y[[ < 4. e-[IX[[. [[r[[.
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We note that triangularity (a) holds by construction. We prove (b) as follows. Near
diagonality of T(fr holds by the high accuracy of and r:

0? (u + u)*(v + v) u*v +,
where Fact 2 tells us that to first order in e

Next we prove assertion (c). The top rows of A and B are trivially parallel by con-
struction (their second components are zero), so we only consider the bottom rows. We
know by construction that the bottom rows of UT(A + 6A) and VT(B + 6B) are par-
allel. Thus the bottom rows of

fl(TA) TA + Fz (UT + 8uT)(A + 8A 8A) + Fe uT(A + 8A) + Fz
and/it VT(Bq-6B1) q-F4 are within IIFa 74ellAII and IIFa 74ellBII, respectively,
of being parallel. Here we have used Facts 1, 2, and 6.

So for any Q Q + 6Q that is within 9e in norm of an orthogonal matrix Q, the
bottom rows of A and B are the same as the bottom rows of

fl(CQ) GQ + F (uT(A + 6A) + Fa)(Q + 6Q) + F uT(A + 6A)Q + F
and fl(HQ) VT(B+6B1)Q+FT, which are within IIF611 87ellAII and IIFTII 87ellBII
of being parallel; we have used our bounds on IIF311 and IIF411, and Facts 5 and 6. This
proves assertion (c).

Let r/a 12e/(lD] + ]121), and b h12e/(lhlll + Ih2l). en (b) is an
appromate bound on relative error of Q if it is computed from UTA (vTB). In the
branch of the algorithm we consider, Ob, and the algorithm chooses to compute Q
from UTA. e remarkable fact is that even if e << , so that the foard error in Q is
large, the bacard error in B is small.

To finally prov assertion (d), we need to show the (1,2) entu of fl(HQ), which is
zeroed out to get B, is at most 286ellBII. (Q is chosen to accurately zero out the (1,2)
entu of fl(GQ).) Earlier we showed that hll W 74eallBl[ and h12 + 74egllBll,
where h and h2 are the exact entries of VT(B + 6B1). Now write q cq + 6cq and
gq sq +6sq, where cq and sq are the exact cosine and sine computed from U (A+6A1).
en

(3.5)
Ifl((HQ)2)I I(hx + 76e01lBII)(sa + sa) + (h12 + 76ellBII)(ca + )1

I(hllSq -+- h2cq)-+-(hllSSq -I- hl2Cq)-!" x/-" 76eullBll
_< Ihxl Iql + Ihx21 Iaql + 108,11BII.

There are two cases, r/a < e and r/ >_ e. In the first case, we will show that 6Sq and
6cq are both bounded by 175e, and so [fl((HQ)2)I < 286e. To see this, use Fact 3 to
write

(48.5511)2 + (48.512)2 (48.511 +)2 (48.5e2)2 (48.5)2(.12x + (1111 +
so by Facts 4 and 5, v/16Sql2 + I6Cql 2 can be at most

< 178e.
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Now we use this bound in inequality (3.5) to get [fl((HQ)12)[ < 286e as desired.
In the second case, we bound v’l&ql + I cql by

/’48.5u((/)u 4- (r/(19l + 191ul))u)’ /u9 + 2 )
Plugging in to inequality (3.5) and using

yields the upper bound

Ob

Ifl((HQ)u)l _< (Ihxl + Ihxul). 178r/a + 108ellBll _<

as before, since b ]a.
This means that we can write the final output

G 178r/a

178r/a + 10SellBII- s6ellBII

B VT(B+SBI)Q+FT+Fs VT(B+SB +VFTQT +VFsQT)Q =_ VT(B+SB)Q,

where Fs zeroes out the (1,2) entry of B and leaves the others unchanged. We just
showed IIFsll < 286ellBII and combining this with our earlier bounds of IIFTII < 87ellBII
and II(B1 <- 4ellBII yields the final result 115BII <_ 377ellBII. We can similarly show that
t UT(A + 5A)Q with 115All <_ 107ellAII, using the fact that Q is computed to directly
zero out the (1,2) entry of A. This completes the proof of assertion (d). E]

The constants in these error bounds could doubtless be decreased by a more detailed
analysis.

4. Summary of the complete algorithm. In this section, we present a high-level de-
scription of our version of Paige’s algorithm for computing the GSVD oftwo upper trian-
gular matrices A and B of the forms (1.5). Let n be a user-chosen parameter specifying
the maximum number of cycles the algorithm may perform (say, n 20). Let Pij be the
identity matrix with rows and d interchanged.

ALGORITHM GSVD
/* Initialization */
cycle "= 0;
:= r + q + 1;/* r and q are defined in (1.5) */

U := I; V := I; Q := I ifdesired;
/* Main loop */
if nonconvergence and cycle < do

cycle cycle + 1;
do i, j)-loop

/* 2 x 2 GSVD */
Use GSVD22 tofind Uij, Vij, Qij from aii, aij, ajj and bii, bij, bjj
/* Updating */

TA := UijAQij;
B TV BQ;
U := UU; V := VV/; Q := QQ ifdesired;
/* reordering */
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ifthe (j, j) entry ofB is nonzero, where j > l, then
A := APe;
B :- PjBPj;
V := VVj; Q := QP ifdesired;
:=+1;

end if
end of i, j)-loop
convergence test if cycle is even.

end if
compute ai and .

The (i, j)-loop can be simply chosen as the standard cyclic pivot sequence. It is natural
to use the parallelism (linear dependency) of the corresponding row vectors of A and
/3 at the end of an even cycle as the stopping criterion of the iteration. To measure the
parallelism oftwo k-vectors a and b to high accuracy and despite possible over/underflow,
we propose the following scheme. First, compute the QR factorization ofthe k 2 matrix

11 12

Ilbll 0 22

0 0

and then compute the singular values 71 > 72 > 0 of the 2 2 upper triangular (#j). It
is clear that

par
IIll’llbll 7

measures the parallelism of these two vectors. Vectors a and b are exactly parallel if and
only if 72 0.

Using the above described scheme as the stopping criterion in Algorithm GSVD, let
a and b be the ith row vectors of A and B, respectively, at the end of an even cycle. For
a given tolerance value T, we take

error ’par ai bi

This means that there are perturbations of size at most nrlla in row ai and m’llbll in
row b that makes them exactly parallel. This means that after making these perturba-
tions, there would exist scalars a and such that

(4.1) fliai aibi, 1,..., n,

2where ai and i can be chosen so that a + / 1. From (4.1), it is seen that there is
an upper triangular matrix R, such that

UTAQ diag(ai)R, VTBQ diag(/i)R,

which is the desired GSVD of matrices A and B, where a and i are the GSV pairs.
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5. Numerical experiments. The numerical experiments we discuss here first com-
pare Algorithm GSVD22 with previous algorithms developed by Paige [28], Heath et al.
[20], Bai [4], Hammarling [18], and Bojanczyk et al. [6]. Then we will evaluate Algo-
rithm GSVD for different cases of random matrices A and B, measuring the backward
stability, accuracy, average total number of sweeps, rate of convergence, elapsed time
when computing GSV pairs only, or both GSV pairs, and transformation matrices.

All tests were performed using FORTRAN 77 on a SUN Sparc Station 1/. The
arithmetic was IEEE standard double precision [1], with a machine precision of e
2-53 10-6 and over/underflow threshold 10+37. We use r 10-4 as the stopping
criterion.

5.1. Backward stability and accuracy. Before we proceed, it is appropriate to state
what we mean by the backward stability and the accuracy ofAlgorithm GSVD. The back-
ward stability is defined as follows: Let the computed orthogonal matrices be t, (r, and
Q, the diagonal matrices be E1 and E2, and the upper triangular matrix be R. Then the
following conditions should be satisfied:

(5.1)

(5.2)

where is Frobenius norm. These assertions say that to within round-off error, the
computed matrices , fr, and O are orthogonal, and the rows of t)TAo and frTBQ are
parallel.

The accuracy test of computed GSV pairs by Algorithm GSVD is based on the
perturbation bound of the GSV pairs of Sun and Paige [32],~ [,’26], which says that’, if
rank(G) rank(t) n, where G (AT, BT)T and t (AT,_BT)T ((A--l-E)T, (B+
F)T)T, and the GSV pairs (ai, i) of A and B and (&i,) of A and/ are ordered as in

( )(5.3) E[(a )= + ( _/)] x/min{llC, ll i111=)
E

i--1 /7’
F

Ifwe generate the matrices A and/3 with known GSV pairs, then the above perturbation
bound can be used to measure the accuracy of the computed GSV pairs.

5.2. The numerical comparison of different 2 x 2 GSVD algorithms. Several ver-
sions have been proposed for computing the 2 2 GSVD. There are essentially two
kinds of schemes.

Scheme 1. First compute the SVD of C A. adj (B): UTCV E, then form the
product of G UTA and H VT/3, and finally compute Q from G such that the (1,2)
or (2,1) entry of GQ is zero. Mathematically, it is known that the (1,2) or (2,1) entry of
HQ is automatically zero. The algorithms proposed by Paige [28], Heath et al. [20], and
Bai [4] fall in this category.

Scheme 2. First compute the SVD of C A. adj(B): uTcv E, form the
product of G UTA, compute Q so such the (1,2) or (2,1) entry of GQ is zero, and
finally compute V to zero out the (1,2) or (2,1) entry of/3Q. The algorithms proposed
by Hammarling [18] and Bojanczyk et al. [6] fall in this category.

To demonstrate the failure of the first kind of scheme, the following example shows
that in finite precision, the (1,2) or (2,1) entry of the final/3 may be much larger than

II?TBO- 2/IIF nIIBIIF,

(1.4), respectively, then we have
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O()IIBII"

A= B=
1 10-8 3 1

With the scheme described by Paige [28], Heath et al. [20], and Bai [4], for the computed
U, V, and Q, we have

0.70710677509009934E + 00

0.00000000000000000E + 00

0.31622776518779000E + 00

-0.33959487444334968E 08

0.21213203455917919E + 01

0.28284271491319831E 07

0.94868330465141837E + 00

0.31622776582710133E + 01

If we now set the (2,1) entry of/ TB, to zero, the backward stability condition
(5.2) is violated for matrix B, even though

0.17888543605335784E- 16 0.89442719636647925E- 08

To show how Scheme 2 can fail for the same example, using Hammarling’s method [18],
we have

0.70710677509009934E + 00

O.O0000000000000000E + O0

-0.31622776518778994E + 00

0.11102230246251565E 15

0.21213203455917919E + 01

0.28284271491319831E 07

-0.94868327069193081E + 00

-0.31622776684588585E + 01

Thus the stability is achieved, but for the computed U and V, we have

0.78163392273857838E- 16 -0.89442719636647908E- 08

which is not within o( )llC[I of diagonal form. This means that the computed
TAQ and/} TBI, are not the GSVD of A and B. In fact, par((/ll.l[),

(/IIBII)) par((/llxll), (x/llll)) 7.59 x 10-9.
But using Algorithm GSVD22 in 3.2, we have

0.70710677736817096E + 00

0.30374288814267665E- 16

0.31622776620657461E + 00

0.00000000000000000E + 00

0.21213203448324349E + 01

0.28284271491319831E 07

0.94868330431182346E + 00

0.31622776582710133E + 01
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and

0.17888543605335784E 16 0.89442719636647925E 08

Thus both stability and convergence conditions are satisfied, where par((l/llAII),
( 1/11 11)) par((l/llalll), (1/111[I)) 7.02 x 10-17.

Recently, Bojanczyk et al. [6] proposed a variation of Scheme 2, which we refer to
as the BELV scheme. The BELV scheme was originally designed for treating a matrix-
triple (A1, A2, Aa). It is easy to see that the 2 x 2 GSVD of two matrices is a special case
when one of the matrices (say, Aa is the identity). The BELV scheme does significantly
improve Hammarling’s method, but it still suffers from possible nonconvergence. For
example, using the BELV scheme, we see that for the following 2 2 matrices

A= ( 100000 10000)00.0001 B= ( 100000 10000.0000000001)00.003
the computed orthogonal matrices , fr, and ( by BELV scheme satisfy the stability
conditions (5.1) and (5.2):

TAd)_ (1)( 0.99503719020998935E-04-0.12189168086858831E-03 )2 0.00000000000000000E + 00 0.10049875621120891E + 06

2 0.00000000000000000E + 00 0.10049875621120886E + 06

However, the computed and do not diagonalize the matrix C:

0.20277179317658482E 07 0.30000000000000023E + 03

since the off-diagonal elements are much larger than O(e)[IC[l 10-14, par((5I/l[fil
(I/[[111)) 6.44 x 10-4, and even par((5i/llll), (1/II/[[)) 1.43 x 10-12, so that
the first rows of A and B are not parallel. But Algorithm GSVD22 yields

2 -0.12189168086858835E- 03 -0.99503719020998963E- 04

2 -0.36567504260576521E- 02 -0.29851115706299699E- 02

and

0.00000000000000000E + 00 0.99999999999999982E + 01

8In [6] it is proven that the off diagonal elements should be o(e)llAll IIBII 10-6, which is attained.
Since IlCll IIA adj(n)ll << IIAII Ilnll, our bound is much tighter.
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with par((a/llAII), (b/llBII)) par((al/llalll), (bx/llbxll)) O, and par((az/llAII),
(  /IIBII)) < par((u/llll), 1.72 x 10-16.

The above examples show that Algorithm GSVD22 is superior to all previous
schemes.

5.3. Test matrix generation for testing backward stability. To test the backward sta-
bility of Algorithm GSVD, we used the LAPACK test matrix generation suite [11] to
generate different types of upper triangular matrices A and B. The conditioning of a
generated upper triangular matrix can be controlled by the following parameters:

dit specifies the type of probability distribution to be used to generate the random
matrices:

U: uniform distribution on ( 0, 1 );
S: uniform distribution on ( -1, 1 );
N: normal distribution on ( 0, 1 ).

cond specifies the reciprocal of the condition number of generated matrix, cond _> 1.
modo describes how the singular values d of generated matrix are to be distributed:

1: sets dl I and d 1/cond, 2,..., n;
2: sets d 1, i 1,..., n 1 and d, 1/cond;
3: sets di cond-(i-1)/(n-1), i 1, ..., n;

i-1 (1 1/cond), i 1,...4: sets d 1- -f_ n;
5: sets di to random in ( 1/coati, 1 ), their logarithms are uniformly dis-
tributed;
6: sets d to random numbers from same distribution as the rest of the matrix.

We generated 12 separate classes of upper triangular matrices A and B according
to different choices of parameters d+/-st, cond, and modo, since this allows us to form
different types of matrices to fairly test the behavior of the algorithm. The 12 classes are
listed in Table 5.1. Thus classes 1 to 6 consist of well-conditioned matrices B, and the
conditioning of matrix A is changed from well to ill conditioned. Classes 7 to 10 consist
of well-conditioned matrices A and the conditioning of matrix B is changed from mod-
erate to ill conditioned. Classes 11 and 12 consist of moderately conditioned matrices A
and/3.

TABLE 5.1
Test matrices.

class
U 10 6

2 U 102 2
3 U 105

4 S 108 3
5 S 1012 4
6 S 1014 4
7 N 10 6
8 N 10 6
9 N 10 6
10 S 10 6
11 S 105 4
12 S 103 3

A B
dist cond mode dist cond mode

U 10 6
S 10 6
N 10 5
S 10 6
O 10 5
N 10 6
N 105 1
U 108 2
S 1012 2
N 1014 4
N 105 4
N 104 4

5.4. Test results. We tested the above 12 classes of matrix pairs of dimension of
n 5, 10, 20, 50. In each class of dimension 5 we generated 401 matrix pairs, in each
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class of dimension 10 we generated 301 matrix pairs, in each class of dimension 20 we
generated 201 matrix pairs, and in each class of dimension 50 we generated 101 matrix
pairs. This makes a total of 12,048 test matrix pairs.

Table 5.2 illustrates the average number of double sweeps required to converge with
the tolerance value - 10-4, where a double sweep consists of a sweep ofrow ordering
and a sweep ofcolumn ordering. None of 12,048 test matrix pairs failed to converge. The
observed largest number of double sweeps required to converge was five. The backward
stability conditions (5.1) and (5.2) held throughout the test. The following quadratic
convergence rate of the algorithm is typical of what we observed:

cycle 2 4 6 8

error Ei=l par(a/,bi) 1.5094 1.0252.10-9 0.4356.10-9 6.4874.10-16

where A and B are 50 x 50 matrices, the condition numbers for both matrices are about
104

TAnI 5.2
Auerage number ofdouble sweeps.

Class 1 2 3 4 5 6 7 8 9 10 11 12
5 2.29 2.40 2.02 2.00 2.19 2.18 2.07 2.05 2.00 2.12 2.01 1.93
10 3.00 3.01 2.99 2.01 3.01 3.00 2.97 3.01 2.00 2.99 3.00 2.00
20 3.26 3.50 3.07 2.19 3.53 3.30 3.05 3.21 2.98 3.23 3.21 2.20
50 4.00 4.01 3.99 3.00 4.00 4.00 3.89 4.01 3.00 4.00 4.00 3.00

5.5. Test matrix generation for testing accuracy. To test accuracy of Algorithm
GSVD, we generated random matrices A and B with known GSV pairs. Specifically,
let E1 diag(ai) and E2 diag(/i) be the given GSV pairs. Then we generated ran-
dom orthogonal matrices U, V, and Q uniformly distributed with respect to Haar mea-
sure, and a random upper triangular matrix R with specified smallest singular value, and
finally formed

(5.4) A U,IRQT and B VF2RQ7".
Hence the GSV pairs of A and B are known to be (ai,/i).

In this waywe can generate random test matrices having any distribution of the GSV
pairs, and

IIC*l19 O’min(C) O’min(/).
Hence O’min (/) (the smallest singular value) gives the conditioning of the designed test
matrix pair. If ( and/i are computed the GSV pairs by Algorithm GSVD, then the
quantity

(5.5) il _: Z[(oi (i)2 _]_ (/i --/i)2] :rmin(R
i=1

should be O(T), where T 10-14 is our stopping criterion.
We designed six different distributions of the GSV pairs as illustrated in the second

2+/2 lfori 1, nilcolumn ofTable 5.3, where ci and/i are normalized so that c
necessary, (U(0,1),U(0,1)) means that GSV pairs (c,/i) comes from the normalization
of a pair of random numbers from a uniform distribution on the interval (0,1). cond is
the reciprocal of the smallest singular value of the matrix R in (5.4). Note that some
of the distributions of GSV are well separated, some of them are highly clustered or
multiple.
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Type

2

3

4

5

6

TABLE 5.3
Average double sweeps and accuracy ofcomputed GSV pairs,

ain(R)

U(0,1), U(0,1)

1/i2,1

i, 1

1 + mod(i, n/4 + 1), 1

i-I(11 cond )’ 1

1, cond-(i-1)/(n-1)

I0
I0-6
10-12
I0

10-6
10-12
I0

10-6
10-12
10

10-6
10-12
10

10-6
10--12
10

10-6
10--12

Double sweeps for different n

2.07 3.0413.45 4.21
2.01 2.6213.00 3.00
2.00 2.61 13.00 3.00
2.00 2.61 13.00 3.10
2.48 3.0613.99 4.06
2.07 3.01 13.99 4.02
2.75 3.38 14.01 4.53
1.03 2.03 13.00 4.00
1.00 2.2613.04 4.02
1.08 3.51 13.50 4.59
2.06 3.001 3.55 4.14
2.01 3.01 13.62 4.18
2.01 3.01 13.62 4.20
2.28 3.0013.28 4.00
2.00 2.7713.00 3.17
2.00 2.0013.00 3.20

A1

1.51.10-14

1.21.10-15

8.64.10-15

2.56.10-15

2.65.10-15

9.99.10-15

2.52.10-14

9.71.10-15

3.89.10-16

7.33.10-14

5.11.10-15

1.95.10-15

3.29.10-14

4.23.10-15

6.05 10-- 15

1.51. 10-14

2.98. 10-16

1.14. 10-15

5.6. Test results. We generated several categories of matrix pairs according to three
parameters: the dimension n, the smallest singular value of R (amin(R)), and the type
of distribution of GSV. We first separated test matrices with three possible values of
amin(R) 1, 10-6, 10-12, i.e., corresponding to well, moderately, and ill-conditioned
GSVD problems. For each amid(R), we tested matrices of dimension n 5, 10, 20, 40
with six different distributions of GSV pairs as shown in Table 5.1. This makes a total of
3 x 4 6 72 different classes of matrices. In each class of dimension 5 we generated
301 matrices, in each class of dimension 10 we generated 201 matrices, in each class of
dimension 20 we generated 101 matrices, and in each class of dimension 40we generated
51 matrices, for a total of 10,772 test matrix pairs.

Table 5.3 illustrates the average number of double sweeps and accuracy of the algo-
rithm for different size of matrices. The preprocessing orthogonal transformations of A
and B to upper trapezoidal forms (1.5) are performed using LINPACK QR decompo-
sition subroutine DQRDC [12]. In all tests, the backward stability conditions (5.1) and
(5.2) are satisfied, so we do not report the details here. Given the backward stability,
we can assume that the backward errors E of A and F of B satisfy O(IIEII, IIFII)
o(10-14). For each type of GSV distribution, we let the conditioning (i.e., amin(R)) of
the GSVD problems vary from well to moderate to ill conditioned, as indicated in col-
umn 3 of Table 5.3. The numbers in columns 4 to 7 are the average numbers of double
sweeps needed for convergence. The last column of the table is the largest value of A1
computed from the formula (5.5). We see that all computed results are as accurate as
predicted.

Finally, we briefly report timing results. The codes have not been polished inten-
sively in order to reduce the execution time. Table 5.4 illustrates the required time for a
50 x 50 matrix pair A and B with 5 double sweeps to satisfy the stopping criterion.

Appendix. The SVD of 2 x 2 triangular matrix. In this Appendix, for the conve-
nience of the reader, we include the 2 x 2 triangular SVD algorithm of Demmel and
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TABLE 5.4
CPUtiming ofthe GSVD oftwo 50 x 50 matrices.

Timing inseconds with - 10-14
without U, V, Q with U, V, Q

preprocessing 0.2’8 1.11
iteration 13.11 20.99

Kahan. The algorithm was used in their high relative accuracy bidiagonal SVD algo-
rithm [10], but the algorithm details were not presented there.

It is known that the singular values of the 2 x 2 upper triangular matrix (0y ) are
the values of the unobvious expression 1/2lv/(f + h)2 + /2 + V/(f h) +.tl, of which
the bigger is 71 and the smaller is 7 [fh[/7. The right singular vector row (-s,, c,)
turns out to be parallel to. (f2 71, f). After computing a right singular vector, the
corresponding left singular vector is determined by (c,, s,) (fCv +gsv, hsv)/71. But
computing the singular values/vectors directly from these expressions is unwise because
round-off can destroy all relative accuracy, and they can suffer from over/underflow in
the squared subexpressions even when the singular values/vectors are far from
over/underflow thresholds. Demmel and Kahan have carefully reorganized the com-
putation as described in the following so that barring over/underflow and assuming a
guard digit in subtraction, all output quantities are correct to within a few ulps. In IEEE
arithmetic [1], the code works correctly even if one matrix entry is infinite. Overflow is
impossible unless the largest singular value itself overflows or is within a few ulps of over-
flow. (On machines with partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of two of overflow.) Underflow is harmless if underflow
is gradual. Otherwise, results may correspond to a matrix modified by perturbations of
size near the underflow threshold.

The error analysis of the main path of the code depends on the fact that all the
operations except two are. (i) multiplication and division, where the relative error of the
result is at most 1 ulp larger than the sum of the relative errors of the inputs; (ii) addition
of positive quantities, where the relative error of the result is at most 1 ulp larger than
the maximum of the relative errors of the inputs; and (iii) square root, where the relative
error of the result is at most 1 ulp more than half the relative error of the input.

There are also two subtractions in the main code path. The first subtracts, original
data D FA-HA, and so has a 1 ulp error. In the second, T=.-,. with 0 < < 1, the relative
error in T can only be 1 ulp larger than the relative error in ,.. These rules are sufficient
to straightforwardly bound the error in the main code path, provided we ignore second
order terms. There .is another path corresponding to the case where the off-diagonal g
is much larger than the other two matrix entries, which is analyzed much more easily.
Summarizing all these considerations we can easily prove the following.

PROPOSITION 3. Barring over/underflow, and assuming there is a guard digit in sub-
traction, the relative errors in the computedsingularvalues are at most 7 ulps and the relative
errors in the computed singular vectors are at most 46.5 ulps in each component.

The comments in the following code indicate the error bound in ulp of each com-
puted quantity.

SUBROUTINE SLASVg.( F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL
REAL CSL CSR F G, H SNL SNR SSMAX SSMIN

C
C Computes singular value decomposition of triangular matrix:
C CSL SNL F C CSR -SNR SSMAX 0
C [-SNL CSL 0 H SNR CSR 0 SSMIN
C Absolute value of SSMAX is larger singular value, Absolute value of SSMIN
C is smaller singular value. Both CSR**2+SNR**2=I and CSL**2+SNL**2=I.
C
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C Parameters
REAL ZERO, HALF, ONE, TWO, FOUR
PARAMETER ZERO 0.0, HALF 0.5, ONE 1.0, TWO -.0, FOUR 4.0

C Local Scalars
LOGICAL GASMAL, SWAP
INTEGER PMAX
REAL A, CLT, CRT, D, FA, FT, GA, GT, HA, HT, L, M,
REAL MM, R, S, SLT, SRT, T, TEMP, TSIGN, TT

C Intrinsic Functions
INTRINSICABS, SIGN, SQRT

C
FT--F
FA ABS( FT
HT=H
HA ABS( H
PMAX
SWAP HA.GT.FA
IF( SWAP THEN

PMAX 3
TEMP FT
FT HT
HT TEMP
TEMP FA
FA HA
HA TEMP

END IF
GT=G
GA ABS( GT
IF( GA.EQ.ZERO THEN

SSMIN HA
SSMAX FA
CLT ONE
CRT ONE
SLT ZERO
SRT ZERO

ELSE
GASMAL .TRUE.
IF( GA.GT.FA THEN

PMAX
IF( ABS( FA GA ).LE.EPS THEN

GASMAL .FALSE.
SSMAX GA
IF( HA.GT.ONE THEN

SSMIN FA GA HA
ELSE

SSMIN FA GA )*HA
END IF
CLT ONE
SLT HT GT
SRT ONE
CRT FT GT

END IF
END IF
IF( GASMAL THEN

D FA- HA
IF( D.EQ.FA THEN

L ONE
ELSE

L=D/FA
END IF
M GT FT
T TWO L
MM M*M
TT T*T
S SQRT( TT-bMM
IF( L.EQ.ZERO THEN

R ABS( M
ELSE

R SQRT( L*L+MM
END IF
A HALF*( S-bR
SSMIN HA A
SSMAX FA*A
IF( MM.EQ.ZERO THEN

IF( L.EQ.ZERO THEN
T SIGN( TWO, FT )*SIGN( ONE, GT

ELSE
T GT SIGN( D, FT + M T

END IF
ELSE

T M S+T )+M R+L )*( ONE+A
END IF
L SQRT( T*T+FOUR
CRT TWO L
SRT=T/L
CLT CRT+SRT*M A
SLT HT FT )*SRT A

END IF
END IF
IF( SWAP THEN

CSL SRT
SNL CRT
CSR SLT
SNR CLT

ELSE
CSL CLT
SNL SLT
CSR CRT

/* PMAX points to maximum absolute entry of matrix */

/* Now FA .ge. HA */

/* Diagonal matrix */

/* Case of very large GA, EPS is machine epsilon */

/* ulp */

/* ulps */

/* ulps */

/* ulp */
/* ulp */
/* ulp */
/* ulp */

/* Normal */
/* ulp */
/* Copes with infinite F H */
/* 0 ulps */

/* ulps */
/* Note that 0

_
L

_
*/

/* ulp error; Note that IMI
_

1/EPS */
/* 3 ulps error; Note that T

_
*/

/* ulps */
/* ulps */
/* ulps error; Note that _< S _< -- 1/EPS */

/* 0 ulps */

/* 3.5 ulps */
/* Note that O _< R _< -b I/EPS */
/* 6 ulps error; Note that

_
A _< d- IMI */

/* 7 ulps */
/* 7 ulps */
/* Note that M is very tiny */

/* 0 ulps */

/* 6 ulps */

/* 17 ulps */

/* 18.5 ulps */
/* 19.5 ulps */
/* 36.5 ulps */
/* 46.5 ulps */
/* 45.5 ulps */
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SNR SRT
END IF

C Correct the signs of SSMAX and SSMIN
IF( PMAX.EQ.1 TSIGN SIGN( ONE, CSR )*SIGN( ONE, CSL )*SIGN( ONE, F
IF( PMAX.EQ.2 TSIGN SIGN( ONE, SNR )*SIGN( ONE, CSL )*SIGN( ONE, G
IF( PMAX.EQ.3 TSIGN SIGN( ONE, SNR )*SIGN( ONE, SNL )*SIGN( ONE, H
SSMAX SIGN( SSMAX, TSIGN
SSMIN SIGN( SSMIN, TSIGN*SIGN( ONE, F )*SIGN( ONE, H
RETURN
END
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THE USE OF THE L-CURVE IN THE
REGULARIZATION OF DISCRETE ILL-POSED PROBLEMS*

PER CHRISTIAN HANSEN’ AND DIANNE PROST O’LEARYt

Abstract. Regularization algorithms are often used to produce reasonable solutions to ill-posed problems.
The L-curve is a plot--for all valid regularization parameters--of the size of the regularized solution versus
the size of the corresponding residual. Two main results are established. First a unifying characterization of
various regularization methods is given and it is shown that the measurement of "size" is dependent on the
particular regularization method chosen. For example, the 2-norm is appropriate for Tikhonov regularization,
but a 1-norm in the coordinate system of the singular value decomposition (SVD) is relevant to truncated
SVD regularization. Second, a new method is proposed for choosing the regularization parameter based on
the L-curve, and it is shown how this method can be implemented efficiently. The method is compared to
generalized cross validation and this new method is shown to be more robust in the presence of correlated
errors.

Key words, ill-posed problems, regularization, L-curve, parameter choice, generalized cross validation,
discrepancy principle

AMS subject classifications. 65R30, 65F20

1. Introduction. In many applications such as spectroscopy [1], seismography [13],
and medical imaging [11], data are gathered by convolution of a noisy signal with a de-
tector. A linear model of this process leads to an integral equation of the first kind:

(1) jo k(s, t) x(t) dt yo(s) 4- e(s).

Here, yo(s) + e(s) is the measured signal, yo(s) is the true signal, e(s) is the unknown
noise, and the kernelfunction k(s, t) is the instrument response function.

Since the measured signal is usually available only at a finite number of values of s,
the continuous model (1) is replaced by a discrete linear model equation

(2) Kx Yo + e =_ y,

where K is a matrix of dimension m x n and we assume that m > n. In all but trivial de-
convolution problems, the continuous problem is illposed in the sense that small changes
in the data can cause arbitrarily large changes in the solution, and this is reflected in ill
conditioning of the matrix K of the discrete model, increasing as the dimension of the
problem increases. Thus attempts to solve (2) directly yield solution vectors that are
hopelessly contaminated with noise.

Hence some sort of regularization of the problem is required to filter out the influ-
ence of the noise. Well-known regularization methods are Tikhonov regularization and
the truncated singular value decomposition (SVD). A common feature of these regular-
ization methods is that they depend on some regularization parameter that controls how
much filtering is introduced by the regularization. Often the key issue in connection with
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these methods is to find a regularization parameter that gives a good balance, filtering
out enough noise without losing too much information in the computed solution.

The purpose of this paper is to propose new methods for the choice of the regular-
ization parameter through use of the the L-curve. The L-curve is a plot--for all valid
regularization parameters--of the size of the regularized solution versus the size of the
corresponding residual. It was used by Lawson and Hanson [10] and further studied by
Hansen [9]. In this work we establish two main results. First we give a unifying charac-
terization ofvarious regularization methods and show that the measurement of "size" is
dependent on the particular regularization method chosen; for example, the 2-norm is
appropriate for Tikhonov regularization, but a 1-norm in the coordinate system of the
SVD is relevant to truncated SVD regularization. Second, we propose a systematic a
posteriori method for choosing the regularization parameter based on this L-curve and
show how this method can be implemented efficiently. We compare the method to gen-
eralized cross validation and the discrepancy principle.

Our analysis differs from the "asymptotic theory of filtering" [6] where the problem
size (m and n) goes to infinity, in that we consider problems where the problem size
is typically fixed, e.g., by the particular measurement setup. Thus we are ignoring the
very important questions of convergence of the estimates as the model converges to the
continuous problem or as the error converges to zero.

We give a unified survey of regularization methods in 2 and of algorithms for choos-
ing the regularization parameter in 3. We investigate various important properties of
the L-curve in 4 and demonstrate how a good regularization parameter can actually be
computed from the L-curve. In 5 we discuss several important computational aspects
of our method, and, finally, in 6 we illustrate the new method by numerical examples.

2. Regularization methods. Practical methods for solving the discretized problem
(2) must diminish the influence of noise. They differ only in the way that they deter-
mine the filtering function for the noise. We illustrate this by discussing several of these
methods in a common framework, using the SVD of the matrix K. Let

(3) K ai u v.
i--1

Here, the left and right singular vectors u and v are orthonormal, and the singular values
ai are nonnegative and nonincreasing numbers, i.e., a >_ a: _> _> a, _> 0. Common
for all discrete ill-posed problems is that the matrix K has a cluster of singular values at
zero and that the size of this cluster increases when the dimension m or n is increased.

Using the SVD of K, it is straightforward to show that the ordinary least squares
solution to (2), the one characterized by solving the unconstrained problem

(4) min Ilgx YlI2,

can be written as

n

(5) XLSQ Vi,

where ci uy.
The trouble with using the least squares solution ZLSq is that error in the directions

corresponding to small singular values is greatly magnified and overwhelms the informa-
tion contained in the directions corresponding to larger singular values. Any practical
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method must therefore incorporate filter factors f, changing the computed solution to

(6) Xfiltered Z fi i Vi
O"

i--1

where usually we take 0 _< fi <_ 1. If each filter factor is equal to one, we have the least
squares solution XLSQ. The filtered residual vector corrcspondin to xmteed is

rlteeo (1 Si) "iui + r,
i=1

where rx is the least squares residual, i.e., the component of y orthogonal to the vectors
Ul,.. u. Regularization methods differ only in how they choose the filter factors.

Perhaps the best own regularization method is the one due to Tionov [16],
which chooses the solution xx that solves the minimization problem

(7) min { IIKx YlI + 211zll }.

Here, the parameter A controls how much weight is given to minimization of Ilxl12 rel-
ative to minimization of the residual norm. In some applications it is not appropriate
to minimhe the 2-norm of the solution, but rather a seminorm IlL xl12 where L ically
is a discrete appromation to some derivative operator. However, Eld6n [2] has shown
that it is always possible to transform such problems into a form where the 2-norm is
minimized.

other regularizing method is ncated SVD [7], [17], where one simply truncates
the summation in (5) at an upper limit k < n, before the small singular values start to
dominate.

Certain iterative methods for solving the least squares problem (4) have minimiza-
tion properties. e conjugate adient family of methods minimizes the least squares
function over an eanding sequence of subspaces

Ek span{KTy, (KTK)KTy,..., (KTK)-IKTy},

keeping Ilxl12 as small as possible. One formulation particularly suited to ill-posed prob-
lems is the LSQR implementation of Paige and Saunders [12].

other popular regularizing technique is the mimum entropy principle; see, for
example, [15]. It is based on the idea that since y contains error, it is not reasonable to
ask that x reproduce it exactly, but only that it appromate it within the expected value
of the norm of the error in y. ong all of the x vectors that satis

the mmum entropy method chooses the vector whose entropy

n

i=1

is the largest, where x is a nonnegative initial appromation and the admissible points
x are also nonnegative.

Like the least squares formulation (4), these regularization methods produce solu-
tions that can be characterized as solutions to minimization problems. We can think of
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them as minimizing the size of the solution z subject to keeping the size of the residual
r Kz y less than some fixed value, or in a dual sense as minimizing the size of r sub-
ject to keeping the size of z less than some value M()0. The way that "size" is measured
varies from method to method, but many of these methods are defined in terms of the
norms induced by the bases of the SVD. Although the 2-norm is invariant with respect
to the choice of an orthonormal basis, other norms do not share this property. We will
denote the 1-norm in the SVD basis by I1" I1 _, defined by

n

i=1

n

if r ETiu +r+/-.
i--1

We make a similar definition for the p-norms in the SVD basis, p 3,..., . Moreover,
we denote by M()) the norm of the solution vector for regularization parameter .

Using this notation it is easy to verify that the regularization methods mentioned
above have the characterizations shown in Table 1. For instance, for the truncated SVD,
we have the relations

n

I1111 f
i=1

n

Ilrll_ (1 fi)I1 + IIr+/-ll"
i=1

For M()) 0, x 0 and all filter factors are zero. As M increases, we want to increase
the size of x as little as possible for a given decrease in the size of r. When the size of r
has been reduced by by 6, the size of x is

with
n

i=1

Thus the minimal size of x is achieved by finding the largest integer k so that

k

i=1

and then setting

6 (M k

0,

1,...,k,

i-k+1,

i=k+2,...,n.
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TABLE 1
Various regularization methods and their characterizations.

Method II Minimizes
Tikhonov Ilrl12

Truncated SVD Ilrllx__

I111
LSQR I111.

Maximum entropy IIll

Domain Filter factors

{: I111 _< M(A)}

f/(M)+l ak(M)+
M-= (’

fi O,i k(M) + 2,...,n

{" I111 < M()} y rain(l, M____)Il

{ x: I111. _< M(A)} No simple formula

{x >_ 0 s(x) >_ M(A)} No simple formula

There is no simpleformula for the filter factors for LSQR; but we will show in forth-
comingwork that they can be computed easily from intermediate quantities in the LSQR
algorithm. For maximum entropy, we are not aware of an algorithm for computing the
filter factors.

To unify notation, we will denote the regularization parameter by A, even for meth-
ods such as truncated SVD and LSQR in which the regularization is determined by a
discrete value k. We will denote the function minimized by a regularization method by
p(A) and the norm or function associated with the regularized solution vector x by
As an example, for Tikhonov regularizationwe have p(A) IlK z-yll2 and rl(A) Ilxll2.

The method l in the table is one of a family of methods, based on the lp norms
using the singular vector basis. For a comparable value of the regularization parameter,
the l method produces a solution that is much "less smooth" than that of the truncated
SVD or the Tikhonov method. The truncated SVD (l.) solution has no components in
directions corresponding to small singular values. The Tikhonov (/2) solution has small
components in these directions. The lp (p > 2) solutions have larger components, and
the l solution has components of size comparable to those in the directions corre-
sponding to large singular values. We note that these methods can also be generalized
to weighted lp norms.

From this discussion we see that the choice ofregularization method is a choice ofan
appropriate pair offunctions p and r]. The proper choice of the regularization parameter
is a matter of choosing the right cutofffor the filter factors fi, i.e., the breakpoint in the
singular value spectrum where one wants the damping to set in. Algorithms for choosing
the regularization parameter are still a subject of research. In the next section we survey
two proposals for choosing the regularization parameter. Their shortcomings lead us to
propose choosing the parameter based on the behavior of the L-curve, a plot of (A)
vs. p(A). The remainder of the paper is devoted to a discussion of the properties of the
L-curve, numerical issues in using it to choose a regularization parameter, and examples
of its performance compared with other methods.

3. Choosing the regularization parameter. We survey the discrepancy principle and
generalized cross validation, and then we propose the new method based on the L-curve.

3.1. The discrepancy principle. Perhaps the simplest rule is to choose the regular-
ization parameter to set the residual norm equal to some upper bound for the norm
Ilell2 of the errors in the right-hand side. In connection with discrete ill-posed problems
this is called the discrepancy principle [5, 3.3]. There is also a generalized discrepancy
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principle that takes errors in the matrix K into account [9]. A major disadvantage of
this methodapart from the fact that often a close bound on Ilell is not knownis the
generally accepted fact that the discrepancy principle "oversmooths" the solution: i.e.,
it will choose the Tikhonov parameter too large, will drop too many singular values in
the truncated SVD, or will halt LSQR at too early a stage. Thus we will not recover all
the information actually present in the given right-hand side .

3.2. Generalized cross-validation.A more promising rule is generalized cross-
validation (GCV) [4], [18]. The basic idea in cross-validation is the following: if any
data point yi is left out and a solution zx,i is computed to the reduced problem of di-
mension (m- 1) x n, then the estimate ofg computed from xx, must be a good estimate.
While ordinary cross-validation depends on the particular ordering of the data, general-
ized cross-validation is invariant to orthogonal transformation (including permutations)
of the data vector y.

The GCV function to be minimized in this method is defined by

IlK x(A)-YlI
(trace(/- K K(A)I))2’

where K(A)I is any matrix that maps the right-hand side y onto the solution x(A), i.e.,
x(A) K(A)Iy.

Although GCV works well for many problems, there are some situations in which
GCV has difficulty finding a good regularization parameter. One difficulty is that the
GCV function can have a very flat minimum and hence the minimum itself may be dif-
ficult to localize numerically. This is illustrated in [17].

Another difficulty is that GCV can sometimes mistake correlated noise for a signal.
The underlying assumptionwhen deriving GCV, cf. [4], [18], is that the errors in the right-
hand. side are normally distributed with zero mean and covariance matrix a2I. We state
from [18, p. 65] that GCV "is fairly robust against nonhomogenity of variance and non-
Gaussian errors However,the method is quite likely to give unsatisfactory results if
the errors are highly correlated." We illustrate this difficulty with a numerical example
in 6.

3.3. The L-curve method. Another, more recent, alternative is to base the regu-
larization parameter on the so-called L-curve [9]. The L-curve is a parametric plot of
(p(A), r/(A)), where (A) and p(A) measure the size of the regularized solution and the
corresponding residual [10]. The underlying idea is that a good method for choosing the
regularization parameter for discrete ill-posed problems must incorporate information
about the solution size in addition to using information about the residual size. This is in-
deed quite natural, because we are seeking a fair balance in keeping both of these values
small. The L-curve has a distinct L-shaped corner located exactly where the solution x
changes in nature from being dominated by regularization errors (i.e., by oversmooth-
ing) to being dominated by the errors in the right-hand ,side. Hence the corner of the
L-curve corresponds to a good balance between minimization of the sizes, and the cor-
responding regularization parameter A is a good one.

A feature of the L-curve that has not previously been considered is that the 2-norm
is not always the appropriate measure of the size of the solution and residual vectors.
The natural way to measure size is induced by the choice of the regularization method.
Referring to Table 1, we conclude that the 2-norm is natural for Tikhonov regularization,
for example, while the l norm should be used for the truncated SVD, since that is the
norm in which it is optimal.
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The idea of using the corner of the L-curve as a means for computing a good reg-
ularization parameter was originally proposed in [9], where it is also demonstrated that
under certain assumptions that this criterion is indeed similar to both GCV and the dis-
crepancy principle. Experiments confirm thatwhenever GCVfinds a good regularization
parameter, the corresponding solution is located at the corner of the L-curve.

The L-curve method for choosing the regularization parameter has advantages over
GCV: computation of the comer is a well-defined numerical problem, and the method is
rarely "fooled" by correlated errors. Even highly correlated errors will make the size of
the solution grow once the regularization parameter A becomes too small, thus producing
a corner on the L-curve. We make these statements more precise in the next section.

4. Properties of the L-curve.

4.1. The shape of the curve. Many properties of the L-curve for Tikhonov regular-
ization are investigated in [9]. In particular, it is shown that under certain assumptions
the L-curve (p, r/) for Tikhonov regularization has two characteristic parts, namely, a
"fiat" part where the regularized solution zx is dominated by regularization errors and
an almost "vertical" part where zx is dominated by the errors. The three assumptions
made in [9] are:

1. The discrete Picard condition is satisfied, i.e., the coefficients on average
decay to zero faster than the singular values ai.

2. The errors in the right-hand side are essentially "white noise."
3. The signal-to-noise ratio is reasonably large.

It was also shown in [9], under assumptions 1-3, that for any method whose filter factors
behave quantitatively like those for Tikhonov regularization, its 2-norm L-curve (dis-
crete or continuous) will be close to that of Tikhonov regularization.

It is, however, possible to show that the L-curve will always have an L-shaped ap-
pearance. Assume that the right-hand side has a component in each singular direction.
(If not, reduce the problem dimension by dropping the corresponding component in the
SVD.) The only other assumption we need to make is that the desired solution vector is
bounded in size by some number M that is less than the size of the least squares solution
(5). Such an assumption is realistic in all practical problems; perhaps all we know is that
57/is less than 101, but that is all we assume for now.

Consider first the L-curve (p, /) for Tikhonov regularization. We know that

n 2 2O" OI1 ( )11 
/

i=1

and

n 4 2

II (A)II + + I1 -II =
"__

Thus

n 2 2 n 2 2d(r/2(A)) -4A
(A2 + a2)3 dA (A2 + ai23dA

i=1 =1

Therefore d(72)/d(p2) -A-2. Evaluation of the second derivative shows that the L-
curve is convex and becomes steeper as the parameter A approaches the smallest singular
value.
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The truncated SVD solutions yield a piecewise linear L-curve (/9, ) using the lnorm
measure of size. On the ith segment, the size of the residual changes by Ici I, while the
size of the solution changes by -I1/, Thus the slope of the ith segment is -1/cri, and
the curve becomes steeper as the size of the residual decreases.

It is easy to show that the l method has a similar property: the slope of each seg-
ment is again -1/tri for some value of i.

Thus we have shown that for Tikhonov regularization, truncated SVD, and the l
method, the L-curves become vertical as the size of the residual approaches its lower
limit. Note that the slopes in .each of these three cases are determined by K alone,
independent of the right-hand side.

In forthcoming work with G. W. Stewart it is shown that the L-curve for LSQR has
similar behavior if the right-hand-side coefficients decay sufficiently rapidly. The behav-
ior of the curve for the maximum entropy criterion is a topic for future research.

Thus the L-curve basically consists of a vertical part for values of r/(A) near the max-
imum value and an adjacent part with smaller slope. The more horizontal part corre-
sponds to solutions where the regularization parameter is too large and the solution is
dominated by regularization errors. The vertical part corresponds to solutions where the
regularization parameter is too small and the solution is dominated by right-hand-side
errors magnified by the division by small singular values. This behavior does not rely on
any additional properties of the problem, e.g., statistical distribution of the errors, the
discrete Picard condition, etc.

The idea of the L-curve criterion for choosing the regularization parameter is to
choose a point on this curve that is at the "corner" of the vertical piece. Having an
upper bound M on the size of z prevents us from being fooled by any other corners that
the L-curve may have; in the absence of other information, we seek the leftmost corner
consistent with the bound M. The following are two ways of viewing the problem of
corner location.

1. We could seek the point on the curve closest to the origin. The definition of"clos-
est" can vary from method to method. For example, Tikhonov regularization measures
distance as p + A2.

2. We could choose the point on the L-curve where the curvature is maximum. The
curvature is a purely geometrical quantity that is independent of transformations of the
regularization parameter. We discuss implementation of this idea in 5.

The rationale behind using the corner to find a regularization parameter is that
the corner corresponds to a solution in which there is a fair balance between the regu-
larization and perturbation errorsmbecause the corner separates the horizontal part of
the curve from the more vertical part. This choice of may lead to a slightly underregu-
larized solution because the influence of the perturbation errors must become apparent
before the corner appears.

We stress numerically reliable methods but emphasize the fact that the L-curve pic-
ture gives a check on any method for locating the corner, as well as further insight into
problem behavior, and that the user should not fail to look at it. There is good reason to
use a set of routines that provide reliable numerical methods as well as good graphics,
such as the Matlab-based code of Hansen [8].

4.2. Distinguishing signal from noise. In our experiments we have found that in
many cases it is advantageous to consider the L-curve (p, r/) in a log-log scale. There
is strong intuitive justification for this. Since the singular values typically span several
orders of magnitude, the behavior of the L-curve is more easily seen in such a log-log
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scale. In addition, the log-log scale emphasizes "fiat" parts of the L-curve where the
variation in either p or r/is small compared to the variation in the other variable. These
parts of the L-curve are often "squeezed" close to the axes in a lin-lin scale. Hence the
log-log scale actually emphasizes the corner of the L-curve. One more advantage of the
log-log scale is that particular scalings of the right-hand .side and the solution simply shift
the L-curve horizontally and vertically. Thus we do all of our computations related to
curvature on (log p, log r/).

The log-log transformation has a theoretical justification as well. Consider the (p, r/)
curve for the truncated SVD algorithm. Recall that the p is the l norm of the residual,
while r/is the 11 norm ofthe solution vector, and the curve consists ofthe points produced
by the truncated SVD algorithm for various numbers ofretained singular values, 1 < k <
n. Using (5) we see that as k is increased by 1, the change in p is while the change
in r/is us the slope of the kth segment of the piecewise linear interpolant is
1/trk, independent of the right-hand side for the problem. Therefore, there is no hope
of distinguishing signal from noise by examining properties of the L-curve in the lin-lin
scale.

In a log-log scale, however, the slope of the kth segment is the relative change in r/
divided by the relative change in p, and these behave quite differently for signal and noise.
A noiseless signal for which the discrete Picard condition is satisfied has the property
that the sequences and both approach zero. Thus the relative change in
approaches zero, while the relative change in p is finite and nonzero. Therefore, for a
signal, the L-curve in log-log coordinates becomes fiat as k is increased.

Pure noise gives a quite different L-curve in log-log scale. If we assume that the
error components are roughly a constant value e, then k e/cr and the relative
change in r/ is approximately try_l/cry. The relative change in pk is 1/(m k), so the
slope of the piecewise linear interpolant is (m k)cr_i/crk. The L-curve for noise in
log-log scale therefore has a steep slope as k increases, unlike the fiat curve of the signal.

The same conclusion holds for the l regularization method. Suppose we increase
the norm ofz from -y to’. Then the norm ofthe residual changes from maxi I1-I’ to
maxi [/i I-I’ I. The slope ofthe L-curve in lin-lin coordinates is not strongly dependent
on the right-hand-side coefficients/. The picture is different in log-log coordinates,
though. The relative change in the norm of z is (---y)/% and the relative change in the
norm ofr is (---)tri/(l I) for some value of i. For pure signal, as 7 increases, the
value of i will be small: since a/tr 0 by the discrete Picard condition, the components
corresponding to small singular values are not changed by further increase in the norm
of z. Thus the L-curve will have moderate slope. For pure noise, i n, and the L-curve
will be quite steep as -y increases.

The L-curves for pure signal and pure noise in Tikhonov regularization have similar
characters: both curves are steep in lin-lin scale as A 0, but only the noise curve is
steep in log-log scale. This can be shown either by appealing to the closeness of the
truncated SVD and the Tikhonov solutions and residuals when both are measured in
the 2-norm, or by rather tedious computations with the 2-norm.

5. Numerical issues in locating the corner of the L-curve. Although the L-curve is
easily defined and quite satisfying intuitively, computing the point ofmaximum curvature
in a numerically reliable way is not as easy as it might seem. Below, we discuss three cases
of increasing difficulty. Throughout this section we use the notation (, )) for the chosen
measures of the size of the residual vector and the size of the solution vector. In practical
computation these would probably be taken to be the logs of the 1, 2, or p norms of these
vectors, or some weighted versions of these norms.
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5.1. The ideal situation: The L-curve defined by a smooth, computable formula.
If the functions/ and are defined by some computable formulas, and if the L-curve
is twice continuously differentiable, then it is straightforward to compute the curvature
n(A) of the L-curve by means of the formula

(8) +
Here, denotes differentiation with respect to the regularization parameter . Any one-
dimensional optimization routine can be used to locate the value of that corresponds
to maximum curvature.

This situation arises when using Tikhonov regularization on a problem for which
the singular values of the matrix K are known. It is practical computationally, since the
effort involved in such a minimization is much smaller than that for computing the SVD.

5.2. Lacking a smooth, computable function defining the L-curve. In many situa-
tions we are limited to knowing only a finite set of points on the L-curve. This is the
case, for example, for the truncated SVD and LSQR algorithms, and in these and other
cases the underlying curve is not differentiable. Thus the curvature (8) cannot be com-
puted and in fact may fail to exist. The same may be the case for problems where the
regularized solution results from some black box routine.

In a computational sense, the L-curve then consists of a number of discrete points
corresponding to different values of the regularization parameter at which we have eval-
uated and ). In many cases, these points are clustered, giving the L-curve fine-grained
details that are not relevant for our considerations. For example, if there is a cluster of
small singular values tr through tr. with right-hand-side coefficients even smaller, then
the L-curve for the truncated SVD will have a cluster of points for values of k from i to
i. This situation does not occur for Tikhonov regularization because all the components
in the solution come in gradually as the filter factors change from zero to one.

We must define a differentiable, smooth curve associated with the discrete points in
such a way that fine-grained details are discarded while the overall shape of the L-curve
is maintained; i.e., we want the approximating curve to achieve local averaging while
retaining the overall shape of the curve. A reasonable approach is therefore to base the
approximating smoothing curve on cubic splines. Ifwe fit a pair of cubic splines to (A)
and (), or if we fit a cubic spline to (), then we have difficulty with approximating
the corner well because dense knots are required here. This conflicts with the purpose
of the fit, namely, to locate the corner.

Instead, we propose fitting a cubic spline curve to the discrete points of the L-curve.
Such a curve has several favorable features in connection with our problem: it is twice
differentiable, it can be differentiated in a numerically stable way, and it has local shape-
preserving features [3]. Yet we must be careful not to approximate the fine-grained de-
tails of clusters of points too well. Since a cubic spline curve does not intrinsically have
the desired local smoothing property, we propose the following two-step algorithm for
computing a cubic spline-curve approximation to a discrete L-curve.

ALGORITHM FITCURVE
1. Perform a local smoothing of the L-curve points, in which each point is replaced

by a new point obtained by fitting a low-degree polynomial to a few neighboring
points.

2. Use the new smoothed points as control points for a cubic spline curve with
knots 1,..., N + 4, where N is the number of L-curve points.



USE OF THE L-CURVE 1497

Step 1 essentially controls the level of fine-grained details that are ignored. We
have good experience with fitting a straight line in the least squares sense to five points
centered at the point to be smoothed (a 1-norm fit may also work well, but is more
difficult to compute). We illustrate the use of this algorithm in 6.

In connectionwith using this algorithm as a stopping criterion for LSQR or any other
iterative method, we stress that it is our belief that any sophisticated stopping rule for
regularizing iterative methods (GCV, locating the point closest to the origin, finding the
point ofmaximum curvature, etc.) must go a few iterations too far in order to determine
the comer of the L-curve.

5.3. Limiting the number of L-curve points. In many cases, evaluating points on
the L-curve is computationally very demanding and one would prefer to compute as few
points as possible. For such problems, with differentiable as well as nondifferentiable
L-curves, we need an algorithm that tries to locate the corner of the L-curve efficiently.

Assume that one knows a few points on each side of the corner. Then the ideas
from the previous section can be used to derive an algorithm that seeks to compute a se-
quence of new regularized solutions whose associated points on the L-curve (hopefully)
approach its comer. The algorithm is as follows.

ALGORITHM FINDCORNER
1. Start with a few points (t), )i) on each side of the corner.
2. Use the ideas in Algorithm FITCURVE to find an approximating three-

dimensional cubic spline curve S for the points (, r)i, Ai), where Ai is the reg-
ularization parameter that corresponds to (tS, )i).

3. Let S denote the first two coordinates of S, such that S approximates the L-
curve.

4. Compute the point on Sz with maximum curvature, and find the corresponding
A0 from the third coordinate of S.

5. Solve the regularization problem for A0 and add the new point (t(A0), )(A0)) to
the L-curve.

6. Repeat from Step 2 until convergence.

In step 2, it is necessary to introduce A as a third coordinate of S because we need to
associate a regularization parameter with every point on Sz. A two-dimensional spline
curve with A as knots does not provide this feature. We stress again that it is not suitable
to fit individual splines to i and )i.

Initial points for step 1 can be generated by choosing very "large" and very "small"
regularization parameters, for example, A equal to try, tr, 10tr,, and r,. Since these
initial points may be far from the corner, we found it convenient to introduce an arti-
ficial temporary point (mini (i), mini ()i)) between the points corresponding to "large"
and "small" A. This temporary point is replaced by the first L-curve point ((A0), )(A0))
computed in the first iteration.

6. Numerical examples. In this section we illustrate the theory from the previous
sections with numerical examples. We consider a first-kind Fredholm integral equation
which is a one-dimensional model problem in image reconstruction from [14]. In this
model, the unknown function z is the original signal, the kernel function k(s, t) is the
point spread function of an infinitely long slit, and the right-hand side is the measured
signal: i.e., consists of the original signal z integrated with k(s, t) plus additional noise
e. The kernel is given by
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(9) k(s, t) (cos s + cos t)
sin u 7r 7r

u=r(sins+sint), s,t
U "

Discretization is performed by means of simple collocation with delta functions as basis
functions. Hence the vectors x and y are simply samples of the underlying functions.
Throughout, the order of the matrix K is m n 64.

We consider two different right-hand sides, both generated by multiplying the matrix
K times the corresponding true solution vector x. The first right-hand side, yl, satisfies
the discrete Picard condition; i.e., the Fourier coefficients ai u/Tyl decay to zero faster
than the singular values ai, so the solution coefficients oi/ai also decay to zero. This
right-hand side y corresponds to a solution x with two "humps" given by

(0) Xl (t) 2 exp(--6 (t O.S)) + exp(--2 (t + 0.5)).

The second right-hand side yg. only marginally satisfies the discrete Picard condition: the
right-hand-side coefficients are artificially generated so that all the solution coefficients
are of approximately the same size. This problem is harder to solve numerically than the
first one. The norms of the two right-hand sides are IlYx 112 18.6 and Ily2112 19.3.

To each of these right-hand sides we add perturbation error consisting of normally
distributed numbers with zero mean and standard deviation 10-2 so that Ilel12 8.10-2.

The L-curves associated with truncated SVD, Tikhonov regularization, and the o
methods (see 2) are shown in Fig. 1. In lin-lin scale the truncated SVD and curves are
piecewise linear, but these segments appear curved in the log-log scale. For both model
problems and all three methods, the L-shaped appearance of the curves is very distinct.
In particular, we notice the fiat parts of the curves, corresponding to domination by the
regularization error, and the vertical parts, corresponding to domination by perturbation
errors. We also notice that even though the discrete Picard condition is barely satisfied
for the second right-hand side y2, the corresponding L-curves still have a distinct flat
part.

The rounded corner on the L-curve for truncated SVD shows the need for a rigorous
definition of the "corner" of the L-curvembut in fact the other L-curves also have a
rounded "corner" on a finer scale.

For the first model problem and for Tikhonov regularization, let us now consider the
two types of errors in the regularized solution x(A). To this end, let :(A) denote the part
of x(A) solely from the unperturbed part of the right-hand .side, such that x(A) (A)
is the perturbation component of x(A). We want to compare the regularization error

Ilxx :(A) 112 with the perturbation error I1() x() 112. This is done in the left part of
Fig. 2. Obviously, the regularization error increases with A while the perturbation error
decreases. The regularization parameter A for which the two error types are identical
can be characterized as the optimal A.

The two vertical lines in Fig. 2 represent the regularization parameters chosen by
means of the L-curve criterion (dashed-dotted line) and GCV (dotted line). The right
part of the figure shows the corresponding GCV function and its minimum. %vo typical
situations are shown. In the upper part both GCV and the L-curve criterion yield approx-
imately the same regularization parameter. In the bottom part of the figure the GCV
function is quite fiat, and the regularization parameter is a factor 10 too small. Thus Fig.
2 illustrates the major difficulty with the GCV method, namely, that the minimum is not
always so well-defined.
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FIG. 1. The L-curvesformodelproblems (a) one and (b) twofor the the .oo method (dashed line), Tikhonov
regularization (solid line), and truncated SVD (dotted line).

Let us now consider the robustness of the two competing methods in more detail.
To do this, we compute the relative error in the regularized solution for both model
problems:

i 1,2,

computing the regularization parameter A by both the L-curve criterion and by GCV.
We used a broad range of error levels: Ilel12/lly]]2 10-J, j 1, 2,...,8, and for
each error level we generated 25 error vectors. Thus for each model problem we solved
200 regularization problems. The results are shown in Figs. 3 and 4 as histograms with
a logarithmic abscissa axis. The L-curve criterion rarely fails to compute a satisfactory
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FIG. 2. The left part shows the regularization error (solid line) and the perturbation error (dashed line) for
model problem one, Tikhonov regularization, and two different random perturbations. The vertical lines repre-
sent the regularization parameters computed by means ofthe L-curve criterion (dashed-dotted line) and the GCV
method (dotted line). The rightpart shows the corresponding GCVfunctions and their minima.
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FIG. 3. Histograms of 200 relative errors Ilzx x A / x I1. for modelproblem one, Tikhonov regular-
ization, and A chosen by means of (a) the L-curve criterion and (b) the GCV. The error level Ilel12/llyl12 varies
between 1O-9 and 10-1.
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regularization parameter, while the GCV method fails quite often, due to the difficulties
mentioned above. It is no surprise that the relative errors are typically smaller for the
first model problem, because the satisfaction of the discrete Picard condition makes this
problem somewhat easier to solve numerically than the second model problem.
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FIG. 4. Histograms of200 relative errors z2 z 2/ m2 2formodelproblem two, Tikhonov regularization,
and A chosen by means of (a) the L-curve criterion and (b) the GCV. The error level Ilel12/llYl12 varies between
10-9 and 10-1

Finally, let us consider problems with highly correlated errors. For this purpose we
use the first problem, but now the perturbation e is generated as follows. Once the matrix
K and the right-hand-side yl have been computed, we smooth their elements kj and yl,
by the following scheme:

), Y, + # (Yl,i-1 + Yl,i+I), 2,..., n 1,

kj k + # (k_, + ki+l,j + k,:-i + ki,j+l), i,j 2,..., n- 1.

Hence the right-hand-side errors are ei 1,i -Y,i, and similarly for the matrix. The pa-
rameter # controls the amount of smoothing. These errors may, for example, represent
sampling errors or the approximation errors involved in computing K and y by means of
a Galerkin-type method where some "local" integration is performed. The noise is not
"white" as in the first two model problems; rather, e has larger components along the
singular vectors corresponding to the larger singular values.

We carried out several experiments with this third model problem for various val-
ues of/z. For all these experiments, the GCV method completely failed to compute
a reasonable regularization parameter. Fig. 5 shows a typical GCV function for these
experiments, for the particular choice # 0.05. The GCV function is monotonically



1502 P.c. HANSEN AND D. P. O’LEARY

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-7
10-13

10-9 10-8 10-6 10-5 10-4 10-3 10-2 10-1 100

(a)

103

102

101
0.0004116 o0.04548

IIK 
10
10-4 10-3 10-2 10-1 100 101

(b)

FIG. 5. (a) shows the GCVfunctionforaproblem with correlated errors. The GCVfunction has no minimum
forany reasonable value of) (b) shows the L-curvefor Tikhonov regularizationfor the sameproblem as the comer
computed by our algorithm. The numbers are the regularization parameters that correspond to the dots on the L-
curve.

increasing. (In fact, there is a minimum for A of the order of the machine precision, but
this is not a useful regularization parameter.)

The L-curve, on the other hand, always has an unmistakable corner. For the same
value of # 0.05 as above, this corner occurs at A .. 3.10-4, and this value of the regu-
larization parameter indeed produces a regularized solution with optimal error. There
is, in fact, one more corner for A of the order of the machine precision outside of the
plot. To get the correct corner, we used 2/- 104 as a huge overestimate of the solution
norm. For smaller values of # the L-curve criterion sometimes leads to an underregu-
larized solution, essentially because, as we mentioned in 4.1, the perturbation errors
must become slightly apparent in the solution to produce the corner. Nevertheless, the
computed A is still fairly close to the optimal one.
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7. Conclusions. We have shown that a number of regularization methods have nat-
urally associated L-curves defined in terms ofnorms that are characteristic for the partic-
ular method. We have introduced new regularization methods, based on lp norms in the
coordinate system of the singular vectors of the matrix. Moreover, we have shown that,
when plotted in a log-log scale, L-curves indeed have a characteristic L-shaped appear-
ance and that the corner corresponds to a good choice of the regularization parameter.

Based on this characterization of the L-curves, we have proposed a new a posteriori
scheme for computing the regularization parameter for a given problem. This scheme
uses the parameter corresponding to a corner of the L-curve, a point ofmaximum curva-
ture. We have also extended this idea to discrete L-curves such as those associated with
truncated SVD and iterative methods.

Our numerical examples clearly illustrate the usefulness of the L-curve criterion for
choosing the regularization parameter. Although the L-curve criterion sometimes fails
to compute a reasonable regularization parameter, it seems to be much more robust than
its main competitor, generalized cross-validation. Of course, one can always construct
problems that will also "fool" the L-curve criterion; but it is our feeling that it works so
well in practice that it is indeed a useful method. Further work is needed to determine
circumstances under which the regularized solution converges to the true solution as the
size of the error converges to zero.

REFERENCES

[1] M. BERTERO, C. DE MOL, AND E. R. PIKE, Applied inverse problems in optics, in Inverse and Ill-Posed
Problems, Heinz W. Engl and C. W. Groetsch, eds., Academic Press, New York, 1987, pp. 291-313.

[2] L. ELOlN, Algorithmsfor regularization ofill-conditioned least squaresproblems, BIT, 17 (1977), pp. 134-
145.

[3] G. FARIN, Curves and Surfacesfor ComputerAided Geometric Design, Academic Press, New York, 1988.
[4] G.H. GOLUB, M. HEATH, AND G. WAHBA, Generalized cross-validation as a methodfor choosing a good

ridgeparameter, Technometrics, 21 (1979), pp. 215-223.
[5] C.W. GROETSCH, The Theory ofTikhonov RegularizationforFredholm Integral Equations ofthe First Kind,

Pitman, Boston, 1984.
[6] C.W. GROETSCH AND C. R. VOGEL,Asymptotic theory offilteringfor linear operator equations with discrete

noisy data, Math. Comput., 49 (1987), pp. 499-506.
[7] P. C. HANSEN, The truncated SVD as a methodfor regularization, BIT, 27 (1987), pp. 354-553.
[8] ,Regularization tools, a Matlab package for analysis ofdiscrete regularization problems, Tech. Re-

port, Danish Computing Center for Research and Education, Lyngby, Denmark, 1991.
[9] ,Analysis ofdiscrete ill-posedproblems by means ofthe L-curve, SIAM Rev., 34 (1992), pp. 561-580.

[10] C.L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ,
1974.

[11] E NATI’ERER, The Mathematics ofComputerized Tomography, Wiley, New York, 1986.
[12] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse equations and sparse least squares,

ACM Trans. Math. Software, 8 (1982), pp. 43-71.
[13] J.A. SCALES AND A. GERSZTENKORN, Robust methods in inverse theory, Inverse Problems, 4 (1988), pp.

1071-1091.
[14] C.B. SHAW, JR., Improvements ofthe resolution ofan instrument by numerical solution ofan integral equa-

tion, J. Math. Anal. Appl., 37 (1972), pp. 83-112.
[15] J. SKILLING AND S. F. GULL, Algorithms and applications, in Maximum-Entropy and Bayesian Methods

in Inverse Problems, C. R. Smith and W. T. Grandy, Jr., eds., D. Reidel Pub. Co., Boston, 1985, pp.
83-132.

[16] A.N. TIKHONOV AND V. Y. ARSENIN, Solutions oflll-Posed Problems, Wiley, New York, 1977.
[17] J.M. VARAH, Pitfalls in the numerical solution oflinear ill-posedproblems, SIAM J. Sci. Statis. Comput.,

4 (1983), pp. 164-176.
[18] G. WAHaA, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied

Mathematics, Vol. 59, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1990.


	SJOCE_V14_i1_p0001.pdf
	SJOCE_V14_i1_p0019.pdf
	SJOCE_V14_i1_p0044.pdf
	SJOCE_V14_i1_p0049.pdf
	SJOCE_V14_i1_p0068.pdf
	SJOCE_V14_i1_p0081.pdf
	SJOCE_V14_i1_p0095.pdf
	SJOCE_V14_i1_p0121.pdf
	SJOCE_V14_i1_p0137.pdf
	SJOCE_V14_i1_p0159.pdf
	SJOCE_V14_i1_p0185.pdf
	SJOCE_V14_i1_p0218.pdf
	SJOCE_V14_i1_p0231.pdf
	SJOCE_V14_i1_p0239.pdf
	SJOCE_V14_i1_p0248.pdf
	SJOCE_V14_i1_p0253.pdf
	SJOCE_V14_i2_p0259.pdf
	SJOCE_V14_i2_p0279.pdf
	SJOCE_V14_i2_p0295.pdf
	SJOCE_V14_i2_p0310.pdf
	SJOCE_V14_i2_p0338.pdf
	SJOCE_V14_i2_p0349.pdf
	SJOCE_V14_i2_p0368.pdf
	SJOCE_V14_i2_p0389.pdf
	SJOCE_V14_i2_p0406.pdf
	SJOCE_V14_i2_p0424.pdf
	SJOCE_V14_i2_p0446.pdf
	SJOCE_V14_i2_p0461.pdf
	SJOCE_V14_i2_p0470.pdf
	SJOCE_V14_i2_p0483.pdf
	SJOCE_V14_i2_p0506.pdf
	SJOCE_V14_i3_p0511.pdf
	SJOCE_V14_i3_p0519.pdf
	SJOCE_V14_i3_p0531.pdf
	SJOCE_V14_i3_p0542.pdf
	SJOCE_V14_i3_p0570.pdf
	SJOCE_V14_i3_p0585.pdf
	SJOCE_V14_i3_p0594.pdf
	SJOCE_V14_i3_p0607.pdf
	SJOCE_V14_i3_p0627.pdf
	SJOCE_V14_i3_p0654.pdf
	SJOCE_V14_i3_p0670.pdf
	SJOCE_V14_i3_p0677.pdf
	SJOCE_V14_i3_p0693.pdf
	SJOCE_V14_i3_p0715.pdf
	SJOCE_V14_i3_p0735.pdf
	SJOCE_V14_i3_p0752.pdf
	SJOCE_V14_i4_p0761.pdf
	SJOCE_V14_i4_p0770.pdf
	SJOCE_V14_i4_p0783.pdf
	SJOCE_V14_i4_p0800.pdf
	SJOCE_V14_i4_p0824.pdf
	SJOCE_V14_i4_p0860.pdf
	SJOCE_V14_i4_p0872.pdf
	SJOCE_V14_i4_p0890.pdf
	SJOCE_V14_i4_p0914.pdf
	SJOCE_V14_i4_p0936.pdf
	SJOCE_V14_i4_p0953.pdf
	SJOCE_V14_i4_p0971.pdf
	SJOCE_V14_i4_p1007.pdf
	SJOCE_V14_i5_p1013.pdf
	SJOCE_V14_i5_p1020.pdf
	SJOCE_V14_i5_p1034.pdf
	SJOCE_V14_i5_p1057.pdf
	SJOCE_V14_i5_p1072.pdf
	SJOCE_V14_i5_p1089.pdf
	SJOCE_V14_i5_p1107.pdf
	SJOCE_V14_i5_p1143.pdf
	SJOCE_V14_i5_p1159.pdf
	SJOCE_V14_i5_p1174.pdf
	SJOCE_V14_i5_p1194.pdf
	SJOCE_V14_i5_p1214.pdf
	SJOCE_V14_i5_p1237.pdf
	SJOCE_V14_i5_p1253.pdf
	SJOCE_V14_i6_p1259.pdf
	SJOCE_V14_i6_p1289.pdf
	SJOCE_V14_i6_p1300.pdf
	SJOCE_V14_i6_p1320.pdf
	SJOCE_V14_i6_p1339.pdf
	SJOCE_V14_i6_p1359.pdf
	SJOCE_V14_i6_p1368.pdf
	SJOCE_V14_i6_p1394.pdf
	SJOCE_V14_i6_p1415.pdf
	SJOCE_V14_i6_p1437.pdf
	SJOCE_V14_i6_p1464.pdf
	SJOCE_V14_i6_p1487.pdf

